WAGE: An Authenticated Encryption with a Twist

Authors

  • Riham AlTawy Department of Electrical and Computer Engineering, University of Victoria, Victoria, Canada
  • Guang Gong Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
  • Kalikinkar Mandal Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
  • Raghvendra Rohit Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

DOI:

https://doi.org/10.13154/tosc.v2020.iS1.132-159

Keywords:

Authenticated encryption, Pseudorandom bit generators, Welch-Gong permutation, Lightweight cryptography

Abstract

This paper presents WAGE, a new lightweight sponge-based authenticated cipher whose underlying permutation is based on a 37-stage Galois NLFSR over F27. At its core, the round function of the permutation consists of the well-analyzed Welch-Gong permutation (WGP), primitive feedback polynomial, a newly designed 7-bit SB sbox and partial word-wise XORs. The construction of the permutation is carried out such that the design of individual components is highly coupled with cryptanalysis and hardware efficiency. As such, we analyze the security of WAGE against differential, linear, algebraic and meet/miss-in-the-middle attacks. For 128-bit authenticated encryption security, WAGE achieves a throughput of 535 Mbps with hardware area of 2540 GE in ASIC ST Micro 90 nm standard cell library. Additionally, WAGE is designed with a twist where its underlying permutation can be efficiently turned into a pseudorandom bit generator based on the WG transformation (WG-PRBG) whose output bits have theoretically proved randomness properties.

Published

2020-06-22

Issue

Section

Articles

How to Cite

WAGE: An Authenticated Encryption with a Twist. (2020). IACR Transactions on Symmetric Cryptology, 2020(S1), 132-159. https://doi.org/10.13154/tosc.v2020.iS1.132-159