Nonlinear Approximations in Cryptanalysis Revisited
DOI:
https://doi.org/10.13154/tosc.v2018.i4.80-101Keywords:
Block cipher, Nonlinear invariant, Invariant subspace attack, Nonlinear approximations, Linear cryptanalysis, MidoriAbstract
This work studies deterministic and non-deterministic nonlinear approximations for cryptanalysis of block ciphers and cryptographic permutations and embeds it into the well-understood framework of linear cryptanalysis. For a deterministic (i.e., with correlation ±1) nonlinear approximation we show that in many cases, such a nonlinear approximation implies the existence of a highly-biased linear approximation. For non-deterministic nonlinear approximations, by transforming the cipher under consideration by conjugating each keyed instance with a fixed permutation, we are able to transfer many methods from linear cryptanalysis to the nonlinear case. Using this framework we in particular show that there exist ciphers for which some transformed versions are significantly weaker with regard to linear cryptanalysis than their original counterparts.
Published
Issue
Section
License
Copyright (c) 2018 Christof Beierle, Anne Canteaut, Gregor Leander
This work is licensed under a Creative Commons Attribution 4.0 International License.