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Abstract. Implementation-based attacks are major concerns for modern cryptography.
For symmetric-key cryptography, a significant amount of exploration has taken place in
this regard for primitives such as block ciphers. Concerning symmetric-key operating
modes, such as Authenticated Encryption with Associated Data (AEAD), the state-
of-the-art mainly addresses the passive Side-Channel Attacks (SCA) in the form of
leakage resilient cryptography. So far, only a handful of work address Fault Attacks
(FA) in the context of AEADs concerning the fundamental properties – integrity and
confidentiality. In this paper, we address this gap by exploring mode-level issues
arising due to FAs. We emphasize that FAs can be fatal even in cases where the
adversary does not aim to extract the long-term secret, but rather tries to violate the
basic security requirements (integrity and confidentiality). Notably, we show novel
integrity attack examples on state-of-the-art AEAD constructions and even on a prior
fault-resilient AEAD construction called SIV$. On the constructive side, we first
present new security notions of fault-resilience, for PRF (frPRF), MAC (frMAC) and
AEAD (frAE), the latter can be seen as an improved version of the notion introduced
by Fischlin and Gunther at CT-RSA’20. Then, we propose new constructions to turn
a frPRF into a fault-resilient MAC frMAC (hash-then-frPRF) and into a fault-resilient
AEAD frAE (MAC-then-Encrypt-then-MAC or MEM).
Keywords: Fault Attack · Side-Channel Attack · Authenticated Encryption with
Associated Data

1 Introduction
Right from their introduction, Fault Attacks (FA) [BDL97,BS97] have received significant
attention from the research community. Over the years, both analysis and fault injection
techniques have improved significantly [TMA11,FJLT13,SBHS15,SH07,SBR+20,DEK+18,
PCNM15,ZLZ+18,MOG+20,DEK+18,DEG+18,SBR+20,SBJ+21], making FAs practical
for a large spectrum of devices ranging from embedded platforms to cloud environments.
However, most of the existing research on FA in symmetric-key cryptography is dedicated
to block ciphers. Given that FAs often target key recovery, and block ciphers are the most
widely deployed symmetric-key primitives, this is not surprising. However, the fact that
a given computation can be tampered with at any point by a fault makes the scope of
FAs much wider. In other words, it is important to explore state-of-the-art symmetric-key
operating modes with respect to FAs where, other than key recovery, faults can also disrupt
the mode execution.

Authenticated Encryption with Associated Data (AEAD) is a class of symmetric-key
operating modes that has gained prominence in the research community in the past years.
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After their introduction by Bellare and Namprempre [BN00] and Katz and Yung [KY00],
AEADs have become the standard for secure symmetric-key communication. They have
been the main topic of at least two international design competitions1 2, one of which
is still ongoing2. The NIST call for lightweight cryptography2 enlists SCA security as a
desired condition. Naturally, security against FAs also comes into context.

Fault Attacks on AEADs: Most of the existing FA proposals on AEADs aim to recover
the long-term secrets with fault injection [DEK+16,SC16,DMMP18]. Both Differential
Fault Analysis (DFA) [SC16,DRSA16,KS+20,JSP20,SLXY20,QAMSB+19,SOX+21] and
Statistical Fault Attacks (SFA/SIFA) [DEK+16,DMMP18,RAD19,QAMSB+17] have been
exploited in this regard. Some of these attacks require the nonce to be repeated, whereas
the statistical ones are free of any such requirements. While recovering the long-term
secret is indeed the ultimate form of attack, it is not the only goal of an attacker. Rather,
several mode-level artifacts enable much simpler attack surfaces that can be exploited to
violate the integrity and confidentiality requirements. As a simple example of integrity
violation, one may consider an attack where the adversary tampers with the nonce with a
fault at the beginning of the encryption and generates the ciphertext. It generates the
forgery by replacing the correct nonce with a faulty one during the query made to the
decryption oracle [IMG+15,SSB+18,SMS+18]. Another forgery attack, specific to the AE
modes CLOC [IMGM14] and SILC [IMG+14], was proposed by Roy et al. in [RCC+16].
Satisfying the confidentiality requirements in the presence of a fault adversary also seems
challenging even without key recovery. One simple attack is to make the nonce repeat by
injecting faults, which readily breaks the real-vs-random security of the scheme [FG20].
However, fault assisted nonce-reuse is just one among several attack surfaces that may
arise due to faults. Recently, Dobraunig et al. proposed a unified model for analyzing
leakage due to faults and SCA [DMP20]. However, their work mainly addresses the issue
of recovering the long-term secret from a permutation-based construction. The difficulty
of long-term secret recovery has also been addressed in the ISAP proposal [DEM+20].

To the best of our knowledge, the only work that aims to formalize fault-resilient
security notions for AEADs is [FG20]. Their main idea was to include randomness in the
SIV-based AEAD schemes (named as SIV$). However, we found that their constructions
and assumptions are not enough to ensure integrity in the presence of faults.

1.1 Our Contributions:
Novel Fault-based Attack on Integrity. In this paper, we shed light on the integrity
issues arising due to FAs. We first characterize different attack surfaces violating the
integrity, and then propose a new class of fault-assisted integrity attack called decoupling
attack. For any given message M , the decoupling attack can generate a valid forgery with
message M ⊕∆, where ∆ is any difference. It also extends to message length modifying
attacks. We show that the fault resilient scheme in [FG20] is vulnerable to this attack.

We carefully distinguish the proposed decoupling attack from attacks which corrupt
the message/nonce/Associated Data (AD) at the input of the AEAD with a fault ∆, and
uses the output of the encryption module as a forgery. One may notice that the attack on
the nonce input mentioned previously also falls in this category. In the decoupling attack,
the fault is injected during the computation and not at the beginning. While corrupting
the inputs indeed qualifies as a practical attack, their triviality follows from the fact that
the inputs can also be tampered at their very sources to create an equivalent effect. Such
tampers are typically “out-of-the-scope” for the AEAD security and these “generic” attacks
are excluded from potential attacks in this work. Our security model (ref. next paragraph)

1https://competitions.cr.yp.to/caesar-submissions.html
2https://csrc.nist.gov/projects/lightweight-cryptography
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abstracts away input faults where faults happen at the input itself or slightly after, thus,
drawing a boundary between what is considered an input fault and what is not. Upon
fault injection, the adversary might get a valid ciphertext equivalent to manipulating the
input (i.e. a valid plaintext ciphertext-pair) but nothing more. Regardless of the validity
of the ciphertext, it cannot generate/predict a new ciphertext.

New Security Notions for Fault Resilience. Faults may corrupt different parts of an
execution – the data-flow, control-flow, the memory elements, and even the constants and
tables. Furthermore, the nature of the corruption can be diverse – from flipping a few bits
to fixing a (full/partial) state to a predefined value. Finally, a fault can be a transient or a
persistent fault staying in the system for several encryptions. We capture this diversity
within a unified template. Such unified modeling helps us to formally argue the security of
constructions with respect to adversaries having varying power. Next, we introduce new
security notions called fault-resilient-PRF (frPRF), fault-resilient-Random Oracle (frRO),
fault-resilient-MAC (frMAC) and fault-resilient-AEAD (frAE). Informally, a frPRF is simply
a PRF where the PRF security is not affected by faulty queries. Practically speaking, this
property can be ensured if the PRF keys cannot be recovered with faulty queries, so it can
be obtained from a primitive with fault countermeasures. This frPRF notion will then be
used as a building block for our constructions.
Fault Resilient MAC and AEAD from Fault Resilient PRF. Our final contributions are
two new constructions. First, we describe hash-then-frPRF, a fault-resilient MAC (frMAC)
based on the frPRF notion, having similar properties as frPRF along with MAC security.
The hash-then-frPRF construction takes a randomness-augmented input and generates a
tag. The security of this construction is ensured for an adversary capable of doing a single
differential fault per query, before the challenge query is submitted.

Regarding AEAD, a straightforward way to achieve security against faults is to duplicate
the entire computation multiple times and check for any mismatch in the results. More
precisely, one may encrypt the same (N, A, M) tuple t times and only output if the results
match for all the cases. However, this entails a computational overhead of t times. Another
alternative is to apply t different AEADs (or maybe the same AEAD algorithm with
different keys) on the same message and let the decryption module check if all the decrypted
messages are the same. This approach typically increases the ciphertext length and the
amount of computation by t times. In search of a more elegant and practical solution, we
found that it is somewhat inevitable to get rid of the redundancy completely, at least for
the MAC computations. However, the order of the encryption and the MAC operations
plays a crucial role in the security. After a careful analysis, we propose a three-pass mode
called MAC-then-Encrypt-then-MAC or MEM, from which the MAC and the encryption
steps are realized with frMAC and frPRF primitives, respectively. The reason for realizing a
three-pass mode is that single and two pass modes, in general, fail to prevent the proposed
decoupling attacks. It was also interesting to observe that several other possible three-pass
constructions may not achieve the desired security as the decoupling attack works on them.

MEM ensures integrity for single differential fault injected per encryption query. Addi-
tionally, it achieves confidentiality if there is no fault in the challenge queries. An AEAD
security game is designed for this purpose, which carefully excludes the generic attacks
mentioned before. We note that faulty encryption and non-faulty decryption emulates
numerous practical scenarios where the encryption module can be accessed and faulted
by an adversary, but the decryption module runs in a secure environment. Also, single
differential fault per encryption is the most common scenario that can be realized for a
large class of practical devices.

The rest of the paper is organized as follows. In Sec. 2, we present the notations,
and concepts utilized throughout the paper. We formalize the fault modeling in Sec. 3,
followed by a discussion on fault-tolerance of conventional AEADs in Sec. 4. We present
the decoupling attack and discuss the vulnerability of SIV$ to this attack in Sec.5. We
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present the new security notions and the new hash-then-frPRF MAC construction in Sec. 6,
and the MEM construction with associated security games in Sec. 7. We conclude the
paper in Sec. 8 with some open issues discussed in Appendix D (supp. material).

2 Preliminaries

2.1 Notation and Terminology
We denote deterministic assignments with ‘←’. Assignments with uniform random sampling
from a set are denoted as‘ $←−’. Definitional assignments are represented with ‘:=’. By |X|
we denote the length, if X is a string and size, if X is a set. ε represents an empty string,
and ∅ denotes an empty set. x⊕ y denote the bitwise XOR operation between two strings
x and y, provided |x| = |y|. Similarly, for strings x1, x2, · · ·, xn, x1||x2|| · · · xn denotes
their concatenation. For two sets A and B, A∪B denotes the set union and A∩B denotes
the set intersection. For two sets D, R, f : D → R denotes a function with domain D,
range R and Im(f) := {f(x) : x ∈ D} ⊆ R. ⋆ denotes a placeholder.

2.2 Definitions and Concepts
Definition 1 (Authenticated Encryption with Associated Data (AEAD)). A nonce-based
AEAD AE consists of following efficient algorithms:

• Enc(K, N, M, A; r): On input a secret key K
$←− K, a nonce N ∈ N , a message

M ∈ M, an associated data A ∈ AD, and an (optional) internally generated
randomness r ∈ R, the Enc outputs C ∈ C (i.e. C ← Enc(K, N, M, A; r)). Here
K := {0, 1}AE.klen is the keyspace, N := {0, 1}AE.nlen is the nonce space,M := {0, 1}∗
is the message space, AD := {0, 1}∗ is the AD space, R := {0, 1}AE.rlen is the
randomness space, and C := {0, 1}∗ is the ciphertext space. AE .klen, AE .nlen and
AE .rlen are the lengths of the key, nonce and the randomness, respectively.

• Dec(K, N, A, C): On input a secret key K, a nonce N ∈ N , an AD A ∈ AD, and a
ciphertext C ∈ C, the deterministic Dec outputs M ∈M∪⊥ (M ← Dec(K, N, A, C)).

Definition 2 (Pseudo-Random Function (PRF)). A keyed function F : K ×M → Z,
denoted as F (K, M) (or FK(M)) takes a secret key K ∈ K, and a message M ∈M and
returns a fixed length string Z ∈ Z. For K ∈ K, let PRFK(M) be an oracle which takes
as input a message M ∈ M and returns FK(M). A (qm, t)-adversary against the prf
security of F is an adversary A with oracle access to PRFK , making at most qm queries,
and running in time at most t. F qualifies as a PRF, if for all A, trying to distinguish
the real world PRFK , and an ideal world oracle RF returning independent random values
(instantiating a truly random function) the advantage:

Advprf
F (qm, t) ≤ max

A
|Pr[K $←− K : 1← APRFK ]− Pr[1← ARF]|,

is negligible in the security parameter. An adversary A is not allowed to repeat queries.

Definition 3 (Message Authentication Code (MAC)). For K ∈ K, let MacK(M) be the
MAC oracle which takes as input a message M ∈M and returns FK(M), and VerifyK(M)
be the verification oracle that takes (M, τ) ∈M×T as input and returns 1 if FK(M) = τ
and 0, otherwise. We assume that an adversary makes queries to the two oracles MacK

and VerifyK for a secret key K ∈ K.
A (qm, qv, t)-adversary against the mac security of F is an adversary A with oracle

access to MacK and VerifyK , making at most qm queries to its first oracle and at most qv
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verification queries to its second oracle, and running in time at most t. We say that A
forges if any of its queries to VerK returns 1. The advantage of A against the mac security
of F is defined as:

Advmac
F (A) := Pr[K $←− K : AMacK ,VerK forges]

where the probability is also taken over the random coins of A, if any. The adversary is not
allowed to ask a VerifyK query (M, τ) if a previous query M to MacK returned τ . However,
it is still possible that a VerifyK query (M, τ) is first made, possibly rejected, and a MacK

query M is subsequently made. We define Advmac
F (qm, qv, t) as the maximum of Advmac

F (A)
over all (qm, qv, t)-adversaries. Finally, we represent the mac security using the advantage
of an adversary trying to distinguish the real world (MacK , VerifyK) and the ideal world.
The ideal world oracles are (RF, Rej), where RF returns an independent random value
(instantiating a truly random function) and Rej returns 0 for every verification query.

Advmac
F (qm, qv, t) ≤ max

A
|Pr[K $←− K : 1← AMacK ,VerifyK ]− Pr[1← ARF,Rej]|,

whereas for mac security, an adversary makes at most qm queries to its first oracle and qv

verification queries to its second oracle, runs in time at most t, and returns a decision bit.
We note that qv = 0, this is equivalent to PRF security.

3 Modelling the Faults
The first step towards formalizing fault resilience is to model the faults with a unified
structure, which encodes the fault location, width, physical model,. . .etc. Such a unified
representation is useful for quantifying the security. The unified representation that we
present in this section is similar to the one presented in [FG20], but is a bit more elaborate3.
It captures different variable classes for fault injection, which was not covered in [FG20].

Before formally presenting the model let us briefly describe the type of faults practically
observed on devices. In practice, localized (say within one bit/byte of a variable) and
temporally precise (at a specific line/statement in the code) transient faults are observed
in most of the devices [SGD08, DEK+18, MOG+20]. The faults may result in random
corruption of the affected variable, flipping of specific bits, or specific data-dependent
corruption such as bit set/reset [SBHS15,SBJ+21]. Persistent bit-flips at tables/constants
are also feasible, where the fault remains in the system till a reset [ZLZ+18]. For software
implementations, instruction-corruption/skip faults are observed which eventually results
in corrupting the data-flow or control-flow of the program [KPB+17,MHER14]. Overall,
the main impact of any fault in a cryptographic setting results in a data/control flow
corruption. The precision, width, and repeatability of a fault are largely dependent on
the quality of the injection setup. For example, it is difficult to make targeted bit-flips
with clock-glitch, but such targeted bit flips are common with laser-setups. Our unified
representation and fault models, however, abstracts necessary traits of practical faults.

The fault in a computation is characterized by the tuple:

F := ⟨{vi, modi, ti, wi}nf
i=1⟩ (1)

The parameters in Eq. (1) are defined in Table 1, along with a classification of the variables
to be faulted, and a classification of the fault models. In order to explain why classifying
variables is important, we distinguish between data and control faults. Control faults,
for example, may skip an entire function call, which cannot be represented easily with a

3For our security proofs, we only use a subset of the fault models and faultable variables covered by
this unified structure. However, we believe that the scope of this representation is not limited to this work,
and it may be of further use in future research.
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data fault. In general, control faults can be realized by corrupting the loop-counter, a
loop-decision variable, or the decision variable of an if-else statement, which do not always
contain the data/state being encrypted. Similarly, faults in constants may have different
consequences on both control and data. For example, fault in a constant domain separator
may open up scopes for several attacks. Therefore, a holistic analysis should capture each
of these variable classes separately, to clearly specify the scope of the claimed security
with respect to faults.

The fault models capture the physical faults. The temporal and spacial precision of
faults can be captured by the variables, transient/persistent nature, and the fault width
parameters. At the level of a pseudocode, the temporal precision of a fault can be captured
by specifying the position (e.g., line number) of the statement where the target variable
resides. Also, if the statement resides inside a loop, the loop counter is used as an extra
parameter to specify the exact timing of the fault during loop execution. All of these
parameters depend on the target implementations, and, therefore, helps to capture different
(hardware/software) implementations under our unified template. The diff faults model a
large class of faults (including single/multi-bit flips) changing the value of a variable. The
rand faults model the random corruption of variables and is a special case of diff faults. fix
is the strongest fault model in this case in terms of physical realization. It requires setting
a variable (or a part of it) to a desired value, which is practically difficult for a large fault
width (wi). However, fix models the data dependent bit set/reset faults. It can also model
a a specific case of diff faults, where the value of the target variable is known. In this case,
fix faults can be be interpreted as diff faults having a different ∆ corresponding to each
valuation of the target variable. Regarding persistent faults, it is worth mentioning that
we do not assume the faults to persist during the challenge queries of the schemes we are
going to propose in this work. This is a natural choice as in this work we shall only argue
security for non-faulty challenges.

Table 1: Unified Representation of Faults
Fault Representation Variable Classification

Params Description Params Description

vi

Denote the variables corrupted
by faults.
vi ∈ data ∪ control ∪ constant.

data
Denotes the set of data-flow variables
(input, output and intermediate
states of the computation).

nf
The number of faults injected
throughout the computation (in the same
or different clock cycles).

control Denotes the set of control-flow
variables (branch statements).

wi

Denote the width (how many bits
within a target variable are corrupted)
of a fault (0 ≤ wi ≤ |vi|).

constant
Denotes the set of constants, tables,
and domain separators of the
AEAD algorithm.

modi

The logical abstraction of physical
nature of faults (fault models).
modi ∈ fix ∪ diff ∪ rand ∪ nof.

ti
Denote if the fault is transient/persistent
and the temporal fault location.

Fault Models

fix Denote faults where the adversary is allowed to fix wi bits of the target variable to
some desired value.

diff
Denote the differential faults where the adversary is allowed to select a bitwise differential ∆i

for variable vi (with HW (∆i) = wi) and set v
′
i = vi ⊕∆i. Here v

′
i is the faulty version of

vi and HW (·) denote the Hamming weight.
rand Same as diff except the fact that ∆i

$←− {0, 1}|vi| and HW (∆i) = wi.
nof Denotes the case when the adversary chooses not to inject a fault in the execution.

Representing Faults in an Algorithm
In order to define the security games flexibly with faults, we follow a specific syntax of
defining faults with an oracle. The interaction between a faulting adversary A(F), and an
oracle Oflt is defined in Table 2. Oflt maintains a list Vflt of the values taken by every
variable appearing during the computation. If there is a fault in any of the variables (or
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Table 2: Interaction between faulting adversary and oracle

CodeMem← Initialize() ▷ Initializes the code and memory
X ← AOflt (F) ▷ Oracle call

Oflt :
// Oracle computation prior and during fault injection
Vflt ← Vflt||Fault(F.vi) ▷ Fault simulates the desired fault.
// Oracle computation after fault injection
return output

any of its occurrence specified in F), it maintains the faulty value in Vflt. More precisely,
in case a variable is utilized multiple times, Vflt maintains whatever (faulty/non-faulty)
values have been assumed by this variable in its multiple occurrences4. Furthermore,
A(F) interacts with the code and the memory elements of the underlying algorithm only
through the oracle (we call it oracle call). In case the fault is transient, the adversary only
temporarily modifies the value of the variable and keeps the original value intact in the
memory. In the case of multiple transient faults, every fault occurs with respect to the
original non-faulted value in the memory. However, for persistent faults, the original value
in the memory is corrupted and used throughout the computation by the oracle.

At this point, it is important to distinguish the faults in two types: a) information-
leaking faults, and b) altering faults. While every fault indeed alters the data or flow of
computation, information-leaking faults require a special mention as the corruption is
always meant for leaking some secret. By the very nature of FAs, such leakage happens
from the outputs of queries faulted with information leaking faults. Our oracles does not
distinguish between these altering and information-leaking faults, but only keeps the scope
that some secret might leak through the faulty outcomes.

4 Conventional AEADs and Faults
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Figure 1: Impact of faults on long-term secret: (a) OCB; (b) TEDT.

There are several ways in which faults can be exploited for attacking AEAD schemes.
According to the basic security goals, they can be classified into two broad classes – attacks
on confidentiality; and attacks on integrity. The main focus of this paper is to shed light
on integrity violations. We restrict ourselves to encryption faults.

4In Table 2, we use the abstract function Fault(·) (also called fault oracle) to represent results of faulty
computation for some variable or function.
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4.1 Recovery of Long-Term Secrets

The most obvious attack on integrity is to recover the long-term secret associated with
the MAC by means of faults. If the underlying scheme utilizes the same long-term key for
both encryption and MAC generation, then recovering the key from either the encryption
or the MAC block is feasible. Most of the existing AEADs do not include explicit fault
countermeasures. Therefore, attacking the primitives processing the long-term key is
always a feasible attack surface.

In order to give a concrete example, we refer to the OCB scheme [KR16] depicted
in Fig. 1(a). The encryption (EK) processes each message block (Mi) XOR-ed with a
nonce-dependent mask (D), and then further XORs the same mask with the result to
produce the ciphertext. In the last incomplete block, only the mask D is encrypted and the
padded message is XORed with the encryption output. The MAC computes a checksum
over the message blocks, which is then XOR-ed with D. Next, an encryption operation
is performed on this followed by an XOR with the Auth (AD). To attack the MAC,
without loss of generality, we consider the AD part to be empty. As a result, the adversary
can obtain the encryption of the message checksum XOR-ed with the mask D. As the
ciphertext (i.e. the tag) is available, the adversary can launch several key recovery attacks
such as PFA [ZLZ+18], SFA [DMMP18] or SIFA [DEK+18] to recover this long-term
secret (encryption key K) without nonce repeat. For example, if the encryption (EK) is
realized with AES, single-bit faults can be injected at the 10th round S-Box input and
several faulty tags can be collected. Then the adversary can guess one key byte of the last
round at a time to partially decrypt a byte of the faulty tags reaching the fault injection
point. If the key guess is correct, then the single-bit corruption should be observed at the
injection point. Computing the Hamming Distance (HD) between all partially decrypted
faulty tags would expose this single-bit corruption – the key guess with lowest aggregate
HD denotes a correct key byte [GYTS14]. This attack would eventually expose several
key bytes. Alternatively, an adversary can perform this attack on the encryption of the
incomplete message block recovering the entire key. Recovery of the long-term key is
sufficient to create universal forgery attacks. Such key-recovery attacks are feasible for
many other schemes beyond OCB. Therefore, each block cipher call for such schemes
should be protected against FAs.

The recovery of long-term secrets can be considered as a leakage. Therefore, it is
important to explore the leakage-resilient schemes in this regard. The processing of
long-term secrets is often restricted to a few primitive calls in leakage resilient schemes.
Let us consider the TEDT [BGP+20] scheme as an example (ref. Fig. 1(b)). TEDT
performs PSV [PSV15] encryption followed by MAC generation (Encrypt-then-MAC). The
IV of the PSV encryption is generated by encrypting the nonce (N) with a leak-free
TBC with a “public key” (PK) as a tweak (i.e T = PK) and a long-term secret key K.
The MAC part hashes the ciphertext, the AD, the nonce, and PK, and then encrypts
the hash with a leak-free TBC with the same secret key. In case this leak-free block of
TEDT is not protected against FAs, the attacks on it become straightforward. Since
TEDT is nonce misuse-resilient, a large class of attacks (such as DFA) becomes feasible
on the leak-free block during the MAC operation if the nonce repeats. One should note
that the unavailability of the ciphertexts from the leak-free block (during the encryption
of the nonce) is not an issue here. Attacks, such as FTA [SBR+20], can work on the
leak-free block (during the encryption of the nonce) without ciphertexts only based on
the information whether the computation is faulty or not. Even for nonce respecting
use-cases, SIFA/SFA remains feasible [DMMP18]. Finally, the leakage from the output
of the leak-free components (which is allowed) also enables combined attacks [SBJ+21].
Therefore, it is evident that the leak-free components must include FA countermeasures.
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4.2 Generic Attacks on Integrity Without Secret Recovery
A crucial question is, therefore, can integrity be violated even without extracting the
long-term secrets? As we shall describe in this subsection, the answer to this question is
affirmative.

Our first set of attacks consider the faults to be injected at the inputs of the AEAD.
The attacks are described as follows:

1. Query AE .Enc with the tuple (K, N, A, M ; r).

2. Inject a fault F in AE .Enc with F .vi := M (resp. F .vi := N , F .vi := A, F .vi := r),
F .modi ∈ fix∪diff∪ rand, F .ti transient/persistent, 0 ≤ F .wi ≤ |F .vi| and F .nf = 1.
Without loss of generality, we define a fault mask ∆i := F .vi ⊕ v

′

i. For F .vi := M ,
we have v

′

i := M
′ = M ⊕∆i (resp. N ⊕∆i, A⊕∆i, or r ⊕∆i).

3. AE .Enc returns C
′ , which corresponds to M

′ := M ⊕∆i (or N
′ := N ⊕∆i, A

′ :=
A⊕∆i, r

′ := r ⊕∆i).

4. The adversary uses (N, A, C
′) (resp. (N ′

, A, C
′) or (N, A

′
, C

′) ) as forgery.

One should note that the injection on the message M is considered trivial by any integrity
game, as the adversary has to repeat (N, A, C

′) as a forgery, which has been seen by the
encryption oracle, and listed as trivial query by default. The same is true for a fault
injection on r. However, if the fault is injected on the nonce or AD, the adversary can
fool the traditional game by using (N ′

, A, C
′) (or (N, A

′
, C

′)) as a forgery, assuming the
encryption oracle has only seen N and A (and not N

′ , and A
′) paired with C

′ . Such
issue with traditional security games is natural as these games do not consider faults. We
resolve this issue by augmenting the security game considering faults in our game definition
in Sec. 7. Nevertheless, as already pointed out in the introduction, all these attacks are
considered generic (corrupting the inputs) and their scope is beyond the AEAD security.
A relevant question is, can there be a non-trivial attack on AEADs without performing an
input fault or long-term key recovery? Next section shows that it is indeed feasible.

5 The Decoupling Attack
In this section, we present the decoupling attack. For the sake of illustration, we consider
the leakage resilient scheme TEDT (ref. Fig. 1(b)). However, the attack applies to most
of the existing schemes. The following attack utilizes the Encrypt-then-MAC structure of
TEDT. The attack can be described as follows:

1. Query AE .Enc with the tuple (K, N, A, M ; r).

2. The fault is injected at the input of the MAC operation corrupting the ciphertext.
More precisely, the input to the MAC is corrupted to (N, A, C ⊕ ∆i, PK) from
(N, A, C, PK). The original ciphertext, however, remains unchanged.

3. AE .Enc returns (C||τ), where τ = MAC(C ⊕∆i).

4. The adversary modifies (C||τ) to (C ⊕∆i||τ), which is a valid forgery.

The proposed attack also works if the fault model is rand. However, it becomes
probabilistic and remains practical for small fault widths. The traditional integrity game
(INT-CTXT) or its leakage-enhanced versions cannot deal with the decoupling attack. This
is because the ciphertext coming out of the encryption module, in this case, is an invalid
one, and the adversary can make it valid by some offline computation. Moreover, this
attack strongly depends on the structure of the AEAD scheme and should, therefore, be
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handled within the scope of AEAD. In the next subsection, we show that the fault resilient
scheme proposed in [FG20] is also vulnerable to this decoupling attack. We shall also
argue that the attack is not limited to linear encryption schemes.

5.1 Issues with Existing Fault Resilient AEAD Schemes

In this section, we show that the decoupling attack also works on the fault resilient
scheme SIV$ [FG20]. The security game corresponding to [FG20] is presented in Table 11
in Appendix E (we do not need this to describe the attack). The SIV$ construction is
described in Table 3, which uses a PRF for generation of an IV . The IV itself works as
a tag and is also utilized to seed the encryption operation. The main difference of SIV$
from classical SIV is the incorporation of a random value r for the computation of the PRF.
However, this simple trick does not ensure integrity. It is worth noting that the attacks
designated as generic by us are also excluded by the game in [FG20].

Table 3: The SIV$ Scheme
SIV$
KGen:

1: (K1, K2) $←− K
2: return (K1, K2)

EncSIV$
K (N, A, M ; r):

1: (K1, K2)← K
2: IV ← PRF(K1, N, A, M ; r)
3: C ← Enc(K2, r||M, IV )
4: return (IV, C)

DecSIV$
K (N, A, C

′
):

1: (K1, K2)← K

2: (IV, C)← C
′

3: r||M ← Dec(K2, C, IV )
4: IV

′′
← PRF(K1, N, A, M, r)

5: if IV = IV
′′

6: return M
7: else:
8: return ⊥

Let us consider a fault in the message M at the input of the PRF step. However, M
remains uncorrupted during the encryption. This can be ensured by inserting a transient
fault while reading the message from the memory for the MAC step. Without loss of
generality, we consider a differential fault in this case, although the results are not limited
to this fault model. After injecting this fault, the IV (let us denote the faulty IV as
IV

′) corresponds to the message M ⊕ ∆i, while the ciphertext C
′ corresponds to M .

Indeed this is an invalid output in the sense that it cannot be decrypted and verified
successfully. However, if the encryption operation of SIV$ is linear (that is, if it generates
a pseudorandom string that is XOR-ed with the message to encrypt it), the adversary can
create a valid forgery from this by computing C

′′ = C
′ ⊕∆i. (IV

′
, C

′′) corresponds to
the message M ⊕∆i.

The linearity assumption on the encryption can be relaxed in certain cases. As
a pathological example, let us consider an instantiation of SIV$ with CBC encryption.
Instead of changing the value of the message M , we can drop a few message blocks during
the PRF computation. This can be achieved by faulting the message-length parameter
(which is a common input in many practical AEAD syntax) with a data fault, or by
injecting a control fault to abort some loops before their completion. In this case, the
attack works beyond linear encryptions, provided it encrypts the message block-wise. In
essence, the adversary can generate the encryption of a truncated message as a valid
forgery. However, applicability of such truncation attacks depends upon the scheme under
consideration. For example, it can be prevented if the message-length parameter is also
encrypted with each message block. The decoupling attack, in general, work against most
common AEAD modes including the single-pass ones. A detailed discussion on this is
provided in Appendix A (supp. material).
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Table 4: The frPRF Oracles
frPRF

Real World Ideal World

INIT
1: K

$←− K
2: d← 0
3: Sflt ← ∅
4: S ← ∅

PRFf
K

(M,F)
1: if d = 1
2: return ⊥
3: npre ← 0
4: (Mflt, X)← Fault(FK(M),F)
5: for Y ∈ Mflt

6: if X = FK(Y ) ∧ (Y, X) ̸∈ Sflt

7: Sflt ← Sflt ∪ {(Y, X)}
8: npre ← npre + 1
9: return X

PRFK(M)
1: if ∃(M, X), s.t. (M, X) ∈ Sflt ∪ S
2: return ⊥
3: X ← FK (M)
4: S ← S ∪ {(M, X)}
5: d← 1
6: return X

INIT
1: K

$←− K
2: d← 0
3: Sflt ← ∅
4: S ← ∅

PRFf
K

(M,F)
1: if d = 1
2: return ⊥
3: npre ← 0
4: (Mflt, X)← Fault(FK(M),F)
5: for Y ∈ Mflt

6: if X = FK (Y ) ∧ (Y, X) ̸∈ Sflt

7: Sflt ← Sflt ∪ {(Y, X)}
8: npre ← npre + 1
9: if npre > 1
10: return ⊥
11: return X

RF(M)
1: if ∃(M, X), s.t. (M, X) ∈ Sflt ∪ S
2: return ⊥
3: X

$←− {0, 1}|X|

4: S ← S ∪ {(M, X)}
5: d← 1
6: return X

6 Fault Resilient PRF and MAC

We begin with defining a new primitive in this section called fault-resilient PRF or frPRF.
We also construct hash-then-frPRF, a fault-resilient MAC (frMAC) using the frPRF as a
base primitive. These constructions will be utilized for constructing a fault-resilient AEAD.

6.1 Permissible Fault Models

Our fault modelling in Sec. 3 covers possible fault scenarios. However, we only claim
security against a subset of these models. We begin by restricting the adversary to
inject only a single fault (i.e. nf = 1 in F ; the subscript i is also dropped) during the
entire encryption operation which is practical for most devices. Further, we limit the
adversary to differential faults only5. Regarding the faultable variables, we assume that
both data and a subset of control and constant faults are feasible. More precisely, at
the mode-level in an AEAD pseudocode, control faults may corrupt a loop counter, or
a loop-decision variable for the loops running over the message or ciphertext lengths.
control faults may also happen for branch-decision (e.g., if-else) variables, if any. Likewise,
constant faults are allowed for the used public constants. We note that other than mode-
level, both control and constant faults can happen at a primitive-level, where the block
cipher/TBC/permutation computations are corrupted. control faults may also cause
skip of an entire block cipher/TBC/permutation function call at mode-level6. However,
considering such faults would require concrete instantiations of these primitives. We leave
this as a future work. We further assume that there are certain components, for which fault
injection either results in a correct outcome, a ⊥, or uniformly random outcome. Such
components are denoted as “fault-free components”. They can be realized by incorporating
primitive-level FA countermeasures. Finally, leakage of some secrets is, allowed by means
of information leaking differential faults except from the fault-free components.

5While we note that fix faults are feasible, they require extremely powerful injection setups.
6We consider a very limited subset of control faults in the form of length-modifying attacks.
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6.2 Modelling Faults in Idealized Primitives
One of the challenges of addressing fault resilience is modelling faults in idealized primitives,
e.g., random oracles and random functions. These primitives are monolithic in nature; they
do not have an implementation that can be faulted. On the other hand, these constructions
are always used in a certain context, mainly to be compared with a real-world primitive.
Such real-world primitive has an implementation description. Hence, we use this real-world
primitive to simulate a fault behaviour that we can impose on the idealized primitive. For
primitives keyed with a long term key, we assume that faults are always performed on
the real-world primitive but the challenge queries in the ideal world are performed on the
ideal-world primitive. For public functions, we use the difference between the faulty and
non-faulty executions of the real-world function to deduce the output fault difference in
the ideal-world primitive.

6.3 Fault-Resilient PRF

A fault-resilient PRF is a PRF that comes with a second oracle PRFf
K(M,F), which we

call a faulty PRF oracle. According a given fault model, the adversary can induce faults
during the execution of PRFf

K . A (qf , qm, t)-adversary against the frprf security of a PRF
F is an adversary A that makes qf faulty queries PRFf

K and qm queries to PRFK and runs
in time t. Table 4 depicts the PRFK and PRFf

K oracles. In Table 4, we separate S and
Sflt to capture the resilience notion. S is the list of queries to the non-faulty oracle and
Sflt is the list of queries to the faulty oracle. However, Sflt can also include non-faulty
executions. If the Fault(FK(M),F) oracle is called with F .mod = nof, it outputs FK(M).
Fault(FK(M),F) also returns the setMflt which contains all the values of M that appear
during the execution, including faulty values. Note that the faulty oracle keeps track of
the number of valid input/output pairs (or pre-images) that are leaked from the faulty
implementation as npre. In the ideal world, if npre > 1, the oracle returns ⊥. Hence, if an
implementation leaks more than one input/output pairs for any call, the two worlds can
be easily distinguished. An adversary against frprf security of the PRFK must perform
all PRFf

K queries before querying PRFK . Hence, at a given query to PRFK , the adversary
is considered to have performed qf queries to PRFf

K followed by qm − 1 queries to PRFK .
For a PRF outputting n bits, the adversary aims to distinguish the last qm outputs from a
random string of length nqm. Let ni

pre be the number of pre-images for faulty query i and
Qf (A) = {1, · · · qf} if A makes qf faulty queries. The frprf advantage is given by:

Advfrprf
F,Fault(qf , qm, t) ≤ max

A
Pr[∃i ∈ Qf (A) s.t. ni

pre > 1]+

max
A
|Pr[K $←− K : 1← APRFK ,PRFf

K |∀1 < i < qf , ni
pre ≤ 1]−

Pr[K $←− K : 1← ARF,PRFf
K |∀1 < i < qf , ni

pre ≤ 1]|.
This bound follows from a simple hybrid argument. The first term bounds the advantage
of distinguishing the real-world game from a similar transitional game where the faulty
oracle is replaced by the ideal world faulty oracle (it returns ⊥ when more than 1 pre-
image is leaked in one query). The second term bounds the advantage of distinguishing
the transitional game from the ideal world game. We call FK a fault-resilient PRF, if
Advfrprf

F (qf , qm, t) is negligible for all adversaries that do not query PRFK with a trivial
query, such that qf and qm are polynomial in some security parameter. Trivial queries are
defined according to the set S ∪ Sflt in Table 4.

It is crucial to note that the fault-resilient PRF must perform all faulty (and some
fault-free) queries before making the challenge queries. We do not claim security for
faults in post-challenge queries. Without loss of generality, let us consider a challenge
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query as Mc for which the frPRF oracle returns X (it is interacting with PRFK). Next,
in a post-challenge query, the adversary queries M

′

c, and faults it to Mc (and therefore,
queries PRFf

K). In this case, the adversary will be able to distinguish the ideal world
from the real world, using the PRFf

K outcome. However, gaining information about future
queries are not possible due to the structure of the game. We leave the security for faulty
post-challenge queries an open issue at this point, and only claim security for faults at
pre-challenge queries. One intuition is to use a randomized PRF to overcome this issue.
However, since our construction is based on a deterministic PRF, we restrict ourselves to
this model. The reasoning for this approach is that, while it might be tempting to consider
a randomized PRF, such definition is not clear and leads to issues in our assumption
and also in practice. The security of our construction relies on being able to build and
test the deterministic frPRF in practice. For example, it can be built from a block cipher
with fault countermeasure (e.g. duplication or other forms of redundancy). This can be
easily tested, as we simply require two simple properties; the block cipher is secure, and
fault-based key recovery attacks on the implementation are not possible. If the PRF is
randomized then additional and unclear testing would be required for the PRF and this
would lead to stronger assumptions. However, even restricting the faults “pre-challenge”
covers several practical situations where the adversary only has access to the device for
a limited time and it wants to disrupt future queries exploiting that access. Our model
also differentiates between a classical adversary (qf = 0) and an adversary who performs
non-faulty queries during the training phase (the first qf queries where qf ≠ 0). The
difference is in the ideal world, where in the latter case, the first qf queries always use the
real-world oracle, while in the classical case all the queries will be random an independent.
While this can be considered a limitation in some analyses, we see this as an inherent
feature from the two-phase security notion we propose, and in our view it captures the
concept of an adversary that has access to the implementation for a training phase before
issuing challenge queries. We leave it as future work whether stronger security notions are
better at capturing real life scenarios or not and whether a deterministic fault-resilient
PRF can be built in those stronger models.

6.4 Modelling Faults in a Hash Function
A hash function family Hs is (t, ϵcr)-collision resistant with faults if for every adversary A
that runs in at most time t, the probability that A(s) outputs a pair of inputs (M0, M1) ∈
({0, 1}∗)2, such that Hs(M0) = Hs(M1) and M0 ̸= M1, is bounded by ϵcr, with s

$←− HK
(HK := {0, 1}hklen, where hklen is the key length for the hash).

Pr[s $←− HK,A(s)→ (M0, M1) ∈ ({0, 1}∗)2 s.t. M0 ̸= M1, Hs(M0) = Hs(M1)] ≤ ϵcr.

Here A can also query faulty oracle Fault(H(·),F), which we sometimes refer to as Hf (·,F)
for simplicity, but a collision on Hf

s is not considered valid.

Observation. A (t, ϵcr)-collision resistant hash function is also a (t, ϵcr)-collision resistant
in the presence of faults for the non-faulty queries.

Since Hs is a public function, the adversary can find a collision by simulating the hash
function themselves, with or without faults. However, finding a collision on a faulted
version (Hf

s ) does not imply a collision on the non-faulty Hs, as these two are different
public functions, and collisions on Hf

s are unlikely to lead to a collision on Hs. For
simplicity, from now we omit the suffix “s” and use H for hash function.

When the adversary induces a fault in an execution of H, one of following three cases
may happen: 1) Ineffective fault: the fault is ineffective. In this case H(M) = Hf (M);
2) Predictable-preimage fault: the fault is effective, and we get Hf (M) = H(M ′) for
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which M
′ is easy to predict; 3) Unpredictable-preimage fault: The fault is effective,

and we get Hf (M) = X where no pre-image is known for X. In order to capture this
formally, we consider a faulty hash oracle Hf (M,F) that works as follows: it takes as
input a message M and fault specification F , then returns (Mf , h) such that H(Mf ) = h
or Mf =⊥. In case of ineffective fault, Mf = M . Finally, since H is a public function,
attacks such as key recovery or state recovery are trivial and not useful.

Since the adversary will be able to inject differential faults in any location inside
the hash function (including its inputs and outputs), we need its state to be uniformly
distributed. Hence, we need to perform the analysis in the random oracle model. We also
need to define what exactly do we mean when we refer to a “fault-resilient” random oracle.
Note that the frRO is a theoretical construction in nature. We assume its existence and
conjecture that if a hash function is indifferentiable from a random oracle, then its faulty
version is also indifferentiable from a frRO. Showing that such property is satisfied for a
specific hash function (e.g. sponge-based hash functions) is one of our future research
questions and is out of scope of this paper.

Fault-resilient Random Oracle (frRO):

In our constructions, we rely on the fact that the hash function used behaves like a random
oracle even when differential faults can be induced. A random oracle is fault resilient if:

1. When the input is randomized, the internal state and output are also randomized
and unpredictable. Injecting a differential fault leads to an unpredictable state.

2. Regardless of previous faulty queries, when an input is fresh (was not queried before)
and random, the internal states and output are unpredictable.

In order to formalize these properties, we define a frRO.

Definition 4. A fault-resilient random oracle frRO is an oracle that implements a random
function RO :M×{0, 1}|r| → {0, 1}|h|, where RO is sampled uniformly from the set of all
random functions of the same domain and range. The frRO is a randomized oracle that
selects a new random salt r ∈ {0, 1}|r| in each invocation. Table 5 depicts this oracle.

Since a random oracle is a monolithic idealized primitive, we cannot inject faults except
at its inputs or outputs. As long as F .mod ∈ {nof, diff, rand} and Rflt is collision free (i.e.
bad is never asserted), the frRO behaves as a random oracle, since a uniformly sampled
output will be generated for each invocation, and the fault can change the output with a
specific difference. In practice, a hash function has an implementation that can also be
faulted at any intermediate operation. In this case, the output is not simply, H(r∥x)⊕∆,
but it can be a value related to H(r∥x) and the fault location and value. However, since r
is returned with the hash value, the adversary can compute H(r∥x) and deduce ∆. The
frRO uses the implementation of the hash function to also deduce the output difference
using both the faulty and non-faulty output. This is depicted in lines 23-25 in Table 5.
The definition of the frRO is parametrized by which hash function H is being evaluated.
An adversary tries to distinguish between the case of a true random oracle (ideal world)
and the real world depicted in Table 5. The distinguishing advantage is given by

AdvfrRO
RO,H,Fault(A) def= |[1← AfrROf ,frRO]− [1← ARO,RO]|

where RO is the random oracle that takes as inputs r and M and returns a random output.

Theorem 1. As long as the bad event is never set, then frRO is indistinguishable from a
fault-free random oracle.
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Proof. Let q be the number of calls to frRO and qf be the number of calls to frROf . Since
each query adds at most 2 values of r to Rflt, the probability of setting bad is bound by(2qf +q

2
)

2|r| .

If bad is never set, then the output of each query is uniformly distributed, which is
indistiguishable from the output of a fault-free random oracle.

Conjecture 1. If a hash function H is indifferentiable from a random oracle, then its
faulty implementation with differential faults is indifferentiable from an frRO.

It is clear that in case the fault is injected inside the hash function implementation,
then the random oracle and the hash function do not behave in the same way. However,
the description of frRO is consistent and if bad is never set, the output of the hash function
(under the random oracle model) is uniformly distributed. A real-world faulty hash function
is similar to Table 5, except that RO is replaced with H. If the hash function is constructed
as an iterative function using a compression function and the faults can only be injected
outside the compression function, then the conjecture above is straightforward, as an
adversary against a fault-free random oracle can simulate the faulty queries using the
compression function oracle. However, if faults can also be injected inside the compression
function then a more careful analysis is needed.

Table 5: frRO using lazy sampling.
The frRO Oracle

INIT
1: for y ∈ {0, 1}∗

2: RO(y) $←−⊥
3: Rflt ← ∅

frROf (x; r,F)
1: if r ∈ Rflt then bad
2: Rflt ← Rflt ∪ {r}
3: if F.mod = nof
4: if RO(r∥x) =⊥
5: RO(r∥x) $←− {0, 1}|h|

6: Z ← RO(r∥x)
7: else if F.v = r
8: r ← r ⊕∆
9: if r ∈ Rflt then bad
10: Rflt ← Rflt ∪ {r}
11: if RO(r∥x) =⊥
12: RO(r∥x) $←− {0, 1}|h|

13: Z ← RO(r∥x)
14: else if F.v = x
15: x← x⊕∆
16: if RO(r∥x) =⊥
17: RO(r∥x) $←− {0, 1}|h|

18: Z ← RO(r∥x)
19: else
20: if RO(r∥x) =⊥
21: RO(r∥x) $←− {0, 1}|h|

22: (Mf , h)← Fault(H(r∥x),F)
23: ∆← H(r∥x)⊕ h
24: Z ← RO(r∥x)⊕∆
25: return (r, Mf , Z)

frRO(x; r)
1: F.mod← nof
2: return frROf (x; r,F)

6.5 Fault-Resilient Message Authentication Code (frMAC)
For K ∈ K, let MacK(M) be the MAC oracle which takes as input a message M ∈M and
returns FK(M), and VerifyK(M) be the verification oracle that takes (M, τ) ∈ ×M×T as
input and returns 1 if FK(M) = τ and 0, otherwise. We assume that an adversary makes
queries to the two oracles MacK and VerifyK for a secret key K ∈ K. Besides, we also
define the faulty MAC oracle Macf

K(M,F), which takes as input a message M and fault
specifications F and returns (Mf , τ), such that MacK(Mf ) = τ or Mf =⊥. We define
the frMAC game as in Table 6, similar to the frPRF game in Table 4.

A (qf , qm, qv, t)-adversary against the frmac security of F is an adversary A with
oracle access to Macf

K , MacK and VerifyK , making at most qf queries to its Macf
K oracle

followed by at most qm and qv queries to its MacK and VerifyK oracles, respectively,
running in time at most t, and returning a decision bit. Similar to mac, we represent the
frmac security using the advantage of an adversary trying to distinguish the real world
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Table 6: The frMAC Oracles
frMAC

Real World Ideal World
INIT

1: K
$←− K

2: d← 0
3: Sflt ← ∅
4: S ← ∅

Macf
K

(M,F)
1: if d = 1
2: return ⊥
3: npre ← 0
4: (Mflt, X)← Fault(FK (M),F)
5: for Y ∈ Mflt

6: if VerifyK(Y, X) ̸= 0 ∧ (Y, X) ̸∈ Sflt

7: Sflt ← Sflt ∪ {(Y, X)}
8: npre ← npre + 1
9: return X

MacK(M)
1: if ∃(M, X), s.t. (M, X) ∈ Sflt ∪ S
2: return ⊥
3: X ← FK(M)
4: S ← S ∪ {(M, X)}
5: d← 1
6: return X

VerifyK (M, T )
1: if ∃(M, X), s.t. (M, X) ∈ Sflt ∪ S
2: return 1
3: X ← FK(M)
4: if X = T
5: return 1
6: else
7: return 0

INIT
1: K

$←− K
2: d← 0
3: Sflt ← ∅
4: S ← ∅

Macf
K

(M,F)
1: if d = 1
2: return ⊥
3: npre ← 0
4: (Mflt, X)← Fault(FK(M),F)
5: for Y ∈ Mflt

6: if VerifyK(Y, X) ̸= 0 ∧ (Y, X) ̸∈ Sflt

7: Sflt ← Sflt ∪ {(Y, X)}
8: npre ← npre + 1
9: if npre > 1
10: return ⊥
11: return X

RF(M)
1: if ∃(M, X), s.t. (M, X) ∈ Sflt ∪ S
2: return ⊥
3: X

$←− {0, 1}|X|

4: S ← S ∪ {(M, X)}
5: d← 1
6: return X

Rej(M)
1: if ∃(M, X), s.t. (M, X) ∈ Sflt ∪ S
2: return 1
3: return 0

(Macf
K , MacK , VerifyK) and the ideal world. The ideal world oracles are (Macf

K , RF, Rej),
where RF returns an independent random value (instantiating a truly random function)
and Rej returns 0 for every verification query. Then,

Advfrmac
F,Fault(qf , qm, qv, t) ≤ max

A
|Pr[K $←− K : 1← AMacf

K
,MacK ,VerifyK ]−

Pr[K $←− K : 1← AMacf
K

,RF,Rej]|.
We note that when qv = 0, this is equivalent to frPRF security. The adversary is not
allowed to repeat queries to its MacK oracle, or ask for queries to its MacK .

6.6 Extending Fixed-length frPRF to Arbitrary-length frMAC

Hr||M frPRF
h

τ, r

Figure 2: Fault-Resilient hash-then-PRF MAC.

Consider the hash-then-frPRF MAC, where the internal PRF is a frPRF, as depicted in
Fig. 2. The frPRF can be realized with block ciphers or TBCs with fault countermeasures.
We will claim that such construction is also a frMAC if M is randomized. Before that, we
motivate the analysis by considering some of the attacks an adversary may try. Note that
by the rules of the game in Table 6, the last qm queries must not have appeared in the set
Sflt after the first qf queries. At a given query j, the adversary can try to:

1. Find M such that H(r∥M) = H(r′∥M ′) for a previously queried message r
′∥M ′ ,

potentially using either a non-faulty query, ineffective fault or predictable-preimage
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fault. If r∥M = r
′∥M ′ , then the attack is trivial. If r∥M ̸= r

′∥M ′ , then the
adversary has found a collision for H.

2. Find M such that H(r∥M) = h where h has appeared as the input to frPRF during
at least one of the first qf + j − 1 queries, using an unpredictable-preimage fault. In
this case, the adversary needs to predict the value of r.

3. Find bias in τ in queries for which H(r∥M) has never appeared in any of the first
qf + j − 1 queries. This needs the adversary to break the frprf security of base frPRF.

4. The adversary can try to find a near-collision such that H(r∥M) = H(r′∥M ′)⊕∆
where ∆ is a fault they can inject. However, to use such fault, the adversary needs
to predict when r and/or r

′ will appear. Since the random value is unpredictable,
this attack is not feasible.

In all cases, the adversary needs to break a strong security notion on one of the primitives
or predict a random value, and the random values are shared with the verification oracle
in a secure way, beyond the scope of the construction.

Table 7: The hash-then-frPRF Oracles
Hash-then-frPRF Oracles

INIT
1: K

$←− K
2: d← 0
3: Sflt ← ∅
4: S ← ∅
5: Rflt ← ∅
6: Rp ← ∅
6: return s

Macf
K

(M ; r,F)
1: if d = 1
2: return ⊥
3: Mflt ← {r∥M}
4: Rflt ← Rflt ∪ {r}
5: r

′
← r

6: npre ← 0
7: if F.mod = nof
8: X ← FK(H(r∥M))
9: else if F.v = r
10: X ← FK(H(r ⊕∆∥M)) ▷ F.mod = diff ∨ rand
11: Mflt ←Mflt ∪ {r ⊕∆∥M}
12: else if F.v = hash
13: (r∥Mf , h)← Fault(H(r∥M),F)
14: X ← FK(h)
15: Mflt ←Mflt ∪ {r∥Mf}
16: else if F.v = prf
17: X ← Fault(FK(H(r∥M)),F)
18: for Y ∈ Mflt

19: if VerifyK (Y, X) ̸= 0 ∧ (Y, X) ̸∈ Sflt

20: Sflt ← Sflt ∪ {(Y, X)}
21: npre ← npre + 1
22: if r ̸= r

′

23: Rflt ← Rflt ∪ {r}
24: return (r, X)

MacK(M ; r)
1: Rflt ← Rflt ∪ {r}
2: X ← FK(H(r∥M))
3: S ← S ∪ {(r||M, X)}
4: d← 1
5: return (r, X)

VerifyK (M, τ ; r)
1: if (r∥M, τ) ∈ Sflt ∪ S
2: return ⊥
3: X ← FK(H(r∥M))
4: if X = τ
5: return 1
6: else
7: return 0

Hash(r, X)
1: Rp ← Rp ∪ {r}
2: return H(X)

Theorem 2. If H :M×HK → Z is a frRO and FK is a secure fault-resilient PRF against
all (qf , qm + qv, t)-adversaries, then hash-then-frPRF is a secure randomized fault-resilient
MAC (frMAC) against all (qf , qm, qv, qp, t)-adversaries that perform differential faults, s.t.

Advfrmac
htfrprf,Fault(qf , qm, qv, qp, t) ≤ Advfrprf

F,Fault(qf , qm + qv, t) +
(

qe

2
)

2|r| + qeqp

2|r| +

2(qp + qe + qv)2

2|h| + 2(qe + qv + 1)
2|h| + 2qf qv

2|h| + qv

2|τ | .
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Here qe = 2qf + qm and qp is the number of queries made to the last oracle Hash.

The proof of this theorem is presented in Appendix B (supp. material). Table 7
presents the oracles for hash-then-frPRF.

7 Fault-Resilient AEAD
In this section we propose our construction for a fault-resilient AEAD (frAE). One may
observe that a straightforward combination of frMAC and some encryption scheme (either
as “Encrypt-then-MAC”, “MAC-then-Encrypt” or “MAC-and-Encrypt”) is not going to
work in this case. This is because the adversary can fault the input of the frMAC and
enable the decoupling attack. We, therefore propose a three-pass construction.

7.1 MAC-then-Encrypt-then-MAC (MEM)

Table 8: The MAC-then-Enc-then-MAC (MEM) Scheme
MEM

KGen:
1: (K1, K2, K3) $←− K
2: return (K1, K2, K3)

MEMEncK(N, A, M ; r):
// parse M = (M1, M2, · · ·, Ml)

1: (K1, K2, K3)← K
2: X ← pad(N, A, M)
3: τ1 ← MacK1 (X; r)

3a: h1 ← H(r||X)
3b: τ1 ← F ∗

K1 (h1)
4: C ← frEnc(K2, r||M, τ1)

4a: k0 ← F ∗
K2 (τ1)

4b: C0 ← Fk0 (pb)⊕ r
4c: ki ← Fki−1 (pa)
4d: Ci ← Fki

(pb)⊕Mi

4e: C ← (C0, C1, · · ·Cl)

5: τ2 ← MacK3 (C; τ1)
5a: h2 ← H(τ1||C)
5b: τ2 ← F ∗

K3 (h2)
6: return (τ1||C||τ2)

MEMDecK(N, A, C):
// parse C = (τ1, C0||C1|| · · · ||Cl, τ2)

1: hch
2 ← H(τ1||C)

2: τ
′
2 ← F∗

K3 (hch
2 )

3: if τ2 = τ
′
2

4: (r, M)← frEnc(K2, C, τ1)
5: X ← pad(N, A, M)
6: hch

1 ← H(r||X)
7: τ

′
1 ← F∗

K1 (hch
1 )

8: if τ
′
1 = τ1

9: return M
10: else return ⊥

Our proposal for frAE is presented in Table 8 and Fig. 3. The crux of this scheme lies in
further authenticating the (τ1||C). Both the MACs (denoted as MacK1 and MacK3) are
constructed by applying the frMAC. The fault-resilient encryption (frEnc) is performed with
PSV [PSV15] initiated with a frPRF. However, it can be abstracted as any pseudorandom
bit generator seeded with a frPRF7. We assume distinct frPRF and hash functions for
MacK1 and MacK3 and PSV enabled by different key for each frPRF8. The encryption
operation also requires two distinct constants constants (pa, pb). Finally, an injective
function pad is required at the input of MacK1 .

H1

r||N ||A||M
K1

F ∗
h1 τ1

K2

F ∗ k0
F

F

F

F

F

F

· · ·

· · ·

r M1

k1

Ml

H2

K3

F ∗h2 τ2

C0 C1 Cl

τ1||C0||C1|| · · · Cl

pa pa pa

pb pb pb

Figure 3: The MEM construction. F ∗ denotes the frPRFs realized with fault-free blocks.

7In fact, PSV can be replaced with other lightweight options such as CTR-DBRG [BK+07] keyed with
frPRF. We chose PSV for its leakage-resilience so that it can be analyzed in future for combined security.

8For concrete constructions, one might also utilize domain separation with tweakable block ciphers to
realize distinct PRFs. We assumed distinct keys for the sake of simplicity.
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One should note that our construction is computationally efficient compared to the
simple duplication-based schemes. We do not need to duplicate the encryption operation.
Furthermore, the MACs are computed on different variables, namely the message and the
ciphertext tag pairs. This further limits the scope for decoupling attacks as the MACs
has to be performed in a sequential manner and none of these variables appear at the
same clock cycle. A single fault adversary cannot corrupt the MACs together to create a
decoupling. Interestingly, we found that not every three-pass construction has such nice
properties, and many of them are vulnerable. This point is discussed in Appendix D. Our
construction also bears some structural similarities with the leakage-resilient scheme SIVAT
in [BMOS17]. However, SIVAT does not include frPRFs and randomness, which are essential
for security against faults (to prevent fault-assisted nonce repeat, and manipulation of the
hash values). Also, SIVAT does not check one of the tags at the decryption. This is crucial
in FA, as otherwise, the decoupling attack will happen.

7.2 The Fault Resilient Security Game

We first define the security game for AEAD considering encryption faults (ExptfrAE,b
A,F ). The

game is similar to the one for frPRF – we keep a faulty encryption oracle. However, after
a certain point, the adversary is only allowed to make non-faulty queries. The set of
faulty queries is denoted as Sflt, and the set of correct queries is denoted as S. Sflt ∪ S
comprises all trivial queries. During a query to Encf

K , the encryption oracle keeps track
of the correct and faulty valuations of each corrupted variable in the set Vflt. Referring
to the game in Table 9, Vflt := Nflt ∪ ADflt. Here Nflt and ADflt denote the set of all
possible (correct/faulty) valuations of nonces and ADs, respectively. For easy explanation,
we directly refer to Nflt and ADflt instead of Vflt in the game and the proof. We choose
to keep track of those variables only, which take part in the decryption. Therefore, we
do not maintain the faulty messages or intermediates explicitly. The reason behind such
a choice is that the faulty encryption oracle here tries to decrypt (without faults) the
resulting ciphertext with whatever values (correct/faulty) it has observed for the inputs
(nonce and AD). The goal of this step is to only check whether or not any possible output
tuple (N ′

, A
′
, C) gets decrypted successfully. The set of such decryptable tuples is denoted

by Ivld, which is later added to Sflt. One may note that this extra step in the encryption
oracle helps us to avoid trivial queries. Additionally, we exclude the final outcome of the
EncK as the fault injection variable, as such faults also lead to generic attacks.

7.3 Security Proof
Proof Sketch: The proof of the following theorem follows directly from the security of
the frPRFs and frMACs used in the scheme, and bounding the probability of a collision on
the random value r, or the first tag τ1. Intuitively, the fault injected in the first MAC or
the encryption step will be committed by the second MAC, such that τ1 and C cannot be
decoupled. On the other hand, a fault injected in the second MAC will lead to τ2 that is
decoupled from the input message, and the message corresponding to the forged tag will
be unpredictable due to the randomness. The fault-resilient confidentiality of the scheme
follows naturally from the resilience of the frPRFs. In order to show the security of the
MEM construction, we need an additional definition.

Definition 5 (IV-based Encryption). An IV-based encryption scheme E : K×M×IV → C
is an encryption scheme that takes a message M ∈M, an initial vector IV ∈ IV, and a
secret key K ∈ K, and returns a ciphertext C ∈ C, such that |M | = |C|. An IV-based
encryption scheme is fault-resilient against all (qf , qm, t)-adversaries, if for any adversary
that runs in time t, and performs qf faulty queries and qm non-faulty queries using non-
trivial IVs, the advantage of distinguishing the last qm ciphertexts from a set of random
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Table 9: The frAE Game.
ExptfrAE,b

A,F
INIT

1: K
$←− K

2: b
$←− {0, 1}

3: d← 0
4: Sflt ← ∅
5: S ← ∅

FIN
1: b

′
← AEncf (·),Enc(·),Dec(·)(F)

2: return b
′

Encf
K

(N, A, M,F)
1: if d = 1
2: return ⊥
3: r

$←− R
4: (Nflt,ADflt, C)← Fault(MEMEncK(N, A, M ; r),F)
5: Ivld ← {(N

′
, A

′
) ∈ Nflt ×ADflt |

MEMDecK(N
′
, A

′
, C) ̸= ⊥ ∧ (N

′
, A

′
, C) /∈ Sflt}

6: if b = 1 ∧ |Ivld| > 1
7: return ⊥
8: Sflt ← Sflt ∪ {(N

′
, A

′
, C) |

(N
′
, A

′
) ∈ Ivld}

9: return C

EncK(N, A, M)
1: r

$←− R
2: C ← MEMEncK(N, A, M ; r)
3: S ← S ∪ {(N, A, C)}
4: if b = 1
5: C

$←− {0, 1}|M|+|τ1|+|τ2|+|r|

6: d← 1
7: return C

DecK(N, A, C)
1: if b = 1 ∨ (N, A, C) ∈ Sflt ∪ S
2: return ⊥
3: else
4: return MEMDecK(N, A, C)

strings of equal lengths is negligible. We define this advantage as

Advivfrind
EK ,Fault(qf , qm, t) := max

A
|Pr[K $←− K : 1← AEf

K
,EK ]− Pr[K $←− K : 1← AEf

K
,$]|

where $ takes the (IV, M) pair and returns a random string of length |M |. We build a
fault-resilient IV-based encryption scheme using a secure frPRF FK , and a pseudorandom
key generator KG, as: EK = KG(FK(IV ))⊕M .

Theorem 3. If MacK1 and MacK3 are a two independent fault-resilient MACs against all
(qf , qm, qv, t)-adversaries and EK2 is a secure IV-and-fault-resilient IND-CPA encryption
scheme against all (qf , qm, t)-adversaries, built using a secure frPRF and a pseudorandom
key generator KG, such that EK2 = KG(FK2(IV )) ⊕M , then randomized MAC-then-
Encrypt-then-MAC is a secure randomized fault-resilient authenticated encryption with
associated data (frAE) against all (qf , qm, qv, t)-adversaries that perform differential faults:

Advfrae
MEM,Fault(qf , qm, qv, qp, t) ≤ Advfrmac

MacK1
(qf , qm, qv, qp, t) +

Advfrmac
MacK3

(qf , qm, qv, qp, t) + Advivfrind
EK2

(qf , qm, t) + qeqv

2|r| +
(

qe

2
)

2|τ1|
+

(
qe

2
)

2|r|
where qe = 2qf + qm, and qp is the maximum number of queries made to either H1 or H2.

The proof of this theorem is presented in Appendix C (supp. material).

7.4 The Security of the Encryption Layer
In the security analysis and proof of the MEM construction, we assumed the middle
encryption layer is resilient against IV repetition and faults. In other words, as long as
the non-faulty queries use IVs that have not been used before (including faulty IVs), the
outcome of these queries is indistinguishable from random strings. To construct the exact
scheme, we use the PSV [PSV15] construction. Its security in this model is captured in our
security claim by Advivfrind, and it can be seen that as long as fresh values for τ1 appear,
the initial key k0 is uniformly distributed due to the fault-resilience property of the second
frPRF. Therefore, PSV fits well for encryption here.
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8 Conclusion
In this paper, we take the first step to address the problem of fault-assisted integrity
violations in AEADs. We examine a new attack called decoupling attack which can affect
many AEADs including the leakage-resilient schemes and existing fault-resilient AEADs
(SIV$). We then formalize the notion of fault-resilience (frPRF, frMAC, frRO, and frAE)
and propose a resilient construction (MEM) to prevent fault-assisted integrity attacks.

However, there still exist several crucial open issues. For example, our proposals still
cannot withstand faults in the challenge queries. While extensions for multiple faults in
the encryption is feasible, it is not explored in this paper and requires significant amount
of research in the future. Extending the security claims for the fix faults (mostly if it is a
full-state fault) is another point, where further exploration is needed. Finally, the ideas
presented can be combined with the state-of-the-art leakage-resilient schemes providing
combined security. However, a formal exploration of this requires further research. A
discussion on these open issues is presented in Appendix D as supplementary material.
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A Decoupling Attack on Different Modes
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Figure 4: Single-pass mode example: GIFT-COFB.
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Figure 5: Single-pass mode example: ASCON.

The decoupling attack is not limited to the “Encrypt-then-MAC” structures like
TEDT. It is also applicable to “MAC-then-Encrypt”, “MAC-and-Encrypt” and even for
single-pass schemes. The attack on SIV$ (ref. Sec. 5.1) works as a representative to
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show how decoupling can be performed for “MAC-then-Encrypt” schemes. To see how
it applies to “MAC-and-Encrypt” (or “Encrypt-and-MAC”), we refer to the OCB mode
once again (see Sec. 4.1 for a short description of OCB). During the encryption of a
message M = M1||M2|| · · · ||(M∗pad), we target the final incomplete message block (M∗)
for attack. During the checksum computation, we corrupt this message block making it
M∗⊕∆i. However, the encryption of M∗ remains uncorrupted. The MAC stage, therefore,
computes τ

′ = MAC(M1||M2|| · · · ||(M∗pad)⊕∆i). The AE .Enc finally outputs (C||τ ′).
The adversary creates a forgery by computing ((C ⊕∆i)||τ

′).
We next argue that single-pass schemes like GIFT-COFB [BCI+20] are also vulnerable.

A careful investigation of GIFT-COFB (ref. Fig 4) shows that even for those schemes, one
message block is processed two times – once for generating the ciphertext, and once for
consuming it within the state for MAC. A fault during the second processing enables the
decoupling attack. In general, decoupling can take place whenever any variable, which
is either an input or output of the AEAD, is used multiple times. The usage includes
reading from or writing back to the memory. For example, one may also target the
ASCON [DEMS21] single-pass scheme. In this case, a ciphertext block is required to be
corrupted, just when it is consumed by the next permutation block for MAC (Fig. 5).
Such a fault can be created in many ways, such as by corrupting initial rounds of the
permutation.

B Proof of Theorem 2

Proof. We start by replacing the FK function with an ideal-world frPRF: (F f
K , RF) (Table 4;

column 2). We assume the hash function with a frRO. The adversary A can make direct
queries to the random oracle of the form hp = H(rp∥Mp). It maintains two tables Rp and
Hp, such that Rp includes all the values rp used in these queries and Hp includes all the
pairs (rp∥Mp, hp). The number of such queries is qp.

During the game the set Sflt ∪ S contains the trivial queries. If (r∥M, τ) ̸∈ Sflt ∪ S,
we call (r∥M) a fresh message. Besides, if τ = MacK(r∥M), we call (r∥M, τ) a valid pair.
We describe the following games. The event Ei is the event that the adversary against
Game i terminates, outputting 1. We note that during any faulty query, at most two
values can be added to any of the transcripting sets; Mflt or Rflt, since we only consider
single faults. At the same time, if during a given call, the adversary observes two messages
with the same tag, this will either imply a collision is found for the frRO or distinguishing
the frPRF based on the value npre in Table 4.

Game 0: The game described in Table 7 is used with (F f
K , RF) being a ideal-world frPRF.

E0 is the event that ∃j ∈ {1, · · · , qv} s.t. rj∥M j is fresh and (rj∥M j , τ j) is a valid pair.

Game 1: The game is similar to Game 0 but it terminates if a collision is found in
the set Rflt, or between a value in Rp and a value in Rflt. Note that an adversary can
make queries to the random oracle with rp = ri received from a previous query to MacK

or Macf
K leading to a trivial condition. However, we are interested in the adversary’s

ability to predict a random value. In order to construct Game 1, we need to construct an
adversary A′ that simulates the oracles in Table 7 using the H, Hf , RF and F f

K oracles
(F f

K is the PRFf
K oracle from Table 4). After the ith query, it checks the sets Rflt and Rp

and returns 1 if there one of the following two conditions is satisfied:

1. Rflt has a collision.

2. The ith query is a query to MacK or Macf
K and ri ∈ Rp



Sayandeep Saha, Mustafa Khairallah and Thomas Peyrin 317

Since ri is uniformly distributed and unpredictable to the adversary before it is used, then
all the values in Rflt are almost uniformly distributed. Note that not all pairs in Rflt

are equally likely to collide, e.g., r and r ⊕∆, where ∆ is a fault value will never collide.
This reduces the collision probability from the case where all the values are uniformly
distributed (it reduces the number of collision-pair candidates). We can upper bound
the probability by taking the uniform case, which is the collision probability over |Rflt|
uniformly random values, and |Rflt| ≤ 2qf + qm = qe. The probability that the second
condition is satisfied after the ith query is bounded by qp/2|r| if it a query to MacK and
2qp/2|r| if it a query to Macf

K . Hence, the transition is bounded by

|Pr[E0]− Pr[E1]| ≤
(

qe

2
)

2|r| + qeqp

2|r|

Game 2: The game is similar to Game 1 but it aborts if a collision is found in the H.
In order to construct Game 2, we need an adversary B that simulates the oracles

in Table 7, similar to A′ , as follows: When it receives a MacK query M , it generates
a random r and calculates h = H(r∥M), stores (r∥M, h) is a hash table H. B then
queries the frPRF oracle PRFK(h), and returns the outcome τ to A. It does the same
when it receives a query to Macf

K with F .mod = nof. When B receives a query to Macf
K

with F .v = prf, it also does the same except it queries PRFf
K(h,F). When B receives a

query to Macf
K with F .v = hash, it simulates the faulty hash function Hf . During this

simulation, B maintains the setMflt. It sends the outcome of the faulty hash hf to RF. If
∃r||M ∈Mflt s.t. hf = H(r||M), then B adds (r||M, hf ) to H, Otherwise, it adds (⊥, hf ).
Finally, when B receives a VerifyK query (r||M, τ), it calculates h = H(r||M), sends h to
RF and checks if τ = RF(h). It also stores (r||M, h) in H. B also simulates the queries A
makes to the random oracle and appends them to H. At the end of the game, B checks if
there is a collision in H. We call this event HC. It returns 1 if the collision exists and 0
otherwise. A returns 1 if E0, E1 or HC occurs. Note that for single fault, there can be
at most two values in Mflt. B simulates Game 1 correctly, and as long as HC does not
occur, the two games are identical. Since H is a frRO, then

|Pr[E1]− Pr[E2]| ≤ 2(qp + 2qf + qm + qv)2

2|h| = 2(qp + qe + qv)2

2|h|

Game 3: This game is the same except that the F f
K oracle is replaced with an oracle

that is similar except that instead of returning τ , it returns (a, τ) s.t. either FK(a) = τ or
a =⊥, which occurs if the condition in line 5 of F f

K of Table 4 (in both worlds) fails for all
possible values. From A’s point of view, Game 2 and Game 3 are identical.

|Pr[E2]− Pr[E3]| = 0

Game 4: The game is similar to Game 3 except that we change the adversary B to
B′ to address adversaries trying to break the one-wayness of the random oracle. For
every query h that B′ sends to either RF or F f

K , when F .v ̸= {prf}, it sets ht = h. If it
queries F f

K when F .v = {prf}, and F f
K returns (a, τ), it sets ht = a. If a =⊥, it does not

add a corresponding entry to H. It terminates if during any of the verification queries
(rj , M j , τ j), (⋆, H(rj∥M j)) ∈ H. We call this event HP . Note that if ⋆ ̸=⊥, then the
adversary found the collision and both games will be identical. If ⋆ =⊥, then one of two
cases are possible:

1. The adversary found a pre-image for a target value h.



318 Exploring Integrity of AEADs with Faults: Definitions and Constructions

2. The adversary injected a fault during a query to Macf
K such that the effective input

to RF or F f
K is H(rj∥M j).

The first case is addressed using the one-wayness of the random oracle. The second case,
∃(i, j) ∈ {1, · · · , qf} ∪ {1, · · · , qv}, s.t. H(rj∥M j) = H(ri∥M i) ⊕ δ, where δ is the fault
in the output of the hash function. This requires a near collision at the output of the
hash function. The value ri during the Macf

K query is uniform and cannot be predicted
before the injection of the fault. Hence, from the properties of the faulty random oracle,
the probability of this event for a given pair (i, j) is bounded by 1/2|h|. Note that since
there is no collision on the random value r, the output of the hash function is always fresh,
and the knowledge of δ does not help the adversary. The number of possible near collision
pairs in this case is bounded by 2qf qv. Thus,

|Pr[E3]− Pr[E4]| ≤ 2(2qf + qm + qv + 1)
2|h| + 2qf qv

2|h| = 2(qe + qv + 1)
2|h| + 2qf qv

2|h|

Game 5: This game is similar to Game 4, except the game aborts if one of the qv queries
to VerifyK is valid and fresh. E4 is the event that the adversary wins this game. Note that
since the previous games terminate for different possible collisions, the input to the frPRF
in this game is always fresh, and the output is uniformly distributed.

In order to transition from Game 4 to Game 5, we construct qv + 2 hybrid games, as
follows:
Game 4j: is the similar to Game 4, except it aborts if one of the first j queries to VerifyK

is valid and fresh. It can be seen that Game 40 ≡ Game 4 and Game 4qv+1 ≡ Game 5.
We note that Game 4j and Game 4j+1 are identical if query j + 1 ∈ {1, · · · , qv} is

invalid or not fresh. If the query is valid and fresh, we call this event GT j+1. We note that

|Pr[Ej
4]− Pr[Ej+1

4 ]| ≤ Pr[GT j+1].

We also note that if at query j ∈ {1, · · · , qv} is fresh, and HC ∨HP do not occur, then
Hj is a fresh input to RF. Hence, the adversary has to guess a fresh output of a random
function RF. Thus,

|Pr[Ej
4]− Pr[Ej+1

4 ]| ≤ Pr[GT j+1] ≤ 1
2|τ |

and we can bound |Pr[E3]− Pr[E4]| by

|Pr[E4]− Pr[E5]| ≤
qv−1∑
j=0
|Pr[Ej

4]− Pr[Ej+1
4 ]| ≤ qv

2|τ | and Pr[E5] = 0

Finally, the overall bound can be given by

Advfrmac
htfrprf,Fault(qf , qm, qv, qp, t) ≤ Advfrprf

FK
(qf , qm+qv, t)+

4∑
i=0
|Pr[Ei]−Pr[Ei+1]|+Pr[E4] ≤

Advfrprf
F,Fault(qf , qm + qv, t) +

(
qe

2
)

2|r| + qeqp

2|r| + 2(qp + qe + qv)2

2|h| + 2(qe + qv + 1)
2|h| + 2qf qv

2|h| + qv

2|τ |
where qe = 2qf + qm.

C Proof of Theorem 3

Proof. The adversary A performs qf faulty queries to the Encf
K oracle, followed by qm

EncK queries and qv DecK queries (ref. Table 9). Note that K := (K1, K2, K3). MacK1 ,
EK2 and MacK3 are replaced with their ideal-world variants. The adversary additionally
maintains tables Rflt, and T1,flt such that Rflt maintains all the r values queried, and
T1,flt maintains all the τ1 values queried.
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Game 0: This game is described in Table 9. An elaborated version of this game appears
in the Table 10. However, the proof can be followed with Table 9 only.

Game 1: This game is similar to Game 0 except that it terminates if there is a collision
in Rflt. Since in every faulty query we an have at most two random values,

|Pr[E0]− Pr[E1]| ≤
(2qf +qm

2
)

2|r| .

Game 2: This game is similar to Game 1 except that it terminates if there is a collision
in T1,flt. Since in every fault query we an have at most two values for τ1,

|Pr[E1]− Pr[E2]| ≤
(2qf +qm

2
)

2|τ1|

Game 3: This game is similar to Game 2 except that it terminates if the forgery
(N∗, A∗, τ∗1 , C∗1 , τ∗2 ) succeeds, but triplet (τ∗1 , C∗1 , τ∗2 ) is fresh and valid for MacK3 (during
the decryption). This case is covered by the security of the second MAC.

|Pr[E2]− Pr[E3]| = 0.

Game 4: This game is similar to Game 3 except that it terminates if (N∗, A∗, τ∗1 , C∗, τ∗2 )
succeeds, but triplet (τ∗1 , C∗, τ∗2 ) is trivial for MacK3 . If

̸ ∃(N
′
, A

′
, r

′
, τ∗1 , C∗, τ∗2 ) ∈ S ∪ Sflt,

it implies that (τ∗1 , C∗1 ) was a faulty input to MacK3 in one of the faulty encryption queries,
since otherwise, the full query would be trivial. If the fault was injected in C, i.e., τ1 was
generated in an encryption query, then KG(FK2(τ∗1 ))⊕ C∗ leads to a fresh message for
MacK1 at the decryption. In this case the security is covered by the security of MacK1 .

Since τ1 is collision-free, if the fault was injected in τ1, a key-stream KG(FK2(τ∗1 )) is
fresh and uniform, i.e., τ∗1 was never used to seed KG previously. Since the key-stream
used to decrypt C∗ will be uniformly distributed, the input to MacK1 at the decryption is
uniformly distributed. If the input to MacK1 is fresh, this is covered by the security of
MacK1 . The probability that such input is not fresh is bounded by (2qf + qm)qv/2|r|. If

∃(N
′
, A

′
, r

′
, τ∗1 , C∗, τ∗2 ) ∈ S ∪ Sflt, s.t. (N

′
, A

′
, r

′
) ̸= (N∗, A∗, r∗),

it implies that a fault was injected in either MacK1 or EK2 . If the fault was injected in
EK2 in τ1, such τ1 was not generated by a valid MacK1 query. Hence, the forgery cannot
be successful. If the fault was injected in C∗, then the input to MacK1 is fresh. Finally,
if the fault was injected in MacK1 , then C∗ does not encrypt the same message that was
processed by MacK1 and the input to MacK1 at the decryption is fresh. Those cases are
also covered by the security of MacK1 . Therefore,

|Pr[E3]− Pr[E4]| ≤ (2qf + qm)qv

2|r| .

Finally, Pr[E4] = 0, since if none of the games terminate, all the inputs to the MACs are
either trivial or invalid and frmac and frprf security of the components is not broken and
maintains the indistiguishability of the non-faulty queries from random strings.
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Table 10: The MEM oracles (elaborated)
ExptMEM,b

A,F
INIT

1: (K1, K2, K3) $←− K
2: K := (K1, K2, K3)
3: d← 0
4: b

$←− {0, 1}
5: Sflt ← ∅
6: S ← ∅
7: Rflt ← ∅
8: T1,flt ← ∅
9: return s

Encf
K

(N, A, M,F)
1: if d = 1
2: return ⊥
3: r

$←− R
4: Rflt ← Rflt ∪ {r}
5: Nflt ← {N}
6: ADflt ← {A}
7: if F.mod = nof
8: τ1 ← MacK1 (N∥A∥r∥M∥|M |))
9: T1,flt ← T1,flt ∪ {τ1}
10: C ← KG(FK2 (τ1))⊕ r∥M
11: τ2 ← MacK3 (τ1∥C)
12: else if F.v = r ▷ at AE input
13: τ1 ← MacK1 (N∥A∥r ⊕∆∥M∥|M |))
14: T1,flt ← T1,flt ∪ {τ1}
15: C ← KG(FK2 (τ1))⊕ (r ⊕∆)∥M
16: Rflt ← Rflt ∪ {r ⊕∆}
17: τ2 ← MacK3 (τ1∥C)
18: else if F.v = r ▷ at MAC1 input
19: τ1 ← MacK1 (N∥A∥r ⊕∆∥M∥|M |))
20: T1,flt ← T1,flt ∪ {τ1}
21: C ← KG(FK2 (τ1))⊕ (r)∥M
22: Rflt ← Rflt ∪ {r ⊕∆}
23: τ2 ← MacK3 (τ1∥C)
24: else if F.v = r ▷ at Enc input
25: τ1 ← MacK1 (N∥A∥r∥M∥|M |))
26: T1,flt ← T1,flt ∪ {τ1}
27: C ← KG(FK2 (τ1))⊕ (r ⊕∆)∥M
28: Rflt ← Rflt ∪ {r ⊕∆}
29: τ2 ← MacK3 (τ1∥C)
30: else if F.v = tag ▷ at Mac1 output
31: τ1 ← MacK1 (N∥A∥r∥M∥|M |))
32: T1,flt ← T1,flt ∪ {τ1}
33: C ← KG(FK2 (τ1 ⊕∆))⊕ (r)∥M
34: T1,flt ← T1,flt ∪ {τ1 ⊕∆}
35: τ2 ← MacK3 (τ1 ⊕∆∥C)
36: else if F.v = tag ▷ at Enc input
37: τ1 ← MacK1 (N∥A∥r∥M∥|M |))
38: T1,flt ← T1,flt ∪ {τ1}
39: C ← KG(FK2 (τ1 ⊕∆))⊕ r∥M
40: T1,flt ← T1,flt ∪ {τ1 ⊕∆}
41: τ2 ← MacK3 (τ1∥C)
42: else if F.v = tag ▷ at Mac2 input
43: τ1 ← MacK1 (N∥A∥r∥M∥|M |))
44: T1,flt ← T1,flt ∪ {τ1}
45: C ← KG(FK2 (τ1))⊕ r∥M
46: T1,flt ← T1,flt ∪ {τ1 ⊕∆}
47: τ2 ← MacK3 ((τ1 ⊕∆)∥C)

48: else if F.v = Mac1
49: (Nf , Af , rf , Mf , τ1)←

Fault(MacK1 (N∥A∥r∥M∥|M |),F)
50: T1,flt ← T1,flt ∪ {τ1}
51: C ← KG(FK2 (τ1))⊕ r∥M
52: τ2 ← MacK3 (τ1∥C)
53: Nflt ← Nflt ∪ {Nf}
54: ADflt ← ADflt ∪ {Af}
55: Rflt ← Rflt ∪ {rf}
56: else if F.v = Mac2
57: τ1 ← MacK1 (N∥A∥r∥M∥|M |)
58: T1,flt ← T1,flt ∪ {τ1}
59: C ← KG(FK2 (τ1))⊕ r∥M
60: (τf

1 , Cf , τ2)← Fault(MACK3 (τ1∥C),F)
61: T1,flt ← T1,flt ∪ {τf

1 }
62: else if F.v = Enc
63: τ1 ← MacK1 (N∥A∥r∥M∥|M |)
64: T1,flt ← T1,flt ∪ {τ1}
65: C ← KG(FK2 (τ1))⊕ (r∥M)⊕∆
66: τ2 ← MacK3 (τ1∥C)
67: Ivld ← {(N

′
, A

′
) ∈ Nflt ×ADflt |

DecK (N
′
, A

′
, C) ̸= ⊥ ∧ (N

′
, A

′
, C) /∈ Sflt}

68: if b = 1 ∧ |Ivld| > 1
69: return ⊥
70: Sflt ← Sflt ∪ {(N

′
, A

′
, C) |

(N
′
, A

′
) ∈ Ivld}

71: return (τ1, C, τ2,Sflt)

EncK (N, A, M)
1: d← 1
2: r

$←− R
3: Rflt ← Rflt ∪ {r}
4: if M ∈ Sflt ∪ S
5: return ⊥
6: τ1 ← MacK1 (N∥A∥r∥M∥|M |))
7: T1,flt ← T1,flt ∪ {τ1}
8: C ← KG(FK2 (τ1))⊕ r∥M
9: τ2 ← MacK3 (τ1∥C)
10: S ← S ∪ {(N, A, τ1, C, τ2)}
11: if b = 1
12: (τ1, C, τ2) $←− {0, 1}|τ1|+|τ2|+|r|+|M|

13: return τ1, C, τ2

Dec(N, A, τ1, C, τ2)
1: if b = 1 ∨ (N, A, τ1, C, τ2) ∈ Sflt ∪ S
2: return ⊥
3: τ

′
2 ← MacK3 (τ1∥C)

4: r∥M ← KG(FK2 (τ1))⊕ C

5: τ
′
1 ← MacK1 (N∥A∥r∥M∥|M |))

6: if (τ2 ̸= τ
′
2) ∨ (τ1 ̸= τ

′
1)

7: return ⊥
8: else
9: return M
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D Discussion and Open Issues
The proposed MEM construction is meant for preventing single-fault attacks which it
achieves successfully. It has already been argued that most of the two-pass schemes are not
suitable in this regard. However, an important question is, how other three-pass options
work against faults. In this section, we discuss a few other three-pass schemes in the
context of fault attacks. Next, we present some open issues regarding the fault-resilient
constructions and their potential extensions.

D.1 Other Three-Pass Constructions
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Figure 6: Alternative Three-pass Constructions.

There can be several basic constructions having more than one pass of encryption
and MAC steps. A tempting question is whether or not they all present security against
FAs with respect to integrity. Several such potential combinations are described in Fig. 6.
It is interesting to observe that most of them are vulnerable to single-fault injections.
We restrict our discussions to the schemes which only allow a constant increase in the
ciphertext length.

First, let us consider schemes having two encryption operations and one MAC. Two
consecutive encryptions (ref. Fig. 6(a),(b)) do not help as together they can be considered
as one encryption operation. Fig. 6(c) performs two parallel encryptions with the same key
followed by a MAC. While this scheme may look secure until only one of the ciphertexts is
corrupted, we note that it depends upon how the MAC is implemented. In the case of
parallel implementations, both the ciphertexts will be processed simultaneously. A single
fault can corrupt both ciphertexts at this time instant and result in a decoupling attack. If
two encryptions are separated by a MAC operation (ref. Fig. 6(d)), it can be considered as
“MAC-then-Enc” over an encrypted message. Decoupling attacks take place if the MAC
input is corrupted with faults.

Next, we consider cases having two MAC operations. The first two constructions in
this class are presented in Fig. 6(e) and (f), where the two MACs operate on the ciphertext,
and the concatenation of the ciphertext and the first MAC, respectively. A decoupling
fault on the ciphertext at the beginning of the MAC phase enables an attack in this case
(truncation attacks are also feasible). A very similar situation arises if the encryption
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follows the two consecutive MACs9. One may abstract these consecutive MACs as a
single MAC which converts the schemes to “Encrypt-then-MAC” and “MAC-then-Encrypt”
modes, where attacks are clearly feasible10.

One may observe that the main issue with the schemes described in the last paragraph
is that both MACs operate on the same variables – ciphertext and the first tag (for the
second MAC operation). Faulting the ciphertext once, therefore, serves the purpose of
the adversary. The third class of schemes performs the MACs on different variables – the
plaintext and the ciphertext (or ciphertext + tag). Clearly, MEM is a member of this class.
Another potential member is presented in Fig. 6(g) which also prevents the attacks for
single fault injection. However, we note that the overall computational complexity of this
scheme is the same as MEM – two MAC computations are always required. In this paper,
we choose MEM due to its structural simplicity which makes the security proofs simple
and enables combination with the PSV encryption. However, the other candidate in this
class is also expected to show similar properties. Finally, we note that certain single-pass
schemes (computing the encryption and the MAC in one pass) can be converted to a
member of this class if they are augmented with another MAC operation at the end. We
leave the analysis of the security and computational complexity of such potential schemes
as future work.

D.2 Security Against Multiple Faults
Let us consider a scenario where the adversary is allowed to inject at least two faults per
encryption query. In this case the adversary can corrupt the computation of MACK1 for a
given message M such that τ1 ← MACK1(M ⊕∆). It then injects the same ∆ fault during
the computation of MACK2 resulting in τ2 ← MACK2(C⊕∆||τ1). In case the encryption is
linear (such as in PSV), τ2 ← MACK2(M ⊕Y ⊕∆||τ1) where Y is the keystream generated
by the encryption function. The adversary, therefore can create a successful forgery by
asking for a decryption of the message (τ1||(C ⊕∆)||τ2).

While it is evident that the attack works with two faults, it still requires the faults to
be equal-valued, which is hard to achieve for many practical implementations. It becomes
even more difficult practically as in two different instants, two different variables are to
be faulted. However, from a theoretical perspective it is still important to extend the
security for multiple fault injections. While MEM allows such extension by interleaving
the encryption and MAC blocks with a final MAC at the end, a detailed analysis in this
regard is left as a future work.

D.3 Security Against fix Faults
Our proofs for the frMAC security relies upon the assumption that the fault is differential
in nature. In the case of fix faults, the following attack can be performed on the frMAC
construction.

Consider an adversary who maintains a table U of offline computations for the public
hash H used in the frMAC construction. U contains entries of the form ((rj ||Mj ||Nj ||Aj), hj).
Now if the adversary is capable of doing a fix fault over the full state, then during the
frMAC query for any given message (ri||Mi||Ni||Ai), it can replace the desired hash value
hi with hj eventually generating a tag τj corresponding to (rj ||Mj ||Nj ||Aj). Now since
this message has never been queried to the frMAC oracles, the adversary can use it as a
valid forgery. This attack is, however, not possible for differential faults, as the output
of the hash is always randomized and remains randomized even after a differential fault
injection. Another reason behind not ensuring security against fix model is that fixing

9We do not describe it here as it is obvious.
10The attacks can be countered if the implementation performs two separate memory reads for two

MAC operations. However, this is more an implementation-level protection than a mode-level solution.
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the randomization to a certain value may break the security in several ways. The most
obvious impact would be on confidentiality, as repeating the randomness will result in a
nonce repetition.

It is worth mentioning that if we only consider the attack on the hash output with fix
faults, it is solely an issue for the frMAC construction. In other words, the attack does
not apply for the MEM scheme, as the verification will always fail for the second MAC.
This is because the second MAC also takes the ciphertext as an input. However, analyzing
this scenario formally with frMAC is not straightforward, and we leave it for the future.
Currently, we only claim security with respect to differential faults.

D.4 Security against Decryption Faults
In this work, we do not claim security against decryption faults. In fact it is easy to observe
that having both encryption and decryption fault can be fatal for security if the decryption
fault is injected during the challenge. Considering the integrity scenario, the adversary can
first fault any one of the MACs (say MAC2) during the encryption operation as mentioned
before. He can then modify the ciphertext offline and use it as a challenge query. While
the query is still invalid in this case (as the other MAC still does not match), during the
decryption the adversary can fault the other MAC (MAC1) by skipping the final check.
This indeed leads to a valid forgery scenario even for our protected constructions. With our
current constructions, addressing the decryption faults, therefore, seems non-trivial. We
leave it as one of the major open challenges to be addressed in the context of fault-resilient
AEADs.

D.5 Security Against Leakage
Our “fr” constructions do not claim security against a scenario where both leakage and
faults are present. However, we observe certain similarities between our frMAC construction
and the leakage-resilient MACs [BKP+18], which makes us believe that claiming combined
security against both attacks should be feasible. There can be several ways for combining
leakage with faults. One possible way is to limit both leakage and faults for non-challenge
queries only (the simplest scenario). We believe that proving security for such scenarios
should be relatively easier. The situation becomes a bit more complex if we consider
both encryption and decryption leakage. Finally, allowing challenge leakage and fault (for
both encryption and decryption) is the most general albeit challenging scenario. Allowing
challenge leakage may lead to situations where Simple Power Analysis (SPA) attacks might
be feasible, and one must ensure that such attacks do not take place. DPA attacks are
relatively easier to prevent as the PSV scheme already enjoys some security against them.
However, challenge faults can make the scenario even more complex. In the last paragraph,
we described the situation with respect to integrity. However, challenge faults in the
encryption may also lead to the recovery of the ephemeral key which breaks confidentiality.
Formalizing these issues is out-of-the-scope for the current paper and, therefore, left as a
future work.
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E The Security Game due to [FG20]
The security game for SIV$ in [FG20] is given as follows:

Table 11: The Security Game in [FG20]
ExptfrAE$,b

AE,A
INIT :

1: K
$←− K

2: S ← ∅
3: clash← false

FIN :

1: b
′
← AO

Encf
K (·),ODecK (·)(F)

2: if clash: b
′
← b

3: return b
′

Oracle ODecK (N, A, C):
1: if b = 1 or (N, A, C) ∈ S
2: return ⊥
3: else
4: return (DecK (N, A, C)

Oracle OEncf
K (N, A, M,F):

1: C1
$←− {0, 1}|C0|

2: C0 ← Fault(EncK(N, A, M),F)
3: NAEnc

vld ← {(N
′
, A

′
)

∈ Nflt ×ADflt |
Dec(K, N

′
, A

′
, Cb) ̸= ⊥

∧(N
′
, A

′
, Cb) /∈ S}

4: if |NAEnc
vld| ≥ 2

5: clash← true
6: S ← S ∪ {(N

′
, A

′
, Cb) |

7: (N
′
, A

′
) ∈ NAEnc

vld}
8: return Cb
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