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Fault Attacks (FA)



FAULT ATTACKS (FA)

• Fault Attacks (FA) have been introduced in 1997 [BDL97,BS97].

• Over the years, both analysis and fault injection techniques have
improved significantly [TMA11,FJLT13,SBHS15,SH07,SBR+20,
DEK+18,PCNM15,ZLZ+18,MOG+20,DEK+18,DEG+18,
SBR+20,SBJ+21].

• Most fault attacks and fault countermeasures in symmetric key
cryptography target key/state recovery.



FAULT-RESILIENCY

• Dobraunig, Mennink and Primas. [DMP20] discussed the
security of sponge-like constructions where the amount of
information leaked using faults is limited.

• Some papers discuss building primitives that protect against
certain types of fault attacks [MSGR10,SBD+20,BBB+21].

• Fischlin and Günther [FG20] discussed the concept of
fault-resilient AE and gave one construction.

• Saha, Khairallah and Peyrin (this work) discussed the definitions
of the fault model and how to define different fault-resilient
primitives to be able to use in AE scheme. We also show that the
construction from [FG20] does not achieve frAE.

• In parallel to this work, Berti, Guo, Peters, Shen and
Standaert [BGP+22] showed that it is possible to have frMAC
with resiliency against verification faults. The final construction in
their paper can be seen as an instantiation of our frMAC.



EXAMPLES OF FAULT ATTACKS



Attacks on Classical AEAD
Schemes without Key Recovery
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APPLIES TO MORE SCHEMES

• SIV.

• Enc-then-MAC.



Levelled Implementations



OCB VS. TEDT: PROTECTING LONG TERM SECRETS AT A
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Fault Resilient PRF



WHAT HAPPENS WHEN WE INJECT FAULT?

FM C

Faulty FM C’



WHAT HAPPENS WHEN WE INJECTS FAULT?

FM C

Faulty FM C’

FM’ C’



RESISTANCE VS. RESILIENCE

• We allow more trivial forgeries/distinguishers than allowed in a
classical security notion.

• We allow a phase of the attack where we do not claim security
for any message in that phase.



ADVERSARIAL SET UP

1. Training phase: the attacker gets description of the
implementation with the ability to inject faults anywhere, but no
direct access to the secret key. In this phase the implementation
is always real.

2. Attack phase: the attacker cannot inject faults any more. In this
phase the oracle can be real or ideal.
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FAULT RESILIENT PRF GAME

Challenge: Faulty queries may (in theory) leak information
about more than one evaluation of the function at a time.

frPRF
Real World Ideal World

PRFf
K(M,F)

· · ·
faulty implementation.
· · ·

PRFK(M)

· · ·
Real implementation with fresh inputs.
· · ·

PRFf
K(M,F)

· · ·
faulty implementation, but
terminates if a faulty query
leaks more than one point of
the function.
· · ·

RFK(M)

· · ·
Random function with fresh inputs.
· · ·



FAULTY PRF ORACLE

Faulty FM C’
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Specification
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M’ may be equal to ⊥.



HOW TO BUILD AN FRPRF

1. We can construct such primitives using a tweakable block cipher
protected against fault-attacks.

2. If the cipher does not allow key recovery through fault attacks, it
should be possible to use as an frPRF.

3. It may be possible to show that ISAP finalization is an frPRF.

4. In practice, we may not know if the preimage is easy or not, but
what this model says is that a small amount of trivial
forgeries/distinguishers using faults is unavoidable.



Fault Resilient MAC
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SECURITY ARGUMENTS

• No collision on the random salt, or the output of the hash (frRO).

• Only trivial preimages are prossible.

• frMAC has security similar to frPRF, only need to worry about tag
verification.



Fault Resilient AEAD



THE FRAE GAME

• Similar to the frPRF game but taking privacy and decryption into
account.

• A variation of the game proposed in [FG20].



SIV$ [FG20]

SIV$

KGen:

1: (K1, K2)
$←− K

2: return (K1, K2)

EncSIV$
K (N, A, M; r):

1: (K1, K2)← K
2: IV ← PRF(K1, N, A, M; r)
3: C← Enc(K2, r||M, IV)

4: return (IV, C)

DecSIV$
K (N, A, C

′
):

1: (K1, K2)← K
2: (IV, C)← C

′

3: r||M← Dec(K2, C, IV)

4: IV
′
← PRF(K1, N, A, M, r)

5: if IV = IV
′

6: return M
7: else:
8: return ⊥



DECOUPLING ATTACK ON ALL SIV-LIKE SCHEMES

1. Fault the MAC to make it give a tag for M
′
.

2. Encrypt M using the IV corresponding to M
′
.

3. (N,A,C, IV) is not a valid ciphertext.

4. C can be changed to C
′

corresponding to M
′
.



IF MAC-THEN-ENC DOES NOT WORK, WHAT DOES?

MAC-then-Enc

then MAC Again
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SECURITY ARGUMENTS

• No collision on the random salt, or the output of the first MAC.

• The security then reduces to the frMAC security of the two MACs
and the frPRF security of the key derivation function in the
encryption layer.
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CONCLUSION

• It is possible to protect certain classes of fault attacks using
levelled implementations.

• Randomness is critical to prevent differential fault attacks in
unprotected primitives.

• It is possible to prevent single differential fault attacks with less
cost and more effectively than dummy duplication.



FUTURE WORK

• Indifferentiability of randomized hash functions from frRO.
• Show frAE is secure against combined attacks (combined fault

and leakage resilience).
• Protecting against multiple faults.

• A solution to prevent a d-fault version of the decoupling attack may
be to keep interleaving Enc and MAC (MEMEM...).

• Is there a solution a solution that protects against arbitrary number
of faults?

• Are there efficient solutions for the security of MAC against
differential faults without randomness?

• In parallel work, Berti et al. [BGP+22] showed an example of a
MAC that does not need randomness and protects against a single
differential fault. It requires two MAC invocations.

• A more efficient solution would need less than i + 1 invocations to
protect against i differential faults.

• Relate the security of different fault countermeasures to the
frPRF assumption (e.g. is ISAP’s PRF an frPRF?).



Thank you!
More details in eprint 2022/1055
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Modelling Faults



PHYSICAL TO LOGICAL

• A classification is important.

• Physical faults eventually cause some data or control corruption.

• In general, localized corruptions are observed which can be
one/multiple-bit flip or set/reset. For software implementations,
we also observe instruction modification/skip.

• The precision of faults are dependent on the target device and
injection instruments.



ABSTRACT MODEL OF PHYSICAL EVENTS

Fault Representation Variable Classification
Params Description Params Description

vi

Denote the variables corrupted
by faults.
vi ∈ data ∪ control ∪ constant.

data
Denotes the set of data-flow variables
(input, output and intermediate
states of the computation).

nf
The number of faults injected
throughout the computation (in the same
or different clock cycles).

control
Denotes the set of control-flow
variables (branch statements).

wi

Denote the width (how many bits
within a target variable are corrupted)
of a fault (0 ≤ wi ≤ |vi|).

constant
Denotes the set of constants, tables,
and domain separators of the
AEAD algorithm.

modi

The logical abstraction of physical
nature of faults (fault models).
modi ∈ fix ∪ diff ∪ rand ∪ nof.

ti
Denote if the fault is transient/persistent
and the temporal fault location.

Fault Models

fix
Denote faults where the adversary is allowed to fix wi bits of the target variable to
some desired value.

diff

Denote the differential faults where the adversary is allowed to select a bitwise differential ∆i
for variable vi (with HW(∆i) = wi ) and set v

′
i = vi ⊕∆i . Here v

′
i is the faulty version of

vi and HW(·) denote the Hamming weight.

rand Same as diff except the fact that ∆i
$←− {0, 1}|vi| and HW(∆i) = wi .

nof Denotes the case when the adversary chooses not to inject a fault in the execution.



COMPARISON TO AN AEAD COMBINER [PR20]

• A different approach to prevent such failures would have been to
use an AEAD combiner with two AEAD schemes.

• Assuming both schemes are based on SIV$, this solution needs
two MACs and two Encryption schemes.

• In fact, it is impossible to get an AEAD combiner with less than
4A + 4M for the encryption and decryption cost ([PR20]).

• The cheapest blackbox combiner for two SIV$ schemes would
need 2A + 6M for either encryption of decryption1.

• Our solution only needs A + 3M.

• For ciphertext lengths, our scheme is on-par with AEAD
combiners M + 3τ .

1[PR20] reports 2A + 3M, but this is not considering that the AEAD scheme itself
processes the message twice



THE FRAE GAME: TRAINING2

1: if d = 1
2: return ⊥
3: r $←− R
4: (Nflt,ADflt, C)← Fault(MEMEncK(N, A, M; r),F)

5: Ivld ← {(N
′
, A
′
) ∈ Nflt ×ADflt |

MEMDecK(N
′
, A
′
, C) ̸= ⊥ ∧ (N

′
, A
′
, C) /∈ Sflt}

6: if b = 1 ∧ |Ivld| > 1
7: return ⊥
8: Sflt ← Sflt ∪ {(N

′
, A
′
, C) |

(N
′
, A
′
) ∈ Ivld}

9: return C

2A variation of the game proposed in [FG20]



THE FRAE GAME: ATTACK3

EncK(N, A, M)

1: r $←− R
2: C← MEMEncK(N, A, M; r)
3: S ← S ∪ {(N, A, C)}
4: if b = 1

5: C $←− {0, 1}|M|+|τ1|+|τ2|+|r|

6: d← 1
7: return C

DecK(N, A, C)
1: if b = 1 ∨ (N, A, C) ∈ Sflt ∪ S
2: return ⊥
3: else
4: return MEMDecK(N, A, C)

3A variation of the game proposed in [FG20]



Fault Resilient Random Oracle



RANDOM ORACLES

• A random oracle in this work refers to an arbitrary input length
and fixed output length random function.

• Unlike a PRF, a random oracle has no meaning implementation
that can be faulted.

• We could view the random oracle as a large table that can be
faulted, but that is not very useful.



KEY OBSERVATIONS

1. A hash function that is collision-resistant remains
collision-resistant with faults. (Maybe not so obvious)

2. Preimage resistance is less clear: the adversary can force a
faulty hash value that corresponds to a given input message.

3. Random salts prevent this type of attacks.

4. Randomness needs to be synchronized during verification.

5. Can we do something even stronger?



RANDOM ORACLES VS. HASH FUNCTION

• Usually we are using the random oracle model to argue about
the security of a hash-based scheme.

• It is more meaningful to argue about the security of the random
oracle in the relation to the implementation of the actual hash
function.



FRRO: IDEA

• Use the hash function implementation to find out the effect of the
fault.

• Use the random oracle to generate the tag.

• We need random salt to prevent certain prefix attacks.



frRO

The frRO Oracle
INIT

1: for y ∈ {0, 1}∗

2: RO(y) $←−⊥
3: Rflt ← ∅

frROf (x; r,F)

1: if r ∈ Rflt then bad

2: Rflt ← Rflt ∪ {r}
3: if F.mod = nof
4: if RO(r∥x) =⊥
5: RO(r∥x) $←− {0, 1}|h|

6: Z← RO(r∥x)
7: else if F.v = r
8: r← r⊕∆

9: if r ∈ Rflt then bad

10: Rflt ← Rflt ∪ {r}
11: if RO(r∥x) =⊥
12: RO(r∥x) $←− {0, 1}|h|

13: Z← RO(r∥x)
14: else if F.v = x
15: x← x⊕∆

16: if RO(r∥x) =⊥
17: RO(r∥x) $←− {0, 1}|h|

18: Z← RO(r∥x)
19: else
20: if RO(r∥x) =⊥
21: RO(r∥x) $←− {0, 1}|h|

22: (Mf , h)← Fault(H(r∥x),F)

23: ∆← H(r∥x)⊕ h
24: Z← RO(r∥x)⊕∆

25: return (r, Mf , Z)

frRO(x; r)
1: F.mod← nof
2: return frROf (x; r,F)



CLAIMS ON THE FRRO

Theorem
As long as the bad event is never set, then frRO is indistinguishable
from a fault-free random oracle.

Conjecture
If a hash function H is indifferentiable from a random oracle, then its
faulty implementation with differential faults is indifferentiable from an
frRO.
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