New Properties of the Double Boomerang Connectivity Table

Qianqian Yang, Ling Song*, Siwei Sun, Danping Shi, Lei Hu

Institute of Information Engineering Jinan University University of Chinese Academy of Sciences

DBCT

(人間) とうき くうり

1 Preliminary

- 2 New Properties of the Double Boomerang Connectivity Table
- **3** Application of the New Properties
- In MILP Model to Search for Boomerangs with Cluster Probability

5 Conclusion

2

・ロト ・四ト ・ヨト ・ヨト

Preliminary

• Boomerang attack:

- a long differential \leftarrow two short ones with high probability
- the two trails are **independent**
- Sandwich attack:
 - ▶ takes into account the **dependency** between the differentials
 - handles it in a middle part E_m

Qianqian Yang, Ling Song et al.

Figure: The Difference Distribution Table (DDT)

$$DDT(\alpha_1, \alpha_2) = \#\{x \in \mathbb{F}_2^n | S(x) \oplus S(x \oplus \alpha_1) = \alpha_2\}.$$

Qianqian Yang, Ling Song et al.

æ

イロト イヨト イヨト イヨト

Figure: The Boomerang Connectivity Table (BCT)

 $\mathsf{BCT}(\alpha_1,\beta_2) = \#\{x \in \mathbb{F}_2^n | S^{-1}(S(x) \oplus \beta_2) \oplus S^{-1}(S(x \oplus \alpha_1) \oplus \beta_2) = \alpha_1\}.$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Figure: The Upper BCT (UBCT)

$$\begin{aligned} \text{UBCT}(\alpha_1, \boldsymbol{\alpha_2}, \beta_2) &= \\ \# \left\{ x \in \mathbb{F}_2^n \middle| \begin{array}{l} S(x) \oplus S(x \oplus \alpha_1) = \alpha_2 \\ \\ S^{-1}(S(x) \oplus \beta_2) \oplus S^{-1}(S(x \oplus \alpha_1) \oplus \beta_2) = \alpha_1 \end{array} \right\} \end{aligned}$$

Qianqian Yang, Ling Song et al.

æ

イロト イロト イヨト イヨト

Figure: The Lower BCT (LBCT)

$$LBCT(\alpha_1, \beta_1, \beta_2) = \\ \# \left\{ x \in \mathbb{F}_2^n \middle| \begin{array}{l} S(x) \oplus S(x \oplus \beta_1) = \beta_2 \\ S^{-1}(S(x) \oplus \beta_2) \oplus S^{-1}(S(x \oplus \alpha_1) \oplus \beta_2) = \alpha_1 \end{array} \right\}$$

Qianqian Yang, Ling Song et al.

æ

イロト イヨト イヨト イヨト

Figure: The Extended BCT (EBCT)

$$\begin{split} & \texttt{EBCT}(\alpha_1, \beta_1, \boldsymbol{\alpha_2}, \beta_2) = \\ & \# \left\{ x \in \mathbb{F}_2^n \left| \begin{array}{c} S(x) \oplus S(x \oplus \alpha_1) = \alpha_2 \\ S(x) \oplus S(x \oplus \beta_1) = \beta_2 \\ S^{-1}(S(x) \oplus \beta_2) \oplus S^{-1}(S(x \oplus \alpha_1) \oplus \beta_2) = \alpha_1 \end{array} \right\}. \end{split} \right\} \end{split}$$

Qianqian Yang, Ling Song et al.

2

メロト メタト メヨト メヨト

1 Preliminary

- 2 New Properties of the Double Boomerang Connectivity Table
- 3 Application of the New Properties
- Image: Milling Model to Search for Boomerangs with Cluster Probability

5 Conclusion

2

イロト 不同ト 不同ト 不同ト

How about two continuous S-boxes? t continuous S-boxes?

イロト イヨト イヨト イヨト

ъ

Definition

Let S be a function from \mathbb{F}_2^n to \mathbb{F}_2^n . The double boomerang connectivity table (DBCT) is defined as

$$\mathtt{DBCT}(\alpha_1,\beta_3) = \sum_{\alpha_2,\beta_2} \mathtt{dbct}(\alpha_1,\alpha_2,\beta_2,\beta_3),$$

where $dbct(\alpha_1, \alpha_2, \beta_2, \beta_3) =$ UBCT $(\alpha_1, \alpha_2, \beta_2) \cdot LBCT(\alpha_2, \beta_2, \beta_3).$

Figure: DBCT of general S-box

イロト イヨト イヨト イヨト

Property

Let S be a function from \mathbb{F}_2^n to \mathbb{F}_2^n . For $\forall \alpha_1, \alpha_2, \beta_2, \beta_3 \in \mathbb{F}_2^n \setminus 0$, **nonzero** dbct $(\alpha_1, \alpha_2, \beta_2, \beta_3)$ occurs **mainly** when $\alpha_2 = \beta_2$. Consequently,

$$DBCT(\alpha_1, \beta_3) = \sum_{\alpha_2, \beta_2} UBCT(\alpha_1, \alpha_2, \beta_2) \cdot LBCT(\alpha_2, \beta_2, \beta_3)$$
$$\geq \sum_{\alpha_2 = \beta_2} UBCT(\alpha_1, \alpha_2, \beta_2) \cdot LBCT(\alpha_2, \beta_2, \beta_3)$$
$$= \sum_{\alpha_2} DDT(\alpha_1, \alpha_2) \cdot DDT(\alpha_2, \beta_3).$$

• ladder switch; S-box switch

3

イロト 不得 とうほう 不良 とう

Hard S-box

Definition

Let S be a function from \mathbb{F}_2^n to \mathbb{F}_2^n . S is hard if the following holds, for $\forall \alpha_1, \beta_3 \neq 0$,

$$DBCT(\alpha_1, \beta_3) = \sum_{\alpha_2, \beta_2} UBCT(\alpha_1, \alpha_2, \beta_2) \cdot LBCT(\alpha_2, \beta_2, \beta_3)$$
$$= \sum_{\alpha_2 = \beta_2} UBCT(\alpha_1, \alpha_2, \beta_2) \cdot LBCT(\alpha_2, \beta_2, \beta_3)$$
$$= \sum_{\alpha_2} DDT(\alpha_1, \alpha_2) \cdot DDT(\alpha_2, \beta_3).$$

- obtain a relationship btween DBCT and DDT
- reduce the time complexity

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Hard S-box: PRESENT, LBlock-s0, LBlock-s1, MIBS, TWINE...
- Others: CRAFT,SKINNY, PRIDE, QARMA...

Figure: DBCT of hard S-box

3 N A 3 N

æ

Extensions

• Multiple S-boxes:(hard S-box)

$$\begin{split} t\text{-BCT}(\alpha,\beta) &= \\ \sum_{\alpha_2,\dots,\alpha_t} \text{DDT}(\alpha,\alpha_2) \cdot \text{DDT}(\alpha_2,\alpha_3) \cdot \dots \cdot \text{DDT}(\alpha_t,\beta). \end{split}$$

ъ

・ロト ・回 ト ・ ヨト ・ ヨト

Extensions

• Multiple S-boxes:

 $t \text{-BCT}(\alpha, \beta) = \sum_{\alpha_2, \dots, \alpha_t} \text{DDT}(\alpha, \alpha_2) \cdot \text{DDT}(\alpha_2, \alpha_3) \cdot \dots \cdot \text{DDT}(\alpha_t, \beta).$

• Complex linear layer: eg: AES $DDT(\alpha_t, \beta) \cdot \underbrace{s}_{z_2} \underbrace{s}_{\beta_3} \underbrace{s}_{\beta_3} \underbrace{s}_{z_4} \underbrace{s}_{\beta_3} \underbrace{s}_{z_4}$

Figure: General DBCT with a complex linear layer in between

→ E → < E →</p>

Table: Number of entries for each value for the $\mathtt{DBCT}^{i,j}$ and the basic \mathtt{DBCT} for the <code>AES</code> S-box

M	Table	65536	16	8	0	192-332
	$DBCT^{0,0}$	511	8	882	64135	-
ма	$DBCT^{0,1}$	511	3	252	64770	-
MC	$DBCT^{0,2}$	511	1	-	65024	-
	$DBCT^{0,3}$	511	3	126	64896	-
XOR	basic DBCT	511	-	-	-	65025

• the basic DBCT, the AES S-box is hard without zero values

 $\bullet~\mathsf{DBCT}^{i,j}$ with complex linear layer, most values are zero

イロト 不同 とくほと 不良とう

1 Preliminary

2 New Properties of the Double Boomerang Connectivity Table

3 Application of the New Properties

MILP Model to Search for Boomerangs with Cluster Probability

5 Conclusion

2

・ロト ・四ト ・ヨト ・ヨト

- Through the same boomerang distinguisher with the different S-boxes, how DBCT uniformity and hard S-box matter?
 - ▶ eg: 7-round distinguisher of CRAFT

イロト 不得 とうほう 不良 とう

Show	DDT	BCT	DBCT	Hord	Probability			
5-00x	uni.	uni.	uni.	maru	Max	Min	Average	
CRAFT	4	16	128	×	$2^{-10.39}$	$2^{-14.97}$	$2^{-13.37}$	
QARMA	4	10	48	×	$2^{-13.99}$	$2^{-15.18}$	$2^{-14.65}$	
PRESENT	4	16	40	\checkmark	$2^{-15.47}$	$2^{-15.63}$	$2^{-15.57}$	
LBlock-s0	4	16	40	\checkmark	$2^{-15.51}$	$2^{-15.62}$	$2^{-15.56}$	
LBlock-s1	4	16	40	\checkmark	$2^{-15.41}$	$2^{-15.63}$	$2^{-15.56}$	
MIBS	4	6	32	\checkmark	$2^{-15.59}$	$2^{-15.62}$	$2^{-15.60}$	
TWINE	4	6	28	\checkmark	$2^{-15.58}$	$2^{-15.62}$	$2^{-15.60}$	

Table: Probability of the 7-round distinguisher with different S-boxes

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Table: Probability of the 7-round distinguisher with different S-boxes

Show	DDT	BCT	DBCT	Hard	Probability		
D-DOX	uni.	uni.	uni.		Max	Min	Average
CRAFT	4	16	128	×	$2^{-10.39}$	$2^{-14.97}$	$2^{-13.37}$
PRESENT	4	16	40	 Image: A start of the start of	$2^{-15.47}$	$2^{-15.63}$	$2^{-15.57}$

- \bullet CRAFT and PRESENT share the same DDT and BCT
- PRESENT with the smaller DBCT has a lower probability

イロト 不得 とうほう 不良 とう

Table: Probability of the 7-round distinguisher with different S-boxes

Show	DDT	BCT	DBCT	Hard	Probability		
D-DOX	uni.	uni.	uni.		Max	Min	Average
QARMA	4	10	48	×	$2^{-13.99}$	$2^{-15.18}$	$2^{-14.65}$
PRESENT	4	16	40	\checkmark	$2^{-15.47}$	$2^{-15.63}$	$2^{-15.57}$

- QARMA has better BCT than PRESENT
- PRESENT with the smaller DBCT has the lower probability

イロト 不得 とうほう 不良 とう

Table: Probability of the 7-round distinguisher with different S-boxes

Show	DDT	BCT	DBCT	Hard	Probability		
5-00x	uni.	uni.	uni.	Haiu	Max	Min	Average
PRESENT	4	16	40	\checkmark	$2^{-15.47}$	$2^{-15.63}$	$2^{-15.57}$
LBlock-s0	4	16	40	\checkmark	$2^{-15.51}$	$2^{-15.62}$	$2^{-15.56}$
LBlock-s1	4	16	40	\checkmark	$2^{-15.41}$	$2^{-15.63}$	$2^{-15.56}$

- They share the same DDT, BCT and DBCT
- They have almost the same probability

ヘロト 人間 とくほとくほとう

Table: Probability of the 7-round distinguisher with different S-boxes

S-box	DDT	BCT	DBCT	Hard	Probability		
	uni.	uni.	uni.	maru	Max	Min	Average
MIBS	4	6	32	\checkmark	$2^{-15.59}$	$2^{-15.62}$	$2^{-15.60}$
TWINE	4	6	28	\checkmark	$2^{-15.58}$	$2^{-15.62}$	$2^{-15.60}$

- \bullet MIBS and TWINE have the small BCT and small DBCT
- They have the low probability

イロト 不同 とくほと 不良とう

• **Observation:** Apart from the uniformity of BCT and DDT, the uniformity of DBCT is a new measure criterion to evaluate the performance of S-box for resisting boomerang attacks.

イロト イボト イヨト イヨト 三日

- For the AES, the DBCT with complex linear layer has too many zero values.
 - ► 7-round boomerang distinguisher of TweAES
 - ► 8-round boomerang distinguisher of Deoxys-BC in the model RTK1
 - ▶ 10-round boomerang disitnguisher of Deoxys-BC in the model RTK2

Zero probability

• hard S-box with a complex linear layer should be treated carefully

イロト 不得す 不良す 不良す

1 Preliminary

- 2 New Properties of the Double Boomerang Connectivity Table
- **3** Application of the New Properties

MILP Model to Search for Boomerangs with Cluster Probability

5 Conclusion

2

・ロト ・四ト ・ヨト ・ヨト

Previous

- search for good **truncated** boomerang characteristic with the least active S-boxes
- search for the best instantiations

Our

- formula for the probability of **clusters**
- MILP model to search for good **clusters**

イロト 不同 とくほと 不良とう

 \Rightarrow

3

Formula for the Probability of Boomerang clusters

• **Probability in** E_0/E_1 . Suppose E_0 covers the first r_0 rounds, E_1 consists of the last r_1 rounds. For $\forall \Delta, \Delta_1, \nabla_1, \nabla \neq 0$, the probability are $\mathbb{P}_{E_0}(\Delta \rightleftharpoons \Delta_1) = \hat{p}^2$ and $\mathbb{P}_{E_1}(\nabla_1 \rightleftharpoons \nabla) = \hat{q}^2$ on average, *i.e.*,

$$\hat{p} = 2^{-s \cdot c_0} \cdot \frac{1}{|\Delta_1|},$$
$$\hat{q} = 2^{-s \cdot c_1} \cdot \frac{1}{|\nabla_1|},$$

where c_0 and c_1 are the number of cells which need to be zero from uniformity and s is the cell size.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

• **Probability in** E_m . Suppose E_m is composed of the middle r_m rounds. For $\forall \Delta_1, \nabla_1 \neq 0$ the probability is $\mathbb{P}_{E_m}(\Delta_1 \rightleftharpoons \nabla_1) = \hat{r}$ on average and

$$\hat{r} = 2^{-s \cdot c_m},$$

where c_m is the *condition* consumed in E_m . (c_m is the sum of the number of cells which need to be zero from uniformity, the number of UDDT2 and LDDT2, the number of m - BCT and the number of BCT.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ののの

eg: CRAFT

Figure: The difference propagation of $E_0(\text{left})$, the difference propagation of $E_m(\text{middle})$ and the difference propagation of $E_1(\text{right})$

• the conditions are closely related to the actual probability

(3)

MILP Model to Search for Boomerangs with Good Cluster Probabilities

• The Attribute Propagation

- Modeling of the attribute propagation through subbytes
- ► Modeling of the attribute propagation through **XOR operation** with the condition consuming
- Modeling of the table
- Modeling of the upper and lower boundary

ヘロト 人間 とくほ とくほ とう

• **Objective Function:** to minimize the number of conditions consuming for *E*:

$$obj = 2c_0 + 2c_1 + c'_0 + c'_1 + c_m.$$

eg: new 9/10 round boomerang distinguisher of CRAFT

1 Preliminary

- 2 New Properties of the Double Boomerang Connectivity Table
- **3** Application of the New Properties

Image: Milling Model to Search for Boomerangs with Cluster Probability

5 Conclusion

2

イロト イヨト イヨト イヨト

• Property of DBCT

- ▶ the ladder switch and S-box switch happen in most cases.
- hard S-box: only the ladder switch and S-box switch are possible.
 eg: evaluate the performance of S-box; hard S-box with a complex linear layer should be treated carefully

• MILP model

- ▶ formula for the probability of clusters
- model with cluster probability
 eg: 9/10-round distinguisher with a higher probability of CRAFT

3

イロト 不得 とうほう 不良 とう

Thank you! Q & A

Qianqian Yang, Ling Song et al.

2

・ロト ・四ト ・ヨト ・ヨト