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Abstract. Ascon is a sponge-based Authenticated Encryption with Associated Data
that was selected as both one of the winners of the CAESAR competition and one
of the finalists of the NIST lightweight cryptography standardization effort. As this
competition comes to an end, we analyse the security of this algorithm against cube
attacks. We present a practical cube attack against the full 6-round encryption in
Ascon in the nonce-misuse setting. We note right away that this attack does not
violate the security claims made by the designers of Ascon, due to this setting.
Our cryptanalysis is a conditional cube attack that is capable of recovering the full
capacity in practical time; but for Ascon-128, its extension to a key recovery or a
forgery is still an open question. First, a careful analysis of the maximum-degree
terms in the algebraic normal form of the Ascon permutation allows us to derive
linear equations in half of the capacity bits given enough cube sums of dimension 32.
Then, depending on the results of this first phase, we identify smaller-degree cubes
that allow us to recover the remaining half of the capacity. Overall, our cryptanalysis
has a complexity of about 240 adaptatively chosen plaintexts, and about 240 calls to
the permutation. We have implemented the full attack and our experiments confirm
our claims.
Our results are built on a theoretical framework which allows us to easily identify
monomials whose cube-sums provide linear equations in the capacity bits. The
coefficients of these monomials have a more general form than those used in the
previous attacks against Ascon, and our method enables us to re-frame previous
results in a simpler form. Overall, it enables to gain a deeper understanding of
the properties of the permutation, and in particular of its S-box, that make such
state-recoveries possible.
Keywords: Ascon · cube attack · algebraic attack · lightweight cryptography ·
CAESAR · nonce-misuse

1 Introduction
As the NIST lightweight cryptography standardization effort reaches its final stage, it is
crucial to investigate the security of the ten finalists. In this paper, we focus our attention
on Ascon, a family of lightweight primitives. It is also part of the final portfolio of the
CAESAR competition in the “lightweight applications” category [CAE14].

We focus here on the primary Authenticated Encryption with Associated Data mode
(AEAD [Rog02]) of Ascon, namely Ascon-128, which motivates the attack model we
choose. In this mode, Ascon aims to provide integrity and confidentiality both with
authenticity in an effective integrated manner [BN00]. On top of that, it ensures the
authenticity of associated public data (such as public headers). Since our attack recovers
the whole internal state of the cipher (which follows the sponge construction) after the
initialization, it obviously applies to Ascon-80pq. Indeed, these two variants differ only
from their initialization phases.
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Due to the low degree of the round function in Ascon, so-called cube attacks and other
cryptanalysis directions related to higher-order differentials are tempting attack vectors.
Following several works investigating such attacks against Ascon, we add new evidence
that this intuition is correct. We focus on the terms of highest degree in the Algebraic
Normal Form (see below) of the inner permutation of Ascon, and we identify strong and
(until now) unknown patterns that allow us to mount a practical capacity-recovery attack
against the full primitive. This result comes however with a strong caveat: it assumes
significant nonce-misuse, a context in which the designers of Ascon have not made any
security claim. Because of the keyed initialization and finalization, it is unclear how such
a state-recovery could lead to a future key-recovery or forgery. Thus, our results do not
violate their security claims.

Our paper is structured as follows. First, Section 2 presents the necessary background.
Our attack model is then described in Section 3. Section 4 presents the main properties of
high-degree monomials used to mount our recovery attack, which is detailed in Section 5.
In Section 6, possible counter-measures are analyzed. Section 7 concludes the paper. It is
worth noting that an independent team of cryptographers analyzed Ascon and obtained
results that have some overlap with ours [CHK22]. The main differences between our
attack and this concurrent work are then summarized at the end of Section 5.

2 Preliminaries

2.1 Notation
Let F2 denote the finite field with two elements, while Fn

2 denotes the vector space of
dimension n over F2. The bitwise addition (XOR) of two binary vectors is denoted by ⊕
while || is used to indicate the concatenation of two bitstrings. Given two vectors u, v ∈ Fn

2 ,
u ≼ v stands for ui ≤ vi,∀ i ∈ {0, . . . , n− 1}. Supp stands for support, while wt stands
for Hamming weight; in others words, given a vector of Fn

2 , u = (u0, · · · , un−1), Supp(u)
is defined as Supp(u) := {i, ui = 1} and wt(u) is defined as wt(u) := |Supp(u)|.

Boolean Functions. Given a vector u ∈ Fn
2 and a family of n variables x0, · · · , xn−1 we

denote xu the monomial

xu :=
n−1∏
i=0

xui
i .

Any Boolean function f : Fn
2 → F2 can be uniquely represented by its Algebraic Normal

Form (or ANF) which is a polynomial in F2[x0, · · · , xn−1]/(x2
0 + x0, · · · , x2

n−1 + xn−1):

f(x) =
∑

u∈Fn
2

αuxu with αu ∈ F2 .

The ANF of a vectorial Boolean function is the list of ANFs of its coordinate functions.
For any u ∈ Fn

2 , the coefficient αu of the monomial xu can be computed from the values
of the function by the Möbius transform:

αu =
∑
x≼u

f(x). (1)

Keyed Boolean Functions. It is often necessary to distinguish controllable public variables
from inaccessible secret variables. We denote public variables xi, and use different variable
names for the secret variables (such as ki for key variables, or ai, bi, ci, di for capacity
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variables) which will be clarified when used. With such a distinction, when a Boolean
function depends on m public variables and n key variables, we look at it as

f =
∑

u∈Fm
2

αuxu,

where each αu lies in F2[k0, · · · , kn−1]/(k2
0 + k0, · · · , k2

n−1 + kn−1). For a given u ∈ Fn
2 , αu

is referred as the coefficient of xu. When referring to the degree of a Boolean function,
we mean the degree in public variables: deg(f) := max{wt(u), αu ̸= 0}. Terms of degree
deg(f) are referred as highest-degree terms and terms of degree (deg(f)− 1) as sub-leading
terms. It is worth noting that, when xu is a highest-degree monomial of f , its coefficient αu

can also be referred as the superpoly of xu in f , according to the terminology introduced
by Dinur & Shamir [DS09]. However, since we do not restrict ourselves to highest-degree
monomials, we rather use the coefficient denomination.

Equation (1) can then be adapted to recover the value of a given coefficient αu.

Proposition 1 (Computation of a coefficient of a keyed Boolean function). Let f be a
Boolean function of m public variables (x0, · · · , xm−1) and n secret variables (k0, · · · , kn−1).
Let

∑
u∈Fm

2

αuxu denote its ANF, where each αu lies in F2[k0, · · · , kn−1]/(k2
0 +k0, · · · , k2

n−1 +

kn−1). Then, for any u ∈ Fm
2 , the coefficient αu satisfies:

αu =
∑
x≼u

f(x, k0, · · · , kn−1).

The Cube Notation. In Proposition 1, the set of vectors x such that x ≼ u is a linear
subspace of dimension wt(u), spanned by {βi, i ∈ Supp(u)}, where βi denotes the i-th
vector of the canonical basis, i.e., βi = (δi,j)j∈{0,...,n−1}, with δi,i = 1 and δi,j = 0 for all
i, j ∈ {0, . . . , n− 1}, i ̸= j. Because of this point of view, the subspace is usually referred
as a cube of dimension wt(u) and the summation process referred as a cube-sum; hence
the name cube attack.

In this work, we only apply cube-sums over canonically-aligned subspaces. Therefore,
there are one-to-one correspondences between the monomial xu, the set Supp(u) and
the linear subspace Span({βi, i ∈ Supp(u)}). Because of those identifications, selecting a
monomial, a set of indices or a cube will refer to the same selection process; the ultimate
goal being the computation of the corresponding coefficient αu.

2.2 Ascon
The design of Ascon is based on the permutation-oriented Sponge Duplex mode of opera-
tion [BDPV12, BDPV11a]. Figure 1 presents the AEAD encryption mode. Most notably,
ΣAD, ΣE, ΣF respectively denote the 320-bit state before the processing of associated data,
before encryption and before finalization.

The designers thus mainly focused on the design of the permutation p which also inherits
from other already-standardized designs, such as the permutation of SHA-3 [BDPV11b].

The claimed level of security for Ascon-128 is 128 bits in terms of plaintext confi-
dentiality and plaintext/data/nonce integrity under three hypotheses: the single usage
of each nonce, the outputting of a decrypted plaintext only if the tag is correct, and the
encryption of less than 264 blocks using the same key.

The Permutation. The permutation p is the core element of the design. It operates
on a 320-bit state (usually decomposed into five 64-bit words, S = X0||X1||X2||X3||X4).
It is built as a Substitution Permutation Network (SPN): p is the composition of a
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Figure 1: Ascon AEAD encryption.1

constant addition, a non-linear substitution layer and a linear diffusion transformation:
p = pL ◦ pS ◦ pC .

X4
X3
X2
X1
X0

⊕⊕⊕⊕⊕⊕⊕⊕

Figure 2: The column-wise S-box layer, the row-wise linear layer and the constant addition.

The constant adding step consists in XORing an 8-bit constant to the word X2. The
constant only depends on the index of the current iteration. All involved constants are
then based on incremented and decremented counters, thus easily computable.

The substitution layer is made of 64 parallel calls to a single Substitution-box (S-box)
on each column of the state. The S-box used in Ascon is a quadratic 5-bit permutation.
Figure 3 presents the algebraic normal form of the S-box in Ascon. The low algebraic
degree of the S-box (it is quadratic) plays a crucial role in the previous cube attacks against
Ascon (see Section 2.3). It is also the case in the attack we present in Section 5.

The linear diffusion layer is made of five calls to five different linear functions Σi on
each row of the state. For each i ∈ {0, . . . , 4}, Σi(Xi) is built as the XOR of the i-th row
Xi with two rotated versions of itself. The indices of rotations are fixed and only depend
on i.

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0 Σ0(X0) = X0 ⊕ (X0 ≫ 19) ⊕ (X0 ≫ 28)
y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0 Σ1(X1) = X1 ⊕ (X1 ≫ 61) ⊕ (X1 ≫ 39)
y2 = x4x3 + x4 + x2 + x1 + 1 Σ2(X2) = X2 ⊕ (X2 ≫ 1) ⊕ (X2 ≫ 6)
y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0 Σ3(X3) = X3 ⊕ (X3 ≫ 10) ⊕ (X3 ≫ 17)
y4 = x4x1 + x4 + x3 + x1x0 + x1 Σ4(X4) = X4 ⊕ (X4 ≫ 7) ⊕ (X4 ≫ 41)

Figure 3: ANF of the S-box (left) and the linear layer (right) of Ascon.

The iterated permutation p6. In the nonce-misuse setting, the main object we focus on
is the iterated permutation p6. Because of its iterated form and the composed structure of
p, this study is done round by round, or layer by layer, as depicted in Figure 4.

1All Ascon figures in this document are highly based on (if not identical to) the ones found on the
page of the designers [DEMS] and on the TikZ for Cryptographers repository [Jea16].
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Figure 4: The iterated permutation p6.

2.3 Related Work
With the point of view introduced in Section 2.1, it is possible to study the ANF of a
symmetric cipher “coefficient-wise”. In the case of Ascon, it already led to distinguishing
attacks (see Table 7 in Appendix A). We are here interested in using this approach to
mount recovery attacks, often named cube attacks (see Table 1).

Table 1: Summary of cube-like key-recoveries and state-recoveries against Ascon.
Attack Target Nb of Data / Method Sourcetype rounds Time

5/12 219/235 Cube [DEMS15]
6/12 234/266 Cube [DEMS15]
5/12 224 Cond. cube [LDW17]

Nonce-respecting Initialization 6/12 240 Cond. cube [LDW17]
key-recovery 7/12 277.2 / 2103.9 Cond. cube [LDW17]

7/12 277.2 / 277 Cond. cube† [LDW17]
7/12 264 / 2123 Cube [RHSS21]
7/12 264 / 297 Cube† [RS21]
7/12 263 / 2115.2 Cube† [RS21]

Nonce-misuse Initialization 7/12 ? / 297 Cube-like [LZWW17]key-recovery

Nonce-misuse
state-recovery

5/6 ? / 266 Cube-like [LZWW17]
Encryption 6/6 244.8/2128 Cond. cube [CHK22]

6/6 ≤ 240 Cond. cube Sec. 5
† stands for “Weak-key subspace”, Cond. for conditional.

Cube attacks were introduced by Dinur & Shamir [DS09] in order to recover the values
of some secret variables. More precisely, the goal of the attack is to obtain, by the use of
chosen cubes, enough linear equations in secret variables that it becomes possible to solve
the resulting system. The attack is thus composed of two stages:

1. Firstly, the offline phase focuses on coefficients associated to given monomials in the
ANF of some fixed well-chosen output coordinates, which are (almost surely) known
to be linear in the secret variables; from either linearity tests or theoretical arguments.
Then, thanks to a complete offline access to the primitive (both public and secret
variables can be set), the linear expressions can be recovered by interpolation.

2. Secondly, the online phase computes the actual values of the previously-targeted
coefficients by querying the online oracle (i.e., a limited-access blackbox where only
public variables can be set). Thanks to the Möbius transform (see Proposition 1),
the value of any coefficient in the ANF can be recovered in this setting. Finally, with
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pairs of linear equations/values, an adversary can solve the system and recover (part
of) the unknown bits.

Several cube-like attacks have then been applied to round-reduced variants of the
Ascon initialization in order to recover some key bits. They adapted the original cube
attack since focusing on coefficients which are linear in the key bits is too restrictive. First,
the designers of Ascon [DEMS15] mounted a cube-attack on 5 rounds of the initialization
by targeting coefficients which only depend on a small number of key bits. This enables
them to recover the whole key in a divide-and-conquer manner.

Li et al. [LDW17] continued analyzing the resistance of Ascon against cube-like attacks
by adapting and generalizing the conditional cube attacks against Keccak introduced by
Huang et al. [HWX+17]. They searched for monomials whose coefficients in all output
coordinates share a linear divisor. For 5 and 6 rounds, they were able to exhibit such
monomials without determining the entire expression of the coefficients. If such a common
divisor exists, an adversary is able to deduce its value from the value of the cube sum, as
the linear factor influences all bits in the cube-sum vector. This 5/6-round attack has been
extended to 7 rounds (out of 12) by replacing the common linear divisor by a family of
linear polynomials in which lies at least one divisor for each coefficient. Then, Rohit et al.
[RHSS21] presented the first 7-round misuse-free key-recovery cube-attack on Ascon,
which does not exceed the limitation of 264 encrypted data blocks. In [RS21], this 7-round
attack is adapted to the particular case of weak-key spaces and the data complexity is
improved.
Remark 1. We would like to emphasize the difference between cube and conditional
cube methods. Both methods were already applied to the Ascon initialization and their
complexities greatly differ. It is particularly striking in Table 1, while comparing both
methods in the case of initialization reduced to 5 or 6 rounds. Indeed, a conditional cube
attack can be seen as an alternative to the costly offline phase of a “standard” cube attack.
In a standard cube attack, an adversary first has to compute offline the table of values
of the coefficient she will later target during the online phase. The computation of this
table can be long and is proportional to the memory needed to store the table. However it
only has to be done once. Afterwards, the online-time cost (which is proportional to the
data complexity) is low. A conditional cube attack offers another trade-off: avoiding the
precomputation is possible at the cost of higher data and online-time complexities.

All of the aforementioned works study the nonce-respecting scenarios and thus focus on
the initialization. However, implementation errors will eventually happen and sometimes
with high risk: we show in Section 5 that, if a nonce is reused many times, confidentiality
is compromised.

3 Nonce-Misuse Setting and Attack Model
The nonce-misuse scenario assumes, contrary to the recommendations of the designers,
that a key/nonce pair is reused many times to encrypt plaintexts. In this situation, the
state after initialization, ΣAD on Figure 1, can be considered fixed once and for all when
encrypting several plaintexts. In the following, we focus on an adversary who interacts
with the cipher by querying the encryption of chosen plaintexts having the following form:
no associated data is processed, and the chosen plaintexts consist of two blocks of the form
(P1, 0∗), where P1 takes any 64-bit value and 0∗ denotes the all-zero block.

In other words, P1 is inserted in the first row (known as the rate, or the outer part) of
the internal state after initialization. The adversary then gets the corresponding 2-block
ciphertext. In our attack, she will omit the first ciphertext block and focuses on the second
one C2, as depicted on Figure 5.
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Figure 5: Nonce-misuse attack model.

In this nonce-misuse scenario, the goal of the adversary is to recover the capacity of
the state ΣE, that is, the unknown inner part of the state just before the encryption phase
(see Figure 1). If an adversary manages to recover the inner part of ΣE, then the full state
ΣE is recovered, the outer part of the state being easily recovered by computing P1 ⊕ C1
with the first plaintext-ciphertext pair. From there, the full state ΣAD can be immediately
recovered because ΣE = ΣAD (see Figure 5). For a fixed key/nonce pair, once ΣAD is
recovered, any full internal state can be recovered up to the state ΣF, and thus any other
message, encrypted under the same key/nonce pair, can be decrypted.

If the same associated data is processed before encrypting all required plaintexts
(instead of no associated data), ΣE can be recovered in the same way. In that case, the
equality between ΣAD and ΣE does not necessarily hold, but ΣAD can be directly deduced
from the knowledge of ΣE and the associated data, by inverting the data processing phase.

It is worth noting that our attack recovers the whole state ΣAD as soon as enough
plaintexts of the previous form are encrypted from the same internal state ΣE, i.e., from
the same triple of key, nonce and associated data. This differs from the attack scenario in
the concurrent work [CHK22] which recovers a part of the state ΣE only if it satisfies a
few conditions. It follows that the first cube-sum computation (called “Step 1”) of the
attack in [CHK22] needs to be repeated for 32 triples of key, nonce and associated data in
average, until the corresponding state can be recovered.

Comparison with [VV18]. It has been shown in [VV18] that any cipher following the
Sponge Duplex construction is vulnerable to a generic attack which recovers a given
plaintext in the nonce-misuse scenario. This generic attack is very cheap: a single adapted
query is necessary for each block that needs to be decrypted. It has then a lower query
complexity than our attack for messages whose length does not exceed 240 blocks. However,
our attack and the generic attack differ both in their settings and their intention: contrary to
[VV18], we present an inner-state-recovery which gives new insights about the permutation
used in Ascon. Moreover, it breaks the confidentiality of the next blocks encrypted with
the same key-nonce pair without interacting with the keyed-encryption oracle anymore.
The higher cost is explained by this internal-state-recovery which is interesting in itself
and might lead to other attacks.

Another important remark is that a state-recovery does not directly enable a key-
recovery (for example by going through the initialization backward) or a tag forgery (by
going through the finalization): the XOR with the key just before ΣAD, and just after ΣF,
prevents such attacks. However in the case of Ascon-80pq only, as Chang et al. [CHK22]
pointed out, a state-recovery as we describe in Section 5 can lead to a key-recovery of the
160-bit key in less than 2160 operations. Nevertheless, this requires a nonce-misuse setting,
and more operations than claimed by the designers for the nonce-respecting setting (128
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bits of security are claimed for nonce-respecting Ascon-80pq).

4 Properties of High-Degree Monomials in the Nonce-
Misuse Scenario

Four rows of 64 bits in the state ΣE need to be recovered. We name them, a, b, c, d from
top to bottom. Moreover, ai, with i ∈ {0, . . . , 63}, (resp. bi, ci, di) represents the ith bit of
the first (resp. second, third and fourth) row of the capacity. We use xi to represent the
ith controlled input bit (i.e. the ith public variable). Using the point of view introduced
in Section 2.1, we look at the ANF of a coordinate as a “keyed Boolean function”:

f =
∑

u∈Fn
2

αuxu, with αu ∈ F2[a0, · · · , d63]/(a2
0 + a0, · · · , d2

63 + d63) .

Table 2: ANF of Column i after initialization (left) and after the first S-box layer (right).
xi (ai + 1)xi + aibi + aidi + ai + bi + ci

ai xi + aibi + aici + bici + ai + bi + ci + di

bi 0 + cidi + ai + bi + di + 1
ci (ci + di + 1)xi + ai + bi + ci + di

di aixi + aidi + ai + ci + di

4.1 General properties of highest-degree and sub-leading terms
While the previous cube-like attacks on Ascon initialization focus on specific monomials
whose coefficients in all coordinates share a linear factor in the key bits, we now provide
an in-depth analysis of high-degree terms which shows that a more general property can
be exploited in the nonce-misuse scenario.

Proposition 2. In the nonce-misuse scenario, the highest degree of a monomial xu at
round r, r ∈ {1, . . . , 6} is 2r−1. For each round r, r ∈ {1, . . . , 6}, this bound is tight for at
least one key/nonce pair in at least one out of the 320 coordinates. Moreover, let us assume
that a highest-degree monomial xu appears in a coordinate at Round r, r ∈ {2, . . . , 6}, i.e.,
αu ̸= 0. Then, it was obtained from one or more products of two highest-degree terms at
Round (r − 1). In other words, αu can be seen as a sum, each term of the sum being a
product of two coefficients of highest-degree terms one round before.

Proposition 2 is a consequence of the fact that, in the first S-box layer, no public
variable is multiplied with another public variable, as public variables are all inserted in the
same row, while the S-box is applied column-wise. So after one round the highest-degree is
still 1. Afterwards, the upper-bound doubles at each round because the S-box is quadratic.
Some of the studied coefficients of monomials of degree 32 (see for example Section 4.2)
are non-zero polynomials in the nonce and key variables. Thus, the upper-bound of 32 is
tight for at least one key/nonce pair and for at least one coordinate after 6 rounds. This
also implies that the upper-bound of 2r−1 is tight for at least one key/nonce pair and for
at least 26−r coordinates after r rounds, r ∈ {1, . . . , 6}.
Remark 2. From our observations, it seems very likely that an even stronger result holds:
the bound seems to be tight for every key/nonce pair and for every coordinate.

From Proposition 2, we deduce the following corollary.
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Corollary 1. Let αu be the coefficient of xu in any output coordinate after Round r,
r ∈ {1, . . . , 6}, where wt(u) = 2r−1. Then, αu can be viewed as a sum of products of 2r−1

coefficients of degree-1 terms after one round. In other words, each product in this sum
has the following structure:∏

i,ui=1
ℓi , where ℓi ∈ {ai ⊕ 1, 1, ci ⊕ di ⊕ 1, ai} .

Proof. The fact that αu is a sum of products of 2r−1 coefficients of degree-1 terms after
one round is derived from Proposition 2 by a simple induction reasoning. According to the
ANF after the first S-box layer (given in Table 2), if xi is present in a coordinate, then its
coefficient is either ai ⊕ 1, 1, ci ⊕ di ⊕ 1 or ai depending on the row of the coordinate we
consider. The linear layer, which is applied row-wise, preserves this property. Thus, if xi is
present in a coordinate after one round, then its coefficient is either ai ⊕ 1, 1, ci ⊕ di ⊕ 1
or ai. Since each product appearing in αu is the product of 32 coefficients of monomials of
degree 1 after one round, we deduce that it has the aforementioned structure.

In the following, we denote ei := ci ⊕ di ⊕ 1 for any i ∈ {0, . . . , 63}. Then, targeting
highest-degree monomials and their coefficients can only enable the recovery of the bits of
a and e := c⊕ d. If we want to recover b, c or d, sub-leading terms can be used.

We study those using the following proposition (and its corollary).

Proposition 3. In the nonce-misuse scenario, a sub-leading monomial at Round r,
r ∈ {1, . . . , 6} has degree 2r−1 − 1. Moreover, any sub-leading monomial xu appearing in a
coordinate with coefficient αu ̸= 0, is obtained from one or more products of one of the
following forms:

• a product of two highest-degree terms at Round (r − 1) sharing a public variable as
common divisor, or

• a product of a highest-degree term and a sub-leading term at Round (r − 1).

Therefore, αu can be seen as a sum, where each term in the sum is either a product of two
coefficients of highest-degree terms or a product of one coefficient of highest-degree term by
one coefficient of a sub-leading term one round before.

Corollary 2. Let αu be the coefficient of xu in any output coordinate after Round r,
r ∈ {2, . . . , 6}, with wt(u) = 2r−1 − 1. Then, αu can be viewed as a sum of products of
2r−1 coefficients of terms after the second constant addition,2 each product having one of
the following forms:

• a product of 2r−1 coefficients of terms of degree 1 (among the 2r−1 monomials of
degree 1, two are identical, but the two respective coefficients may differ), or

• a product of one constant term and (2r−1 − 1) coefficients of terms of degree 1.

From there, because the coefficients of highest-degree and sub-leading terms only
depend on the coefficients of highest-degree and sub-leading terms after the first linear
layer or after the second constant addition, we observe that only the first two constant
additions can influence them; the others can thus be omitted. The first addition occurs
just after initialization, flipping four unknown bits. Recovering those bits or their flipped
values being equivalent, we can omit the first addition (at the (null) cost of flipping four
recovered bits at the end of the attack). Therefore, the situation for highest-degree terms
is completely cyclic, as stated in Proposition 4.

2Four constant terms (after the first linear layer) are flipped by the second constant addition.
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Proposition 4 (Rotation invariance). Let us consider the nonce-misuse scenario with the
first constant addition being omitted. Let us assume that αu,i,jxu appears in the ANF of
the j-th output coordinate of Row i at Round r, with wt(u) = 2r−1. Let k ∈ {0, . . . , 63}
and let uk ∈ Fn

2 be defined by Supp(uk) = k + Supp(u), where the addition is computed
modulo 64.

Then, the monomial xuk appears in the ANF of the (j + k)-th3 output coordinate of
Row i at Round r. Moreover, its coefficient αuk,i,j+k is built, based on αu,i,j , by shifting all
the indices of the variables by k modulo 64. More precisely, for s ∈ (F64

2 )4, if the monomial
as0bs1cs2ds3 appears in the expression of αu,i,j , then ask

0 bsk
1 csk

2 dsk
3 appears in the expression

of αuk,i,j+k, where sk
ℓ is defined by Supp(sk

ℓ ) = k + Supp(sℓ) for ℓ ∈ {0, . . . , 3}.

Finally, the second constant addition flips four bits after the first linear layer. It can
thus modify four constant terms at the beginning of Round 2 and then, according to
Corollary 2, it may influence the coefficients of sub-leading terms in the following rounds.
However, it is easy to keep track of this influence, as we will see later.

4.2 Two particular classes of highest-degree terms
Generalizing Li, Dong & Wang’s work [LDW17], we exhibit some highest-degree terms
whose coefficients are known to have a very particular structure. In order to find such
monomials, we study the first two rounds of Ascon.

In the nonce-misuse setting and after one round, monomials of degree 1 (in public
variables) have different coefficients depending on the row they appear on: either ai ⊕ 1, 1,
ei or ai (see Table 2). After the first linear layer L1, the situation is similar because pL is
applied row-wise. Proposition 5 immediately follows.

Proposition 5. Let (i0, i1) be a fixed pair of indices. Let j be an element of the set {0, 1,
3, 4}. Let us assume that all xi0xi1 present in the ANF after the second S-box layer S2 are
obtained through multiplications of some monomial xi1 present in the ANF after one round
by some monomial xi0 coming only from Row j. Then, all the coefficients of monomials
xi0xi1 present in the ANF after 2 rounds share a common divisor βj,i0 : β0,i0 = ai0 ⊕ 1,
β1,i0 = 1, β3,i0 = ei0 or β4,i0 = ai0 .

The situation for highest-degree terms being completely cyclic in this setting (see
Proposition 4), we fix i0 = 0, i.e., x0 plays the role of xi0 in Proposition 5. Then, x0 is
referred as the primary variable.4 We now split the 63 remaining indices into five disjoint
sets Sa+1,Sa,Se,S0,S ′:

1. Sa+1 contains the indices i of the variables xi that are only multiplied by some
monomial x0 which was present on Row 0 after L1.

2. Sa contains the indices i of the variables xi that are only multiplied by some
monomial x0 which was present on Row 4 after L1.

3. Se contains the indices i of the variables xi that are only multiplied by some
monomial x0 which was present on Row 3 after L1.

4. S0 contains the indices of the variables xi that are never multiplied by x0 during S2.

5. S ′ contains the remaining indices: indices of the variables either multiplied by some
monomial x0 coming only from Row 1, or by some x0 coming from multiple rows.

The sets Sa+1,Sa,Se,S0,S ′ are given in Table 3. For any other choice of the primary
variable, the indices in each set are shifted (modulo 64) by the index of the primary
variable.

3The addition is computed modulo 64.
4Another choice of primary variable is possible and corresponds to a mere shift of all the indices.
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Table 3: The sets Sa+1,Sa,Se,S0,S ′.

Set Size Indices (relative to the index of the primary variable)

Sa+1 6 9, 12, 18, 19, 21, 28
Sa 5 7, 24, 41, 43, 52
Se 5 17, 35, 40, 46, 55

S0 22 1, 4, 5, 6, 8, 14, 15, 16, 26, 27, 30, 34,
37, 38, 48, 49, 50, 56, 58, 59, 60, 63

S ′ 25 2, 3, 10, 11, 13, 20, 22, 23, 25, 29, 31, 32, 33,
36, 39, 42, 44, 45, 47, 51, 53, 54, 57, 61, 62

Thanks to Proposition 5, we recover some valuable information about the coefficients
of some highest-degree terms after two rounds.

Corollary 3. Let i ∈ {1, . . . , 63}.

1. If i ∈ Sa+1, then coefficients of all x0xi after S2 share a0 ⊕ 1 as a common divisor.

2. If i ∈ Sa, then coefficients of all x0xi after S2 share a0 as a common divisor.

3. If i ∈ Se, then coefficients of all x0xi after S2 share e0 as a common divisor.

4. If i ∈ S0, then x0xi never appears in the output of S2.

From there, we exhibit two classes of highest-degree monomials after 6 rounds whose
coefficients have a very particular structure. In order to build cubes of dimension 32, 31
indices have to be chosen, as we already (arbitrarily) selected x0.

Proposition 6. Let S be a subset of Sa+1 ∪ Se ∪ S0 of size 31. Let v be the 64-bit vector
defined by Supp(v) = {0} ∪ S. Let αv,i be the coefficient associated to the monomial xv

in the ith output coordinate after 6 rounds, i ∈ {0, . . . , 63}. Then, αv,i can be written as
αv,i = (a0 ⊕ 1)γv,i,a + e0γv,i,e.

Proof. According to Corollary 1, a coefficient associated to a degree-32 monomial after
6 rounds can be seen as a sum of products of coefficients of degree-2 monomials after 2
rounds. For a coefficient associated to xv, in each of these products, exactly one coefficient
of degree 2 corresponds to a coefficient associated to a monomial x0xi with i ∈ S which
was present after 2 rounds. But according to Corollary 3, all the coefficients of x0xi with
i ∈ S are either 0 or divisible by a0 + 1 or e0. The result follows immediately.

By changing the set S in Proposition 6, a similar result is obtained for another class of
coefficients, with a different decomposition.

Proposition 7. Let S be a subset of Sa ∪ Se ∪ S0 of size 31. Let w be the 64-bit vector
defined by Supp(w) = {0} ∪ S. Let αw,i be the coefficient associated to the monomial xw

in the ith output coordinate after 6 rounds, i ∈ {0, . . . , 63}. Then, αw,i can be written as
αw,i = a0φw,i,a + e0φw,i,e.

Based on the previous observations, our cube attack focuses on two particular monomials
of degree 32, xv and xw, chosen according to Propositions 6 and 7 respectively. In contrast
with previous works, these cubes are not chosen based on some heuristics. Instead, this
choice follows the simple rationale provided by Propositions 6 and 7, and among all possible
choices, we selected the whole sets Se and S0, and the 4 smallest indices of Sa+1 for xu

(resp. of Sa for xw), as shown in Table 4.
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Table 4: Supports of v and w.
Primary

Sa+1 Sa Se S0 S′

index

Supp(v) 0
9, 12,

-
17, 35, 40, 1, 4, 5, 6, 8, 14, 15, 16, 26, 27, 30,

-
18, 19 46, 55 34, 37, 38, 48, 49, 50, 56, 58, 59, 60, 63

Supp(w) 0 -
7, 24, 17, 35, 40, 1, 4, 5, 6, 8, 14, 15, 16, 26, 27, 30,

-
41, 43 46, 55 34, 37, 38, 48, 49, 50, 56, 58, 59, 60, 63

Remark 3. With the same reasoning as in Propositions 6 and 7, we cannot find a monomial
of degree 32 and guarantee that all the coefficients share a common divisor. Indeed
|S0 ∪ Sα| < 31 for any α ∈ {a + 1, a, e}. Interestingly, this can be done when looking
at fewer rounds, or in the case of round-reduced initializations. In [LDW17], Li, Dong
& Wang, present attacks against 5-round and 6-round initializations which use some
monomials, whose coefficients have common linear factors which come from such a choice
of variables. In the supplementary material provided with our work5, those choices are
explained thanks to the framework we introduced, using a SageMath [The20] script.

5 Capacity-Recovery Attack against the Full Encryption
We present an adaptative chosen-plaintext attack against nonce-misused Ascon, based on
the full recovery of the inner-state ΣE. This recovery is made of three steps which all are
based on the same principle. At each step, we target some chosen monomials. From the
particular form of their coefficients, as well as the value of the corresponding cube-sum,
information about the capacity can be easily deduced. The attack can be decomposed as
follows:

1. The first step (Section 5.1) recovers all ei and (in average) half of the bits ai, from
the values of the cube-sums corresponding to the two monomials xv and xw defined
in Table 4, and to their rotated versions. These bits are deduced from the general
form of the coefficients of these two monomials, as exhibited in Propositions 6 and 7,
and their expressions are not explicitly computed.

2. The second step (Section 5.2) recovers the remaining ai by a classical cube-attack
targeting some other highest-degree monomials. Indeed, the knowledge of the capacity
bits recovered at Step 1 enables us to easily compute the exact expressions of their
coefficients.

3. The third step (Section 5.3) recovers most of the bits bi and ci by targeting some
sub-leading monomials, whose coefficients are sparse polynomials of degree at most 2
in these unknowns. The few remaining bits bi and ci are eventually recovered by an
exhaustive search.

5.1 First Step: Recovering Most of the Bits ai and ei

In the first step, we recover all the values of the bits ei and most of the ones of the bits ai.
To do so, we mount a conditional cube attack using xv and xw defined in Table 4, and
their respective 63 siblings xv≫k, xw≫k obtained by rotating the vectors v and w by k
positions, k ∈ {1, . . . , 63}.

5https://github.com/baudrin-j/practical_cube_attack_against_nonce_misused_ascon

https://github.com/baudrin-j/practical_cube_attack_against_nonce_misused_ascon
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In Ascon, a cube-sum is a vector of size 64 corresponding to the 64 cube-sums associated
to a fixed monomial, for all the 64 output coordinates. In the following algorithms, the
function CubeSumVector, which takes a monomial xu as input, refers to the computation
of such a vector by summing the outputs corresponding to all public variables x ≼ u (see
Proposition 1).

Because of Proposition 6, we observe that, if the cube-sum vector associated to xv is
not the zero vector, then a0⊕1 = 1 or e0 = 1. However in theory, without further studying
γv,i,a, γv,i,e for all i ∈ {0, . . . , 63}, we can only use the aforementioned property. But, in
practice, our experimental results described in the following paragraph, show that, when
a0 ⊕ 1 = 1 or e0 = 1, the cube-sum vector is (almost) never all-zero. This means that
a “practical reciprocal” can be used and thus enables to recover information about the
capacity more often than with the theoretical argument only. The same kind of arguments
can be used with xw, and thus Assumptions 1 and 2 can be stated.

Assumption 1. Let us consider the nonce-misuse scenario. Let us assume that the
cube-sum associated to the monomial xv (see Table 4) is the zero vector. Then, the guess
(a0 ⊕ 1 = 0 and e0 = 0) is wrong with a negligible probability.

Assumption 2. Let us consider the nonce-misuse scenario. Let us assume that the
cube-sum associated to the monomial xw (see Table 4) is the zero vector. Then, the guess
(a0 = 0 and e0 = 0) is wrong with a negligible probability.

The index of the considered bits is subject to the choice of the primary variable, but
according to Proposition 4, everything remains identical if we choose another primary
variable. So, under Assumptions 1 and 2 (and their respective 63 shifted versions), it
is possible to recover all the bits ei and, in average, half of the bits ai by following
Algorithm 1.

Algorithm 1 Step 1: v and w are defined in Table 4.
Output: ei for all i ∈ {0, . . . , 63} and ai for some i ∈ {0, . . . , 63}

for all i ∈ {0, . . . , 63} do
ai ← −1, ei ← −1 ▷ Initialize all variables.

end for

for all i ∈ {0, . . . , 63} do
Zv ← CubeSumVector(xv≫i)
if Zv = (0, · · · , 0) then

ai ← 1, ei ← 0 ▷ Assumption 1
else

Zw ← CubeSumVector(xw≫i)
if Zw = (0, · · · , 0) then

ai ← 0, ei ← 0 ▷ Assumption 2
else

ei ← 1 ▷ No assumption
end if

end if
end for

The cost of this first step is thus upper-bounded by 64 × 2 = 128 cube-sums of
dimension 32. In other words, time and data costs are upper-bounded by 128× 232 = 239,
while the memory cost is negligible. The worst case happens when Supp(e) = {0, . . . , 63};
the best case when Supp(e) = ∅.
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Underpinning our Assumptions. We now provide the experimental results which led us
to state Assumptions 1 and 2. Even if there might be other choices for xv and xw following
Propositions 6 and 7, we do not expect them to behave in a drastically different manner.

Observation 1. Let us consider the following experiment: given a random capacity,
compute the cube-sum vector associated to the monomial xv. If the cube-sum vector is
all-zero, then we guess that a0 ⊕ 1 = 0 and e0 = 0. Otherwise, no guess is made. Our
experiment gave the following results: 4000 capacities were tested. A guess was made about
25 % of the time (1037/4000) and 100 % of the guesses were actually right.

Observation 1 suggests that it is possible to detect each time that a0⊕1 = 0 and e0 = 0.
But, more importantly, it raises no false positive under Assumption 1. Observation 2 gives
a similar result for the monomial xw.

Observation 2. Let us consider the following experiment: given a random capacity,
compute the cube-sum vector associated to the monomial xw . If the cube-sum vector
is all-zero, then we guess that a0 = 0 and e0 = 0. Otherwise, no guess is made. Our
experiment gave the following results: 4000 capacities were tested. A guess was made about
25 % of the time (1002/4000) and 100 % of the guesses were actually right.

Our experiments show that an all-zero cube-sum vector has a very low probability of
happening if a0 = 0 or e0 = 1 (resp. a0 = 1 or e0 = 1 for xw). Indeed, when (a0, e0) is not
equal to the targeted value, the distributions of the Hamming weights of the vectors formed
by the 64 cube sums behave as the distribution of the Hamming weights of random vectors,
as depicted on Figure 6: they seem to follow a binomial distribution with parameters
n = 64, p = 0.5. In particular, they have an average around 64 × 0.5 = 32 and a low
variance, indicating that the cube-sum vector should not be able to vanish when not
expected. Moreover, each bit of the cube-sum vector is almost uniformly distributed, as
shown on Figure 7. As the capacities were picked uniformly at random for our experiments,
we expect this study to be quite representative of the overall situation, and from this,
Assumptions 1 and 2 are considered to be valid.
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Figure 6: Distribution of the Hamming weight of cube-sum vectors for xv (left) and xw

(right) depending on the values of (a0, e0), for 4000 capacities chosen uniformly at random.

5.2 Second Step: Recovering the Remaining ai

Step 2 consists in recovering some of the not-yet-recovered values of ai. It iteratively
updates the set L := {i | ai is still unknown}, starting from L = Supp(e). To do so, we
mount a cube-like attack by targeting some other monomials of degree 32. The choice of
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Figure 7: Ratio of 1 values taken by αv,i (left) and αw,i (right) for each output coordinate
(i ∈ {0, . . . , 63}) and for 4000 capacities chosen uniformly at random, depending on (a0, e0).

monomials is done adaptively and depends on the already-recovered bits of the capacity:
at least one of the indices of the variables in the chosen monomials needs to be the index
of an unknown ai. The cube-sum corresponding to such a monomial xu then leads to a
polynomial system whose unknowns are some of the ai with i ∈ L ∩ Supp(u). When this
set of indices is not too large, typically of size at most 5, the system can be easily solved
and the values of the corresponding ai can be recovered. This procedure is described in
Algorithm 2.

Algorithm 2 Overview of Step 2
Input: L, the set of indices i such that ai is still unknown after Step 1.

A, E, sets of index-value pairs (i, v) corresponding to the recovered bits ai (resp. ei)
during Step 1.

Output: ai for most i in L
while L ̸= ∅ do

Choose u ∈ F64
2 such that wt(u) = 32, L ∩ Supp(u) ̸= ∅ and preferably

|L ∩ Supp(u)| ≤ 5.
P ← ComputeCoefficients(u, A, E) ▷ P , polynomial expressions of 64 coefficients.
V ← CubeSumVector(xu)
S ← SolvePolynomialSystem(P, V ) ▷ S, (possibly empty) set of index-value
A← A ∪ S pairs of recovered values.
L.remove({i, (i, v) ∈ S})

end while

More precisely, the ComputeCoefficients procedure in Algorithm 2 consists in com-
puting the exact polynomial expressions of the coefficients of the highest-degree monomials
dividing xu, round after round. This can be done since most of the unknowns of a and e
can be replaced by their actual values recovered during Step 1, while this was prohibitively
expensive before6. This can be considered as an implemented version of the Partial
Polynomial Multiplication method introduced by Rohit et al. [RHSS21].

Obviously, the choice of u, especially the size |L ∩ Supp(u)|, affects the cost of solving
the system. Therefore, there are some trade-offs between time and memory complexity
and data complexity: we may choose to solve many easily-computed low-degree systems,
or fewer high-degree systems which are also harder to build. In our experiments, we tried
to limit the number of unknowns variables to 4 or 5. In these cases, the computation of

6During Step 1, conditional cubes based on partial knowledge of the expressions were used instead.
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a coefficient is fast (a few seconds) and does not require too much RAM: a 16-Go RAM
laptop was used for this step and it never ran out of memory. The systems are also quickly
solved with a SAT solver (Cryptominisat [SNC09]) and can even be solved without using
(and thus computing) all of the 64 coefficients. At the beginning, L = Supp(e), so finding
u such that, wt(u) = 32, and |L∩Supp(u)| ≤ 5 might be impossible, depending on wt(e).
However, for more than 91.5% (resp. 99.2%) of the possible values of e, the number of
unknowns in the coefficients can be limited to 5 (resp. 9).

Overall, the online cost of Step 2 is less than 64 cube-sum computations of cubes
of dimension 32. The time complexity of building and solving the systems is harder to
predict. However, as an adversary can usually choose some easily-built and easily-solved
highly-over-determined systems (64 equations in at most 5 to 9 unknowns), these costs
remains negligible compared to the time complexity of the cube-sum computations.

Finally, the very last bits of a can be harder to recover because only constant coefficients
are found. Indeed, each product described in Corollary 1 of size 32 is very likely to vanish.
In that case, they can remain unknown for now: only a few values of ai with i ∈ Supp(e)
are necessary for the next stage to work properly.

5.3 Third Step: Recovering Most of the Bits bi and ci

Step 3 consists in recovering bits bi and ci for all i, while di can then be computed as
di = ei⊕ ci⊕ 1. To do so, we mount a cube-like attack by targeting sub-leading monomials,
that is, monomials of degree 31. This stage is also adaptative and depends on the capacity.

Because all ei and most ai bits have been recovered, almost all coefficients of monomials
of degree 1 after L1 can be considered constant. Corollary 2 can thus be greatly simplified.

Corollary 4. Let u be a 64-bit vector such that wt(u) = 2r−1−1, and αu be the coefficient
of xu in any output coordinate after Round r. Let us assume that ai and ei are known
for all i, i ∈ Supp(u). Then, αu can be viewed as a sum whose terms have one of the
following forms:

• a binary constant, if the term corresponds to a former product of 2r−1 coefficients of
terms of degree 1, or

• a quadratic polynomial with monomials of the form bi, ci, bici for all i ∈ {0, . . . , 63}
(and possibly with some monomials of the form ai, aibi, aici for the few values of i
for which ai is still unknown) if the term corresponds to a former product of one
constant term and 2r−1 − 1 coefficients of terms of degree 1 after the second constant
addition.

Proof. The second case comes from the expression of the constant terms after S1(see
Table 2), once di is written in terms of variable ci and the known value of ei. They are
the only variables influencing the constant terms after the second constant addition.

Selecting such a sub-leading monomial then leads to sparse coefficients of degree at
most 2. Indeed, if r (r ≥ 0) values of ai remain unknown before Step 3, the coefficients
will depend on at most 128 + r linear terms and 64 + 2r quadratic terms.

However, we need to select the sub-leading monomial in a way which avoids the situation
where all the corresponding coefficients after six rounds vanish. We then use the following
observation.

Proposition 8. Let us consider the nonce-misuse scenario. Let xu be a monomial of
degree 16 in public variables. Let αu be a coefficient of xu in any coordinate after 5 rounds.
Then, each product (Corollary 1) appearing in the algebraic expression of αu is divisible by
at least one variable ei, with i ∈ Supp(u).
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Proof. This can be proved by keeping track, round after round, of the coordinates in which
all coefficients associated to highest-degree monomials dividing xu, have the expected
property. Bounds on the number of ei appearing in each product are given in Table 5.

Table 5: Lower and upper bounds on the number of ei variables appearing in each product
(Corollary 1) of the coefficient of any 2r−1-degree monomial at Round r.

Round 1 2 3 4 5 6
Row r0 0 0 1-2 1-4 1-7 2-13
Row r1 0 1 1-2 0-3 1-6 3-15
Row r2 x 1 0-1 1-2 3-7 3-15
Row r3 1 0-1 0-1 1-3 2-8 2-15
Row r4 0 0 1 2-4 1-7 2-13

Corollary 5. Let us consider the nonce-misuse scenario. Let xu be a monomial of
degree 31 in public variables. Let us suppose that ei = 0 for all i ∈ Supp(u). Then, for
any output coordinate after 6 rounds, the coefficient αu of xu is the null polynomial.

Apart from the selection process of the monomials, Step 2 and Step 3 follow the
same process, already presented in Algorithm 2. However, contrary to Step 2, the set
Supp(u)∩Supp(e) does not influence the degree anymore: it now only affects the number
of variables and the sparsity of the resulting system of 64 equations. Choosing a small set
Supp(u) ∩ Supp(e) makes the computation of the expressions of the coefficients faster
because more products vanish (see Corollary 2). On the other hand, a larger set allows
the recovery of more unknowns at one stroke. We preferred keeping |Supp(u) ∩ Supp(e)|
around 4 or 5. In that case, the expressions of the coefficients are easily computed: it took
about 5 to 25 minutes on two AMD EPIC 7352 (24 cores, 2.3GHz) to compute in parallel
the 64 expressions of the coefficients of a chosen monomial. Moreover, by considering the
number of terms after the first rounds, we avoided the longest computations. Indeed, this
number is a good indicator of the amount of remaining work and thus of, whether it is
worth continuing or not.

Overall, at least 128 equations are needed to recover the 128 bits of b and c, so at
least two sets of 64 coefficients and two cube-sums of dimension 31 have to be computed.7
Using 3 random monomials is often enough to recover all the unknown bits except at most
10 of them and we expect that it will almost always cost at most 10 cube-sums.

5.4 Finalizing the Recovery
After the three steps, a small number of unknown capacity bits is expected to remain.
They can be recovered through an exhaustive search. In the end, the complexity of the
attack is dominated by the cost of the cube-sums of degree-32 monomials, that is, by
(128 + 64)232 ≈ 27.6+32 < 240 both in time and data.

It is hard to give an explicit formula for the time complexity of the adaptative phases
during Steps 2 and 3. However, from our experiments, they can be effectively mounted on
a personal computer and a single cluster node for Step 2 and 3 respectively. The entire
process did not last more than a few hours on two AMD EPIC 7352. We provide as

7Contrary to the case of coefficients of degree-32 monomials, the dependency of coefficients of degree-31
monomials is not only limited to variables bi, ci with i ∈ Supp(u). This is because, through the first
linear layer L1, constant terms are shuffled, contrary to terms of degree 1 which are only copied in other
coordinates.
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supplementary material8 all the files used to effectively mount the attack, as well as some
details about our implementation choices (see Appendix B).

5.5 Comparing our Results with [CHK22]
Another conditional cube attack against nonce-misused Ascon has been exhibited in a
concurrent work by Chang, Hong & Kang [CHK22]. Both our attack and theirs were
proposed independently. They both use conditional cubes to first recover the 128 bits
of a and e. Similarities (pointed out in Table 6) appear between our cube xw and their
Pattern-A: 27 out of the 32 variables involved in the cube are identical.

It is due to a common desire to conditionally study the (dis)appearance of quadratic
monomials involving a0 in their coefficients after the second round.

Table 6: Comparative study of our attack with [CHK22].
Our attack [CHK22]

Conditional cube = Conditional cube

Sa ∪ S0 = {v1, · · · , v27}

Recovery of primary variable = conditional cube variable

a and e Supp(w) =
≈

Pattern-A =

{0} ∪ S0 ∪ (Sa \ {52}) ∪ Se {0} ∪ S0 ∪ Sa ∪ {2, 9, 12, 18}

239 in time and data ≈ 244.8 in time and data

Recovery of Ad hoc cube-like attack ̸= Exhaustive search

b and c ≈ 238 in time and data ̸= 2128 in time

=, ≈ stand for exact and partial correspondence, ̸= stands for no correspondence.

But to define a monomial of degree 32, 5 additional variables need to be chosen. From
there, the directions taken by both parties greatly differ. They can be compared by
classifying the quadratic monomials in the ANF of 2-round Ascon in the nonce-misused
scenario (which is easily computed with SageMath [The20]). This classification is presented
in Figure 8.

Under the assumption that a0 = 0, it can be observed that 27 monomials do not appear
in the ANF of 2-round Ascon: Chang, Hong & Kang selected all corresponding variables
in their pattern, while we only selected 269. The remaining 63 − 27 = 36 monomials
split into subsets depending on whether or not all x0xi could disappear from the ANF if
other conditions were added to condition a0 = 0. Among them, 12 + 7 = 19 monomials
(represented in the bottom right-hand corner of Figure 8) can disappear from the ANF if
a single linear condition (depending on i) is added to a0 = 0:

• 7 monomials are such that the GCD of the coefficients of x0xi is divisible by e0.
Their indices form the set Se ∪ {10, 13}. We chose the remaining 32− (1 + 26) = 5
variables among Se.

• The 12 remaining ones have 12 distinct linear GCDs independent from e0; they
form the set {w1, · · · , w12} [CHK22] in which the authors chose the remaining
32− (1 + 27) = 4 cube variables.

8https://github.com/baudrin-j/practical_cube_attack_against_nonce_misused_ascon
9As explained in Section 4.2, this is only because the variables of Sa were the last ones of the 32

variables that we selected, so all variables of Sa except one were selected.

https://github.com/baudrin-j/practical_cube_attack_against_nonce_misused_ascon


138 Practical Cube Attack against Nonce-Misused Ascon

{x1, · · · , x63}

27

Some x0xi appear under condition a0 = 0.

10

2

5

A single other linear condition on the inner state is
required to make all x0xi disappear.

12

7

Variables xi such that:
no x0xi appear under condition a0 = 0 :
Sa ∪ S0 = {v1, · · · , v27}, see [CHK22].

Variables xi such that some x0xi appear
under condition a0 = 0, and:

no condition on the inner state will change that
(some constant coefficients are present).
no condition on the inner state will change that
(some complementary coefficients are present).
two linear conditions at least are needed to make
them all disappear.
a single other linear condition different from e0 = 0
is sufficient to make them all disappear :
{w1, · · · , w12},see [CHK22].
no x0xi appear under conditions (a0 = 0, e0 = 0) :
Se ∪ {10, 13}.

Figure 8: Overview of the quadratic monomials x0xi, i ∈ {1, . . . , 63} after the second
round.

Our choice corresponds to variables i such that all terms x0xi vanish when e0 = 0 and
a0 = 0 (see Prop. 7). The choice from [CHK22] is different since a linear condition per
variable is needed in addition to condition a0 = 0; hence 4 + 1 = 5 conditions. This is
the reason why their attack does not work for any value of the state ΣE and needs to
be repeated for 32 triples of key, nonce and associated data in average, until the state
satisfies the required conditions. Moreover, it is worth noting that minimizing the number
of conditions per cube has several advantages.

1. It enables a simpler study of the “practical reciprocal”: with k conditions, 2k cases
have to be studied to experimentally verify the necessary assumptions (see Figures 6
and 7 for an example when k = 2).

2. Recovering information when the cube-sum is not the all-zero vector is also easier.
In that case, the adversary recovers the value of the OR of all the negated conditions.
The smaller the number of conditions is, the easier it is to recover information from
multiple recovered OR; see for example the last else case in Algorithm 1.

3. Finally, the fewer conditions, the easier to partition the set of all inner states into
disjoint subsets, thus enabling independent recoveries of bits; see for example xv (or
xw) and its shifted values.

The recoveries of the last 128 bits are also entirely different, as pointed out in Table 6.

6 Counter-Measures
Identifying the properties that make our attack possible is of great interest, especially
for designers. The first step of our attack plays the most crucial role since the other two
steps seem infeasible without the initial recovery of 96 bits in average. We thus focus on
counter-measures that avoid the use of cubes similar to those involved in Step 1.

As in all previous cube attacks against Ascon, the targeted monomials in the first
step are chosen to have the highest possible degree. The reasons of this choice are at least
two-fold. First, it corresponds to the coefficients which a priori depend on the smallest
possible number of unknown variables: without any further study, they seem less intricate
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than any others. Moreover, because of the quadratic S-box, together with a (reduced)
number of rounds which is quite small, their values are still quite cheap to recover.

Obviously, increasing the number of rounds during encryption prevents cube attacks. In
the nonce-misuse setting, because there are 64 public variables, only a single highest-degree
term could be exploited after seven rounds. Moreover, all coefficients of this degree-64
monomial would depend on up to twice as many unknown variables as in our attack, and
the data limitation of 264 would be reached. However, this trivial counter-measure comes
with a major drawback, especially in the case of a lightweight cipher: it increases the costs
of encryption and decryption and lowers the throughput.

A more-interesting counter-measure could be to change the outer part of the internal
state (the rate) during encryption: instead of inserting the plaintext within the first word
of the state, we could consider XORing it with any of the four other words. This would
not change anything regarding the performance of Ascon but it would however lead to
different algebraic properties. Indeed, contrary to its affine-equivalent form χ [BDPV11b],
the S-box of Ascon is not rotation-invariant, so changing the position of the outer state
changes the general form of the outputs. We studied the four other possibilities and tried
to find some conditional cubes by following the same reasoning we used for the genuine
outer part of the state. As a result, any of the four other choices is achieving a better
resistance against our method than the current setting. Compared to the genuine setting,
a single choice leads to a lower average number of recovered bits, while the three others do
not enable to find any conditional cubes of dimension 32 as we did in our attack.

The main observations are summarized in Table 8 (Appendix C). The slow diffusion
of the public variables through the first rounds, and more specifically the low number of
distinct quadratic monomials enables to build conditional cubes as we did. Inserting public
variables in different columns while the S-boxes are applied column-wise limits the number
of quadratic monomials after the first rounds. For the genuine setting, this phenomenon
is accentuated by the absence of all public variables on the third row after L1. It also
occurs when the outer part of the state corresponds to the third 64-bit word of the state.
When initialization is targeted, as done in [LDW17, DEMS15, RHSS21, RS21], the same
observations can be made when inserting public variables (corresponding to the nonce) on
the third row and keeping the fourth initial row all-zero, or by inputting the same variables
on both rows.

It seems that the sparsity of some of the coordinates of the S-box is the main cause:
another S-box might achieve better resistance against (conditional) cube attacks, but at
the probable cost of an increased number of gates. The relevance of changing the S-box
goes beyond the scope of this work, but its study remains an interesting challenge.

7 Conclusion
To the best of our knowledge, this work presents the first state-recovery attack on the
full 6-round encryption of Ascon, under the assumption that a key-nonce pair is reused
many times. Besides this particular result, we introduce a new technique for searching
for conditional cubes in Ascon. It is based on the splitting of the set of public variables,
depending on the coefficients of quadratic monomials after two rounds. This method
explains the observations in [LDW17] on the round-reduced initialization of Ascon. It
also generalizes the general form of the coefficients that can be targeted in a conditional
attack compared to the previous attacks presented in [HWX+17] and [LDW17] against
Keccak and Ascon.

The first step of our approach enables the recovery of 64 to 128 bits of the internal state.
Thanks to this knowledge, the computation of the previously-inaccessible part of the ANF
is now possible. The recovery of the remaining bits thus follows. Overall, our adaptative
chosen-plaintext attack can recover the full internal state, that is, 256 unknown bits, with
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an online time and data complexity lower than 240. Some trade-offs between time, memory
and data are also presented. Our attack is practical: it has been implemented and it
successfully returns the secret capacity bits with the expected complexity. Finally, we
mentioned possible counter-measures against this kind of recovery based on cube-attacks,
which might be relevant in the context of the current standardization process launched by
the NIST.

It is already known that the nonce-misuse scenario enables the recovery of any plaintext
at the cost of an adapted query for each block that needs to be decrypted [VV18]. But,
in our attack, once the inner-state has been recovered, an adversary can recover all the
following plaintexts from the corresponding ciphertexts, without any further interaction
with the encryption oracle. Nevertheless, this result does not go against the claims made
by the designers of Ascon [DEMS19], nor does it unsettle the confidence gained through
the previous studies, as it is clearly stipulated in the specifications that the nonce must
not be “repeated for two encryptions under the same key”. However, we believe that such
attacks are interesting because implementation errors cannot be completely ruled out.
Moreover, we think that this work provides further understanding about the link between
conditional cubes and the Algebraic Normal Form, especially in the case of Ascon.
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A Cube-like Distinguishers against Ascon

Table 7: Summary of the cube-like distinguishers against Ascon.
Attack Target / Number of Data / Method Sourcetype Scenario rounds Time

Permutation 12/12 2130 Zero-sum [DEMS15]
6/12 233 [DEMS15]

Nonce-respecting 6/12 231 [RHSS21]
distinguisher Initialization 6/12 217 † Cube-tester [RS21]

7/12 260 [RHSS21]
7/12 233 † [RS21]

Nonce-misuse Encryption 6/12 233 Cube-tester [DEMS15]distinguisher
† stands for “Weak-key subspace”.

B About our Implementation Choices in the 2nd and 3rd

Steps
As already stated, we provide along with this paper all the files used to mount the attack10.
We would like to comment the choices we made while implementing our attack, as most of
them are highly-related to the structure of Ascon.

First of all, we always omit the sixth linear layer and instead, compute all the necessary
coefficients after the sixth S-box layer. Indeed, as the linear layer is invertible and applied
row-wise, the cube-sum vector after the sixth S-box layer can be easily obtained from
the value of the cube-sum vector after the sixth linear layer, by applying p−1

L (and then
its restriction to Row 0, Σ−1

0 ) to the output cube-sum vector, as shown by the following
formula. ∑

v∈C

p−1
L ◦ p6(v, 0) = p−1

L

(∑
v∈C

p6(v, 0)
)

Meanwhile, even if the last two stages of our attack do not target monomials of the
same degree, the main ideas used to compute the coefficients are almost the same. We here
describe the main techniques we used to implement the second stage; everything being
quite similar for the last stage.

1. We first build an initial state with the necessary information only: only the public
variables which divide the targeted monomial are inserted as they are the only ones
able to influence the targeted monomial. The remaining public variables are omitted.
When the value of a bit has already been recovered (during the first stage or at the
beginning of the second stage), it is inserted as a value and not as a variable in order
to avoid a useless growth of the expressions round after round. For example, there
is no need to keep a coefficient of the form a0p in memory when the value of a0 is
known: we either discard it if a0 = 0 or only keep p if a0 = 1. This is the main
reason of the avalanche effect we observed: the more public variables are already
recovered, the sparser is the initial state and the easier it is to recover part of the
ANF which was previously impossible to access.

10https://github.com/baudrin-j/practical_cube_attack_against_nonce_misused_ascon

https://github.com/baudrin-j/practical_cube_attack_against_nonce_misused_ascon
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2. Then, we go through the first four rounds by only keeping terms that may be able to
influence the targeted monomial and its coefficients after 6 rounds. In other words,
because of Proposition 2, only the highest-degree terms need to be stored round after
round. It enables us to save some memory while also avoiding useless computations
during the next rounds.

3. After the first round, we only consider the quadratic part of the S-box instead of the
whole S-box. Indeed, we know from Proposition 2 that terms of highest-degree can
only be obtained through a product within the S-box layer. Thus, linear terms of
the S-box only diffuse terms which will never influence any highest-degree terms in
the following rounds. The linear part of the S-box can thus be omitted.

4. Furthermore, we prefer storing f as a keyed Boolean function (as introduced in
Section 2):

f =
∑

u∈F64
2

αuxu, with αu ∈ F2[a0, · · · , e63]/(a2
0 + a0, · · · , e2

63 + e63) ,

rather than as a polynomial of F2[x0, · · · , x63, a0, · · · , e63]/(x2
0+x0, · · · , x2

63+x63, a2
0+

a0, · · · , e2
63 + a63). With such a representation, during the third S-box layer, the

product (a1 +1)x0x1×x0x2 is discarded in one check (because x0x1×x0x2 = x0x1x2
is not a highest-degree term), while it would take two checks if it was stored as
(a1x0x1 + x0x1) × x0x2. This choice of representation enables us to save a lot of
useless verifications, as the coefficients will have more and more terms as the number
of rounds increases.

5. In order to go through the fifth round and the sixth S-box layer, we study the ANF
of the quadratic part of the S-box (see Figure 3). It can be observed that none of
the quadratic terms of the first coordinate depend on the fourth input x3. Since we
here focus on the computation of the highest-degree terms appearing in the first row
after the 6-th S-box layer, we do not need to compute the two highest-degree terms
appearing in the fourth row after the 5-th S-box layer.

6. Finally, the cost of the last S-box layer is not as high as one could expect. For
the first rounds, a monomial of degree 2r−1 can be multiplied by at most

(32−2r−1

2r−1

)
coprime monomials of degree 2r−1 in order to reach the maximal degree. In the
final S-box layer,

(32−16
16
)

=
(16

16
)

= 1, so given a monomial of degree 16, only a single
multiplication with another monomial of degree 16 can lead to the targeted monomial
of degree 32. This means that the final products of coordinates can be done without
computing actual products. Rather, for a given monomial in the first coordinate,
we have to check whether its “complementary” monomial is present in the second
coordinate, leading to a cost linear in the number of terms of the first coordinate11

rather than a quadratic cost.

11At this stage, the coordinates are stored as hash tables, so verifying the presence of a monomial can
be done in constant time.
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C Counter-Measure: Changing the Input Row

Table 8: A possible counter-measure: changing the public variables input row. The table
provides the sizes of the sets corresponding to Sa+1,Sa,Se, and S0 given in Table 4. For
instance, the first row in the table states that, for 5 indices i, the coefficients of all x0xi

share (a0 + b0 + d0 + 1) as a factor.
State after Linear terms Size of Analysis

initialization after S1 the sets

a0 (a0 + b0 + d0 + 1)x0 5
x0 (b0 + c0 + 1)x0 3
b0 x0 5 + 3 + 5 + 12 < 31
c0 x0 No cube as in Section 5.
d0 (a0 + d0 + 1)x0 5

Nb of variables not multiplied 12
by x0 after S2

a0 (b0 + 1)x0 4
b0 (b0 + c0 + 1)x0 6 4 + 6 + 23 > 31.
x0 x0 Cubes can be built as in Section 5
c0 x0 and should enable to detect
d0 * whenever (bi, ci) = (1, 0)

Nb of variables not multiplied 23 (32 of the 256-bit state in avg.).
by x0 after S2

a0 x0

b0 (b0 + c0 + 1)x0 3
c0 d0x0 4 3 + 4 + 5 + 12 < 31
x0 (a0 + 1)x0 5 No cube as in Section 5.
d0 x0

Nb of variables not multiplied 12
by x0 after S2

a0 b0x0 5
b0 x0 5 + 4 + 5 + 5 + 12 = 31
c0 (d0 + 1)x0 4 but b0 and b0 + 1 cannot
d0 (a0 + 1)x0 5 be used at the same time.
x0 (b0 + 1)x0 5 No cube as in Section 5.

Nb of variables not multiplied 12
by x0 after S2
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