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Abstract. A generalized Feistel structure (GFS) is a classical approach to construct
a block cipher from pseudorandom functions (PRFs). Coron et al. at TCC 2010
instantiated a Feistel structure with a tweakable block cipher (TBC), and presented
its provable security treatment. GFSs can naturally be instantiated with TBCs, and
among several types of GFSs, the provable security result of TBC-based unbalanced
GFSs was presented. TBC-based counterparts of the most basic types of GFSs,
namely, type-1, type-2, and type-3 GFSs, can naturally be formalized, and the
provable security result of these structures is open. In this paper, we present such
formalization and show their provable security treatment. We use a TBC of n-bit
blocks and n-bit tweaks, and we identify the number of rounds needed to achieve
birthday-bound security and beyond-birthday-bound security (with respect to n).
The n-bit security can be achieved with a finite number of rounds, in contrast to the
case of classical PRF-based GFSs. Our proofs use Patarin’s coefficient-H technique,
and it turns out deriving a collision probability of various internal variables is non-
trivial. In order to complete the proof, we introduce an approach to first compute a
collision probability of one specific plaintext difference (or a ciphertext difference),
and then prove that the case gives the maximum collision probability. We fully verify
the correctness of our security bounds for a class of parameters by experimentally
deriving upper bounds on the collision probability of internal variables. We also
analyse the optimality of our results with respect to the number of rounds and the
attack complexity.
Keywords: Generalized Feistel structure · Tweakable block cipher · Block cipher ·
Coefficient-H technique · Provable security

1 Introduction
Feistel Structure and Generalized Feistel Structure. There are various approaches for
designing a secure block cipher, and the provable security treatment initiated by Luby
and Rackoff [LR88] focuses on the structural soundness of the design. They considered a
Feistel structure that uses a pseudorandom function (PRF) as a round function. They
showed that with 3 rounds, it is a pseudorandom permutation (PRP), a block cipher that
is indistinguishable from a random permutation against adversaries with chosen-plaintext
attacks (CPAs), and with 4 rounds, it gives a strong PRP (SPRP), a block cipher that is
secure against adversaries with chosen-plaintext-ciphertext attacks (CPCAs). The result
has been extended and generalized in various ways. For instance, one obtains a better
security bound by increasing the number of rounds [Pat98, Vau03, MP03, Pat03, Pat04], or
one obtains a block cipher with a larger block length with a universal hash function [NR99]
or with a generalized Feistel structure (GFS) [ZMI89].

To construct a block cipher of a certain block length, GFSs require a smaller PRF than
a Feistel structure, since GFSs break the input block into smaller pieces. There are various
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types of GFSs, including unbalanced GFS [SK96], type-1, type-2, and type-3 GFSs [ZMI89],
alternating GFS [AB96, Luc96], and Nyberg’s GFS [Nyb96]. See Fig. 1 illustrating type-1,
type-2, and type-3 GFSs. GFSs have been adopted in various practical designs. They are
used, e.g., in hash functions SHA-1 and SHA-2 [NIS05], block ciphers [SSA+07, RRSY98],
and cryptographic permutations [GM16]. The provable security treatment of type-1, type-2,
and type-3 GFSs is presented in [ZMI89], followed by refined treatments in [HR10a]. The
work by Shen, Guo, and Wang covers a wide range of GFSs [SGW20], and they further
improved the results in [HR10a].

Tweakable Block Cipher Counterparts. A tweakable block cipher (TBC), formalized by
Liskov et al. [LRW02, LRW11], generalizes a classical block cipher to take an additional
input called a tweak. A TBC is a family of permutations indexed by a tweak and a key.
Initially, TBCs have been constructed as a mode of operation of block ciphers [LRW02,
LRW11]. The other direction to construct a block cipher with a large block length
from TBCs was initiated by Minematsu [Min09]. Rich designs of practical TBCs as a
primitive [JNP14, BJK+16, JNPS21] can be used to construct a block cipher with a large
block length. Coron et al. [CDMS10] instantiated a Feistel structure with a TBC with
n-bit blocks and n-bit tweaks to obtain a block cipher with 2n-bit blocks, and showed
that with 2 rounds, the construction gives an SPRP with the security bound of the form
O(q2/2n), i.e., birthday-bound security, where q is the number of queries. They also showed
that with 3 rounds, it gives an SPRP with the security bound of the form O(q2/22n),
beyond-birthday-bound security (BBB security).

Following [Min15], Nakamichi and Iwata [NI19] analysed the TBC-based counterpart
of the unbalanced GFS, where a contracting function is used as the round function. They
showed the number of rounds to achieve birthday-bound security and BBB security.

Our Contributions. The TBC-based counterparts of the most basic types of GFSs, namely,
type-1, type-2, and type-3 GFSs, can naturally be defined. In this paper, we formalize the
structures and consider a question of analysing the provable security of these counterparts.
See Fig. 2 for the structures analysed in this paper. We use a TBC of n-bit blocks and
n-bit tweaks, and we identify the number of rounds needed to achieve birthday-bound
security and BBB security (with respect to n). Concretely, we show the following results:

• For TBC-based type-1 GFSs with dn-bit blocks and r rounds, where d ≥ 3, we
consider PRP and SPRP security separately, as this construction has different security
characteristics depending on the direction of the operation. For PRP security, it has
birthday-bound security O(q2/2n) with r = 2d− 2 rounds, and by adding d more
rounds, i.e., with r = 3d− 2 rounds, the bound improves to BBB security O(q2/22n).
For SPRP security, we show that it has birthday-bound security O(q2/2n) with
r = d2 − 2d + 2 rounds, and BBB security O(q2/22n) with r = d2 − d + 2 rounds.

• For TBC-based type-2 GFSs with dn-bit blocks and r rounds, where d ≥ 4 is even,
we consider SPRP security to show that it has birthday-bound security O(q2/2n)
with r = d rounds, and BBB security O(q2/22n) with r = d + 2 rounds.

• For TBC-based type-3 GFSs with dn-bit blocks and r rounds, where d ≥ 3, we
consider SPRP security and point out the correspondence to the result of TBC-based
type-1 GFSs. It has birthday-bound security O(q2/2n) with r = d rounds, and BBB
security O(q2/22n) with r = d + 1 rounds.

Our proofs use Patarin’s coefficient-H technique [Pat08] refined in [CS14]. In the proof,
collision probabilities of various internal variables have to be evaluated. For a dn-bit block
cipher we consider, a collision probability of internal variables depends on whether each
n-bit block in a plaintext difference (or a ciphertext difference) has a non-zero value or
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not. There are (2d − 1) cases to evaluate, and it turns out that theoretically deriving
the collision probabilities while treating d as a parameter is non-trivial, as TBCs behave
differently depending on whether it has a non-zero difference in inputs, tweaks, or outputs,
and this makes it different from the analyses of PRF-based GFSs.

In order to complete the proof, we introduce an approach to first compute a collision
probability of one specific plaintext difference (or a ciphertext difference) among the (2d−1)
possibilities, and we then prove that the case gives the maximum collision probability, by
following the computation to show that any other plaintext difference does not have a
larger collision probability.

In order to verify the correctness of our security bounds, we developed a program
that exhaustively computes the collision probability for all the (2d − 1) possibilities. We
executed the program in the range of d ≤ 16, and we experimentally verified the correctness
of our security bounds for parameters within the range.

We also analyse the optimality of our results with respect to the number of rounds and
the attack complexity. Let rbb be the number of rounds for birthday-bound security, and
rbbb be the number of rounds for BBB security. We present attacks against TBC-based
type-1, type-2, and type-3 GFSs that use q = 2n/2 queries when the number of rounds
r satisfies rbb ≤ r < rbbb, implying that rbbb is the optimal number of rounds for BBB
security. We also point out that if the number of rounds satisfies r < rbb, then there is an
efficient attack with q = 2 queries, implying that rbb is the optimal number of rounds for
birthday-bound security.

Table 1 shows the summary of previous results and our results. Given that TBC-based
GFSs use a stronger primitive than PRF-based GFSs, a fair comparison is not possible.
Nevertheless, we make the following observations from the table:

• We observe that the n-bit security can be achieved with a finite number of rounds
with TBC-based GFSs, in contrast to the cases of classical PRF-based GFSs.

• With respect to SPRP security, the number of rounds needed to achieve BBB security
with TBC-based GFSs is lower than or equals the number of rounds needed to achieve
birthday-bound security with PRF-based GFSs, although the results in [SGW20]
are not optimized for the number of rounds (see the discussion below).

The results on PRF-based GFSs and TBC-based Feistel in [SGW20] make use of the
coupling technique [MPR07], and motivated by the observation in [LL18], the result
regarding TBC-based Feistel shows that it remains secure provided that q ≪ 22nt/(t+1),
where t ≥ 1 is a parameter that specifies the number of rounds, i.e., for TBC-based Feistel,
the number of rounds is 4t + 2 (see Table 1). The value of q can be larger than 2n, while
our results do not cover the case of q beyond 2n. The proof technique is useful to obtain
a strong security bound at the cost of non-tightness in the number of rounds. That is,
TBC-based Feistel has the security bound of O(q2/22n) with 3 rounds [CDMS10], which
corresponds to the security bound of t = 1 in [SGW20], i.e., 6 = 4t+2 rounds from Table 1.
The same argument applies to the results of PRF-based GFSs in [SGW20]. This paper
focuses on deriving the tight bound with respect to the number of rounds, and we leave
the analysis with the coupling technique as an interesting future work.

Related Works. We list related works other than the works mentioned above. There are
various constructions of (tweakable) enciphering schemes from TBCs, which can seen as a
(tweakable) variable-input-length block cipher. See, e.g., [MI11, ST13, CLMP17, CMN18,
BLN18, DN18]. These results generalize the results of [CDMS10] to handle variable length
input, to optimize the efficiency (the number of TBC calls), and/or to maintain the
provable security bound. We also note that there are various constructions of (tweakable)
enciphering schemes from block ciphers, including [NR99, HR03, HR04, Hal04, WFW05,
CS06a, CS06b, Sar07, MF07, Sar09, BN15, CDK+18, CEL+21].
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Table 1: Summary of previous results and our results. “Model” shows the attack model
and “Prim.” shows the underlying primitive. “Construction” is a block cipher with dn-bit
blocks, except for PRF-based Feistel and TBC-based Feistel which are 2n-bit block ciphers.
In the table, q denotes the number of queries, and in the results of [SGW20], t ≥ 1 is a
parameter that specifies the number of rounds. Only the leading terms are listed and
constants are neglected in our security bounds.

Model Prim. Construction Security bound # of rounds Reference
Type-1 GFS O(dq2/2n) 2d− 1

PRP PRF Type-2 GFS O(d2q2/2n) d + 1 [ZMI89]
Type-3 GFS O(d2q2/2n) d + 1

SPRP PRF Type-2 GFS birthday d + 2

Type-1 GFS 2q
t+1

(
2d2q
2n

)t

(d2 + d− 2)t + 1

SPRP PRF Type-2 GFS 2q
t+1

(
2d2q
2n

)t

2dt + 1 [SGW20]

Type-3 GFS 2q
t+1

(
4d2q
2n

)t

(d + 2)t + 1

SPRP

PRF Feistel O(q2/2n) 4 [LR88]

TBC Feistel
O(q2/22n) 3 [CDMS10]

2
(

2q
t+1

( 30q
22n

)t
)1/2

4t + 2 [SGW20]

PRP TBC Type-1 GFS dq2/2n 2d− 2 Theorem 1
d2q2/22n 3d− 2

Type-1 GFS d2q2/2n d2 − 2d + 2 Theorem 2
d3q2/22n d2 − d + 2

SPRP TBC Type-2 GFS d2q2/2n d Theorem 3
d3q2/22n d + 2

Type-3 GFS d2q2/2n d Corollary 1
d3q2/22n d + 1

The constructions we consider in this paper have iterative structures, are not flexible in
terms of the input length, are not optimized in terms of the number of TBC calls, and do
not take a tweak as input. Our focus is to show the soundness of the structures that are
naturally formalized from well known PRF-based GFSs, rather than proposing dedicated
designs, and the constructions in this paper could be instantiated with existing TBCs
or could be a starting point of designing a block cipher with a large block length as a
primitive.

2 Preliminaries

2.1 Notation
For a finite set S, s

$← S denotes the procedure of selecting an element from S uniformly at
random, and assigning it to s. The set of all the bit strings of n bits is written as {0, 1}n,
and for a bit string X, |X| denotes its length in bits. The difference Xi ⊕Xj of two bit
strings Xi and Xj with |Xi| = |Xj | is written as ∆Xi,j , where ⊕ is the XOR operation.
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Figure 2: Round functions of TBC-based GFSs. (a) Type-1 (b) Type-2 (c) Type-3

We write the concatenation of bit strings X and Y as X ∥ Y .
For integers a, b, c with a ≤ b and c ≥ 1, we let [a..b : c] = {a + ℓc | a ≤ a + ℓc ≤

b ∧ ℓ = 0, 1, . . .}, e.g., [3..10 : 2] = {3, 5, 7, 9}. We use the convention that [a..b : c] = ∅
if a > b. If c = 1, we simply write [a..b] = {a, a + 1, . . . . , b} for [a..b : c]. For bit strings
Xa, Xa+1, . . . , Xb with Xi ∈ {0, 1}n, if [a..b : c] ̸= ∅, then the concatenation of all Xi

with i ∈ [a..b : c] is written as X [a..b:c]. That is, we have X [a..b:c] = Xa ∥Xa+c ∥Xa+2c ∥
· · · ∥ Xa+⌊ b−a

c ⌋c and X [a..b] = Xa ∥ Xa+1 ∥ · · · ∥ Xb. We write the concatenation of Xa

and Xb as Xa ∥ Xb or X [a,b]. For example, for X [1..12] = X1 ∥ X2 ∥ · · · ∥ X12, we have
X [3..10:2] = X3 ∥X5 ∥X7 ∥X9, X [3..10] = X3 ∥X4 ∥ · · · ∥X10, and X [3,10] = X3 ∥X10.

For a keyed function F : K ×X → Y, where K is the key space, X is the input space,
and Y is the output space, the output Y ∈ Y for a key K ∈ K and an input X ∈ X is
written as Y = FK(X) or Y = F [K](X). For a key K ∈ K, if FK(·) is a permutation over
X , its inverse permutation is written as F −1

K (·) or F −1[K](·).

2.2 Block Ciphers and Tweakable Block Ciphers
A block cipher (BC) is a keyed permutation E : K × {0, 1}n → {0, 1}n, where for any key
K ∈ K, EK(·) is a permutation over {0, 1}n. Here, K is the key space and n is the block
length. If C ∈ {0, 1}n is a ciphertext for a key K ∈ K and a plaintext M ∈ {0, 1}n, we
have C = EK(M) in encryption and M = E−1

K (C) in decryption. In what follows, we
write n-BC for a block cipher with the block length of n bits.

A tweakable block cipher (TBC) [LRW02, LRW11] is a keyed permutation Ẽ : K ×
{0, 1}t×{0, 1}n → {0, 1}n that has an additional input called a tweak. For any key K ∈ K
and any tweak T ∈ {0, 1}t, ẼK(T, ·) is a permutation over {0, 1}n. Here, K is the key
space, t is the tweak length, and n is the block length. If C ∈ {0, 1}n is a ciphertext for a
key K ∈ K, a tweak T ∈ {0, 1}t, and a plaintext M ∈ {0, 1}n, then we have C = ẼK(T, M)
in encryption and M = Ẽ−1

K (T, C) in decryption. We write (t, n)-TBC for a TBC with
the tweak length of t bits and the block length of n bits.

We write Perm(n) for the set of all the permutations over {0, 1}n. A random permu-
tation π is a permutation that is chosen uniformly at random from Perm(n), i.e., π

$←
Perm(n). We write P̃erm(t, n) for the set of all the functions P̃ : {0, 1}t×{0, 1}n → {0, 1}n

such that, for any tweak T ∈ {0, 1}t, P̃ (T, ·) ∈ Perm(n). A (t, n)-tweakable random permu-
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tation ((t, n)-TRP) P̃ is a function that is chosen uniformly at random from P̃erm(t, n), i.e.,
P̃ is a (t, n)-TRP if P̃

$← P̃erm(t, n). For a (t, n)-TRP P̃ , for any tweak T ∈ {0, 1}t, P̃ (T, ·)
is a random permutation over {0, 1}n, and we write P̃ −1(T, ·) for its inverse permutation.

2.3 Security Definitions and Coefficient-H Technique
In this paper, we consider the security of a block cipher E as a pseudorandom permutation
(PRP) and a strong PRP (SPRP) [LR88]. A PRP-adversary A is given oracle access to
an encryption oracle EK(·) in the real world, and it is given oracle access to a random
permutation π(·) in the ideal world. An SPRP-adversary A is given oracle access to EK(·)
and E−1

K (·) in the real world, and it is given oracle access to π(·) and π−1(·) in the ideal
world. We define PRP-advantage and SPRP-advantage as follows [LR88]:

Advprp
E (A) = |Pr[AEK (·) = 1]− Pr[Aπ(·) = 1]|

Advsprp
E (A) = |Pr[AEK (·),E−1

K
(·) = 1]− Pr[Aπ(·),π−1(·) = 1]|

The probabilities are taken over the randomness of A, K, and π. An adversary A in
the PRP notion is in a chosen-plaintext-attack (CPA) setting, and we may call it a
CPA-adversary or a PRP-adversary. An adversary A in the SPRP notion is in a chosen-
plaintext-ciphertext-attack (CPCA) setting, and we may call it a CPCA-adversary or an
SPRP-adversary. We also consider a CCA-adversary that has oracle access to decryption
(E−1

K (·) or π−1(·)) only.
In our security proofs, we heavily make use of Coefficient-H technique [Pat08, CS14].

Let R be the real world oracle defined by a block cipher E, and let I be the ideal world
oracle defined by a random permutation π. For an adversary A that makes at most q
queries, a transcript θ records the interaction between A and the oracle(s), i.e., it contains
all the queries of A and responses from the oracle(s). Let ΘR be the probability distribution
of transcript θ when A interacts with R (and R−1) in the real world, and ΘI be the
probability distribution of θ when A interacts with I (and I−1) in the ideal world. An
attainable transcript is a transcript θ that satisfies Pr[ΘI = θ] > 0, i.e., it has a non-zero
probability in the ideal world. Let Tall be the set of all the attainable transcripts.

With the notation above, Coefficient-H Technique is the following lemma.

Lemma 1 (Coefficient-H Technique [Pat08, CS14]). Consider a deterministic adversary A.
Let Tbad be a subset of Tall that contains all the “bad” transcripts, and let Tgood = Tall\Tbad.
Assume that there exists 0 ≤ ϵ ≤ 1 such that

Pr[ΘR = θ]
Pr[ΘI = θ] ≥ 1− ϵ

holds for all θ ∈ Tgood. Then, one has Adv(model)
E (A) ≤ ϵ + Pr[ΘI ∈ Tbad], where

(model) ∈ {prp, sprp} depending on the queries A makes.

3 Definition of TBC-based GFSs
In this section, we formalize TBC-based type-1, type-2, and type-3 GFSs. They are
naturally obtained from classical PRF-based type-1, type-2, and type-3 GFSs by using an
(n, n)-TBC to define a round function. By iterating the round function for r times, we
obtain a dn-BC, where r is the number of rounds and d is the number of input/output
blocks. For τ ∈ {1, 2, 3}, the encryption round function, the decryption round function, the
r-round encryption function, and the r-round decryption function of TBC-based type-τ
GFS is written as Φτ,d, Φ−1

τ,d, Eτ,d,r, and E−1
τ,d,r, respectively, which are defined as follows.
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TBC-based Type-1 GFS. Let d ≥ 3, r ≥ 1, Ẽ be an (n, n)-TBC, and K1, . . . , Kr be r

independent keys of Ẽ. We first define the encryption round function Φ1,d of a TBC-based
type-1 GFS. It is a permutation over {0, 1}dn that takes (X1 ∥ · · · ∥Xd) ∈ {0, 1}dn as input.
It internally makes use of a single call of ẼKx

, where x ∈ {1, . . . , r}. Now Φ1,d is defined as

Φ1,d[ẼKx
](X1 ∥ · · · ∥Xd) = (ẼKx

(X1, X2) ∥X3 ∥ · · · ∥Xd ∥X1) .

The decryption round function Φ−1
1,d is similarly defined by using the decryption function

Ẽ−1
Kx

of ẼKx
as

Φ−1
1,d[ẼKx ](X1 ∥ · · · ∥Xd) = (Xd ∥ Ẽ−1

Kx
(Xd, X1) ∥X2 ∥ · · · ∥Xd−1) .

See Fig. 3 for illustrations.
We next define the r-round encryption function E1,d,r of a TBC-based type-1 GFS. It

takes M ∈ {0, 1}dn as input, and applies the encryption round function Φ1,d[ẼKx ] with
x = 1, 2, . . . , r in this order. That is, E1,d,r is defined as

E1,d,r[ẼK1 , . . . , ẼKr ](M) = Φ1,d[ẼKr ] ◦ Φ1,d[ẼKr−1 ] ◦ · · · ◦ Φ1,d[ẼK1 ](M) .

The r-round decryption function E−1
1,d,r takes C ∈ {0, 1}dn as input and applies Φ−1

1,d[ẼKx
]

with x = r, r − 1, . . . , 1. Formally, E−1
1,d,r is defined as

E−1
1,d,r[ẼK1 , . . . , ẼKr ](C) = Φ−1

1,d[ẼK1 ] ◦ Φ−1
1,d[ẼK2 ] ◦ · · · ◦ Φ−1

1,d[ẼKr ](C) .

In the proof of security presented in Sect. 4 and Sect. 5, we consider E1,d,r[P̃1, . . . , P̃r]
and E−1

1,d,r[P̃1, . . . , P̃r] that are obtained by replacing each (n, n)-TBC ẼKx
with an (n, n)-

TRP P̃x, where P̃1, . . . , P̃r are r independent (n, n)-TRPs. In what follows, if it is clear
from the context, we write E1,d,r for E1,d,r[P̃1, . . . , P̃r] and E−1

1,d,r for E−1
1,d,r[P̃1, . . . , P̃r].

TBC-based Type-2 GFS. Let d ≥ 4 and r ≥ 1, where d is even. We let K1,1, . . . , Kr,d/2

be rd/2 independent keys for (n, n)-TBC Ẽ used in the construction. The encryption
round function Φ2,d of a TBC-based type-2 GFS is a permutation over {0, 1}dn that takes
(X1 ∥ · · · ∥ Xd) ∈ {0, 1}dn as input. Internally, Φ2,d uses d/2 TBCs ẼKx,1 , . . . , ẼKx,d/2 ,
where x ∈ {1, . . . , r}, and is defined as

Φ2,d[ẼKx,1 , ẼKx,2 , . . . , ẼKx,d/2 ](X1 ∥ · · · ∥Xd)

= (ẼKx,1(X1, X2) ∥X3 ∥ ẼKx,2(X3, X4) ∥X5 ∥ · · · ∥ ẼKx,d/2(Xd−1, Xd) ∥X1) .
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ẼKx,d/2

X
d−1X

4

Y
2

Y
d/2

nn n

X
d Z

1
X

2
Z

d/2

X
2

X
d

X
d−2X

1
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Figure 4: (a) Φ2,d[ẼKx,1 , . . . , ẼKx,d/2 ](X1∥· · ·∥Xd) = (Y 1∥X3∥Y 2∥· · ·∥Xd−1∥Y d/2∥X1),
where Y ℓ = ẼKx,ℓ

(X2ℓ−1, X2ℓ). (b) Φ−1
2,d[ẼKx,1 , . . . , ẼKx,d/2 ](X1 ∥ · · · ∥Xd) = (Xd ∥ Z1 ∥

X2 ∥ Z2 ∥ · · · ∥Xd−2 ∥ Zd/2), where Z1 = Ẽ−1
Kx,1

(Xd, X1) and Zℓ = Ẽ−1
Kx,ℓ

(X2(ℓ−1), X2ℓ−1)
for ℓ ∈ {2, . . . , d/2}.

The decryption round function Φ−1
2,d uses decryption Ẽ−1

Kx,1
, . . . , Ẽ−1

Kx,d/2
of ẼKx,1 , . . . , ẼKx,d/2

and is defined as

Φ−1
2,d[ẼKx,1 , ẼKx,2 , . . . , ẼKx,d/2 ](X1 ∥ · · · ∥Xd)

= (Xd ∥ Ẽ−1
Kx,1

(Xd, X1) ∥X2 ∥ Ẽ−1
Kx,2

(X2, X3) ∥ · · · ∥Xd−2 ∥ Ẽ−1
Kx,d/2

(Xd−2, Xd−1)) .

See Fig. 4.
The r-round encryption function E2,d,r of a TBC-based type-2 GFS is a dn-BC that

takes M ∈ {0, 1}dn as input. It uses r encryption round functions Φ2,d[ẼKx,1 , . . . , ẼKx,d/2 ]
for x = 1, 2, . . . , r, and is defined as

E2,d,r[ẼK1,1 , . . . , ẼKr,d/2 ](M)

= Φ2,d[ẼKr,1 , . . . , ẼKr,d/2 ] ◦ Φ2,d[ẼKr−1,1 , . . . , ẼKr−1,d/2 ] ◦ · · · ◦ Φ2,d[ẼK1,1 , . . . , ẼK1,d/2 ](M) .

The r-round decryption function E−1
2,d,r is defined in an obvious way by using r decryption

round functions Φ−1
2,d[ẼKx,1 , . . . , ẼKx,d/2 ] for x = r, r − 1, . . . , 1 as

E−1
2,d,r[ẼK1,1 , . . . , ẼKr,d/2 ](C)

= Φ−1
2,d[ẼK1,1 , . . . , ẼK1,d/2 ] ◦ Φ−1

2,d[ẼK2,1 , . . . , ẼK2,d/2 ] ◦ · · · ◦ Φ−1
2,d[ẼKr,1 , . . . , ẼKr,d/2 ](C) ,

where C ∈ {0, 1}dn is the input.
In Sect. 6, we prove the security of E2,d,r[P̃1,1, . . . , P̃r,d/2], where P̃x,y is used as a

TBC ẼKx,y
and P̃1,1, . . . , P̃r,d/2 are rd/2 independent (n, n)-TRPs. We write E2,d,r for

E2,d,r[P̃1,1, . . . , P̃r,d/2] and E−1
2,d,r for E−1

2,d,r[P̃1,1, . . . , P̃r,d/2].

TBC-based Type-3 GFS. Let d ≥ 3, r ≥ 1, Ẽ be an (n, n)-TBC, and K1,1, . . . , Kr,d−1 be
r(d−1) independent keys of Ẽ. The encryption round function Φ3,d of a TBC-based type-3
GFS is a permutation over {0, 1}dn, internally uses d− 1 independent (n, n)-TBCs ẼKx,1 ,

. . . , ẼKx,d−1 for some x ∈ {1, . . . , r}, and takes (X1 ∥ · · · ∥Xd) ∈ {0, 1}dn as input. It is
defined as

Φ3,d[ẼKx,1 , ẼKx,2 , . . . , ẼKx,d−1 ](X1 ∥ · · · ∥Xd)
= (ẼKx,1(X1, X2) ∥ ẼKx,2(X2, X3) ∥ · · · ∥ ẼKx,d−1(Xd−1, Xd) ∥X1) .
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ẼKx,1
· · ·ẼKx,2
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Figure 5: (a) Φ3,d[ẼKx,1 , . . . , ẼKx,d−1 ](X1∥· · ·∥Xd) = (Z1∥Z2∥· · ·∥Zd−1∥X1), where Zℓ =
ẼKx,ℓ

(Xℓ, Xℓ+1). (b) Φ−1
3,d[ẼKx,1 , . . . , ẼKx,d−1 ](X1 ∥ · · · ∥Xd) = (Xd ∥Y 1 ∥Y 2 ∥ · · · ∥Y d−1).

The decryption round function Φ−1
3,d uses decryption Ẽ−1

Kx,1
, . . . , Ẽ−1

Kx,d−1
of ẼKx,1 , . . . , ẼKx,d−1

and is defined as

Φ−1
3,d[ẼKx,1 , ẼKx,2 , . . . , ẼKx,d−1 ](X1 ∥ · · · ∥Xd) = (Xd ∥ Y 1 ∥ Y 2 ∥ · · · ∥ Y d−1) ,

where Y 1 = Ẽ−1
Kx,1

(Xd, X1) and Y ℓ = Ẽ−1
Kx,ℓ

(Y ℓ−1, Xℓ) for ℓ ∈ {2, . . . , d− 1}. See Fig. 5.
The r-round encryption function E3,d,r of a TBC-based type-3 GFS is a dn-BC that

takes M ∈ {0, 1}dn as input, uses r encryption round functions Φ3,d[ẼKx,1 , . . . , ẼKx,d−1 ]
for x = 1, 2, . . . , r, and is defined as

E3,d,r[ẼK1,1 , . . . , ẼKr,d−1 ](M)
= Φ3,d[ẼKr,1 , . . . , ẼKr,d−1 ] ◦ Φ3,d[ẼKr−1,1 , . . . , ẼKr−1,d−1 ] ◦ · · · ◦ Φ3,d[ẼK1,1 , . . . , ẼK1,d−1 ](M) .

The r-round decryption function E−1
3,d,r of TBC-based type-3 GFS takes C ∈ {0, 1}dn as

input, uses r decryption round functions Φ−1
3,d[ẼKx,1 , . . . , ẼKx,d−1 ] for x = r, r − 1, . . . , 1,

and is defined as

E−1
3,d,r[ẼK1,1 , . . . , ẼKr,d−1 ](C)

= Φ−1
3,d[ẼK1,1 , . . . , ẼK1,d−1 ] ◦ Φ−1

3,d[ẼK2,1 , . . . , ẼK2,d−1 ] ◦ · · · ◦ Φ−1
3,d[ẼKr,1 , . . . , ẼKr,d−1 ](C) .

We prove the security of E3,d,r[P̃1,1, . . . , P̃r,d−1] in Sect. 7, where we use P̃x,y instead
of ẼKx,y

and P̃1,1, . . . , P̃r,d−1 are r(d − 1) independent (n, n)-TRPs. We write E3,d,r for
E3,d,r[P̃1,1, . . . , P̃r,d−1] and E−1

3,d,r for E−1
3,d,r[P̃1,1, . . . , P̃r,d−1].

4 PRP Security of TBC-based Type-1 GFS
In this section, we prove PRP security of E1,d,r, TBC-based type-1 GFS, where we use r
independent (n, n)-TRPs.

Theorem 1 (TBC-based type-1 GFS, PRP security). Fix d ≥ 3, and let P̃1, . . . , P̃r be r

independent (n, n)-TRPs and E = E1,d,r[P̃1, . . . , P̃r] be the TBC-based type-1 GFS. Then
for any PRP-adversary A that makes q queries, if r = 2d− 2 rounds, we have

Advprp
E (A) ≤ (d− 1)q2

2n
+ 0.5(d− 1)q2

22n
+ 0.5q2

2dn
, (1)

and if r = 3d− 2 rounds, we have

Advprp
E (A) ≤ 0.25(3d2 − d− 4)q2

22n
+ 0.5q2

2dn
. (2)
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In Theorem 1, Eq. (1) shows birthday-bound security and Eq. (2) shows BBB security.
The birthday-bound security is obtained from Lemma 3, Lemma 6, and the Coefficient-H
technique (Lemma 1), and the BBB security is obtained from Lemma 5, Lemma 6, and
the Coefficient-H technique (Lemma 1).

Below, we present the proof of Theorem 1. Both Eq. (1) and Eq. (2) consider CPA
security, with the difference being in the number of rounds. They share the same definition
of the oracles (Sect. 4.1) and the interpolation probability (Sect. 4.3), while the computation
of the probability of bad events (Sect. 4.2) requires different treatments, which are presented
in Sect. 4.2.1 for r = 2d− 2 and in Sect. 4.2.2 for r = 3d− 2.

We consider a CPA-adversary A that interacts with the real world oracle R, or with
the ideal world oracle I. Without loss of generality, A is assumed to be deterministic,
makes exactly q queries, and does not repeat the same query.

4.1 Definition of the Oracles

The real world oracle R is defined as E1,d,r that uses r independent TRPs P̃1, . . . , P̃r. In
R, for the i-th query, we compute the internal states S1

i , . . . , Sr−d
i with P̃1, . . . , P̃r−d, and

the ciphertext with P̃r−d+1, . . . , P̃r. For each query A makes, we record the internal states
S1

i , . . . , Sr−d
i in S, and the entire history of the internal states S is given to A after it

makes q queries and before it outputs its decision bit. This only benefits A to increase its
advantage, and we show Eq. (1) and Eq. (2) with this A that has the extra information of
S. The real world oracle R is presented in Algorithm 1 in Fig. 6. See Fig. 7 for an example
and the labeling convention.

The ideal world oracle I is defined as the dn-bit random permutation π. In I, for
the i-th query, we use r − d dummy TRPs P̃1, . . . , P̃r−d to compute dummy internal
states S1

i , . . . , Sr−d
i , and record them into S. The dummy internal states have the same

probability distribution as in the real world oracle, and S is given to A after it makes q
queries. The ideal world oracle I is given in Algorithm 2 in Fig. 6.

4.2 Bad Transcript and Bad Probability

The adversary A is given all the internal states after it makes q queries. The interaction
between the oracle and A can be summarized as a transcript θ as

θ =
(

(M [1..d]
1 , C

[1..d]
1 , S

[1..r−d]
1 ), . . . , (M [1..d]

q , C [1..d]
q , S[1..r−d]

q )
)

.

Since we assume that A does not repeat a query, for any 1 ≤ j < i ≤ q, we have
(M1

i , . . . , Md
i ) ̸= (M1

j , . . . , Md
j ) and (C1

i , . . . , Cd
i ) ̸= (C1

j , . . . , Cd
j ).

In the real world, let us focus on P̃x for some x ∈ [1..r], and let Xi, Ti, and Yi be the
input, tweak, and output of the i-th query, respectively. We observe that in the i-th and
j-th queries, if Xi = Xj and Ti = Tj hold, then we must have Yi = Yj , and similarly, if we
have Yi = Yj and Ti = Tj , then Xi = Xj holds.

In the ideal world, for P̃x with x ∈ [1..r − d], i.e., for TPRs that are used in the
simulation, it has the same input-tweak-output relation as in the real world. However, for
P̃r−d+1, . . . , P̃r that are not used in the simulation, this may not be the case. That is, the
output can be different even though it takes the same input and tweak, or the input can
be different when it takes the same output and tweak. In other words, in the ideal world,
TRPs P̃r−d+1, . . . , P̃r are not used in the simulation, and there are conditions on these
TRPs that can hold only in the ideal world. Our definition of the set of bad transcripts,
Tbad, consists of all such transcripts θ.
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Algorithm 1: Procedure of R for the i-th query
Input: M

[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1. (S−d+1
i , S−d+2

i , . . . , S−1
i , S0

i )← (M2
i , M3

i , . . . , Md
i , M1

i )
2. for x = 1, 2, . . . , r do

Sx
i ← P̃x(Sx−1

i , Sx−d
i )

3. (C1
i , C2

i , . . . , Cd
i )← (Sr

i , Sr−d+1
i , Sr−d+2

i , . . . , Sr−1
i )

4. return C
[1..d]
i

5. S← S ∥ S
[1..r−d]
i

Algorithm 2: Procedure of I for the i-th query
Input: M

[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1. C
[1..d]
i ← π(M [1..d]

i )
2. (S−d+1

i , S−d+2
i , . . . , S−1

i , S0
i )← (M2

i , M3
i , . . . , Md

i , M1
i )

3. for x = 1, 2, . . . , r − d do
Sx

i ← P̃x(Sx−1
i , Sx−d

i )
4. return C

[1..d]
i

5. S← S ∥ S
[1..r−d]
i

Figure 6: Definition of R and I for the PRP proof of E1,d,r. Initially, S is empty, and S is
given to A after it makes all the q queries.

To define the set of bad transcripts, we let x ∈ [2..d], and we consider the following
bad conditions1:

Bad at P̃r−d+1 : (Sr−2d+1
i , Sr−d

i ) = (Sr−2d+1
j , Sr−d

j ) ∧ C2
i ̸= C2

j

or (Sr−d
i , C2

i ) = (Sr−d
j , C2

j ) ∧ Sr−2d+1
i ̸= Sr−2d+1

j

Bad at P̃r−d+x : (Sr−2d+x
i , Cx

i ) = (Sr−2d+x
j , Cx

j ) ∧ Cx+1
i ̸= Cx+1

j

or (Cx
i , Cx+1

i ) = (Cx
j , Cx+1

j ) ∧ Sr−2d+x
i ̸= Sr−2d+x

j

Here, when x = d, we let Cd+1 = C1. If r < 2d, then a plaintext block (instead of a block
of internal state) is involved in the condition, and we let S0 = M1 and S−1 = Md.

Example 1. If d = 4 and r = 2d− 2 = 6, we have the following bad conditions:

Bad at P̃3 : (M4
i , S2

i ) = (M4
j , S2

j ) ∧ C2
i ̸= C2

j or (S2
i , C2

i ) = (S2
j , C2

j ) ∧M4
i ̸= M4

j

Bad at P̃4 : (M1
i , C2

i ) = (M1
j , C2

j ) ∧ C3
i ̸= C3

j or (C2
i , C3

i ) = (C2
j , C3

j ) ∧M1
i ̸= M1

j

Bad at P̃5 : (S1
i , C3

i ) = (S1
j , C3

j ) ∧ C4
i ̸= C4

j or (C3
i , C4

i ) = (C3
j , C4

j ) ∧ S1
i ̸= S1

j

Bad at P̃6 : (S2
i , C4

i ) = (S2
j , C4

j ) ∧ C1
i ̸= C1

j or (C1
i , C4

i ) = (C1
j , C4

j ) ∧ S2
i ̸= S2

j

These conditions can hold only in the ideal world, and they are impossible in the real
world, implying that the interpolation probability of such a transcript in the real world is

1We follow the order of (tweak, input) or (tweak, output) to describe two n-bit blocks as an argument
of a TBC. To describe bad events, we list them following the order of a plaintext, an internal state, and a
ciphertext, with smaller indices come first.
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Figure 7: Left: E1,d,r(M1 ∥ · · · ∥M4) = (C1 ∥ · · · ∥ C4) for the case d = 4 and r = 6,
where (M1 ∥ · · · ∥M4) = (S0 ∥ S−3 ∥ S−2 ∥ S−1) and (C1 ∥ · · · ∥ C4) = (S6 ∥ S3 ∥ S4 ∥ S5).
Right: E1,d,r(M1 ∥ · · · ∥M4) = (C1 ∥ · · · ∥ C4) for the case d = 4 and r = 10, where
(M1 ∥ · · · ∥M4) = (S0 ∥ S−3 ∥ S−2 ∥ S−1) and (C1 ∥ · · · ∥ C4) = (S10 ∥ S7 ∥ S8 ∥ S9).



36 Generalized Feistel Structures Based on TBCs

zero. We define Bad1
enc as the set of all these conditions. Here, 1 ≤ j < i ≤ q, and since

we have
(

q
2
)

possible combinations of i and j, Bad1
enc consists of:

• 1 ×
(

q
2
)

conditions of a 2n-bit collision between two internal state blocks (e.g.,
(Sr−2d+1

i , Sr−d
i ) = (Sr−2d+1

j , Sr−d
j )), which we write colls,s,

• d ×
(

q
2
)

conditions of a 2n-bit collision between one internal state block and one
ciphertext block (e.g., (Sr−d

i , C2
i ) = (Sr−d

j , C2
j )), which we write colls,c, and

• (d − 1) ×
(

q
2
)

conditions of a 2n-bit collision between two ciphertext blocks (e.g.,
(Cx

i , Cx+1
i ) = (Cx

j , Cx+1
j )), which we write collc,c.

In total, we have 2d×
(

q
2
)

possible collisions of 2n-bit variables in Bad1
enc.

Example 2. When d = 4 and r = 2d− 2 = 6, we have 8×
(

q
2
)

conditions in Bad1
enc (See

Example 1). In this case, Bad1
enc consists of:

• colls,s: 1×
(

q
2
)

collisions at (M4, S2)

• colls,c: 4×
(

q
2
)

collisions at (S2, C2), (M1, C2), (S1, C3), and (S2, C4)

• collc,c: 3×
(

q
2
)

collisions at (C2, C3), (C3, C4), and (C1, C4)

Now the set of bad transcripts Tbad is defined as the set of all the attainable transcripts
that satisfy at least one of the conditions in Bad1

enc. Formally, we define

Tbad = {θ | θ satisfies at least one of the conditions in Bad1
enc} .

The set of good transcripts Tgood is defined as the set of all the attainable transcripts
θ that are not in Tbad, i.e., we let Tgood = Tall \ Tbad.

In what follows, we evaluate the probability to have bad transcripts. We consider the
case r = 2d− 2 first, and then r = 3d− 2.

4.2.1 Bad Probability for r = 2d − 2

Let r = 2d− 2. For each of the conditions in Bad1
enc, we have the following lemma.

Lemma 2. Let r = 2d− 2, and consider one of the 2d×
(

q
2
)

conditions in Bad1
enc in the

ideal world. Then, the probability of the condition is at most (d− 2)/2n if it is in colls,s, at
most 1/2n if it is in colls,c, and at most 1/22n if it is in collc,c.

Proof. We first present the analysis of colls,s, followed by colls,c and collc,c.

Analysis of colls,s. We consider a condition in colls,s, which corresponds to a unique
2n-bit collision at (Sr−2d+1, Sr−d). As we are dealing with the case r = 2d− 2, it follows
that Sr−2d+1 = S−1 = Md and Sr−d = Sd−2. We focus on the i-th and j-th queries, with
1 ≤ j < i ≤ q, and derive the upper bound on

Pr[S[r−2d+1,r−d]
i = S

[r−2d+1,r−d]
j ∧ C2

i ̸= C2
j ] ≤ Pr[(Md

i , Sd−2
i ) = (Md

j , Sd−2
j )] . (3)

For C2
i ̸= C2

j , we use the trivial bound of Pr[C2
i ≠ C2

j ] ≤ 1, as this event does not change
the coefficient of the leading term of Eq. (3), and hence we will not consider this event in
the following analysis.

Now for each of the conditions in Bad1
enc, its probability depends on how the plaintexts

are chosen by A. Recall that we have M
[1..d]
i ≠ M

[1..d]
j , and we write the plaintext difference

as ∆M
[1..d]
i,j = M

[1..d]
i ⊕M

[1..d]
j . To derive the upper bound on Eq. (3), we proceed as

follows:
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1. We compute the upper bound on Eq. (3) when the plaintext difference is ∆M1
i,j ≠

0 ∧∆M
[3..d]
i,j = 0, and ∆M2

i,j is an arbitrary difference.

2. We prove that the plaintext difference given above maximizes Eq. (3), by showing
that any other plaintext difference does not have a larger upper bound.

We now compute the upper bound on Eq. (3) when ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0. Since

M1
i ̸= M1

j , the probability of a collision at S1 = P̃1(M1, M2) is Pr[S1
i = S1

j ] = 1/2n,
regardless of the difference ∆M2

i,j . Then, since M3
i = M3

j , the probability of a collision at
S2 = P̃2(S1, M3) is at most

Pr[S2
i = S2

j ] = Pr[S1
i = S1

j ] + Pr[S1
i ̸= S1

j ] · Pr[S2
i = S2

j | S1
i ̸= S1

j ]

≤ Pr[S1
i = S1

j ] + 1
2n

= 2
2n

.

We continue a similar step relying on M
[4..d−1]
i = M

[4..d−1]
j to obtain the upper bound on

the probability of a collision at Sx = P̃x(Sx−1, Mx+1) for x ∈ [3..d− 2] as follows:

Pr[S3
i = S3

j ] ≤ Pr[S2
i = S2

j ] + 1
2n
≤ 3

2n

Pr[S4
i = S4

j ] ≤ Pr[S3
i = S3

j ] + 1
2n
≤ 4

2n

...

Pr[Sd−2
i = Sd−2

j ] ≤ Pr[Sd−3
i = Sd−3

j ] + 1
2n
≤ d− 2

2n

Therefore, we have

Eq. (3) = Pr[(Md
i , Sd−2

i ) = (Md
j , Sd−2

j )] ≤ Pr[Sd−2
i = Sd−2

j ] ≤ d− 2
2n

,

and this gives us an upper bound (d− 2)/2n on a condition in colls,s for the case ∆M1
i,j ≠

0 ∧∆M
[3..d]
i,j = 0, and ∆M2

i,j is an arbitrary difference.
We next prove that this is the upper bound for all other plaintext differences by

showing that any plaintext difference other than ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0 does not have

a larger upper bound. Observe that the event (Md
i , Sd−2

i ) = (Md
j , Sd−2

j ) involves d − 2
TRPs P̃1, . . . , P̃d−2, and in the computation of the above, each TRP contributes to the
addition of a term 1/2n in the final upper bound. We analyze this in three cases: (C-1)
∆M1

i,j ̸= 0 ∧∆M
[3..d]
i,j ̸= 0, (C-2) ∆M1

i,j = 0 ∧∆M2
i,j ̸= 0, and (C-3) ∆M

[1,2]
i,j = 0. Note

that we cover all the cases.

(C-1) Assume that we have ∆M1
i,j ≠ 0 ∧∆M

[3..d]
i,j ≠ 0, say ∆Mx

i,j ̸= 0 for some x ∈ [3..d].
If x = d, then Pr[(Md

i , Sd−2
i ) = (Md

j , Sd−2
j )] is zero. If x ∈ [3..d− 1], where there

may be multiple indices of x, by following the above computation, we do not have
the corresponding addition of a term Pr[Sx−2

i = Sx−2
j ] to derive the upper bound on

Pr[Sx−1
i = Sx−1

j ]. That is, we use Pr[Sx−1
i = Sx−1

j ] ≤ Pr[Sx−2
i = Sx−2

j ] + 1/2n in
the above computation, and the lack of Pr[Sx−2

i = Sx−2
j ] makes it smaller, implying

that the final upper bound would also be smaller.

(C-2) If ∆M1
i,j = 0 ∧∆M2

i,j ≠ 0, then Pr[S1
i = S1

j ] = 0, and hence the final bound would
be smaller by following the above computation.



38 Generalized Feistel Structures Based on TBCs

(C-3) If ∆M
[1,2]
i,j = 0, then we must have ∆M

[3..d]
i,j ≠ 0, and assume that ∆Mx

i,j ̸= 0, where
x ∈ [3..d] is the smallest index. Now ∆Mx

i,j ̸= 0 comes at the leftmost position at
the input of the x-th round, and we are back to the analysis of the initial case of
∆M1

i,j ̸= 0 ∧∆M
[3..d]
i,j = 0 with a reduced round version, which cannot have a larger

collision probability.

Therefore, the plaintext difference ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0 maximizes Eq. (3), and

the corresponding upper bound (d− 2)/2n is the upper bound for all the cases in colls,s.

Analysis of colls,c. Next, we consider a condition in colls,c. Among the d×
(

q
2
)

conditions
in colls,c of Bad1

enc, we focus on the analysis of (Sr−2d+2, C2) that involves the internal
state with the smallest index in the number of round, as other cases of colls,c cannot have
a larger upper bound. When r = 2d− 2, we have Sr−2d+2 = S0 = M1, and we therefore
consider

Pr[(Sr−2d+2
i , C2

i ) = (Sr−2d+2
j , C2

j ) ∧ C3
i ̸= C3

j ] ≤ Pr[(M1
i , C2

i ) = (M1
j , C2

j )] . (4)

It is clear that Eq. (4) is maximized when ∆M1
i,j = 0. In the ideal world, a ciphertext

is obtained as the output of the dn-bit random permutation π. This implies that regardless
of the plaintext difference, for any a ∈ [1..d], we have

Pr[Ca
i = Ca

j ] = 2(d−1)n − 1
2dn − 1 ≤ 2(d−1)n − 1

2dn − 2n
= 1

2n
. (5)

We thus have

Eq. (4) = Pr[(M1
i , C2

i ) = (M1
j , C2

j )] ≤ Pr[C2
i = C2

j ] ≤ 1
2n

,

and this gives us the upper bound 1/2n for the conditions in colls,c.

Analysis of collc,c. Finally, we consider collc,c. Since ciphertexts are generated with π,
regardless of the plaintext difference, for any a, b ∈ [1..d], a ̸= b, we have

Pr[(Ca
i , Cb

i ) = (Ca
j , Cb

j )] = 2(d−2)n − 1
2dn − 1 ≤ 2(d−2)n − 1

2dn − 22n
= 1

22n
. (6)

Therefore, 1/22n is the upper bound for all the conditions in collc,c, and this completes
the proof of Lemma 2.

We experimentally verified the correctness of Lemma 2 for 3 ≤ d ≤ 16. Our program
computes, for each of the conditions in Bad1

enc, its probability for all the (2d − 1) non-zero
plaintext differences, and outputs the maximum probability with the input difference that
gives the maximum probability. The result fully confirms the correctness in this range.
See Appendix A for more details.

We are now ready to present the upper bound on the probability of Tbad for the case
r = 2d− 2 in the following lemma.

Lemma 3. For r = 2d− 2, we have

Pr[ΘI ∈ Tbad] ≤ (d− 1)q2

2n
+ 0.5(d− 1)q2

22n
.
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Proof. We compute the probability of θ ∈ Tbad in the ideal world. As mentioned, Bad1
enc

contains 1×
(

q
2
)

conditions in colls,s, d×
(

q
2
)

conditions in colls,c, and (d−1)×
(

q
2
)

conditions
in collc,c. From Lemma 2, we have

Pr[ΘI ∈ Tbad] ≤
(

q

2

)
·
(

d− 2
2n

+ 1
2n
· d + 1

22n
· (d− 1)

)
≤ 0.5q2 ·

(
2d− 2

2n
+ d− 1

22n

)
= (d− 1)q2

2n
+ 0.5(d− 1)q2

22n
,

as claimed in Lemma 3.

4.2.2 Bad Probability for r = 3d − 2

When r = 3d− 2, for each of the conditions in Bad1
enc, we have the following lemma.

Lemma 4. Let r = 3d− 2, and consider one of the 2d×
(

q
2
)

conditions in Bad1
enc. Then,

the probability of the condition is at most (d2 − d− 2)/(2 · 22n) if it is in colls,s, at most
(d− 1)/22n if it is in colls,c, and at most 1/22n if it is in collc,c.

We proceed as in the proof of Lemma 2. We present a proof sketch below, and a full
proof is presented in Appendix B.

Proof sketch. The overall structure of the proof is similar to that of Lemma 2. We first
consider colls,s, followed by colls,c and collc,c.

Analysis of colls,s. We consider a 2n-bit collision at (Sr−2d+1, Sr−d), which is a unique
condition in colls,s. Since Sr−2d+1 = Sd−1 and Sr−d = S2d−2 hold when r = 3d− 2, we
evaluate

Pr[S[r−2d+1,r−d]
i = S

[r−2d+1,r−d]
j ∧ C2

i ̸= C2
j ] ≤ Pr[S[d−1,2d−2]

i = S
[d−1,2d−2]
j ] .

We derive the upper bound (d2 − d − 2)/(2 · 22n) on Pr[S[d−1,2d−2]
i = S

[d−1,2d−2]
j ] when

the plaintext difference is ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0, where ∆M2

i,j is any difference. Then,
we show that this is the upper bound on all the possible plaintext differences by showing
that other cases do not have a larger upper bound.

Analysis of colls,c. For colls,c, we only consider a collision at (Sr−2d+2, C2) that involves
an internal state with the smallest index in the number of round. Since we have Sr−2d+2 =
Sd when r = 3d− 2, we evaluate

Pr[(Sr−2d+2
i , C2

i ) = (Sr−2d+2
j , C2

j ) ∧ C3
i ̸= C3

j ] ≤ Pr[(Sd
i , C2

i ) = (Sd
j , C2

j )] .

Then, we compute the upper bound (d − 1)/22n of Pr[(Sd
i , C2

i ) = (Sd
j , C2

j )] when the
plaintext difference is ∆M1

i,j = 0 ∧∆M2
i,j ̸= 0 ∧∆M [4..d] = 0, where ∆M3

i,j is an arbitrary
difference. We can show that this upper bound covers all other cases.

Analysis of collc,c. Finally, we consider a condition in collc,c. The analysis is the same
as in Eq. (6), and we obtain the upper bound 1/22n for all the conditions in collc,c.

The correctness of Lemma 4 is also experimentally verified in the range of 3 ≤ d ≤ 16.
See Appendix A for more details.

We now present the upper bound on the probability of Tbad for the case r = 3d− 2.
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Lemma 5. For r = 3d− 2, we have

Pr[ΘI ∈ Tbad] ≤ 0.25(3d2 − d− 4)q2

22n
.

Proof. We compute the probability of θ ∈ Tbad in the ideal world by taking summation of
relevant bad probabilities. From Lemma 4, we have

Pr[ΘI ∈ Tbad] ≤
(

q

2

)
·
(

d2 − d− 2
2 · 22n

+ d− 1
22n

· d + 1
22n
· (d− 1)

)
≤ 0.5q2 · (d2 − d− 2) + 2(d2 − d) + 2(d− 1)

2 · 22n
= 0.25(3d2 − d− 4)q2

22n
,

and this shows the bound in Lemma 5.

4.3 Probability Ratio of Good Transcript
Here, we prove the following lemma regarding a good transcript θ ∈ Tgood.

Lemma 6. For any θ ∈ Tgood, we have

Pr[ΘR = θ]
Pr[ΘI = θ] ≥ 1− 0.5q2

2dn
.

Proof. In the real world, the interpolation probability Pr[ΘR = θ] of θ ∈ Tgood is the
probability that r TPRs P̃1, . . . , P̃r interpolate θ. For x ∈ [1..r], let px

all denote the
probability that P̃x interpolates all the q input-tweak-output associated to the TRP. Then,
for any θ ∈ Tgood, we have

Pr[ΘR = θ] =
r∏

x=1
px

all ≥

(
r−d∏
x=1

px
all

)
·

(
r∏

x=r−d+1

1
2nq

)
=
(

r−d∏
x=1

px
all

)
· 1

2dnq
.

In the ideal world, the interpolation probability Pr[ΘI = θ] of θ ∈ Tgood is the
probability that the dn-bit random permutation π and r−d TRPs P̃1, . . . , P̃r−d interpolate
the relevant plaintext-ciphertext or input-tweak-output associated to it. Note that for
P̃1, . . . , P̃r−d, they generate the internal state with the same probability distribution as in
the real world, and hence they have the same interpolation probability as p1

all, . . . , pr−d
all ,

respectively. Therefore, for any θ ∈ Tgood, we have

Pr[ΘI = θ] =
(

r−d∏
x=1

px
all

)
·

(
q∏

i=1

1
2dn − (i− 1)

)
.

We now compute the ratio as

Pr[ΘR = θ]
Pr[ΘI = θ] ≥

q∏
i=1

2dn − (i− 1)
2dn

=
q∏

i=1

(
1− i− 1

2dn

)
≥ 1−

q∑
i=2

i− 1
2dn

≥ 1− 0.5q2

2dn
,

and we obtain Lemma 6.

5 SPRP Security of TBC-based Type-1 GFS
In this section, we prove SPRP security of E1,d,r, TBC-based type-1 GFS, where we use r
independent (n, n)-TRPs.
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Theorem 2 (TBC-based type-1 GFS, SPRP-security). Fix d ≥ 3, and let P̃1, . . . , P̃r be r

independent (n, n)-TRPs and E = E1,d,r[P̃1, . . . , P̃r] be the TBC-based type-1 GFS. Then
for any SPRP-adversary A that makes q queries, if r = d2 − 2d + 2 rounds, we have

Advsprp
E (A) ≤ 0.5(d2 − 2d + 2)q2

2n
+ 0.5q2

22n
+ 0.5q2

2dn
, (7)

and if r = d2 − d + 2 rounds, we have

Advsprp
E (A) ≤ 0.25(d3 − 3d + 4)q2

22n
+ 0.5q2

2dn
. (8)

In Theorem 2, Eq. (7) shows birthday-bound security and Eq. (8) shows BBB security.
The former is obtained from Lemma 8, Lemma 11, and the Coefficient-H technique
(Lemma 1), and the latter is obtained from Lemma 10, Lemma 11, and the Coefficient-H
technique (Lemma 1).

In the proof of Theorem 2, both Eq. (7) and Eq. (8) consider CPCA security. The
difference is in the number of rounds. We use the same definition of the oracles (Sect. 5.1)
and the interpolation probability (Sect. 5.3). The computation of the probability of bad
events (Sect. 5.2) is different. The case r = d2 − 2d + 2 is in Sect. 5.2.1, and the case
r = d2 − d + 2 is in Sect. 5.2.2.

We consider a CPCA-adversary A that interacts with the real world oracles R and
R−1, or with the ideal world oracles I and I−1. Without loss of generality, A is assumed
to be deterministic, makes exactly q queries, does not repeat the same query, and does not
make a redundant query, i.e., if A makes an encryption query M to obtain C, then it does
not subsequently make a decryption query C, and vice versa.

5.1 Definition of the Oracles
The real world oracle R is defined as E1,d,r that uses r independent TRPs P̃1, . . . , P̃r,
and R−1 is defined as E−1

1,d,r. If the i-th query is a query for R, then we compute the
internal states S1

i , . . . , Sr−d
i with P̃1, . . . , P̃r−d, and the ciphertext with P̃r−d+1, . . . , P̃r. If

the i-th query is a query for R−1, then we compute the internal states Sr−d
i , . . . , S1

i with
P̃ −1

r , . . . , P̃ −1
d+1, and the plaintext with P̃ −1

d , . . . , P̃ −1
1 . For each query A makes, we record

the internal states S1
i , . . . , Sr−d

i in S, and the entire history of the internal states S is given
to A after it makes q queries and before it outputs its decision bit. This only benefits A,
and we show Eq. (7) and Eq. (8) with this A that has S as input. The real world oracles
R and R−1 are presented in Fig. 8.

The ideal world oracle I is defined as the dn-bit random permutation π, and I−1 is
defined as π−1. For the i-th query, I and I−1 generate dummy internal states S1

i , . . . , Sr−d
i ,

and record them into S. After A makes q queries, S is given to A. In I, we simulate
P̃1, . . . , P̃r−d to generate the internal states that have the same probability distribution
as in R. In I−1, we simulate P̃ −1

r , . . . , P̃ −1
d+1 to generate the internal states that have the

same probability distribution as in R−1. The simulation uses the lazy-sampling, and the
algorithms of I and I−1 are presented in Fig. 9.

5.2 Bad Transcript and Bad Probability
The adversary A is given all the internal states after it makes q queries. The interaction
between the oracle and A can be summarized as a transcript θ as

θ =
(

(M [1..d]
1 , C

[1..d]
1 , S

[1..r−d]
1 ), . . . , (M [1..d]

q , C [1..d]
q , S[1..r−d]

q )
)

. (9)
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Algorithm 3: Procedure of R for the i-th query
Input: M

[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1. (S−d+1
i , S−d+2

i , . . . , S−1
i , S0

i )← (M2
i , M3

i , . . . , Md
i , M1

i )
2. for x = 1, 2, . . . , r do

Sx
i ← P̃x(Sx−1

i , Sx−d
i )

3. (C1
i , C2

i , . . . , Cd
i )← (Sr

i , Sr−d+1
i , Sr−d+2

i , . . . , Sr−1
i )

4. return C
[1..d]
i

5. S← S ∥ S
[1..r−d]
i

Algorithm 4: Procedure of R−1 for the i-th query
Input: C

[1..d]
i ∈ {0, 1}dn

Output: M
[1..d]
i ∈ {0, 1}dn

1. (Sr−d+1
i , Sr−d+2

i , . . . , Sr−1
i , Sr

i )← (C2
i , C3

i . . . , Cd
i , C1

i )
2. for x = r, r − 1, . . . , 1 do

Sx−d
i ← P̃ −1

x (Sx−1
i , Sx

i )
3. (M1

i , M2
i , . . . , Md

i )← (S0
i , S−d+1

i , S−d+2
i , . . . , S−1

i )
4. return M

[1..d]
i

5. S← S ∥ S
[1..r−d]
i

Figure 8: Definition of R and R−1 for the SPRP proof of E1,d,r. Initially, S is empty, and
S is given to A after it makes all the q queries.

Since we assume that A does not repeat a query, for any 1 ≤ j < i ≤ q, we have
(M1

i , . . . , Md
i ) ̸= (M1

j , . . . , Md
j ) and (C1

i , . . . , Cd
i ) ̸= (C1

j , . . . , Cd
j ). For a transcript in

Eq. (9), we define two sets of indices to specify the direction of the queries:

Qe = {i | the i-th query is an encryption query}
Qd = {i | the i-th query is a decryption query}

We follow a similar argument to Sect. 4.2 to define the set of bad transcripts. In
the ideal world, for P̃x with x ∈ [1..r − d] in encryption and P̃ −1

x with x ∈ [d + 1..r] in
decryption, i.e., for TPRs that we simulate, it has the same input-tweak-output relation
as in the real world. However, for P̃r−d+1, . . . , P̃r in encryption and P̃ −1

d , . . . , P̃ −1
1 in

decryption that are not simulated in the ideal world, this may not be the case. That
is, the output can be different even though it takes the same input and tweak, or the
input can be different when it takes the same output and tweak. In other words, in the
ideal world, TRPs P̃r−d+1, . . . , P̃r in encryption and P̃ −1

d , . . . , P̃ −1
1 in decryption are not

simulated, and there are conditions on these TRPs that can only hold in the ideal world.
Our definition of the set of bad transcripts, Tbad, consists of all such transcripts θ.

If the i-th query is an encryption query, the same conditions as Bad1
enc in Sect. 4.2

can only hold in the ideal world. Here, 1 ≤ j < i ≤ q, and since we have
∑

i∈Qe
(i − 1)

possible combinations of i and j, these conditions are 2d×
∑

i∈Qe
(i− 1) possible collisions

of 2n-bit variables in Bad1
enc. Note that we consider bad conditions that occur at the i-th

query, and j is in the range 1 ≤ j < i ≤ q. That is, i is in Qe, while j can be in Qe or Qd.
If the i-th query is a decryption query, we let x ∈ [2..d], and we consider the following
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Algorithm 5: Procedure of I for the i-th query
Input: M

[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1. C
[1..d]
i ← π(M [1..d]

i )
2. (S−d+1

i , S−d+2
i , . . . , S−1

i , S0
i )← (M2

i , M3
i , . . . , Md

i , M1
i )

3. for x = 1, 2, . . . , r − d do
Sx

i ← {Sx
j | j < i ∧ Sx−1

i = Sx−1
j }

if ∃j < i, S
[x−d,x−1]
i = S

[x−d,x−1]
j then Sx

i ← Sx
j

else Sx
i

$← {0, 1}n \ Sx
i

4. return C
[1..d]
i

5. S← S ∥ S
[1..r−d]
i

Algorithm 6: Procedure of I−1 for the i-th query
Input: C

[1..d]
i ∈ {0, 1}dn

Output: M
[1..d]
i ∈ {0, 1}dn

1. M
[1..d]
i ← π−1(C [1..d]

i )
2. (Sr−d+1

i , Sr−d+2
i , . . . , Sr−1

i , Sr
i )← (C2

i , C3
i . . . , Cd

i , C1
i )

3. for x = r, r − 1, . . . , d + 1 do
Sx−d

i ← {Sx−d
j | j < i ∧ Sx−1

i = Sx−1
j }

if ∃j < i, S
[x−1,x]
i = S

[x−1,x]
j then Sx−d

i ← Sx−d
j

else Sx−d
i

$← {0, 1}n \ Sx−d
i

4. return M
[1..d]
i

5. S← S ∥ S
[1..r−d]
i

Figure 9: Definition of I and I−1 for the SPRP proof of E1,d,r. Initially, S is empty, and
S is given to A after it makes all the q queries.

bad conditions:

Bad at P̃1 : (M1
i , M2

i ) = (M1
j , M2

j ) ∧ S1
i ̸= S1

j

or (M1
i , S1

i ) = (M1
j , S1

j ) ∧M2
i ̸= M2

j

Bad at P̃x : (Mx+1
i , Sx−1

i ) = (Mx+1
j , Sx−1

j ) ∧ Sx
i ̸= Sx

j

or (Sx−1
i , Sx

i ) = (Sx−1
j , Sx

j ) ∧Mx+1
i ̸= Mx+1

j

Here, when x = d, we let Md+1 = M1. If r < 2d, then a ciphertext block (instead of a
block of internal state) is involved in the condition, and we let Sr−d+1 = C2.

These conditions can only hold in the ideal world, and they are impossible in the real
world. We define Bad1

dec as the set of all these conditions. Here, 1 ≤ j < i ≤ q, and since
we have

∑
i∈Qd

(i− 1) possible combinations of i and j, Bad1
dec consists of:

• (d − 1) ×
∑

i∈Qd
(i − 1) conditions of a 2n-bit collision between two internal state

blocks (e.g., (Sx−1
i , Sx

i ) = (Sx−1
j , Sx

j )), which we write colls,s,

• d×
∑

i∈Qd
(i−1) conditions of a 2n-bit collision between one internal state block and

one plaintext block (e.g., (Mx+1
i , Sx−1

i ) = (Mx+1
j , Sx−1

j )), which we write colls,m,
and
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• 1×
∑

i∈Qd
(i− 1) conditions of a 2n-bit collision between two plaintext blocks (e.g.,

(M1
i , M2

i ) = (M1
j , M2

j )), which we write collm,m.

In total, we have 2d×
∑

i∈Qd
(i− 1) possible collisions of 2n-bit variables in Bad1

dec. Note
that i is in Qd, while j can be in Qe or Qd.

Now the set of bad transcripts Tbad is defined as the set of all the attainable transcripts
that satisfy at least one of the conditions in Bad1

enc ∪ Bad1
dec. Formally, we define

Tbad = {θ | θ satisfies at least one of the conditions in Bad1
enc ∪ Bad1

dec} .

The set of good transcripts Tgood = Tall \ Tbad is defined as the set of all the attainable
transcripts θ that are not in Tbad.

In what follows, we evaluate the probability to have bad transcripts. We consider the
case r = d2 − 2d + 2 first, and then r = d2 − d + 2.

5.2.1 Bad Probability for r = d2 − 2d + 2

Let r = d2 − 2d + 2. For each of the conditions in Bad1
dec, we have the following lemma.

Lemma 7. Let r = d2 − 2d + 2, and consider one of the 2d×
∑

i∈Qd
(i− 1) conditions in

Bad1
dec in the ideal world. Then, the probability of the condition is at most (d− 2)/2n if it

is in colls,s, at most 1/2n if it is in colls,m, and at most 1/22n if it is in collm,m.

Proof. In this proof, we write P̃ ′
1, . . . , P̃ ′

r−d for P̃ −1
r , . . . , P̃ −1

d+1 that are simulated in I−1,
i.e., for x ∈ [d + 1..r], we let P̃ −1

x (·) = P̃ ′
r−x+1(·). Similarly, we write T 1, . . . , T r−d for the

internal states Sr−d, . . . , S1 that are computed with P̃ −1
r , . . . , P̃ −1

d+1, respectively, i.e., we
let Sx = T r−d−x+1 for x ∈ [1..r − d]. That is, for x1 ∈ [2..d− 1] and x2 ∈ [d + 1..r − d],
we write

Sr−d = P̃ −1
r (Cd, C1)

Sr−d−x1+1 = P̃ −1
r−x1+1(Cd−x1+1, Cd−x1+2)

Sr−2d+1 = P̃ −1
r−d+1(Sr−d, C2)

Sr−d−x2+1 = P̃ −1
r−x2+1(Sr−x2 , Sr−x2+1)

7→

T 1 = P̃ ′
1(Cd, C1)

T x1 = P̃ ′
x1

(Cd−x1+1, Cd−x1+2)
T d = P̃ ′

d(T 1, C2)
T x2 = P̃ ′

x2
(T x2−d+1, T x2−d)

,

where the index x in P̃ ′
x indicates that the TRP P̃ ′

x is in the x-th round in the decryption
direction. See Fig. 10 for an example of this labeling. Note that P̃ ′

r−d+1, . . . , P̃ ′
r are not

used in this proof since we consider I−1 that simulates P̃ ′
1, . . . , P̃ ′

r−d.
We proceed as in the proof of Lemma 2. We first consider colls,s, followed by colls,m

and collm,m.

Analysis of colls,s. We analyze a condition in colls,s. Now colls,s contains a collision at
(S1, S2), (S2, S3), . . . , (Sd−1, Sd). Among these d − 1 collisions, we focus on (Sd−1, Sd)
that involves the internal states with the largest index in the number of round, since
other collisions cannot have a larger collision probability. For instance, for d = 4, colls,s
contains a collision at (S1, S2), (S2, S3), and (S3, S4), and clearly, the collision probability
at (S3, S4) is no smaller than the collision probability at other places (See Fig. 7, right).
Recall that here we are dealing with decryption queries. Since Sd−1 = T r−2d+2 = T d2−4d+4

and Sd = T d2−4d+3 hold when r = d2 − 2d + 2, we evaluate

Pr[S[d−1,d]
i = S

[d−1,d]
j ∧M1

i ̸= M1
j ] ≤ Pr[T [d2−4d+3,d2−4d+4]

i = T
[d2−4d+3,d2−4d+4]
j ] . (10)

We first evaluate Eq. (10) when the ciphertext difference is ∆C
[2..d−1]
i,j = 0∧∆Cd

i,j ̸= 0,
where ∆C1

i,j can take any difference. We then show that this gives us the upper bound on
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Figure 10: Examples of E−1
1,d,r with d = 4, where the TRPs and the internal states are

labeled as in the proof of Lemma 7. Left: E−1
1,d,r(C1 ∥ · · · ∥ C4) = (M1 ∥ · · · ∥M4) for

r = d2− 2d + 2 = 10. Right: E−1
1,d,r(C1 ∥ · · · ∥C4) = (M1 ∥ · · · ∥M4) for r = d2− d + 2 = 14.
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all the possible ciphertext differences by showing that all other cases do not have a larger
upper bound.

Now, for any x ∈ [3..d− 1], since we have T x = P̃ ′
x(Cd−x+1, Cd−x+2) and from

C
[2..d−1]
i = C

[2..d−1]
j , we must have T x

i = T x
j , i.e., T

[3..d−1]
i = T

[3..d−1]
j . From this and T x =

P̃ ′
x(T x−d+1, T x−d) for any x ∈ [d + 3..2d− 2], we must have T x

i = T x
j , i.e., T

[d+3..2d−2]
i =

T
[d+3..2d−2]
j . Furthermore, for any x ∈ [2d + 3..3d− 3], we must have T x

i = T x
j from

T x = P̃ ′
x(T x−d+1, T x−d). Similarly, for integer ℓ ≥ 1 and x ∈ [(ℓ− 1)d + 3..ℓ(d− 1)], we

must have collisions at T x = P̃ ′
x(Cd−x+1, Cd−x+2) if ℓ = 1, and have collisions at T x =

P̃ ′
x(T x−d+1, T x−d) if ℓ ≥ 2. These collisions hold up to ℓ = d−3 which satisfies (ℓ−1)d+3 =

ℓ(d − 1). In other words, we always have T
[d−1..(d−3)(d−1):d−1]
i = T

[d−1..(d−3)(d−1):d−1]
j ,

since we have T x
i = T x

j for ℓ ∈ [1..d− 3] and x ∈ [(ℓ− 1)d + 3..ℓ(d− 1)]. Therefore, we
have Pr[T d2−4d+3

i = T d2−4d+3
j ] = 1 from (d − 3)(d − 1) = d2 − 4d + 3. This probability

holds in the case d = 3, since T d2−4d+3 = T 0 corresponds to C2.

Example 3. If d = 4 and r = d2 − 2d + 2 = 10 (See Fig. 10, left), we have

Eq. (10) = Pr[T [d2−4d+3,d2−4d+4]
i = T

[d2−4d+3,d2−4d+4]
j ] = Pr[T [3,4]

i = T
[3,4]
j ] .

When ∆C
[2,3]
i,j = 0 ∧ ∆C4

i,j ̸= 0, we must have T 3
i = T 3

j from T 3 = P̃ ′
3(C2, C3), i.e.,

Pr[T 3
i = T 3

j ] = 1.

Example 4. If d = 6 and r = d2 − 2d + 2 = 26, we have

Eq. (10) = Pr[T [d2−4d+3,d2−4d+4]
i = T

[d2−4d+3,d2−4d+4]
j ] = Pr[T [15,16]

i = T
[15,16]
j ] .

When ∆C
[2..5]
i,j = 0 ∧ ∆C6

i,j ≠ 0, we must have T
[3..5]
i = T

[3..5]
j from T 3 = P̃ ′

3(C4, C5),
T 4 = P̃ ′

4(C3, C4), and T 5 = P̃ ′
5(C2, C3). Since T 9 = P̃ ′

9(T 4, T 3) and T 10 = P̃ ′
10(T 5, T 4),

we must have T
[9,10]
i = T

[9,10]
j . Therefore, we also have T 15

i = T 15
j from T 15 = P̃ ′

15(T 10, T 9),
i.e., T

[5..15:5]
i = T

[5..15:5]
j and Pr[T 15

i = T 15
j ] = 1.

Next, the probability of a collision at T 1 = P̃ ′
1(Cd, C1) is Pr[T 1

i = T 1
j ] = 1/2n, since

Cd
i ̸= Cd

j . From C2
i = C2

j , the probability of a collision at T d = P̃ ′
d(T 1, C2) is

Pr[T d
i = T d

j ] = Pr[T 1
i = T 1

j ] + Pr[T 1
i ̸= T 1

j ] · Pr[T d
i = T d

j | T 1
i ̸= T 1

j ]

≤ Pr[T 1
i = T 1

j ] + 1
2n

= 2
2n

.

Similarly, for any x ∈ [1..d− 4], since we have T x(d−1)+d = P̃ ′
x(d−1)+d(T x(d−1)+1, T x(d−1))

and from T
[d−1..(d−4)(d−1):d−1]
i = T

[d−1..(d−4)(d−1):d−1]
j , if T

x(d−1)+1
i = T

x(d−1)+1
j , then we

must have T
x(d−1)+d
i = T

x(d−1)+d
j . Therefore, for each x ∈ [0..d− 4], we have

Pr[T x(d−1)+d
i = T

x(d−1)+d
j ]

= Pr[T x(d−1)+1
i = T

x(d−1)+1
j ] + Pr[T x(d−1)+1

i ̸= T
x(d−1)+1
j ]

· Pr[T x(d−1)+d
i = T

x(d−1)+d
j | T x(d−1)+1

i ̸= T
x(d−1)+1
j ]

≤ Pr[T x(d−1)+1
i = T

x(d−1)+1
j ] + 1

2n
≤ Pr[T 1

i = T 1
j ] +

x∑
ℓ=0

1
2n

= x + 2
2n

.
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From (d−4)(d−1)+d = d2−4d+4, we have Pr[T d2−4d+4
i = T d2−4d+4

j ] ≤ ((d−4)+2)/2n =
(d− 2)/2n. Therefore, from Pr[T d2−4d+3

i = T d2−4d+3
j ] = 1, we obtain

Eq. (10) = Pr[T [d2−4d+3,d2−4d+4]
i = T

[d2−4d+3,d2−4d+4]
j ]

≤ Pr[T d2−4d+4
i = T d2−4d+4

j ] ≤ d− 2
2n

,

and this gives us an upper bound (d−2)/2n on a condition in colls,s for the case ∆C
[2..d−1]
i,j =

0 ∧∆Cd
i,j ̸= 0, and ∆C1

i,j is any difference.

Example 5. Following Example 3 with d = 4 and r = 10, if ∆C
[2,3]
i,j = 0 ∧∆C4

i,j ≠ 0,
the probability of a collision at T 1 = P̃ ′

1(C4, C1) is Pr[T 1
i = T 1

j ] = 1/2n from C4
i ̸= C4

j .
Since C2

i = C2
j and T 4 = P̃ ′

4(T 1, C2), we have Pr[T 4
i = T 4

j ] ≤ Pr[T 1
i = T 1

j ] + 1/2n = 2/2n.
Therefore, from Pr[T 3

i = T 3
j ] = 1, we obtain

Eq. (10) = Pr[T [3,4]
i = T

[3,4]
j ] ≤ Pr[T 4

i = T 4
j ] ≤ 2

2n
.

Example 6. With d = 6 and r = 26 as in Example 4, if ∆C
[2..5]
i,j = 0 ∧∆C6

i,j ̸= 0, the
probability of a collision at T 1 = P̃ ′

1(C6, C1) is Pr[T 1
i = T 1

j ] = 1/2n from C6
i ̸= C6

j . Since
C2

i = C2
j and T 6 = P̃ ′

6(T 1, C2), we have Pr[T 6
i = T 6

j ] ≤ Pr[T 1
i = T 1

j ] + 1/2n = 2/2n.
Similarly, from T 11 = P̃ ′

11(T 6, T 5), T 16 = P̃ ′
16(T 11, T 10), and T

[5,10]
i = T

[5,10]
j , we also have

Pr[T 16
i = T 16

j ] ≤ Pr[T 11
i = T 11

j ] + 1/2n ≤ Pr[T 6
i = T 6

j ] + 2/2n ≤ 4/2n. Therefore, from
Pr[T 15

i = T 15
j ] = 1, we obtain

Eq. (10) = Pr[T [15,16]
i = T

[15,16]
j ] ≤ Pr[T 16

i = T 16
j ] ≤ 4

2n
.

We next prove that this is the upper bound for all other ciphertext differences by
showing that any other ciphertext difference does not have a larger upper bound. Observe
that the event T

[d2−4d+3,d2−4d+4]
i = T

[d2−4d+3,d2−4d+4]
j and the computation above are

similar to colls,s in the proof of Lemma 2.

(C-4) First, let us assume that ∆C
[2..d−1]
i,j ≠ 0∧∆Cd

i,j ̸= 0, namely, for some x ∈ [2..d− 1],
we have ∆Cx

i,j ̸= 0, where there may be multiple indices of x. If x = 2, we have
Pr[T d

i = T d
j ] ≤ 1/2n from T d = P̃ ′

d(T 1, C2), and hence the probability would be
smaller. If x ∈ [3..d− 1], the event T

[d−1..(d−3)(d−1):d−1]
i = T

[d−1..(d−3)(d−1):d−1]
j

would be a probabilistic event. Therefore, we have Pr[T d2−4d+3
i = T d2−4d+3

j ] < 1,
and hence the probability would be smaller.

(C-5) Next, consider the case ∆C1
i,j ̸= 0 ∧∆Cd

i,j = 0. From T 1 = P̃ ′
1(Cd, C1), we must

have T 1
i ̸= T 1

j . Now if we further assume that ∆C
[2..d−1]
i,j = 0, we are back to the

initial case of ∆C
[2..d−1]
i,j = 0 ∧ ∆Cd

i,j ̸= 0 starting from the d-th round, and the
analysis corresponds to the one with a reduced round version by (d − 1) rounds.
Following the above computation, this would result in the reduction on the number
of terms added to the upper bound. The case ∆C

[2..d−1]
i,j ≠ 0 would have a smaller

upper bound as in the case (C-4).

(C-6) Finally, we consider the case ∆C
[1,d]
i,j = 0, in which case we necessarily have

∆C
[2..d−1]
i,j ≠ 0. Consider the largest index y ∈ [2..d− 1] such that ∆Cy

i,j ̸= 0.
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Then since ∆C
[y+1..d]
i,j = 0, it has the same input difference as ∆Cd

i,j ̸= 0 at the
input of the (d− y + 1)-th round, and hence this case corresponds to the analysis of
the reduced round version by (d− y) rounds.
If y = d − 1 and ∆C

[2..d−2]
i,j = 0, we have Pr[T d2−4d+4

i = T d2−4d+4
j ] = 1, but

we also have Pr[T d2−4d+3
i = T d2−4d+3

j ] = 0. Since this case corresponds to the
analysis of the reduced round version by one round, T x in the initial case cor-
responds to T x+1 in this case. Then, we have T x

i = T x
j for ℓ ∈ [1..d− 3] and

x ∈ [(ℓ− 1)d + 4..ℓ(d− 1) + 1], i.e., T
[4..(d−4)d+4:d]
i = T

[4..(d−4)d+4:d]
j . It follows

that for any ℓ ∈ [0..d− 4], we have T ℓd+3
i ̸= T ℓd+3

j since T 3 = P̃ ′
3(Cd−2, Cd−1)

and T ℓd+3 = P̃ ′
ℓd+3(T (ℓ−1)d+4, T (ℓ−1)d+3). Therefore, Pr[T d2−4d+3

i = T d2−4d+3
j ] = 0

holds in this case. Note that this holds for the case d = 3, since T d2−4d+3 = T 0 = C2.
In other cases, the event T

[d−1..(d−3)(d−1):d−1]
i = T

[d−1..(d−3)(d−1):d−1]
j would be a

probabilistic event, and hence the final bound cannot be larger as in the analysis of
the case (C-4).

Therefore, the case ∆C
[2..d−1]
i,j = 0∧∆Cd

i,j ̸= 0, where ∆C1
i,j is any difference, maximizes

Eq. (10) and the corresponding upper bound (d − 2)/2n is the upper bound for all the
cases in colls,s.

Analysis of colls,m. Next, we consider a condition in colls,m. With the same reasoning
as the case of colls,s, we consider a collision at (M1, Sd−1) that involves an internal state
with the largest index in the number of round, as a collision at other places cannot have a
larger collision probability. Since Sd−1 = T r−2d+2 = T d2−4d+4 holds when r = d2− 2d + 2,
we evaluate

Pr[(M1
i , Sd−1

i ) = (M1
j , Sd−1

j ) ∧ Sd
i ̸= Sd

j ] ≤ Pr[(M1
i , T d2−4d+4

i ) = (M1
j , T d2−4d+4

j )] . (11)

We first compute the upper bound on Eq. (11) when the ciphertext difference is
∆C

[1..d−2]
i,j = 0 ∧∆Cd−1

i,j ̸= 0 ∧∆Cd
i,j = 0. We then show that this upper bound covers all

other cases.
Now from C

[1,d]
i = C

[1,d]
j , we have T 1

i = T 1
j since T 1 = P̃ ′

1(Cd, C1). Then the input
difference Cd ∥ T 1 ∥ C [2..d−1] of the second round becomes the same ciphertext difference
∆C

[2..d−1]
i,j = 0 ∧∆Cd

i,j ̸= 0 in the analysis of colls,s. By adding a round at the beginning,
T x in the analysis of colls,s corresponds to T x+1 in this analysis. With the same argument,
we have Pr[T d2−4d+4

i = T d2−4d+4
j ] = 1.

In the ideal world, plaintexts are obtained as the output of the dn-bit random per-
mutation π−1. This implies that regardless of the ciphertext difference, by following the
computation in Eq. (5), we similarly have Pr[M1

i = M1
j ] ≤ 1/2n. We thus have

Eq. (11) = Pr[(M1
i , T d2−4d+4

i ) = (M1
j , T d2−4d+4

j )] ≤ Pr[M1
i = M1

j ] ≤ 1
2n

,

when the ciphertext difference is ∆C
[1..d−2]
i,j = 0 ∧∆Cd−1

i,j ̸= 0 ∧∆Cd
i,j = 0.

Next, we show that this upper bound covers all other cases. Since Pr[M1
i = M1

j ]
does not depend on the ciphertext difference, and we cannot have a larger probability
than Pr[T d2−4d+4

i = T d2−4d+4
j ] = 1, the case ∆C

[1..d−2]
i,j = 0 ∧ ∆Cd−1

i,j ̸= 0 ∧ ∆Cd
i,j = 0

maximizes Eq. (11) and 1/2n is the upper bound on a condition in colls,m for all the cases.

Analysis of collm,m. Finally, we consider a condition in collm,m. From a similar analysis
to Eq. (6), the probability of a condition in collm,m is at most 1/22n. This completes the
proof of Lemma 7.
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The correctness of Lemma 7 is also experimentally verified in the range of 3 ≤ d ≤ 16.
See Appendix A for more details.

We are now ready to present the upper bound on the probability of Tbad for the case
r = d2 − 2d + 2.

Lemma 8. For r = d2 − 2d + 2, we have

Pr[ΘI ∈ Tbad] ≤ 0.5(d2 − 2d + 2)q2

2n
+ 0.5q2

22n
.

Proof. We compute the probability of θ ∈ Tbad in the ideal world. Let penc
i and pdec

i be the
probability that Bad1

enc and Bad1
dec occur for the first time in the i-th query, respectively.

In other words, we assume that neither Bad1
enc nor Bad1

dec occurs before the i-th query,
and compute penc

i and pdec
i . Then, we have

Pr[ΘI ∈ Tbad] =
q∑

i=2
(penc

i + pdec
i ) =

∑
i∈Qe

penc
i +

∑
i∈Qd

pdec
i . (12)

We note that penc
i = 0 if i /∈ Qe. Similarly, pdec

i = 0 if i /∈ Qd.
If the i-th query is an encryption query, we consider bad conditions in Bad1

enc. Since
d ≥ 3, we have d2 − 2d + 2 > 2d − 2 from (d2 − 2d + 2) − (2d − 2) = (d − 2)2 > 0, i.e.,
r = d2 − 2d + 2 is larger than r = 2d − 2 in Sect. 4.2.1. Therefore, for r = d2 − 2d + 2,
each probability of the conditions in Bad1

enc does not have a larger upper bound than the
probability in Lemma 2. As mentioned, Bad1

enc contains 1×
∑

i∈Qe
(i− 1) conditions in

colls,s, d ×
∑

i∈Qe
(i − 1) conditions in colls,c, and (d − 1) ×

∑
i∈Qe

(i − 1) conditions in
collc,c. From Lemma 2, we have

penc
i ≤ (i− 1) ·

(
d− 2

2n
+ 1

2n
· d + 1

22n
· (d− 1)

)
= (i− 1) ·

(
2d− 2

2n
+ d− 1

22n

)
.

If the i-th query is a decryption query, we consider bad conditions in Bad1
dec. As

mentioned, Bad1
dec contains (d− 1)×

∑
i∈Qd

(i− 1) conditions in colls,s, d×
∑

i∈Qd
(i− 1)

conditions in colls,m, and 1×
∑

i∈Qd
(i− 1) conditions in collm,m. From Lemma 7, we have

pdec
i ≤ (i− 1) ·

(
d− 2

2n
· (d− 1) + 1

2n
· d + 1

22n

)
= (i− 1) ·

(
d2 − 2d + 2

2n
+ 1

22n

)
.

Therefore, pdec
i in the case that the i-th query is decryption has a larger upper bound

than penc
i in the case that the i-th query is encryption, and we have

Pr[ΘI ∈ Tbad] =
∑
i∈Qe

penc
i +

∑
i∈Qd

pdec
i ≤

q∑
i=2

(
(i− 1) ·

(
d2 − 2d + 2

2n
+ 1

22n

))

≤ 0.5q2 ·
(

d2 − 2d + 2
2n

+ 1
22n

)
= 0.5(d2 − 2d + 2)q2

2n
+ 0.5q2

22n
,

as claimed in Lemma 8.

5.2.2 Bad Probability for r = d2 − d + 2

When r = d2 − d + 2, for each of the conditions in Bad1
dec, we have the following lemma.

Lemma 9. Let r = d2 − d + 2, and consider one of the 2d×
∑

i∈Qd
(i− 1) conditions in

Bad1
dec. Then, the probability of the condition is at most (d2 − d− 2)/(2 · 22n) if it is in

colls,s, at most (d− 1)/22n if it is in colls,m, and at most 1/22n if it is in collm,m.
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We proceed as in the proof of Lemma 2. We present a proof sketch below, and a full
proof is presented in Appendix C.

Proof sketch. The overall structure of the proof is similar to that of Lemma 2. We first
consider colls,s, followed by colls,m and collm,m.

Analysis of colls,s. We consider a 2n-bit collision at (Sd−1, Sd) that involves an internal
state with the largest index in the number of round. We evaluate

Pr[S[d−1,d]
i = S

[d−1,d]
j ∧M1

i ̸= M1
j ] ≤ Pr[S[d−1,d]

i = S
[d−1,d]
j ] .

We derive the upper bound (d2 − d − 2)/(2 · 22n) on Pr[S[d−1,d]
i = S

[d−1,d]
j ] when the

ciphertext difference is ∆C
[2..d−1]
i,j = 0 ∧∆Cd

i,j ̸= 0, where ∆C1
i,j is any difference. Then,

we show that this is the upper bound on all the possible ciphertext differences by showing
that other cases do not have a larger upper bound.

Analysis of colls,m. For colls,m, we only consider a collision at (M1, Sd−1) that involves
an internal state with the largest index in the number of round. We evaluate

Pr[(M1
i , Sd−1

i ) = (M1
j , Sd−1

j ) ∧ Sd
i ̸= Sd

j ] ≤ Pr[(M1
i , Sd−1

i ) = (M1
j , Sd−1

j )] .

Then, we compute the upper bound (d− 1)/22n of Pr[(M1
i , Sd−1

i ) = (M1
j , Sd−1

j )] when the
ciphertext difference is ∆C

[1..d−2]
i,j = 0 ∧∆Cd−1

i,j ̸= 0 ∧∆Cd = 0. We can show that this
upper bound covers all other cases.

Analysis of collm,m. Finally, we consider a condition in collm,m. The analysis is similar
to Eq. (6), and we obtain the upper bound 1/22n for all the conditions in collm,m.

The correctness of Lemma 9 is also experimentally verified in the range of 3 ≤ d ≤ 16.
See Appendix A for more details.

We now present the upper bound on the probability of Tbad for the case r = d2− d + 2.

Lemma 10. For r = d2 − d + 2, we have

Pr[ΘI ∈ Tbad] ≤ 0.25(d3 − 3d + 4)q2

22n
.

Proof. We follow a similar argument to the proof of Lemma 8 to compute the probability
of θ ∈ Tbad in the ideal world. Let penc

i and pdec
i be the probability that Bad1

enc and Bad1
dec

occur for the first time in the i-th query, respectively. Then, we have the same equation as
Eq. (12).

If the i-th query is encryption, we consider bad conditions in Bad1
enc. Since d ≥ 3, we

have d2 − d + 2 > 3d− 2 from (d2 − d + 2)− (3d− 2) = (d− 2)2 > 0, i.e., r = d2 − d + 2 is
larger than r = 3d− 2 in Sect. 4.2.2. Therefore, for r = d2 − d + 2, each probability of the
conditions in Bad1

enc does not have a larger upper bound than the probability in Lemma 4.
From Lemma 4, we have

penc
i ≤ (i− 1) ·

(
d2 − d− 2

2 · 22n
+ d− 1

22n
· d + 1

22n
· (d− 1)

)
= (i− 1) · (d2 − d− 2) + 2(d2 − d) + 2(d− 1)

2 · 22n
= (i− 1) · 0.5(3d2 − d− 4)

22n
.
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If the i-th query is decryption, we consider bad conditions in Bad1
dec. From Lemma 9,

we have

pdec
i ≤ (i− 1) ·

(
d2 − d− 2

2 · 22n
· (d− 1) + d− 1

22n
· d + 1

22n

)
= (i− 1) · (d3 − 2d2 − d + 2) + 2(d2 − d) + 2

2 · 22n
= (i− 1) · 0.5(d3 − 3d + 4)

22n
.

Here, since d ≥ 3, we have d3−3d + 4 > 3d2−d−4 from (d3−3d + 4)− (3d2−d−4) =
(d − 2)(d2 − d − 4) > 0. Therefore, pdec

i in the case that i-th query is decryption has a
larger upper bound than penc

i in the case that i-th query is encryption, and we have

Pr[ΘI ∈ Tbad] =
∑
i∈Qe

penc
i +

∑
i∈Qd

pdec
i ≤

q∑
i=2

(
(i− 1) · 0.5(d3 − 3d + 4)

22n

)

≤ 0.5q2 · 0.5(d3 − 3d + 4)
22n

= 0.25(d3 − 3d + 4)q2

22n
,

as claimed in Lemma 10.

5.3 Probability Ratio of Good Transcript
Here, we prove the following lemma regarding a good transcript θ ∈ Tgood.

Lemma 11. For any θ ∈ Tgood, we have

Pr[ΘR = θ]
Pr[ΘI = θ] ≥ 1− 0.5q2

2dn
.

Proof. Let qe and qd be the number of times that the adversary A makes encryption and
decryption queries, respectively, i.e., we have qe + qd = q.

In the real world, the interpolation probability Pr[ΘR = θ] of θ ∈ Tgood is the probability
that r TPRs P̃1, . . . , P̃r interpolate θ. For x ∈ [1..r], let px

all denote the probability that
P̃x interpolates all the q input-tweak-output associated to the TRP, and let px

i denote the
probability that P̃x interpolates the input-tweak-output associated to the TRP in the i-th
query, i.e., px

all =
∏q

i=1 px
i . We remark that the probabilities are taken over the experiment

in Fig. 8. We also let px
e (resp. px

d) denote the probability that P̃x interpolates the qe
(resp. qd) input-tweak-output associated to the TRP in the i-th query for any i ∈ Qe
(resp. i ∈ Qd). In other words, we let px

e =
∏

i∈Qe
px

i and px
d =

∏
i∈Qd

px
i , and we thus

have px
all = px

e · px
d. Therefore, for any θ ∈ Tgood, we have

Pr[ΘR = θ] =
r∏

x=1
px

all ≥

(
r−d∏
x=1

px
e

)
·

(
r∏

x=r−d+1

1
2nqe

)
·

(
r∏

x=d+1
px

d

)
·

(
d∏

x=1

1
2nqd

)

=
(

r−d∏
x=1

px
e

)
·

(
r∏

x=d+1
px

d

)
· 1

2dnq
.

In the ideal world, the interpolation probability Pr[ΘI = θ] of θ ∈ Tgood is the
probability that the dn-bit random permutation π and simulated r−d TRPs (P̃1, . . . , P̃r−d

in encryption or P̃ −1
d+1, . . . , P̃ −1

r in decryption) interpolate the relevant plaintext-ciphertext
or input-tweak-output associated to it. Note that for simulated P̃1, . . . , P̃r−d in encryption
(resp. P̃ −1

d+1, . . . , P̃ −1
r in decryption), they generate the internal state with the same

probability distribution as in the real world, and hence they have the same interpolation
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probability as p1
e , . . . , pr−d

e (resp. pd+1
d , . . . , pr

d), respectively. Therefore, for any θ ∈ Tgood,
we have

Pr[ΘI = θ] =
(

r−d∏
x=1

px
e

)
·

(
r∏

x=d+1
px

d

)
·

(
q∏

i=1

1
2dn − (i− 1)

)
.

We now compute the ratio as

Pr[ΘR = θ]
Pr[ΘI = θ] ≥

q∏
i=1

2dn − (i− 1)
2dn

=
q∏

i=1

(
1− i− 1

2dn

)
≥ 1−

q∑
i=2

i− 1
2dn

≥ 1− 0.5q2

2dn
,

and we obtain Lemma 11.

6 Provable Security of TBC-based Type-2 GFS
In this section, we prove SPRP security of E2,d,r, TBC-based type-2 GFS, where we use
rd/2 independent (n, n)-TRPs.

Theorem 3 (TBC-based type-2 GFS, SPRP security). Fix d ≥ 4, where d is even, and
let P̃1,1, . . . , P̃r,d/2 be rd/2 independent (n, n)-TRPs and E = E2,d,r[P̃1,1, . . . , P̃r,d/2] be the
TBC-based type-2 GFS. Then for any SPRP-adversary A that makes q queries, if r = d
rounds, we have

Advsprp
E (A) ≤ 0.25d2q2

2n
+ 0.25dq2

22n
+ 0.5q2

2dn
, (13)

and if r = d + 2, then we have

Advsprp
E (A) ≤ 0.125d(d2 + 3d− 4)q2

22n
+ 0.5q2

2dn
. (14)

We obtain birthday-bound security of Eq. (13) from Lemma 13, Lemma 16, and
the Coefficient-H technique (Lemma 1), and BBB security of Eq. (14) from Lemma 15,
Lemma 16, and the Coefficient-H technique (Lemma 1).

We present the definition of the oracles in Sect. 6.1, the analysis of bad probabilities in
Sect. 6.2, and the analysis of the interpolation probability in Sect. 6.3. The analysis of
bad probabilities is divided into the analysis of case r = d in Sect. 6.2.1 and case r = d + 2
in Sect. 6.2.2.

We consider real world oracles R,R−1 and ideal world oracles I, I−1. The adversary
A is assumed to be deterministic, makes exactly q queries, does not repeat the same query,
and does not make a redundant query.

6.1 Definition of the Oracles
The encryption oracle R in the real world is E2,d,r that uses P̃1,1, . . . , P̃r,d/2, and the
decryption oracle R−1 is E−1

2,d,r. If the i-th query is a query for R, then we generate internal
states S1,1

i , . . . , S
r−2,d/2
i with P̃1,1, . . . , P̃r−2,d/2, and ciphertexts with P̃r−1,1, . . . , P̃r,d/2. If

the i-th query is a query for R−1, then we generate internal states S
r−2,d/2
i , . . . , S1,1

i with
P̃ −1

r,d/2, . . . , P̃ −1
3,1 , and plaintexts with P̃ −1

2,d/2, . . . , P̃ −1
1,1 . Here, for each query A makes, we

record S1,1
i , . . . , S

r−2,d/2
i into S, and we give A the entire internal states S after it makes q

queries. The algorithms of R and R−1 are presented in Fig. 11. See Fig. 13 for an example
and the labeling convention.
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Algorithm 7: Procedure of R for the i-th query
Input: M

[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1. (S−1,1
i , S−1,2

i , . . . , S
−1,d/2
i )← (Md

i , M2
i , M4

i , . . . , Md−2
i )

2. (S0,1
i , S0,2

i , . . . , S
0,d/2
i )← (M1

i , M3
i , . . . , Md−1

i )
3. for x = 1, 2, . . . , r do

for y = 1, 2, . . . , d/2 do
ℓ← (y mod d/2) + 1
Sx,y

i ← P̃x,y(Sx−1,y
i , Sx−2,ℓ

i )
4. (C2

i , C4
i , . . . , Cd

i )← (Sr−1,2
i , Sr−1,3

i , . . . , S
r−1,d/2
i , Sr−1,1

i )
5. (C1

i , C3
i , . . . , Cd−1

i )← (Sr,1
i , Sr,2

i , . . . , S
r,d/2
i )

6. return C
[1..d]
i

7. for x = 1, 2, . . . , r − 2 do
S← S ∥ S

x,[1..d/2]
i

Algorithm 8: Procedure of R−1 for the i-th query
Input: C

[1..d]
i ∈ {0, 1}dn

Output: M
[1..d]
i ∈ {0, 1}dn

1. (Sr,1
i , Sr,2

i , . . . , S
r,d/2
i )← (C1

i , C3
i , . . . , Cd−1

i )
2. (Sr−1,1

i , Sr−1,2
i , . . . , S

r−1,d/2
i )← (Cd

i , C2
i , C4

i , . . . , Cd−2
i )

3. for x = r, r − 1, . . . , 1 do
for y = 1, 2, . . . , d/2 do

ℓ← (y mod d/2) + 1
Sx−2,ℓ

i ← P̃ −1
x,y(Sx−1,y

i , Sx,y
i )

4. (M1
i , M3

i , . . . , Md−1
i )← (S0,1

i , S0,2
i , . . . , S

0,d/2
i )

5. (M2
i , M4

i , . . . , Md
i )← (S−1,2

i , S−1,3
i . . . , S

−1,d/2
i , S−1,1

i )
6. return M

[1..d]
i

7. for x = 1, 2, . . . , r − 2 do
S← S ∥ S

x,[1..d/2]
i

Figure 11: Definition of R and R−1 for the SPRP proof of E2,d,r. Initially, S is empty,
and it is given to A after it makes all the q queries.

The encryption oracle I in the ideal world is the dn-bit random permutation π, and
the decryption oracle I−1 is π−1. For the i-th query, I and I−1 generate dummy internal
states S1,1

i , . . . , S
r−2,d/2
i , and record them into S. After A makes q queries, S is given

to A. In I, we simulate P̃1,1, . . . , P̃r−2,d/2 to generate the internal states that have the
same probability distribution as in R. In I−1, we simulate P̃ −1

r,d/2, . . . , P̃ −1
3,1 to generate the

internal states that have the same probability distribution as in R−1. The simulation uses
the lazy-sampling, and the algorithms of I and I−1 are presented in Fig. 12.
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Algorithm 9: Procedure of I for the i-th query
Input: M

[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1. C
[1..d]
i ← π(M [1..d]

i )
2. (S−1,1

i , S−1,2
i , . . . , S

−1,d/2
i )← (Md

i , M2
i , M4

i , . . . , Md−2
i )

3. (S0,1
i , S0,2

i , . . . , S
0,d/2
i )← (M1

i , M3
i , . . . , Md−1

i )
4. for x = 1, 2, . . . , r − 2 do

for y = 1, 2, . . . , d/2 do
ℓ← (y mod d/2) + 1
Sx,y

i ← {Sx,y
j | j < i ∧ Sx−1,y

i = Sx−1,y
j }

if ∃j < i, (Sx−2,ℓ
i , Sx−1,y

i ) = (Sx−2,ℓ
j , Sx−1,y

j ) then Sx,y
i ← Sx,y

j

else Sx,y
i

$← {0, 1}n \ Sx,y
i

5. return C
[1..d]
i

6. for x = 1, 2, . . . , r − 2 do
S← S ∥ S

x,[1..d/2]
i

Algorithm 10: Procedure of I−1 for the i-th query
Input: C

[1..d]
i ∈ {0, 1}dn

Output: M
[1..d]
i ∈ {0, 1}dn

1. M
[1..d]
i ← π−1(C [1..d]

i )
2. (Sr,1

i , Sr,2
i , . . . , S

r,d/2
i )← (C1

i , C3
i , . . . , Cd−1

i )
3. (Sr−1,1

i , Sr−1,2
i , . . . , S

r−1,d/2
i )← (Cd

i , C2
i , C4

i , . . . , Cd−2
i )

4. for x = r, r − 1, . . . , 3 do
for y = 1, 2, . . . , d/2 do

ℓ← (y mod d/2) + 1
Sx−2,ℓ

i ← {Sx−2,ℓ
j | j < i ∧ Sx−1,y

i = Sx−1,y
j }

if ∃j < i, (Sx−1,y
i , Sx,y

i ) = (Sx−1,y
j , Sx,y

j ) then Sx−2,ℓ
i ← Sx−2,ℓ

j

else Sx−2,ℓ
i

$← {0, 1}n \ Sx−2,ℓ
i

5. return M
[1..d]
i

6. for x = 1, 2, . . . , r − 2 do
S← S ∥ S

x,[1..d/2]
i

Figure 12: Definition of I and I−1 for the SPRP proof of E2,d,r. Initially, S is empty, and
it is given to A after it makes all the q queries.

6.2 Bad Transcript and Bad Probability

The adversary A receives all the internal states after making q queries, and the interaction
between A and oracles can be summarized as the following transcript θ:

θ =
(

(M [1..d]
1 , C

[1..d]
1 , S1,1

1 , . . . , S
r−2,d/2
1 ), . . . , (M [1..d]

q , C [1..d]
q , S1,1

q , . . . , Sr−2,d/2
q )

)
. (15)

The adversary does not repeat a query, so we have (M1
i , . . . , Md

i ) ̸= (M1
j , . . . , Md

j ) and
(C1

i , . . . , Cd
i ) ̸= (C1

j , . . . , Cd
j ) for any 1 ≤ j < i ≤ q. For a transcript in Eq. (15), we define
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nn n

P̃1,1

n

P̃1,2

M1 M2 M3 M4

P̃4,1 P̃4,2

P̃2,1 P̃2,2S1,1 S1,2

P̃3,1 P̃3,2S2,1 S2,2

C1 C2 C3 C4

S0,1 S0,2

S3,1 S3,2

n n

P̃1,3

M5 M6

S0,3

P̃2,3S1,3

P̃3,3S2,3

P̃4,3S3,3

C5 C6

P̃5,1 P̃5,2S4,1 S4,2 P̃5,3S4,3

P̃6,1 P̃6,2S5,1 S5,2 P̃6,3S5,3

nn n

P̃1,1

n

P̃1,2

M1 M2 M3 M4

P̃4,1 P̃4,2

P̃2,1 P̃2,2S1,1 S1,2

P̃3,1 P̃3,2S2,1 S2,2

C1 C2 C3 C4

S0,1 S0,2

S3,1 S3,2

n n

P̃1,3

M5 M6

S0,3

P̃2,3S1,3

P̃3,3S2,3

P̃4,3S3,3

C5 C6

P̃5,1 P̃5,2S4,1 S4,2 P̃5,3S4,3

P̃6,1 P̃6,2S5,1 S5,2 P̃6,3S5,3

P̃7,1 P̃7,2S6,1 S6,2 P̃7,3S6,3

P̃8,1 P̃8,2S7,1 S7,2 P̃8,3S7,3

Figure 13: Left: E2,d,r(M1 ∥ · · · ∥M6) = (C1 ∥ · · · ∥ C6) for the case d = 6 and r = 6,
where (M1 ∥ · · · ∥M6) = (S0,1 ∥ S−1,2 ∥ S0,2 ∥ S−1,3 ∥ S0,3 ∥ S−1,1) and (C1 ∥ · · · ∥ C6) =
(S6,1 ∥S5,2 ∥S6,2 ∥S5,3 ∥S6,3 ∥S5,1). Right: E2,d,r(M1 ∥ · · · ∥M6) = (C1 ∥ · · · ∥C6) for the
case d = 6 and r = 8, where (M1 ∥ · · · ∥M6) = (S0,1 ∥ S−1,2 ∥ S0,2 ∥ S−1,3 ∥ S0,3 ∥ S−1,1)
and (C1 ∥ · · · ∥ C6) = (S8,1 ∥ S7,2 ∥ S8,2 ∥ S7,3 ∥ S8,3 ∥ S7,1).
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two sets of indices to specify the direction of the queries:

Qe = {i | the i-th query is an encryption query}
Qd = {i | the i-th query is a decryption query}

We define bad transcripts following Sect. 4.2 and Sect. 5.2. In the ideal world, TRPs
P̃x,y that we simulate have the same input-tweak-output relation as in P̃x,y in the real
world. For an encryption query, for TRPs P̃r−1,1, . . . , P̃r,d/2 that are not simulated in I,
there are conditions that hold only in the ideal world. Similarly, for a decryption query,
for TRPs P̃ −1

1,1 , . . . , P̃ −1
2,d/2 that are not simulated in I−1, there are conditions that hold

only in the ideal world. We use these conditions to define Tbad, the set of bad transcripts.
If the i-th query is an encryption query, for y ∈ [1..d/2], we define the following bad

conditions:

Bad at P̃r−1,y : (Sr−3,y+1
i , Sr−2,y

i ) = (Sr−3,y+1
j , Sr−2,y

j ) ∧ C2y−2
i ̸= C2y−2

j

or (Sr−2,y
i , C2y−2

i ) = (Sr−2,y
j , C2y−2

j ) ∧ Sr−3,y+1
i ̸= Sr−3,y+1

j

Bad at P̃r,y : (Sr−2,y+1
i , C2y−2

i ) = (Sr−2,y+1
j , C2y−2

j ) ∧ C2y−1
i ̸= C2y−1

j

or (C2y−2
i , C2y−1

i ) = (C2y−2
j , C2y−1

j ) ∧ Sr−2,y+1
i ̸= Sr−2,y+1

j

Here, C0 = Cd for y = 1, and Sx,d/2+1 = Sx,1 for y = d/2. These conditions can hold only
in the ideal world, and in the real world, the probability of the corresponding transcript
is zero. We let Bad2

enc be the set of all these conditions. Since 1 ≤ j < i ≤ q, we have∑
i∈Qe

(i− 1) possible combinations of i and j, and hence Bad2
enc includes:

• d/2×
∑

i∈Qe
(i− 1) conditions of a 2n-bit collision between two internal state blocks,

which we write colls,s,

• d ×
∑

i∈Qe
(i − 1) conditions of a 2n-bit collision between one internal state block

and one ciphertext block, which we write colls,c, and

• d/2×
∑

i∈Qe
(i− 1) conditions of a 2n-bit collision between two ciphertext blocks,

which we write collc,c.

In total, we have 2d×
∑

i∈Qe
(i− 1) possible conditions of 2n-bit variables in Bad2

enc. Note
that i is in Qe, while j can be in Qe or Qd.

If the i-th query is a decryption query, for y ∈ [1..d/2], we define the following bad
conditions:

Bad at P̃1,y : (M2y−1
i , M2y

i ) = (M2y−1
j , M2y

j ) ∧ S1,y
i ̸= S1,y

j

or (M2y−1
i , S1,y

i ) = (M2y−1
j , S1,y

j ) ∧M2y
i ̸= M2y

j

Bad at P̃2,y : (M2y+1
i , S1,y

i ) = (M2y+1
j , S1,y

j ) ∧ S2,y
i ̸= S2,y

j

or (S1,y
i , S2,y

i ) = (S1,y
j , S2,y

j ) ∧M2y+1
i ̸= M2y+1

j

Here, Md+1 = M1 for y = d/2. These conditions can hold only in the ideal world, and
in the real world, the probability of the corresponding transcript is zero. We let Bad2

dec
be the set of all these conditions. Since 1 ≤ j < i ≤ q, we have

∑
i∈Qd

(i − 1) possible
combinations of i and j, and hence Bad2

dec includes:

• d/2×
∑

i∈Qd
(i− 1) conditions of a 2n-bit collision between two internal state blocks,

which we write colls,s,

• d×
∑

i∈Qd
(i− 1) conditions of a 2n-bit collision between one internal state block

and one plaintext block, which we write colls,m, and
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• d/2 ×
∑

i∈Qd
(i − 1) conditions of a 2n-bit collision between two plaintext blocks,

which we write collm,m.

In total, we have 2d×
∑

i∈Qd
(i− 1) possible conditions of 2n-bit variables in Bad2

dec. We
note that i ∈ Qd, while j ∈ Qe ∪Qd.

Now the set of bad transcripts Tbad is defined as the set of all the attainable transcripts
that satisfy at least one of the conditions in Bad2

enc ∪ Bad2
dec. Formally, we define

Tbad = {θ | θ satisfies at least one of the conditions in Bad2
enc ∪ Bad2

dec} .

The set of good transcripts is defined as Tgood = Tall \ Tbad.
In what follows, we evaluate the probability to have bad transcripts. We consider the

case r = d first, and then r = d + 2.

6.2.1 Bad Probability for r = d

Let r = d. For each of the conditions in Bad2
enc, we have the following lemma.

Lemma 12. Let r = d, and consider one of the 2d×
∑

i∈Qe
(i− 1) conditions in Bad2

enc
in the ideal world. Then, the probability of the condition is at most (d− 2)/2n if it is in
colls,s, at most 1/2n if it is in colls,c, and at most 1/22n if it is in collc,c.

Proof. We proceed as in the proof of Lemma 2. We first consider colls,s, followed by colls,c
and collc,c.

Analysis of colls,s. We analyze a condition in colls,s. All the conditions in colls,s are
collisions at (Sr−3,ℓ, Sr−2,y) for y ∈ [1..d/2] and ℓ = (y mod d/2) + 1. From the symmetry
in E2,d,r, each probability of the collision at (Sr−3,ℓ, Sr−2,y) has the same upper bound.
Here, we consider a collision at (Sr−3,2, Sr−2,1). For r = d, we evaluate

Pr[(Sr−3,2
i , Sr−2,1

i ) = (Sr−3,2
j , Sr−2,1

j ) ∧ Cd
i ̸= Cd

j ]

≤ Pr[(Sd−3,2
i , Sd−2,1

i ) = (Sd−3,2
j , Sd−2,1

j )] .
(16)

We first evaluate Eq. (16) when the plaintext difference is ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0,

where ∆M2
i,j can take any difference. We then show that this gives us the upper bound on

all the possible plaintext differences by showing that all other cases do not have a larger
upper bound.

Now, for any y ∈ [2..d/2], since we have S1,y = P̃1,y(M2y−1, M2y) and from M
[3..d]
i =

M
[3..d]
j , we must have S1,y

i = S1,y
j , i.e., S

1,[2..d/2]
i = S

1,[2..d/2]
j . From this and S2,y =

P̃2,y(S1,y, M2y+1) for any y ∈ [2..d/2− 1], we must have S2,y
i = S2,y

j , i.e., S
2,[2..d/2−1]
i =

S
2,[2..d/2−1]
j . Furthermore, for any y ∈ [2..d/2− 1], we must have S3,y

i = S3,y
j from

S3,y = P̃3,y(S2,y, S1,y+1). Similarly, for ℓ = ⌈(x− 1)/2⌉, x ∈ [3..d− 3] and y ∈ [2..d/2− ℓ],
we must have Sx,y

i = Sx,y
j from the fact that we always have collisions at the tweak block

Sx−1,y and the input block Sx−2,y+1 of Sx,y = P̃x,y(Sx−1,y, Sx−2,y+1). Therefore, we have
S

[1..d−3],2
i = S

[1..d−3],2
j and Pr[Sd−3,2

i = Sd−3,2
j ] = 1.

Next, the probability of a collision at S1,1 = P̃1,1(M1, M2) is Pr[S1,1
i = S1,1

j ] = 1/2n,
since M1

i ≠ M1
j . From M3

i = M3
j , the probability of a collision at S2,1 = P̃2,1(S1,1, M3) is

Pr[S2,1
i = S2,1

j ] = Pr[S1,1
i = S1,1

j ] + Pr[S1,1
i ̸= S1,1

j ] · Pr[S2,1
i = S2,1

j | S1,1
i ̸= S1,1

j ]

≤ Pr[S1,1
i = S1,1

j ] + 1
2n

= 2
2n

.
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Similarly, for any x ∈ [3..d− 2], since we have Sx,1 = P̃x,1(Sx−1,1, Sx−2,2) and from
S

[1..d−4],2
i = S

[1..d−4],2
j , if Sx−1,1

i = Sx−1,1
j , then we must have Sx,1

i = Sx,1
j . Therefore, for

each x ∈ [2..d− 2], we have

Pr[Sx,1
i = Sx,1

j ]
= Pr[Sx−1,1

i = Sx−1,1
j ] + Pr[Sx−1,1

i ̸= Sx−1,1
j ] · Pr[Sx,1

i = Sx,1
j | Sx−1,1

i ̸= Sx−1,1
j ]

≤ Pr[Sx−1,1
i = Sx−1,1

j ] + 1
2n
≤ Pr[S1,1

i = S1,1
j ] +

x∑
ℓ=2

1
2n

= x

2n
.

Therefore, from Pr[Sd−3,2
i = Sd−3,2

j ] = 1, we obtain

Eq. (16) = Pr[(Sd−3,2
i , Sd−2,1

i ) = (Sd−3,2
j , Sd−2,1

j )] ≤ Pr[Sd−2,1
i = Sd−2,1

j ] ≤ d− 2
2n

,

and this gives us an upper bound (d− 2)/2n on a condition in colls,s for the case ∆M1
i,j ≠

0 ∧∆M
[3..d]
i,j = 0, and ∆M2

i,j is any difference.
We next prove that this is the upper bound for all other plaintext differences by showing

that any other plaintext difference does not have a larger upper bound. Observe that the
event (Sd−3,2

i , Sd−2,1
i ) = (Sd−3,2

j , Sd−2,1
j ) and the computation above are similar to colls,s

in the proof of Lemma 2.

(C-7) First, let us assume that ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j ̸= 0, namely, for some x ∈ [3..d],

we have ∆Mx
i,j ≠ 0, where there may be multiple indices of x. If x = 3, we have

Pr[S2,1
i = S2,1

j ] ≤ 1/2n from S2,1 = P̃2,1(S1,1, M3), and hence the probability would
be smaller. If x ∈ [4..d], the event S

[1..d−3],2
i = S

[1..d−3],2
j would be a probabilistic

event. Therefore, we have Pr[Sd−3,2
i = Sd−3,2

j ] < 1, and hence the probability would
be smaller.

(C-8) Next, consider the case ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0. From S1,1 = P̃1,1(M1, M2), we
must have S1,1

i ̸= S1,1
j . Now if we further assume that ∆M

[3..d]
i,j = 0, we are back to

the initial case of ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0 starting from the second round, and

the analysis corresponds to the one with a reduced round version that cannot have
a larger collision probability. The case ∆M

[3..d]
i,j ̸= 0 would have a smaller upper

bound as in the case (C-7).

(C-9) Finally, we consider the case ∆M
[1,2]
i,j = 0, in which case we necessarily have

∆M
[3..d]
i,j ≠ 0. Consider the smallest index x ∈ [3..d] such that ∆Mx

i,j ̸= 0. Then
since ∆M

[1..x−1]
i,j = 0, it has the same input difference as ∆M1

i,j ̸= 0 at input of the
x-th round, and hence the final bound cannot be larger as in the analysis of the
case (C-8). Note that if x = d, the input of the (d− 1)-th round is the same input
difference as ∆M2

i,j ̸= 0, i.e., Pr[Sd−3,2
i = Sd−3,2

j ] = 0.

Therefore, the case ∆M1
i,j ̸= 0∧∆M

[3..d]
i,j = 0, where ∆M2

i,j is any difference, maximizes
Eq. (16) and the corresponding upper bound (d − 2)/2n is the upper bound for all the
cases in colls,s.

Analysis of colls,c. Next, we consider a condition in colls,c. All the conditions in colls,c
are collisions between Sr−2,y and a ciphertext block for y ∈ [1..d/2]. From the symmetry
in E2,d,r and since ciphertexts are computed with the dn-bit random permutation π in
the ideal world, each probability of the collisions between Sr−2,y and a ciphertext block
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has the same upper bound. Here, we consider a collision at (Sr−2,2, C2). For r = d, we
evaluate

Pr[(Sr−2,2
i , C2

i ) = (Sr−2,2
j , C2

j ) ∧ Sr−3,3
i ̸= Sr−3,3

j ]

≤ Pr[(Sd−2,2
i , C2

i ) = (Sd−2,2
j , C2

j )] .
(17)

We first compute the upper bound on Eq. (17) when the plaintext difference is ∆M1
i,j =

0 ∧∆M2
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0. We then show that this upper bound covers all other cases.

Now from M
[3..d]
i = M

[3..d]
j , for y ∈ [2..d/2], we have S1,y

i = S1,y
j since S1,y =

P̃1,y(M2y−1, M2y), i.e., S
1,[2..d/2]
i = S

1,[2..d/2]
j . Since S1,1 = P̃1,1(M1, M2), we also have

S1,1
i ̸= S1,1

j from M1
i = M1

j and M2
i ̸= M2

j . Therefore, the difference of the input
S1,1 ∥M3 ∥ · · · ∥ S1,d/2 ∥M1 to the second round is the same as the plaintext difference
∆M1

i,j ̸= 0∧∆M
[3..d]
i,j = 0 in the analysis of colls,s. By adding a round at the beginning, Sx,y

in the analysis of colls,s corresponds to Sx+1,y in this analysis. With the same argument,
we have Pr[Sd−2,2

i = Sd−2,2
j ] = 1.

In the ideal world, ciphertexts are obtained as the output of the dn-bit random
permutation π. This implies that regardless of the plaintext difference, by following the
computation in Eq. (5), we similarly have Pr[C2

i = C2
j ] ≤ 1/2n. We thus have

Eq. (17) = Pr[(Sd−2,2
i , C2

i ) = (Sd−2,2
j , C2

j )] ≤ Pr[C2
i = C2

j ] ≤ 1
2n

,

when the ciphertext difference is ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0 ∧∆M
[3..d]
i,j = 0.

Next, we show that this upper bound covers all other cases. Since Pr[C2
i = C2

j ] does
not depend on the plaintext difference, and we cannot have a larger probability than
Pr[Sd−2,2

i = Sd−2,2
j ] = 1, the case ∆M1

i,j = 0 ∧ ∆M2
i,j ̸= 0 ∧ ∆M

[3..d]
i,j = 0 maximizes

Eq. (17) and 1/2n is the upper bound on a condition in colls,c for all the cases.

Analysis of collc,c. Finally, we consider a condition in collc,c. From the same analysis as
in Eq. (6), the probability of a condition in collc,c is at most 1/22n. This completes the
proof of Lemma 12.

The correctness of Lemma 12 is experimentally verified in the range of 4 ≤ d ≤ 16,
where d is even. See Appendix A for more details.

We now present the upper bound on the probability of Tbad for the case r = d.

Lemma 13. For r = d, we have

Pr[ΘI ∈ Tbad] ≤ 0.25d2q2

2n
+ 0.25dq2

22n
.

Proof. We compute the probability of θ ∈ Tbad in the ideal world. Let penc
i and pdec

i be the
probability that Bad2

enc and Bad2
dec occur for the first time in the i-th query, respectively.

In other words, we assume that neither Bad2
enc nor Bad2

dec occurs before the i-th query,
and compute penc

i and pdec
i . Then, we have

Pr[ΘI ∈ Tbad] =
q∑

i=2
(penc

i + pdec
i ) =

∑
i∈Qe

penc
i +

∑
i∈Qd

pdec
i . (18)

We note that penc
i = 0 if i /∈ Qe and pdec

i = 0 if i /∈ Qd.
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If the i-th query is encryption, we consider bad conditions in Bad2
enc. Since Bad2

enc
contains d/2 ×

∑
i∈Qe

(i − 1) conditions in colls,s, d ×
∑

i∈Qe
(i − 1) conditions in colls,c,

and d/2×
∑

i∈Qe
(i− 1) conditions in collc,c, and from Lemma 12, we have

penc
i ≤ (i− 1) ·

(
d− 2

2n
· d

2 + 1
2n
· d + 1

22n
· d

2

)
= (i− 1) ·

(
0.5d2

2n
+ 0.5d

22n

)
. (19)

If the i-th query is decryption, we consider bad conditions in Bad2
dec. From the symmetry

between the encryption and decryption in E2,d,r, each probability of the conditions in
Bad2

dec has the same upper bound as in Lemma 12. Therefore, we follow a similar argument
to the case that the i-th query is encryption, and we have the same upper bound of pdec

i

as Eq. (19).
Therefore, we have

Pr[ΘI ∈ Tbad] =
∑
i∈Qe

penc
i +

∑
i∈Qd

pdec
i ≤

q∑
i=2

(
(i− 1) ·

(
0.5d2

2n
+ 0.5d

22n

))

≤ 0.5q2 ·
(

0.5d2

2n
+ 0.5d

22n

)
= 0.25d2q2

2n
+ 0.25dq2

22n
,

and this shows the bound in Lemma 13.

6.2.2 Bad Probability for r = d + 2

When r = d + 2, for each of the conditions in Bad2
enc, we have the following lemma.

Lemma 14. Let r = d + 2, and consider one of the 2d ×
∑

i∈Qe
(i − 1) conditions in

Bad2
enc. Then, the probability of the condition is at most (d2 − d− 2)/(2 · 22n) if it is in

colls,s, at most (d− 1)/22n if it is in colls,c, and at most 1/22n if it is in collc,c.

We proceed as in the proof of Lemma 2. We present a proof sketch below, and a full
proof is presented in Appendix D.

Proof sketch. The overall structure of the proof is similar to that of Lemma 2. We first
consider colls,s, followed by colls,c and collc,c.

Analysis of colls,s. For colls,s, we only consider a collision at (Sr−3,2, Sr−2,1) from the
symmetry of E2,d,r. For r = d + 2, we evaluate

Pr[(Sr−3,2
i , Sr−2,1

i ) = (Sr−3,2
j , Sr−2,1

j ) ∧ Cd
i ̸= Cd

j ] ≤ Pr[(Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j )] .

We derive the upper bound (d2 − d − 2)/(2 · 22n) on Pr[(Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j )]
when the plaintext difference is ∆M

[1,2]
i,j = 0 ∧∆M3

i,j ≠ 0 ∧∆M
[5..d]
i,j = 0, where ∆M4

i,j is
any difference. Then, we show that this is the upper bound on all the possible plaintext
differences by showing that other cases do not have a larger upper bound.

Analysis of colls,c. For colls,c, we only consider a collision at (Sr−2,1, Cd) from the
symmetry of E2,d,r and ciphertexts are computed with π in the ideal world. For r = d + 2,
we evaluate

Pr[(Sr−2,1
i , Cd

i ) = (Sr−2,1
j , Cd

j ) ∧ Sr−3,2
i ̸= Sr−3,2

j ] ≤ Pr[(Sd,1
i , Cd

i ) = (Sd,1
j , Cd

j )] .

Then, we compute the upper bound (d− 1)/22n of Pr[(Sd,1
i , Cd

i ) = (Sd,1
j , Cd

j )] when the
plaintext difference is ∆M1

i,j = 0 ∧ ∆M2
i,j ̸= 0 ∧ ∆M [3..d] = 0. We can show that this

upper bound covers all other cases.
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Analysis of collc,c. Finally, we consider a condition in collc,c. The analysis is the same
as in Eq. (6), and we obtain the upper bound 1/22n for all the conditions in collc,c.

We experimentally verified the correctness of Lemma 14 for 4 ≤ d ≤ 16, where d is
even. See Appendix A for more details.

We now present the upper bound on the probability of Tbad for the case r = d + 2.

Lemma 15. For r = d + 2, we have

Pr[ΘI ∈ Tbad] ≤ 0.125d(d2 + 3d− 4)q2

22n
.

Proof. We follow a similar argument to the proof of Lemma 13 to compute the probability
of θ ∈ Tbad in the ideal world. Let penc

i and pdec
i be the probability that Bad2

enc and Bad2
dec

occur for the first time in the i-th query, respectively. Then, we have the same equation as
Eq. (18).

If the i-th query is encryption, we consider bad conditions in Bad2
enc. From Lemma 14,

we have

penc
i ≤ (i− 1) ·

(
d2 − d− 2

2 · 22n
· d

2 + d− 1
22n

· d + 1
22n
· d

2

)
= (i− 1) · (d3 − d2 − 2d) + 4(d2 − d) + 2d

4 · 22n
= (i− 1) · 0.25d(d2 + 3d− 4)

22n
.

(20)

If the i-th query is decryption, we consider bad conditions in Bad2
dec. Since encryption

and decryption are symmetrical in E2,d,r, each probability of the conditions in Bad2
dec has

the same upper bound as in Lemma 14. Therefore, we follow a similar argument to the case
that the i-th query is encryption, and we have the same upper bound of pdec

i as Eq. (20).
Therefore, we have

Pr[ΘI ∈ Tbad] =
∑
i∈Qe

penc
i +

∑
i∈Qd

pdec
i ≤

q∑
i=2

(
(i− 1) · 0.25d(d2 + 3d− 4)

22n

)

≤ 0.5q2 · 0.25d(d2 + 3d− 4)
22n

= 0.125d(d2 + 3d− 4)q2

22n
,

as claimed in Lemma 15.

6.3 Probability Ratio of Good Transcript
Here, we prove the following lemma regarding a good transcript θ ∈ Tgood.

Lemma 16. For any θ ∈ Tgood, we have

Pr[ΘR = θ]
Pr[ΘI = θ] ≥ 1− 0.5q2

2dn
.

Proof. Let qe and qd be the number of times that the adversary A makes encryption and
decryption queries, respectively, i.e., we have qe + qd = q.

In the real world, the interpolation probability Pr[ΘR = θ] of θ ∈ Tgood is the probability
that rd/2 TPRs P̃1,1, . . . , P̃r,d/2 interpolate θ. For x ∈ [1..r] and y ∈ [1..d/2], let px,y

all denote
the probability that P̃x,y interpolates all the q input-tweak-output associated to the TRP,
and let px,y

i denote the probability that P̃x,y interpolates the input-tweak-output associated
to the TRP in the i-th query, i.e., px,y

all =
∏q

i=1 px,y
i . We also let px,y

e (resp. px,y
d ) denote

the probability that P̃x,y interpolates the qe (resp. qd) input-tweak-output associated
to the TRP in the i-th query for any i ∈ Qe (resp. i ∈ Qd). In other words, we let
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px,y
e =

∏
i∈Qe

px,y
i and px,y

d =
∏

i∈Qd
px,y

i , and we thus have px,y
all = px,y

e · px,y
d . Therefore,

for any θ ∈ Tgood, we have

Pr[ΘR = θ] =
r∏

x=1

d/2∏
y=1

px,y
all

≥

r−2∏
x=1

d/2∏
y=1

px,y
e

 ·
 r∏

x=r−1

d/2∏
y=1

1
2nqe

 ·
 r∏

x=3

d/2∏
y=1

px,y
d

 ·
 2∏

x=1

d/2∏
y=1

1
2nqd


=

r−2∏
x=1

d/2∏
y=1

px,y
e

 ·
 r∏

x=3

d/2∏
y=1

px,y
d

 · 1
2dnq

.

In the ideal world, the interpolation probability Pr[ΘI = θ] of θ ∈ Tgood is the probabil-
ity that the dn-bit random permutation π and simulated (r−2)d/2 TRPs (P̃1,1, . . . , P̃r−2,d/2

in encryption or P̃ −1
3,1 , . . . , P̃ −1

r,d/2 in decryption) interpolate the relevant plaintext-ciphertext
or input-tweak-output associated to it. Note that for simulated P̃1,1, . . . , P̃r−2,d/2 in encryp-
tion (resp. P̃ −1

3,1 , . . . , P̃ −1
r,d/2 in decryption), they generate the internal state with the same

probability distribution as in the real world, and hence they have the same interpolation
probability as p1,1

e , . . . , p
r−2,d/2
e (resp. p3,1

d , . . . , p
r,d/2
d ), respectively. Therefore, for any

θ ∈ Tgood, we have

Pr[ΘI = θ] =

r−2∏
x=1

d/2∏
y=1

px,y
e

 ·
 r∏

x=3

d/2∏
y=1

px,y
d

 ·( q∏
i=1

1
2dn − (i− 1)

)
.

We now compute the ratio as

Pr[ΘR = θ]
Pr[ΘI = θ] ≥

q∏
i=1

2dn − (i− 1)
2dn

=
q∏

i=1

(
1− i− 1

2dn

)
≥ 1−

q∑
i=2

i− 1
2dn

≥ 1− 0.5q2

2dn
,

and we obtain Lemma 16.

7 Provable Security of TBC-based Type-3 GFS
In this section, we show SPRP security of E3,d,r, TBC-based type-3 GFS, where we use
r(d − 1) independent (n, n)-TRPs. Proposition 1 shows a relation between TBC-based
type-3 GFS and TBC-based type-1 GFS. The corresponding equivalence is well known
for PRF-based type-3 GFS and PRF-based type-1 GFS, and Proposition 1 shows that a
similar equivalence holds for TBC-based counterparts as well. From Proposition 1 and the
results in Sect. 5, we obtain Corollary 1 showing the SPRP security result of TBC-based
type-3 GFSs.

Proposition 1. Fix d ≥ 3. Then the encryption round function Φ3,d of TBC-based
type-3 GFS is equivalent to the r-round decryption E−1

1,d,r of TBC-based type-1 GFS, where
r = d− 1.

A proof is elementary, and is presented in Appendix E. We now present our result on
the security of TBC-based type-3 GFSs.

Corollary 1 (TBC-based type-3 GFS, SPRP security). Fix d ≥ 3, and let P̃1,1, . . . , P̃r,d−1

be r(d − 1) independent (n, n)-TRPs and E = E3,d,r[P̃1,1, . . . , P̃r,d−1] be the TBC-based



Kazuki Nakaya and Tetsu Iwata 63

type-3 GFS. Then for any SPRP-adversary A that makes q queries, if r = d rounds, we
have

Advsprp
E (A) ≤ 0.5(d2 − 2d + 2)q2

2n
+ 0.5q2

22n
+ 0.5q2

2dn
, (21)

and if r = d + 1 rounds, we have

Advsprp
E (A) ≤ 0.25(d3 − 3d + 4)q2

22n
+ 0.5q2

2dn
. (22)

In Corollary 1, Eq. (21) shows birthday-bound security and is obtained from Proposi-
tion 1 and Eq. (7) in Theorem 2. From Proposition 1, E3,d,r with r = d rounds is equivalent
to E−1

1,d,r with r = d(d− 1) = d2 − d rounds, which is larger than the number of rounds in
Eq. (7). Therefore, we obtain Eq. (21) from the bound in Theorem 2.

Similarly, Eq. (22) shows BBB security and is obtained from Proposition 1 and Eq. (8)
in Theorem 2. Proposition 1 shows that E3,d,r with r = d + 1 rounds is equivalent to E−1

1,d,r

with r = (d + 1)(d− 1) = d2 − 1 rounds, which is larger than, or is equal to the number of
rounds in Eq. (8).

8 Matching Attacks
In this section, we focus on distinguishing attacks to show the tightness of the bounds
presented in Sect. 4–Sect. 7. More precisely, we consider birthday-bound security, and we
present our analysis of TBC-based type-1 GFS, type-2 GFS, and type-3 GFS in Sect. 8.1,
Sect. 8.2, and in Sect. 8.3, respectively. The attacks we present use q = 2n/2 queries, and
they show the tightness of our birthday-bound provable security results. Furthermore, let
rbb be the number of rounds that allows proving birthday-bound security, and rbbb be the
number of rounds that allows proving BBB security. Our attacks work for any number
of rounds r such that rbb ≤ r < rbbb with the same complexity, implying that rbbb is
the optimal number of rounds for BBB security. We also point out that if the number of
rounds satisfies r < rbb, then there is an efficient attack with q = 2 queries, implying that
rbb is the optimal number of rounds for birthday-bound security.

Table 2 shows the summary of our distinguishing attacks and security proofs. We note
that the attack against TBC-based type-1 GFS showing the tightness of SPRP security
is CCA, which is different from CPCA in that encryption queries are not used in the
attack, and we observe a gap in the number of rounds needed for PRP security and SPRP
security. This is due to the fact that the diffusion characteristic of TBC-based type-1 GFS
in encryption and decryption is different. We will later elaborate on this point. We also
observe that the number of rounds for PRP security of TBC-based type-2 GFS is the
same as that for SPRP security, since the model of the attacks against type-2 GFS is CPA.
Similarly, TBC-based type-3 GFS has the same characteristic. However, we remark that
due to the equivalence between TBC-based type-1 and type-3 GFSs in Proposition 1, the
diffusion of decryption of the latter is faster than encryption.

8.1 Attacks against TBC-based Type-1 GFS
We show a CPA birthday distinguisher against TBC-based type-1 GFS in Theorem 4,
showing the tightness of Eq. (1) in Theorem 1. We also show a CCA birthday distinguisher
in Theorem 5, showing the tightness of Eq. (7) in Theorem 2. See Fig. 14 for an example
of the attacks against type-1 GFS.

Theorem 4 (TBC-based type-1 GFS, CPA birthday distinguisher). Fix d ≥ 3, and
let P̃1, . . . , P̃r be r independent (n, n)-TRPs, and consider TBC-based type-1 GFS E =
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Table 2: Summary of distinguishing attacks against TBC-based GFSs. “Const.” is a dn-BC
and “Security proof” shows the results in Sect. 4–Sect. 7, where rbb (resp. rbbb) denotes
the number of rounds for birthday-bound security (resp. BBB security). In “Attack,” (a)
is for r < rbb, (b) is for rbb ≤ r < rbbb, “O(1)” denotes the constant time attacks with
q = 2 queries, and “O(2n/2)” denotes the birthday attacks with q = 2n/2 queries. Note
that “CCA” is different from CPCA, namely, this distinguisher makes only decryption
queries.

Security proof Attack
Const. Model rbb rbbb Ref. Model (a) (b) Ref.

Type-1 PRP 2d− 2 3d− 2 Theorem 1 CPA O(1) O(2n/2) Sect. 8.1SPRP d2 − 2d + 2 d2 − d + 2 Theorem 2 CCA O(1) O(2n/2)
Type-2 SPRP d d + 2 Theorem 3 CPA O(1) O(2n/2) Sect. 8.2
Type-3 SPRP d d + 1 Corollary 1 CPA O(1) O(2n/2) Sect. 8.3

E1,d,r[P̃1, . . . , P̃r] with r rounds, where 2d− 2 ≤ r < 3d− 2. Then there exists an adversary
A that makes q = 2n/2 encryption queries and

Advprp
E (A) ⪆ 0.5− exp(−0.5(d− 1)) .

For instance, we have Advprp
E (A) ≥ 0.276 when d = 4, and Advprp

E (A) ≥ 0.469 when
d = 8.

Proof. We first present the procedure of our A for the case r = 3d− 3:

1. Fix q = 2n/2 plaintexts M
[1..d]
1 , . . . , M

[1..d]
q such that ∆M

[1..d−1]
i,j = 0∧∆Md

i,j ̸= 0 for
any 1 ≤ j < i ≤ q, and make q encryption queries.

2. If a collision is found among the q values of C2
i , then output 1, else output 0.

In the real world, we have S
[1..d−2]
i = S

[1..d−2]
j and Sd−1

i ̸= Sd−1
j , since the plaintext

difference satisfies ∆M
[1..d−1]
i,j = 0 ∧ ∆Md

i,j ̸= 0 and we have S1 = P̃1(M1, M2) and
Sx = P̃x(Sx−1, Mx+1) for any x ∈ [2..d− 1]. In other words, the input Sd−1∥M1∥S[1..d−2]

of the d-th round has the same difference that gives the maximum collision probability of
colls,s analyzed in Lemma 2, which is ∆M1

i,j ̸= 0 ∧∆M
[3..d]
i,j = 0. Therefore, we analyze

the probability to have a collision at C2 by adding (d− 1) more rounds at the beginning,
implying that S1, . . . , Sd−2 in the proof of Lemma 2 corresponds to Sd, . . . , S2d−3 in the
attack.

We follow a similar argument to the proof of Lemma 2 to see that for any x ∈
[d + 1..2d− 3], if Sx−1

i = Sx−1
j , then we have S

[x..2d−3]
i = S

[x..2d−3]
j . From C2 =

P̃2d−2(S2d−3, Sd−2), if S2d−3
i = S2d−3

j , then we have C2
i = C2

j . From the observations so
far, we compute the collision probability at C2 in the real world as follows:

Pr[AR = 1] = 1− Pr[∀∆Sd
i,j ̸= 0] ·

2d−2∏
x=d+1

Pr
[
∀∆Sx

i,j ̸= 0
∣∣∣∣∣

x−1∧
ℓ=d

∀∆Sℓ
i,j ̸= 0

]

= 1−
(

q∏
i=2

2n − (i− 1)
2n

)1+(d−2)

= 1−
(

q∏
i=2

(
1− i− 1

2n

))d−1

≥ 1−
(

q∏
i=2

exp
(
− i− 1

2n

))d−1

= 1−
(

exp
(
−0.5q(q − 1)

2n

))d−1

≈ 1− exp(−0.5(d− 1))

(23)
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Note that ∀∆Sx
i,j ̸= 0 implies ∆Sx

i,j ̸= 0 for any 1 ≤ j < i ≤ q. We also note that
S2d−2 = C2 when r = 3d− 3.

On the other hand, in the ideal world, ciphertexts are obtained as the output of the
dn-bit random permutation π. It follows that for any a ∈ [1..d], a collision probability at
Ca in the ideal world can be bounded as

Pr[AI = 1] ≤
q∑

i=2
((i− 1) · Pr[Ca

i = Ca
j ]) ≤ 0.5q(q − 1) · 1

2n
≤ 0.5q2

2n
= 0.5 . (24)

Therefore, we obtain the lower bound of the advantage as

Advprp
E (A) = |Pr[AR = 1]− Pr[AI = 1]| ⪆ 0.5− exp(−0.5(d− 1)) .

Note that, in the real world, C2 for r = 3d− 3 corresponds to C1 for r = 2d− 2. In
general, this corresponds to Cd−(x−1) for r = 2d− 2 + x, where x ∈ [1..d− 2]. Therefore,
for 2d − 2 ≤ r < 3d − 2, the position of the ciphertext block to search for a collision
changes, while the same attack procedure works for any case.

Example 7. We show the real world of this attack in Fig. 14(b) for the case d = 4
and r = 3d − 3 = 9. When ∆M

[1..3]
i,j = 0 ∧∆M4

i,j ̸= 0, we must have S
[1,2]
i = S

[1,2]
j and

S3
i ̸= S3

j from S1 = P̃1(M1, M2), S2 = P̃2(S1, M3), and S3 = P̃3(S2, M4). Therefore,
since S4 = P̃4(S3, M1), S5 = P̃5(S4, S1), and C2 = P̃6(S5, S2), we also have

Pr[C2
i = C2

j ] ≈ Pr[S5
i = S5

j ] + 1
2n
≈ Pr[S4

i = S4
j ] + 2

2n
≈ 3

2n
,

i.e., the probability of a collision at C2 is about (d− 1) times larger than the probability
in the ideal world. The distinguisher uses this probability difference in the attack.

As shown in the proof above, when we make encryption queries with ∆M
[1..d−1]
i,j =

0 ∧∆Md
i,j ̸= 0, we always have Sd−2

i = Sd−2
j in the real world. When r = 2d− 3, since

Sd−2 = C2, if we make two encryption queries with ∆M
[1..d−1]
1,2 = 0 ∧∆Md

1,2 ̸= 0, then we
have Pr[C2

2 = C2
1 ] = 1 in the real world. The analysis in the ideal world is the same as in

Eq. (5), and we have Pr[C2
2 = C2

1 ] ≤ 1/2n, allowing an efficient attack for any r < 2d− 2
with q = 2 queries.

Example 8. See Fig. 14(a) for an example of this attack with d = 4 and r = 2d− 3 = 5.
If ∆M

[1..3]
1,2 = 0 ∧∆M4

1,2 ̸= 0, we have S1
2 = S1

1 from S1 = P̃1(M1, M2). Therefore, since
C2 = P̃2(S1, M3), we always have C2

2 = C2
1 , i.e., Pr[C2

2 = C2
1 ] = 1.

We next present a CCA birthday distinguisher showing the tightness of Eq. (7) in
Theorem 2.

Theorem 5 (TBC-based type-1 GFS, CCA birthday distinguisher). Fix d ≥ 3, and
let P̃1, . . . , P̃r be r independent (n, n)-TRPs, and consider TBC-based type-1 GFS E =
E1,d,r[P̃1, . . . , P̃r] with r rounds, where d2 − 2d + 2 ≤ r < d2 − d + 2. Then there exists an
adversary A that makes q = 2n/2 decryption queries and

Advsprp
E (A) ⪆ 0.5− exp(−0.5(d− 1)) .

We note that this distinguisher makes only decryption queries. We proceed as in the
proof of Theorem 4. We present a proof sketch below, and a full proof is presented in
Appendix F.

Proof sketch. First, we present the procedure of A for the case r = d2 − d + 1:



66 Generalized Feistel Structures Based on TBCs

1. Fix q = 2n/2 ciphertexts C
[1..d]
1 , . . . , C

[1..d]
q such that ∆C1

i,j ̸= 0 ∧∆C
[2..d]
i,j = 0, and

make q decryption queries.

2. If a collision is found among the q values of M1
i , then output 1, else output 0.

In the real world, following the proof of Lemma 7 and by following the computation of
Eq. (23), we can derive the lower bound to have a collision at M1, and we obtain

Pr[AR,R−1
= 1] ⪆ 1− exp(−0.5(d− 1)) .

In the ideal world, with the same argument as in Eq. (24) except that we use π−1 to
compute plaintexts, we have Pr[AI,I−1 = 1] ≤ 0.5, and we thus have

Advsprp
E (A) = |Pr[AR,R−1

= 1]− Pr[AI,I−1
= 1]| ⪆ 0.5− exp(−0.5(d− 1)) .

It is easy to show an attack with the same complexity for d2 − 2d + 2 ≤ r < d2 − d + 2.
See Appendix F for a full proof.

Example 9. In Fig. 14(d), we present the real world of the attack for the case d = 4
and r = d2 − d + 1 = 13. As shown in the figure, if ∆C1

i,j ̸= 0 ∧ ∆C
[2..4]
i,j = 0, S9

always has a non-zero difference and S[4,7] always has a zero difference, i.e., we have
S9

i ̸= S9
j and S

[4,7]
i = S

[4,7]
j . Therefore, since S6 = P̃ −1

10 (S9, C2), S3 = P̃ −1
7 (S6, S7), and

M1 = P̃ −1
4 (S3, S4), we have

Pr[M1
i = M1

j ] ≈ Pr[S3
i = S3

j ] + 1
2n
≈ Pr[S6

i = S6
j ] + 2

2n
≈ 3

2n
.

We see that a collision probability at M1 is about (d− 1) times larger than the probability
in the ideal world.

We note that it is straightforward to see that an attack with q = 2 queries is possible
when r < d2 − 2d + 2. Decryption queries with ∆C1

i,j ̸= 0 ∧∆C
[2..d]
i,j = 0 yield T d2−3d+2

i =
T d2−3d+2

j in the real world. Since T d2−3d+2 = M1 when r = d2 − 2d + 1, we have
Pr[M1

2 = M1
1 ] = 1 in the real world if we make two queries, while the same analysis as

Eq. (5) shows Pr[M1
2 = M1

1 ] ≤ 1/2n in the ideal world.

Example 10. See Fig. 14(c) for an example of this attack with d = 4 and r = d2−2d+1 =
9. If ∆C1

1,2 ̸= 0 ∧ ∆C
[2..4]
1,2 = 0, we have S

[3,4]
2 = S

[3,4]
1 from S4 = P̃ −1

8 (C3, C4) and
S3 = P̃ −1

7 (C2, C3). Therefore, since M1 = P̃ −1
4 (S3, S4), we always have M1

2 = M1
1 , i.e.,

Pr[M1
2 = M1

1 ] = 1.

Discussions. The result by Maurer, Pietrzak, and Renner shows that the composition
F ◦G−1 is CPCA secure2 if F and G are non-adaptive CPA secure block ciphers [MPR07].
Given that TBC-based type-1 GFS is CPA secure with O(d) rounds, one may hope that it
is CPCA secure with O(d) rounds. However, the security of TBC-based type-1 GFS is
different depending on the direction of the operation. The diffusion in encryption direction
is faster than decryption, and this explains the gap in the number of rounds for PRP
and SPRP security in Table 2. This implies that the result in [MPR07] cannot be used
directly, and indeed, as stated above, we have a distinguishing attack with q = 2 decryption
queries for any number of rounds r such that r < d2 − 2d + 2. See Fig. 14(c) for an

2Here, F ◦ G−1 means that we first apply F to a plaintext and then we apply G−1, which is different
from the order in Sect. 3.
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Figure 14: Examples of our attacks against TBC-based type-1 GFS with d = 4 (red: zero
difference, dashed: non-zero difference, black: random difference, blue text: the target
for finding a collision). (a) The constant CPA with q = 2 for r = 2d − 3 = 5. (b) The
birthday CPA with q = 2n/2 for r = 3d − 3 = 9. (c) The constant CCA with q = 2 for
r = d2 − 2d + 1 = 9. (d) The birthday CCA with q = 2n/2 for r = d2 − d + 1 = 13.
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example. We note that the same observation was previously made for PRF-based type-1
GFS. See [HR10b, Page 5, Eratta].

While TBC-based type-1 GFS needs O(d2) rounds for CPCA security, we remark that
the composition F ◦ F −1 has O(d) rounds and is CPCA secure if F is non-adaptive CPA
secure TBC-based type-1 GFS with O(d) rounds. This implies that F ◦ F −1 has fewer
rounds than TBC-based type-1 GFS for large d. For instance, we can use (2d− 2)-round
TBC-based type-1 GFS as F from Eq. (1) in Theorem 1. Then, F ◦ F −1 is CPCA secure
with 4d − 4 rounds from [MPR07], where the middle round could be merged to further
reduce the number of rounds. We remark that this construction F ◦ F −1 does not have an
iterative structure, i.e., the linear layer of the first half F is the left cyclic shift and that of
the second half F −1 is the right cyclic shift.

8.2 Attacks against TBC-based Type-2 GFS
We show a CPA birthday distinguisher against TBC-based type-2 GFS in Theorem 6,
showing the tightness of Eq. (13) in Theorem 3.

Theorem 6 (TBC-based type-2 GFS, CPA birthday distinguisher). Fix d ≥ 4, where d is
even, and let P̃1,1, . . . , P̃r,d/2 be rd/2 independent (n, n)-TRPs, and consider TBC-based
type-2 GFS E = E2,d,r[P̃1,1, . . . , P̃r,d/2] with r rounds, where d ≤ r < d + 2. Then there
exists an adversary A that makes q = 2n/2 encryption queries and

Advprp
E (A) ⪆ 0.5− exp(−0.5(d− 1)) .

We proceed as in the proof of Theorem 4. We present a proof sketch below, and a full
proof is presented in Appendix G.

Proof sketch. We consider the case r = d + 1, and our A works as follows:

1. Fix q = 2n/2 plaintexts M
[1..d]
1 , . . . , M

[1..d]
q such that ∆M1

i,j = 0 ∧ ∆M2
i,j ≠ 0 ∧

∆M
[3..d]
i,j = 0 for any 1 ≤ j < i ≤ q, and make q encryption queries.

2. If a collision is found among the q values of Cd
i , then output 1, else output 0.

In the real world, following the proof of Lemma 12 and by following the computation
of Eq. (23), we can derive the lower bound to have a collision at Cd, and we obtain

Pr[AR = 1] ⪆ 1− exp(−0.5(d− 1)) .

In the ideal world, with the same argument as in Eq. (24), we have Pr[AI,I−1 = 1] ≤ 0.5,
and we thus have

Advprp
E (A) = |Pr[AR = 1]− Pr[AI = 1]| ⪆ 0.5− exp(−0.5(d− 1)) .

In the real world, Cd for r = d + 1 corresponds to C1 for r = d, and the attack works
with the same complexity for the case r = d.

In the real world, we have Sd−2,2
i = Sd−2,2

j with encryption queries that satisfy
∆M1

i,j = 0 ∧ ∆M2
i,j ≠ 0 ∧ ∆M

[3..d]
i,j = 0. If r = d − 1, since Sd−2,2 = C2, we have

Pr[C2
2 = C2

1 ] = 1 in the real world, while we have Pr[C2
2 = C2

1 ] ≤ 1/2n following Eq. (5) in
the ideal world, allowing an attack with q = 2 queries for any r with r < d.
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Table 3: The number of TBC calls for TBC-based GFSs. “Const.” is a dn-BC and “Model”
shows the attack model. “# of parallel TBCs” shows the number of TBCs that can be
processed in parallel for encryption (written as “Enc.”) and decryption (written as “Dec.”),
and “time” shows the minimum processing time if the TBCs are processed in parallel.
In the table, rbb (resp. rbbb) denotes the number of rounds for birthday-bound security
(resp. BBB security), and ttbc denotes the processing time of a single TBC.

TBC calls # of parallel TBCs
Const. Model for r = rbb for r = rbbb Enc. time Dec. time

Type-1 PRP 2d− 2 3d− 2 1 rttbc d− 1 ⌈ r
d−1⌉ttbcSPRP d2 − 2d + 2 d2 − d + 2

Type-2 SPRP d2/2 d2/2 + d d/2 rttbc d/2 rttbc
Type-3 SPRP d2 − d d2 − 1 d− 1 rttbc 1 r(d− 1)ttbc

8.3 Attacks against TBC-based Type-3 GFS
In Corollary 2, we show a CPA birthday distinguisher against TBC-based type-3 GFS,
showing the tightness of Eq. (21) in Corollary 1.

Corollary 2 (TBC-based type-3 GFS, CPA birthday distinguisher). Fix d ≥ 3, and let
P̃1,1, . . . , P̃r,d−1 be r(d− 1) independent (n, n)-TRPs, and consider TBC-based type-3 GFS
E = E3,d,r[P̃1,1, . . . , P̃r,d−1] with r rounds, where r = d. Then there exists an adversary A
that makes q = 2n/2 encryption queries and

Advprp
E (A) ⪆ 0.5− exp(−0.5(d− 1)) .

Corollary 2 is obtained from Proposition 1 and Theorem 5. From Proposition 1, E3,d,r

with r = d is equivalent to E−1
1,d,r with r = d(d− 1) = d2 − d. Therefore, a similar attack

to Theorem 5 works.
We also note that, from Proposition 1, E3,d,r with r = d− 1 is equivalent to E−1

1,d,r with
r = (d− 1)2 = d2 − 2d + 1, allowing an attack with q = 2 queries as shown in Sect. 8.1.

9 Conclusions
In this paper, we formalized TBC-based type-1, type-2, and type-3 GFSs, and presented
their provable security treatments. We identified the number of rounds to achieve birthday-
bound security and BBB security. We experimentally verified the correctness of our proofs
in the range of d ≤ 16. We also presented attacks to show the optimality of our results
with respect to the number of rounds and attack complexity.

Regarding the efficiency comparison among the TBC-based GFSs we considered, we
summarize the number of TBC calls in Table 3. If only encryption is needed, type-1 GFS
is efficient since the number of TBC calls is the smallest among the three constructions.
If we focus on SPRP security, type-2 GFS has the smallest number of TBC calls. For
example, when r = rbb, the number of TBC calls for type-1/2/3 GFS is 10/8/12 with
d = 4, and 50/32/56 with d = 8, respectively. Furthermore, for type-2 GFS, d/2 TBCs
can be processed in parallel for both encryption and decryption, i.e., type-2 GFS can be
made more efficient by parallel processing.

As open questions, we presented attacks with birthday complexity when rbb ≤ r < rbbb,
while we do not know if an attack with q = O(2n) complexity exists when r ≥ rbbb. Also,
as mentioned in Sect. 1, we leave the analysis with the coupling technique to obtain
stronger security bounds by increasing the number of rounds as an interesting future work.
This paper focuses on the indistinguishability notion, while indifferentiability [MRH04] of
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TBC-based Feistel structure has been analyzed in [CDMS10, BNR21], and [NI20] shows
indifferentiability of TBC-based unbalanced GFSs. It would be interesting to see the
security of TBC-based type-1, type-2, and type-3 GFSs in this security notion.
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A Program for Bad Probability
In the proofs of Lemmas 2, 4, 7, 9, 12, and 14, a collision probability of conditions in Bad1

enc,
Bad1

dec, and Bad2
enc depend only on whether each block in a plaintext or a ciphertext chosen

by A has a non-zero difference or not. Since M
[1..d]
i ≠ M

[1..d]
j and C

[1..d]
i ̸= C

[1..d]
j hold,

there are (2d − 1) possible ways for A to choose the plaintext/ciphertext difference. The
number of possibility exponentially grows as a function of d, and we developed a program
in order to verify the correctness of our results.

The program exhaustively computes the probability of all the conditions in Bad1
enc,

Bad1
dec, and Bad2

enc for all the (2d − 1) possible choices of plaintext/ciphertext difference,
and outputs, for each of the condition, the maximum probability and the corresponding
plaintext/ciphertext difference that gives the maximum probability. That is, for each
State ∈ Bad1

enc, we are interested in deriving

MaxProb = max
{

Prob(∆M [1..d], State)
∣∣∣ ∆M [1..d] ∈ {0, 1}d \ {0d}

}
, (25)

and we are also interested in the plaintext difference MaxDiff = ∆M [1..d] that gives
MaxProb, where Prob(∆M [1..d], State) denotes the probability to have an output dif-
ference in State given the plaintext difference ∆M [1..d]. We also would like to know
(MaxDiff, MaxProb) for State ∈ Bad1

dec and State ∈ Bad2
enc. An overview of our program

is presented in Algorithm 11 in Fig. 15. The program faithfully computes Eq. (25).
For example, with d = 4, r = 10, and Type = Bad1

enc, Bad1
enc consists of eight conditions:

∆S3 ∥∆S6 = 00, ∆S6 ∥∆C2 = 00, ∆S4 ∥∆C2 = 00, ∆C2 ∥∆C3 = 00, ∆S5 ∥∆C3 = 00,
∆C3∥∆C4 = 00, ∆S6∥∆C4 = 00, and ∆C4∥∆C1 = 00. Our program treats ∆S1, . . . , ∆S6

as random variables, and does not evaluate ∆C1, . . . , ∆C4 as they are generated with a
random permutation that has independent randomness allowing separate treatments. That
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Algorithm 11: Program to compute the collision probability of bad conditions.
Input: (d, r, Type)
Output: (MaxDiff, MaxProb)

1: MaxDiff← empty
2: MaxProb← 0
3: for State ∈ Bad1

enc, Bad1
dec, or Bad2

enc do
4: for ∆M [1..d] ∈ {0, 1}d \ {0d} do // ∆C [1..d] for State ∈ Bad1

dec
5: P ← Prob(∆M [1..d], State)
6: if P > MaxProb then
7: MaxProb← P

8: MaxDiff← ∆M [1..d]

9: end if
10: end for (Line 4)
11: end for (Line 3)
12: return (MaxDiff, MaxProb)

Figure 15: Overview of our program to compute the collision probability of bad conditions.
The input Type is used to specify Bad1

enc, Bad1
dec, or Bad2

enc in Line 3.

State MaxDiff MaxProb

∆S3 ∥∆S6 = 00 1000 5/22n

∆S4 = 0 0100 3/2n

∆S5 = 0 0010 3/2n

∆S6 = 0 0001 3/2n

Figure 16: An example of the output of our program with d = 4, r = 10, and Type = Bad1
enc.

MaxProb shows the leading terms only. Note that, for Type = Bad1
enc, ∆M [1..4] = 1000,

0100 and 0010 are equivalent to ∆M [1..4] = 1100, 0110 and 0011, respectively.

is, we evaluate the probabilities of ∆S3 ∥∆S6 = 00, ∆S4 = 0, ∆S5 = 0, and ∆S6 = 0.
An example of the output of our program is in Fig. 16. See also Fig. 17 showing all the
intermediate results to obtain Fig. 16.

The program was executed in the range of d ≤ 16, and the result fully confirms the
correctness of Lemmas 2, 4, 7, 9, 12, and 14 in this range.

B Proof of Lemma 4
We proceed as in the proof of Lemma 2. We first consider colls,s, followed by colls,c and
collc,c.

Analysis of colls,s. We consider a condition in colls,s, which is a unique 2n-bit collision
at (Sr−2d+1, Sr−d). When r = 3d− 2, we have Sr−2d+1 = Sd−1 and Sr−d = S2d−2, and
we therefore evaluate

Pr[S[r−2d+1,r−d]
i = S

[r−2d+1,r−d]
j ∧ C2

i ̸= C2
j ] ≤ Pr[S[d−1,2d−2]

i = S
[d−1,2d−2]
j ] . (26)

We first evaluate Eq. (26) when the plaintext difference is ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0,

where ∆M2
i,j can take any difference. We then show that this gives us the upper bound on
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∆M [1..d] ∆S3 ∥∆S6 = 00 ∆S4 = 0 ∆S5 = 0 ∆S6 = 0
0001 0 1/2n 2/2n 3/2n

0010 0 2/2n 3/2n 1/2n

0011 0 2/2n 3/2n 1/2n

0100 2/22n 3/2n 1/2n 1/2n

0101 1/22n 2/2n 1/2n 1/2n + 1/23n

0110 2/22n 3/2n 1/2n 1/2n

0111 1/22n 2/2n 1/2n 1/2n + 1/23n

1000 5/22n 1/2n 1/2n 1/2n + 1/22n

1001 1/22n 1/2n 1/2n + 1/23n 1/2n + 2/22n

1010 3/22n 1/2n 1/2n + 1/23n 1/2n

1011 1/22n 1/2n 1/2n 1/2n

1100 5/22n 1/2n 1/2n 1/2n + 1/22n

1101 1/22n 1/2n 1/2n + 1/23n 1/2n + 2/22n

1110 3/22n 1/2n 1/2n + 1/23n 1/2n

1111 1/22n 1/2n 1/2n 1/2n

Figure 17: A table of Prob(∆M [1..d], State) with d = 4, r = 10, and Type = Bad1
enc. Only

the upper bounds are shown, i.e., low order terms that do not contribute to the upper
bound (e.g., terms with a negative coefficient) are neglected.

all the possible plaintext differences by showing that all other cases do not have a larger
upper bound.

Now, from M1
i ̸= M1

j , the probability of a collision at S1 = P̃1(M1, M2) is Pr[S1
i =

S1
j ] = 1/2n. Next, for any x ∈ [2..d− 1], since we have Sx = P̃x(Sx−1, Mx+1) and from

M
[3..d]
i = M

[3..d]
j , if Sx−1

i = Sx−1
j , then we must have S

[x..d−1]
i = S

[x..d−1]
j . Therefore, for

each x ∈ [2..d− 1], we have

Pr[Sx
i = Sx

j ] = Pr[Sx−1
i = Sx−1

j ] + Pr[Sx−1
i ̸= Sx−1

j ] · Pr[Sx
i = Sx

j | Sx−1
i ̸= Sx−1

j ]

≤ Pr[Sx−1
i = Sx−1

j ] + 1
2n
≤ Pr[S1

i = S1
j ] +

x∑
ℓ=2

1
2n

= x

2n
,

and this yields Pr[S2
i = S2

j ] ≤ 2/2n.
Assume that we have a collision at S2, in which case S

[3..d−1]
i = S

[3..d−1]
j holds. Recall

that M1
i ̸= M1

j , and from Sd = P̃d(Sd−1, M1), we must have Sd
i ≠ Sd

j . From this, the
probability of a collision at Sd+1 = P̃d+1(Sd, S1) is obtained as Pr[Sd+1

i = Sd+1
j | S2

i =
S2

j ] = 1/2n. We also observe that for any x ∈ [d + 2..2d− 2], if Sx−1
i = Sx−1

j , then we
have S

[x..2d−2]
i = S

[x..2d−2]
j . This follows from the fact that S

[2..d−2]
i = S

[2..d−2]
j holds, and

for any x ∈ [d + 2..2d− 2], Sx−d is the input block of Sx = P̃x(Sx−1, Sx−d). From the
observation, for any x ∈ [d + 2..2d− 2], we have

Pr[Sx
i = Sx

j | S2
i = S2

j ]
= Pr[Sx−1

i = Sx−1
j | S2

i = S2
j ]

+ Pr[Sx−1
i ̸= Sx−1

j | S2
i = S2

j ] · Pr[Sx
i = Sx

j | Sx−1
i ̸= Sx−1

j ∧ S2
i = S2

j ]

≤ Pr[Sx−1
i = Sx−1

j | S2
i = S2

j ] + 1
2n

≤ Pr[Sd+1
i = Sd+1

j | S2
i = S2

j ] +
x∑

ℓ=d+2

1
2n

= x− (d + 1) + 1
2n

= x− d

2n
.
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Therefore, from Pr[Sd−1
i = Sd−1

j | S2
i = S2

j ] = 1, we obtain

Pr[S[d−1,2d−2]
i = S

[d−1,2d−2]
j | S2

i = S2
j ] ≤ (2d− 2)− d

2n
= d− 2

2n
.

We proceed similarly for ℓ ∈ [3..d− 1] as follows. We assume Sℓ−1
i ̸= Sℓ−1

j and
we also assume that we have a collision at Sℓ. Note that this step is non-existent
when d = 3. Let us denote the assumption Sℓ−1

i ̸= Sℓ−1
j ∧ Sℓ

i = Sℓ
j by ifℓ. Then, we

have S
[ℓ+1..d−1]
i = S

[ℓ+1..d−1]
j , and from Sℓ−1

i ̸= Sℓ−1
j and Sℓ = P̃ℓ(Sℓ−1, Sℓ−d), we have

Pr[ifℓ] ≤ 1/2n. We also observe that if Sℓ−1
i ̸= Sℓ−1

j , from Sℓ+d−1 = P̃ℓ+d−1(Sℓ+d−2, Sℓ−1),
a collision at Sℓ+d−1 is possible only if Sℓ+d−2

i ̸= Sℓ+d−2
j . Therefore, we have

Pr[Sℓ+d−1
i = Sℓ+d−1

j | ifℓ] ≤ Pr[Sℓ+d−1
i = Sℓ+d−1

j | Sℓ+d−2
i ̸= Sℓ+d−2

j ] = 1
2n

.

Furthermore, for any x ∈ [ℓ + d..2d− 2], if Sx−1
i = Sx−1

j , then S
[x..2d−2]
i = S

[x..2d−2]
j holds.

This follows from S
[ℓ..d−2]
i = S

[ℓ..d−2]
j , and Sx−d is the input block of Sx = P̃x(Sx−1, Sx−d).

It follows that for any x ∈ [ℓ + d..2d− 2], we have

Pr[Sx
i = Sx

j | ifℓ]
= Pr[Sx−1

i = Sx−1
j | ifℓ] + Pr[Sx−1

i ̸= Sx−1
j | ifℓ] · Pr[Sx

i = Sx
j | Sx−1

i ̸= Sx−1
j ∧ ifℓ]

≤ Pr[Sx−1
i = Sx−1

j | ifℓ] + 1
2n

≤ Pr[Sℓ+d−1
i = Sℓ+d−1

j | ifℓ] +
x∑

m=ℓ+d

1
2n
≤ x− (ℓ + d− 1) + 1

2n
= x− d− (ℓ− 2)

2n
.

From Pr[Sd−1
i = Sd−1

j | ifℓ] = 1, we obtain

Pr[S[d−1,2d−2]
i = S

[d−1,2d−2]
j | ifℓ] ≤

(2d− 2)− d− (ℓ− 2)
2n

= d− ℓ

2n
.

From all the observations above, we obtain the upper bound on Eq. (26) as

Eq. (26) = Pr[S[d−1,2d−2]
i = S

[d−1,2d−2]
j ]

≤ Pr[S2
i = S2

j ] · Pr[S[d−1,2d−2]
i = S

[d−1,2d−2]
j | S2

i = S2
j ]

+
d−1∑
ℓ=3

(
Pr[ifℓ] · Pr[S[d−1,2d−2]

i = S
[d−1,2d−2]
j | ifℓ]

)
≤ 2

2n
· d− 2

2n
+

d−1∑
ℓ=3

(
1
2n
· d− ℓ

2n

)
= 2(d− 2)

22n
+ 1

22n
· ((d− 3) + 1)(d− 3)

2 = d2 − d− 2
2 · 22n

,

and we conclude that (d2 − d− 2)/(2 · 22n) is the upper bound on a condition in colls,s for
the case ∆M1

i,j ̸= 0 ∧∆M
[3..d]
i,j = 0, where ∆M2

i,j is any difference.
We next prove that the upper bound above is the upper bound for all other plaintext

differences.

(C-10) First, let us assume that ∆M1
i,j ≠ 0 ∧∆M

[3..d]
i,j ≠ 0, namely, for some x ∈ [3..d],

we have ∆Mx
i,j ≠ 0, where there may be multiple indices of x. If x = 3, we have
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Pr[S2
i = S2

j ] ≤ 1/2n from S2 = P̃2(S1, M3), and hence the probability would
be smaller. If x ∈ [4..d], then from Sx−1 = P̃x−1(Sx−2, Mx), even if we assume
Sx−2

i = Sx−2
j , the event S

[x−1..d−1]
i = S

[x−1..d−1]
j would be a probabilistic event.

Therefore, for ℓ ∈ [3..d− 2], we have Pr[Sd−1
i = Sd−1

j | S2
i = S2

j ∨ ifℓ] < 1, and
hence the probability would be smaller.

(C-11) Next, consider the case ∆M1
i,j = 0∧∆M2

i,j ̸= 0. In this case, we must have S1
i ̸= S1

j

from S1 = P̃1(M1, M2). Now if we further assume that ∆M
[4..d]
i,j = 0, where ∆M3

i,j

can take any difference, we are back to the initial case of ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0

starting from the second round, and the analysis corresponds to the one with a
reduced round version that cannot have a larger collision probability. The case
∆M

[4..d]
i,j ̸= 0 would have a smaller upper bound as in the case (C-10).

(C-12) Finally, we consider the case ∆M
[1,2]
i,j = 0, in which case we necessarily have

∆M
[3..d]
i,j ≠ 0. Consider the smallest index x ∈ [3..d] such that ∆Mx

i,j ̸= 0. Then
since ∆M

[1..x−1]
i,j = 0, from Sx−1 = P̃x−1(Sx−2, Mx), we must have Sx−1

i ≠ Sx−1
j .

This implies that, at the input of the x-th round, it has the same input difference
as ∆M1

i,j ≠ 0, and hence the final bound cannot be larger as in the analysis of the
case (C-11).

Therefore, the case ∆M1
i,j ̸= 0∧∆M

[3..d]
i,j = 0, where ∆M2

i,j is any difference, maximizes
Eq. (26) and (d2 − d− 2)/(2 · 22n) is the upper bound on a condition in colls,s for all the
cases.

Analysis of colls,c. We next analyze a condition in colls,c. We consider a collision at
(Sr−2d+2, C2) that involves an internal state with the smallest index in the number of
round, as a collision at other places cannot have a larger collision probability. Since
Sr−2d+2 = Sd holds when r = 3d− 2, we evaluate

Pr[(Sr−2d+2
i , C2

i ) = (Sr−2d+2
j , C2

j ) ∧ C3
i ̸= C3

j ] ≤ Pr[(Sd
i , C2

i ) = (Sd
j , C2

j )] . (27)

We first compute the upper bound on Eq. (27) when the plaintext difference is ∆M1
i,j =

0 ∧∆M2
i,j ̸= 0 ∧∆M [4..d] = 0, where ∆M3

i,j is an arbitrary difference. We then show that
this upper bound covers all other cases.

Now from M1
i = M1

j and M2
i ≠ M2

j , we have S1
i ̸= S1

j since S1 = P̃1(M1, M2). It
follows that a collision probability at S2 = P̃1(S1, M3) is Pr[S2

i = S2
j ] = 1/2n. It is

easy to see that for any x ∈ [3..d], if Sx−1
i = Sx−1

j , then S
[x..d]
i = S

[x..d]
j , since we have

Sx = P̃x(Sx−1, Mx+1) and Sd = P̃d(Sd−1, M1), and we also have M
[4..d]
i = M

[4..d]
j and

M1
i = M1

j . Therefore, for any x ∈ [3..d],

Pr[Sx
i = Sx

j ] = Pr[Sx−1
i = Sx−1

j ] + Pr[Sx−1
i ̸= Sx−1

j ] · Pr[Sx
i = Sx

j | Sx−1
i ̸= Sx−1

j ]

≤ Pr[Sx−1
i = Sx−1

j ] + 1
2n
≤ Pr[S2

i = S2
j ] +

x∑
ℓ=3

1
2n

= x− 1
2n

.

In the ideal world, ciphertexts are computed with the dn-bit random permutation π,
and thus for any plaintext difference, by following the computation in Eq. (5), we have
Pr[C2

i = C2
j ] ≤ 1/2n. Given the analysis so far, we obtain the upper bound on Eq. (27) as

Eq. (27) = Pr[(Sd
i , C2

i ) = (Sd
j , C2

j )] = Pr[Sd
i = Sd

j ] · Pr[C2
i = C2

j ] ≤ d− 1
2n
· 1

2n
= d− 1

22n
,
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when the plaintext difference is ∆M1
i,j = 0∧∆M2

i,j ̸= 0∧∆M [4..d] = 0, where ∆M3
i,j is an

arbitrary difference.
Next, we show that the upper bound above covers all other cases. Since Pr[C2

i = C2
j ]

does not depend on the plaintext difference, we focus on the analysis of Pr[Sd
i = Sd

j ].

(C-13) First, consider the case ∆M1
i,j = 0 ∧ ∆M2

i,j ̸= 0 ∧ ∆M [4..d] ̸= 0. In this case,
since Sx = P̃x(Sx−1, Mx+1) for x ∈ [3..d− 1], there exists a term Pr[Sx−1

i = Sx−1
j ]

that is not added to derive the upper bound on Pr[Sx
i = Sx

j ], and hence the final
probability would be smaller.

(C-14) Next, consider the case ∆M
[1,2]
i,j = 0, which implies ∆M

[3..d]
i,j ̸= 0. For the smallest

index x ∈ [3..d] such that ∆Mx
i,j ≠ 0, the input of the (x− 1)-th round is the same

as ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0, and hence this case corresponds to the analysis of the
reduced round version by (x− 2) rounds, and this would result in the reduction on
the number of terms added to the upper bound.

(C-15) Finally, assume that ∆M1
i,j ̸= 0. Then from Sd = P̃d(Sd−1, M1), we have a collision

at Sd only if Sd−1
i ̸= Sd−1

j . We thus have Pr[Sd
i = Sd

j ] ≤ 1/2n, implying that the
final bound would be smaller.

Therefore, the case ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0 ∧∆M [4..d] = 0 maximizes Eq. (27) and
(d− 1)/22n is the upper bound on a condition in colls,c for all the cases.

Analysis of collc,c. Finally, we consider a condition in collc,c. From the same analysis as
in Eq. (6), the probability of a condition in collc,c is at most 1/22n. This completes the
proof of Lemma 4.

C Proof of Lemma 9
Following the proof of Lemma 7, we write P̃ ′

1, . . . , P̃ ′
r−d for P̃ −1

r , . . . , P̃ −1
d+1, i.e., for x ∈

[d + 1..r], we let P̃ −1
x (·) = P̃ ′

r−x+1(·). Similarly, we write T 1, . . . , T r−d for the internal
states Sr−d, . . . , S1 that are computed with P̃ −1

r , . . . , P̃ −1
d+1, respectively, i.e., we let Sx =

T r−d−x+1 for x ∈ [1..r − d].
We proceed as in the proof of Lemma 2. We first consider colls,s, followed by colls,m

and collm,m.

Analysis of colls,s. We consider a condition in colls,s. Among the conditions in colls,s,
we focus on the analysis of (Sd−1, Sd) that involves an internal state with the largest
index in the number of round, as a collision at other places cannot have a larger collision
probability. When r = d2 − d + 2, we have Sd−1 = T r−2d+2 = T d2−3d+4, Sd = T d2−3d+3,
and we therefore consider

Pr[S[d−1,d]
i = S

[d−1,d]
j ∧M1

i ̸= M1
j ] ≤ Pr[T [d2−3d+3,d2−3d+4]

i = T
[d2−3d+3,d2−3d+4]
j ] . (28)

We first evaluate Eq. (28) when the ciphertext difference is ∆C
[2..d−1]
i,j = 0∧∆Cd

i,j ̸= 0,
where ∆C1

i,j can take any difference. We then show that this is the upper bound on all
the possible ciphertext differences.

This ciphertext difference ∆C
[2..d−1]
i,j = 0 ∧∆Cd

i,j ̸= 0 is the same ciphertext difference
as colls,s analyzed in the proof of Lemma 7. Therefore, we follow the same argument in the
proof of Lemma 7, and we have T

[d−1..(d−3)(d−1):d−1]
i = T

[d−1..(d−3)(d−1):d−1]
j . Note that

this deterministic collision at internal state blocks are non-existent when d = 3.
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Now from Cd
i ̸= Cd

j , the probability of a collision at T 1 = P̃ ′
1(Cd, C1) is Pr[T 1

i =
T 1

j ] = 1/2n. Next, for any x ∈ [0..d− 3], since we have T d = P̃ ′
d(T 1, C2), T x(d−1)+d =

P̃ ′
x(d−1)+d(T x(d−1)+1, T x(d−1)), C2

i = C2
j , and T

[d−1..(d−3)(d−1):d−1]
i = T

[d−1..(d−3)(d−1):d−1]
j ,

if T
x(d−1)+1
i = T

x(d−1)+1
j , then we must have T

ℓ(d−1)+d
i = T

ℓ(d−1)+d
j for ℓ ∈ [x..d− 3].

Therefore, for each x ∈ [0..d− 3], we have

Pr[T x(d−1)+d
i = T

x(d−1)+d
j ]

= Pr[T x(d−1)+1
i = T

x(d−1)+1
j ] + Pr[T x(d−1)+1

i ̸= T
x(d−1)+1
j ]

· Pr[T x(d−1)+d
i = T

x(d−1)+d
j | T x(d−1)+1

i ̸= T
x(d−1)+1
j ]

≤ Pr[T x(d−1)+1
i = T

x(d−1)+1
j ] + 1

2n
≤ Pr[T 1

i = T 1
j ] +

x∑
ℓ=0

1
2n

= x + 2
2n

and this yields Pr[T d
i = T d

j ] ≤ 2/2n.
Assume that we have a collision at T d, in which case T

ℓ(d−1)+d
i = T

ℓ(d−1)+d
j holds

for ℓ ∈ [1..d− 3]. In other words, from (d − 3)(d − 1) + d = d2 − 3d + 3, we have
Pr[T d2−3d+3

i = T d2−3d+3
j | T d

i = T d
j ] = 1. Since T 2 = P̃ ′

2(Cd−1, Cd), we have T 2
i ̸= T 2

j from
Cd−1

i = Cd−1
j and Cd

i ≠ Cd
j . It follows that a collision probability at T d+1 = P̃ ′

d+1(T 2, T 1)
is Pr[T d+1

i = T d+1
j ] = 1/2n. We also observe that for any x ∈ [0..d− 4], if T

x(d−1)+d+1
i =

T
x(d−1)+d+1
j , then we have T

ℓ(d−1)+2d
i = T

ℓ(d−1)+2d
j , where ℓ ∈ [x..d− 4]. This follows from

the fact that T
[d..(d−4)(d−1)+d:d−1]
i = T

[d..(d−4)(d−1)+d:d−1]
j holds, and for any x ∈ [0..d− 4],

T x(d−1)+d is the input block of T x(d−1)+2d = P̃ ′
x(d−1)+2d(T x(d−1)+d+1, T x(d−1)+d). From

the observation, for any x ∈ [0..d− 4], we have

Pr[T x(d−1)+2d
i = T

x(d−1)+2d
j | T d

i = T d
j ]

= Pr[T x(d−1)+d+1
i = T

x(d−1)+d+1
j | T d

i = T d
j ]

+ Pr[T x(d−1)+d+1
i ̸= T

x(d−1)+d+1
j | T d

i = T d
j ]

· Pr[T x(d−1)+2d
i = T

x(d−1)+2d
j | T x(d−1)+d+1

i ̸= T
x(d−1)+d+1
j ∧ T d

i = T d
j ]

≤ Pr[T x(d−1)+d+1
i = T

x(d−1)+d+1
j | T d

i = T d
j ] + 1

2n

≤ Pr[T d+1
i = T d+1

j | T d
i = T d

j ] +
x∑

ℓ=0

1
2n

= x + 2
2n

,

i.e., we have Pr[T d2−3d+4
i = T d2−3d+4

j | T d
i = T d

j ] ≤ (d− 2)/2n from (d− 4)(d− 1) + 2d =
d2 − 3d + 4. Therefore, from Pr[T d2−3d+3

i = T d2−3d+3
j | T d

i = T d
j ] = 1, we obtain

Pr[T [d2−3d+3,d2−3d+4]
i = T

[d2−3d+3,d2−3d+4]
j | T d

i = T d
j ] ≤ d− 2

2n
.

We proceed similarly for ℓ ∈ [1..d− 3] as follows. We assume T
ℓ(d−1)+1
i ≠ T

ℓ(d−1)+1
j

and we also assume that we have a collision at T ℓ(d−1)+d. Note that this step is non-
existent when d = 3. Let us denote the assumption T

ℓ(d−1)+1
i ̸= T

ℓ(d−1)+1
j ∧ T

ℓ(d−1)+d
i =

T
ℓ(d−1)+d
j by ifℓ. Then, we have T

m(d−1)+d
i = T

m(d−1)+d
j for m ∈ [ℓ + 1..d− 3], and we

also have Pr[T d2−3d+3
i = T d2−3d+3

j | ifℓ] = 1 from (d − 3)(d − 1) + d = d2 − 3d + 3.
From T

ℓ(d−1)+1
i ≠ T

ℓ(d−1)+1
j and T ℓ(d−1)+d = P̃ ′

ℓ(d−1)+d(T ℓ(d−1)+1, T ℓ(d−1)), we have
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Pr[ifℓ] ≤ 1/2n. We also observe that if T
ℓ(d−1)+1
i ̸= T

ℓ(d−1)+1
j , from T ℓ(d−1)+d+1 =

P̃ ′
ℓ(d−1)+d+1(T ℓ(d−1)+2, T ℓ(d−1)+1), a collision at T ℓ(d−1)+d+1 is possible only if T

ℓ(d−1)+2
i ≠

T
ℓ(d−1)+2
j . Therefore, we have

Pr[T ℓ(d−1)+d+1
i = T

ℓ(d−1)+d+1
j | ifℓ]

≤ Pr[T ℓ(d−1)+d+1
i = T

ℓ(d−1)+d+1
j | T ℓ(d−1)+2

i ̸= T
ℓ(d−1)+2
j ] = 1

2n
.

Furthermore, for any x ∈ [ℓ..d− 4], if T
x(d−1)+d+1
i = T

x(d−1)+d+1
j , then T

x(d−1)+2d
i =

T
x(d−1)+2d
j , which follows from T

[ℓ(d−1)+d..(d−4)(d−1)+d:d−1]
i = T

[ℓ(d−1)+d..(d−4)(d−1)+d:d−1]
j ,

and T x(d−1)+d is the input block of T x(d−1)+2d = P̃ ′
x(d−1)+2d(T x(d−1)+d+1, T x(d−1)+d). It

follows that for any x ∈ [ℓ..d− 4], we have

Pr[T x(d−1)+2d
i = T

x(d−1)+2d
j | ifℓ]

= Pr[T x(d−1)+d+1
i = T

x(d−1)+d+1
j | ifℓ] + Pr[T x(d−1)+d+1

i ̸= T
x(d−1)+d+1
j | ifℓ]

· Pr[T x(d−1)+2d
i = T

x(d−1)+2d
j | T x(d−1)+d+1

i ̸= T
x(d−1)+d+1
j ∧ ifℓ]

≤ Pr[T x(d−1)+d+1
i = T

x(d−1)+d+1
j | ifℓ] + 1

2n

≤ Pr[T ℓ(d−1)+d+1
i = T

ℓ(d−1)+d+1
j | ifℓ] +

x∑
m=ℓ

1
2n
≤ x− (ℓ− 1) + 1

2n
= x− ℓ + 2

2n
.

In short, from (d− 4)(d− 1) + 2d = d2 − 3d + 4, we have Pr[T d2−3d+4
i = T d2−3d+4

j | ifℓ] ≤
(d− ℓ− 2)/2n. From Pr[T d2−3d+3

i = T d2−3d+3
j | ifℓ] = 1, we obtain

Pr[T [d2−3d+3,d2−3d+4]
i = T

[d2−3d+3,d2−3d+4]
j | ifℓ] ≤

d− ℓ− 2
2n

.

From all the observations above, we obtain the upper bound on Eq. (28) as

Eq. (28) = Pr[T [d2−3d+3,d2−3d+4]
i = T

[d2−3d+3,d2−3d+4]
j ]

≤ Pr[T d
i = T d

j ] · Pr[T [d2−3d+3,d2−3d+4]
i = T

[d2−3d+3,d2−3d+4]
j | T d

i = T d
j ]

+
d−3∑
ℓ=1

(
Pr[ifℓ] · Pr[T [d2−3d+3,d2−3d+4]

i = T
[d2−3d+3,d2−3d+4]
j | ifℓ]

)
≤ 2

2n
· d− 2

2n
+

d−3∑
ℓ=1

(
1
2n
· d− ℓ− 2

2n

)
= 2(d− 2)

22n
+ 1

22n
· ((d− 3) + 1)(d− 3)

2 = d2 − d− 2
2 · 22n

and we conclude that (d2 − d− 2)/(2 · 22n) is the upper bound on a condition in colls,s for
the case ∆C

[2..d−1]
i,j = 0 ∧∆Cd

i,j ̸= 0, where ∆C1
i,j is any difference.

We next prove that the upper bound above is the upper bound for all other ciphertext
differences. Observe that the event T

[d2−3d+3,d2−3d+4]
i = T

[d2−3d+3,d2−3d+4]
j and the

computation above are similar to colls,s in Appendix B.

(C-16) First, let us assume that ∆C
[2..d−1]
i,j ≠ 0∧∆Cd

i,j ̸= 0, namely, for some y ∈ [2..d− 1],
we have ∆Cy

i,j ̸= 0, where there may be multiple indices of y. If y = 2, we have
Pr[T d

i = T d
j ] ≤ 1/2n from T d = P̃ ′

d(T 1, C2), and hence the probability would be
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smaller. If y ∈ [3..d− 1], the event T
[d−1..(d−3)(d−1):d−1]
i = T

[d−1..(d−3)(d−1):d−1]
j

would be a probabilistic event. Then, for any x ∈ [1..d− 3], from T x(d−1)+d =
P̃ ′

x(d−1)+d(T x(d−1)+1, T x(d−1)), even if we assume T
x(d−1)+1
i = T

x(d−1)+1
j , the event

T
ℓ(d−1)+d
i = T

ℓ(d−1)+d
j for ℓ ∈ [x..d− 3] would be a probabilistic event. Therefore,

for ℓ ∈ [1..d− 4], we have Pr[T d2−3d+3
i = T d2−3d+3

j | T d
i = T d

j ∨ ifℓ] < 1, and hence
the probability would be smaller.

(C-17) Next, consider the case ∆C1
i,j ̸= 0∧∆Cd

i,j = 0, which is the same difference as (C-5).
With the same argument, if ∆C

[2..d−1]
i,j = 0, this case corresponds to the analysis of

the reduced round version by (d − 1) rounds. This would result in the reduction
on the number of terms added to the upper bound. The case ∆C

[2..d−1]
i,j ̸= 0 would

have a smaller upper bound as in the case (C-16).

(C-18) Finally, we consider the case ∆C
[1,d]
i,j = 0. This difference is the same as (C-6), and

we can thus follow the same argument. For the largest index y ∈ [2..d− 1] such that
∆Cy

i,j ≠ 0, this case corresponds to the analysis of the reduced round version by
(d− y) rounds.

If y = d − 1 and ∆C
[2..d−2]
i,j = 0, we have T d2−4d+4

i = T d2−4d+4
j and T d2−4d+3

i ̸=
T d2−4d+3

j by following the argument in (C-6). It follows that we have T d2−3d+3
i ̸=

T d2−3d+3
j since T d2−3d+3 = P̃ ′

d2−3d+3(T d2−4d+4, T d2−4d+3). That is, Pr[T d2−3d+3
i =

T d2−3d+3
j ] = 0 holds in this case.

In other cases, the event T
[d−1..(d−3)(d−1):d−1]
i = T

[d−1..(d−3)(d−1):d−1]
j would be a

probabilistic event, and hence the final bound cannot be larger as in the analysis of
the case (C-16).

Therefore, the case ∆C
[2..d−1]
i,j = 0∧∆Cd

i,j ̸= 0, where ∆C1
i,j is any difference, maximizes

Eq. (28) and (d2 − d− 2)/(2 · 22n) is the upper bound on a condition in colls,s for all the
cases.

Analysis of colls,m. We next analyze a condition in colls,m. We consider a collision at
(M1, Sd−1) that involves an internal state with the largest index in the number of round.
Since Sd−1 = T r−2d+2 = T d2−3d+4 holds when r = d2 − d + 2, we evaluate

Pr[(M1
i , Sd−1

i ) = (M1
j , Sd−1

j ) ∧ Sd
i ̸= Sd

j ] ≤ Pr[(M1
i , T d2−3d+4

i ) = (M1
j , T d2−3d+4

j )] . (29)

We first compute the upper bound on Eq. (29) when the ciphertext difference is
∆C

[1..d−2]
i,j = 0 ∧∆Cd−1

i,j ̸= 0 ∧∆Cd
i,j = 0. We then show that this upper bound covers all

other cases.
This ciphertext difference ∆C

[1..d−2]
i,j = 0 ∧ ∆Cd−1

i,j ≠ 0 ∧ ∆Cd
i,j = 0 is the same

ciphertext difference as colls,m analyzed in the proof of Lemma 7. Therefore, we follow
the same argument as in the proof of Lemma 7, and we have T

[1..(d−3)(d−1)+1:d−1]
i =

T
[1..(d−3)(d−1)+1:d−1]
j .

Now from Cd−1
i ̸= Cd−1

j , we have Pr[T 2
i = T 2

j ] = 1/2n as T 2 = P̃ ′
2(Cd−1, Cd). Next,

for any x ∈ [0..d− 3], if T
x(d−1)+2
i = T

x(d−1)+2
j , then T

x(d−1)+d+1
i = T

x(d−1)+d+1
j , since

we have T x(d−1)+d+1 = P̃ ′
x(d−1)+d+1(T x(d−1)+2, T x(d−1)+1) and T

[1..(d−3)(d−1)+1:d−1]
i =
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T
[1..(d−3)(d−1)+1:d−1]
j . Therefore, for any x ∈ [0..d− 3],

Pr[T x(d−1)+d+1
i = T

x(d−1)+d+1
j ]

= Pr[T x(d−1)+2
i = T

x(d−1)+2
j ] + Pr[T x(d−1)+2

i ̸= T
x(d−1)+2
j ]

· Pr[T x(d−1)+d+1
i = T

x(d−1)+d+1
j | T x(d−1)+2

i ̸= T
x(d−1)+2
j ]

≤ Pr[T x(d−1)+2
i = T

x(d−1)+2
j ] + 1

2n
≤ Pr[T 2

i = T 2
j ] +

x∑
ℓ=0

1
2n

= x + 2
2n

.

From (d − 3)(d − 1) + d + 1 = d2 − 3d + 4, we obtain Pr[T d2−3d+4
i = T d2−3d+4

j ] ≤
((d− 3) + 2)/2n = (d− 1)/2n.

In the ideal world, plaintexts are computed with the dn-bit random permutation π−1,
and thus regardless of the ciphertext difference, by following the computation in Eq. (5),
we have Pr[M1

i = M1
j ] ≤ 1/2n. Given the analysis so far, we obtain the upper bound on

Eq. (29) as

Eq. (29) = Pr[(M1
i , T d2−3d+4

i ) = (M1
j , T d2−3d+4

j )]

= Pr[T d2−3d+4
i = T d2−3d+4

j ] · Pr[M1
i = M1

j ] ≤ d− 1
2n
· 1

2n
= d− 1

22n
,

when the ciphertext difference is ∆C
[1..d−2]
i,j = 0 ∧∆Cd−1

i,j ̸= 0 ∧∆Cd
i,j = 0.

Next, we show that the upper bound above covers all other cases. Observe that the
event (M1

i , T d2−3d+4
i ) = (M1

j , T d2−3d+4
j ) and the computation above are similar to colls,c

in Appendix B. Since Pr[M1
i = M1

j ] does not depend on the ciphertext difference, we focus
on the analysis of Pr[T d2−3d+4

i = T d2−3d+4
j ].

(C-19) First, consider the case ∆C
[1..d−2]
i,j ≠ 0 ∧∆Cd−1

i,j ≠ 0 ∧∆Cd
i,j = 0. In this case,

the event T
[1..(d−3)(d−1)+1:d−1]
i = T

[1..(d−3)(d−1)+1:d−1]
j would be a probabilistic event.

Then, for any x ∈ [0..d− 3], from T x(d−1)+d+1 = P̃ ′
x(d−1)+d+1(T x(d−1)+2, T x(d−1)+1),

even if we assume T
x(d−1)+2
i = T

x(d−1)+2
j , the event T

ℓ(d−1)+d+1
i = T

ℓ(d−1)+d+1
j

for ℓ ∈ [x..d− 3] would be a probabilistic event. This implies that there exists a
term Pr[T x(d−1)+2

i = T
x(d−1)+2
j ] that is not added to derive the upper bound on

Pr[T x(d−1)+d+1
i = T

x(d−1)+d+1
j ], and hence the final probability would be smaller.

(C-20) Next, consider the case ∆C
[d−1,d]
i,j = 0, which implies ∆C

[1..d−2]
i,j ≠ 0. For the

largest index x ∈ [1..d− 2] such that ∆Cx
i,j ̸= 0, the input of the (d − x)-th

round is the same as ∆Cd−1
i,j ̸= 0 ∧ ∆Cd

i,j = 0, and this case corresponds to the
analysis of the reduced round version by (d − x − 1) rounds. Then, the event
T

[1..(d−3)(d−1)+1:d−1]
i = T

[1..(d−3)(d−1)+1:d−1]
j would be a probabilistic event, and

hence the final bound cannot be larger as in the analysis of the case (C-19).

(C-21) Finally, assume that ∆Cd
i,j ̸= 0. Now if we further assume that ∆C

[1..d−1]
i,j = 0,

this ciphertext difference is the same difference as the input of the second round
in the initial case of ∆C

[1..d−2]
i,j = 0 ∧∆Cd−1

i,j ≠ 0 ∧∆Cd
i,j = 0, and hence this case

corresponds to the analysis of the increased round version by one round. Therefore,
the event T

[1..(d−3)(d−1)+1:d−1]
i = T

[1..(d−3)(d−1)+1:d−1]
j would be a probabilistic

event, and hence the final bound would be smaller as in the case (C-19).

Therefore, the case ∆C
[1..d−2]
i,j = 0 ∧∆Cd−1

i,j ̸= 0 ∧∆Cd
i,j = 0 maximizes Eq. (29) and

(d− 1)/22n is the upper bound on a condition in colls,m for all the cases.
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Analysis of collm,m. Finally, we consider a condition in collm,m. From a similar analysis
to Eq. (6), the probability of a condition in collm,m is at most 1/22n. This completes the
proof of Lemma 9.

D Proof of Lemma 14
We proceed as in the proof of Lemma 2. We first consider colls,s, followed by colls,c and
collc,c.

Analysis of colls,s. We consider a condition in colls,s. All the conditions in colls,s are
collisions at (Sr−3,ℓ, Sr−2,y) for y ∈ [1..d/2] and ℓ = (y mod d/2) + 1. From the symmetry
in E2,d,r, each probability of the collisions at (Sr−3,ℓ, Sr−2,y) has a same upper bound.
Here, we consider a collision at (Sr−3,2, Sr−2,1). For r = d + 2, we evaluate

Pr[(Sr−3,2
i , Sr−2,1

i ) = (Sr−3,2
j , Sr−2,1

j ) ∧ Cd
i ̸= Cd

j ]

≤ Pr[(Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j )] .
(30)

We first evaluate Eq. (30) when the plaintext difference is ∆M
[1,2]
i,j = 0 ∧ ∆M3

i,j ≠
0 ∧∆M

[5..d]
i,j = 0, where ∆M4

i,j can take any difference. We then show that this gives us
the upper bound on all the possible plaintext differences by showing that all other cases
do not have a larger upper bound.

If we cyclically shift this plaintext difference ∆M
[1,2]
i,j = 0 ∧∆M3

i,j ̸= 0 ∧∆M
[5..d]
i,j = 0

by 2 blocks, the shifted difference is the same difference ∆M1
i,j ̸= 0 ∧∆M

[3..d]
i,j = 0 that

maximizes the collision probability of colls,s in the proof of Lemma 12. From the symmetry
in E2,d,r, for ℓ = (y mod d/2) + 1, Sx,y in the proof of Lemma 12 corresponds to Sx,ℓ in
this analysis. With the same argument, we have S

[1..d−3],3
i = S

[1..d−3],3
j . Note that we

have S1,1
i = S1,1

j when d = 4.
Now, from M3

i ≠ M3
j , the probability of a collision at S1,2 = P̃1,2(M3, M4) is Pr[S1,2

i =
S1,2

j ] = 1/2n. Next, for any x ∈ [2..d− 1], since we have S2,2 = P̃2,2(S1,2, M5) and Sx,2 =
P̃x,2(Sx−1,2, Sx−2,3), and from M5

i = M5
j and S

[1..d−3],3
i = S

[1..d−3],3
j , if Sx−1,2

i = Sx−1,2
j ,

then we must have S
[x..d−1],2
i = S

[x..d−1],2
j . When d = 4, M5 and S[1..d−3],3 correspond to

M1 and S1,1, respectively. Therefore, for each x ∈ [2..d− 1], we have

Pr[Sx,2
i = Sx,2

j ]
= Pr[Sx−1,2

i = Sx−1,2
j ] + Pr[Sx−1,2

i ̸= Sx−1,2
j ] · Pr[Sx,2

i = Sx,2
j | Sx−1,2

i ̸= Sx−1,2
j ]

≤ Pr[Sx−1,2
i = Sx−1,2

j ] + 1
2n
≤ Pr[S1,2

i = S1,2
j ] +

x∑
ℓ=2

1
2n

= x

2n

and this yields Pr[S2,2
i = S2,2

j ] ≤ 2/2n.
Assume that we have a collision at S2,2, in which case S

[3..d−1],2
i = S

[3..d−1],2
j holds.

Since S1,1 = P̃1,1(M1, M2), we have S1,1
i = S1,1

j from M
[1,2]
i = M

[1,2]
j . We also have

S2,1
i ̸= S2,1

j from S1,1
i = S1,1

j and M3
i ̸= M3

j since S2,1 = P̃2,1(S1,1, M3). It follows that a
collision probability at S3,1 = P̃3,1(S2,1, S1,2) is Pr[S3,1

i = S3,1
j ] = 1/2n. We also observe

that for any x ∈ [4..d], if Sx−1,1
i = Sx−1,1

j , then we have S
[x..d],1
i = S

[x..d],1
j . This follows

from the fact that S
[2..d−2],2
i = S

[2..d−2],2
j holds, and for any x ∈ [4..d], Sx−2,2 is the input
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block of Sx,1 = P̃x,1(Sx−1,1, Sx−2,2). From the observation, for any x ∈ [4..d], we have

Pr[Sx,1
i = Sx,1

j | S2,2
i = S2,2

j ]
= Pr[Sx−1,1

i = Sx−1,1
j | S2,2

i = S2,2
j ] + Pr[Sx−1,1

i ̸= Sx−1,1
j | S2,2

i = S2,2
j ]

· Pr[Sx,1
i = Sx,1

j | Sx−1,1
i ̸= Sx−1,1

j ∧ S2,2
i = S2,2

j ]

≤ Pr[Sx−1,1
i = Sx−1,1

j | S2,2
i = S2,2

j ] + 1
2n

≤ Pr[S3,1
i = S3,1

j | S2,2
i = S2,2

j ] +
x∑

ℓ=4

1
2n

= (x− 3) + 1
2n

= x− 2
2n

.

Therefore, from Pr[Sd−1,2
i = Sd−1,2

j | S2,2
i = S2,2

j ] = 1, we obtain

Pr[(Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j ) | S2,2
i = S2,2

j ] ≤ d− 2
2n

.

We proceed similarly for ℓ ∈ [3..d− 1] as follows. We assume Sℓ−1,2
i ≠ Sℓ−1,2

j and
we also assume that we have a collision at Sℓ,2. We denote the assumption Sℓ−1,2

i ≠
Sℓ−1,2

j ∧ Sℓ,2
i = Sℓ,2

j by ifℓ. Then, we have S
[ℓ+1..d−1],2
i = S

[ℓ+1..d−1],2
j , and from Sℓ−1,2

i ≠
Sℓ−1,2

j and Sℓ,2 = P̃ℓ,2(Sℓ−1,2, Sℓ−2,3), we have Pr[ifℓ] ≤ 1/2n. We also observe that if
Sℓ−1,2

i ̸= Sℓ−1,2
j , from Sℓ+1,1 = P̃ℓ+1,1(Sℓ,1, Sℓ−1,2), a collision at Sℓ+1,1 is possible only if

Sℓ,1
i ̸= Sℓ,1

j . Therefore, we have

Pr[Sℓ+1,1
i = Sℓ+1,1

j | ifℓ] ≤ Pr[Sℓ+1,1
i = Sℓ+1,1

j | Sℓ,1
i ̸= Sℓ,1

j ] = 1
2n

.

Furthermore, for any x ∈ [ℓ + 2..d], if Sx−1,1
i = Sx−1,1

j , then S
[x..d],1
i = S

[x..d],1
j holds.

This follows from S
[ℓ..d−2],2
i = S

[ℓ..d−2],2
j , and Sx−2,2 is the input block of Sx,1 =

P̃x,1(Sx−1,1, Sx−2,2). It follows that for any x ∈ [ℓ + 2..d], we have

Pr[Sx,1
i = Sx,1

j | ifℓ]
= Pr[Sx−1,1

i = Sx−1,1
j | ifℓ]

+ Pr[Sx−1,1
i ̸= Sx−1,1

j | ifℓ] · Pr[Sx,1
i = Sx,1

j | Sx−1,1
i ̸= Sx−1,1

j ∧ ifℓ]

≤ Pr[Sx−1,1
i = Sx−1,1

j | ifℓ] + 1
2n

≤ Pr[Sℓ+1,1
i = Sℓ+1,1

j | ifℓ] +
x∑

m=ℓ+2

1
2n
≤ x− (ℓ + 1) + 1

2n
= x− ℓ

2n
.

From Pr[Sd−1,2
i = Sd−1,2

j | ifℓ] = 1, we obtain

Pr[(Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j ) | ifℓ] ≤
d− ℓ

2n
.
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From all the observations above, we obtain the upper bound on Eq. (30) as

Eq. (30) = Pr[(Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j )]

≤ Pr[S2,2
i = S2,2

j ] · Pr[(Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j ) | S2,2
i = S2,2

j ]

+
d−1∑
ℓ=3

(
Pr[ifℓ] · Pr[(Sd−1,2

i , Sd,1
i ) = (Sd−1,2

j , Sd,1
j ) | ifℓ]

)
≤ 2

2n
· d− 2

2n
+

d−1∑
ℓ=3

(
1
2n
· d− ℓ

2n

)
= 2(d− 2)

22n
+ 1

22n
· ((d− 3) + 1)(d− 3)

2 = d2 − d− 2
2 · 22n

,

and we conclude that (d2 − d− 2)/(2 · 22n) is the upper bound on a condition in colls,s for
the case ∆M

[1,2]
i,j = 0 ∧∆M3

i,j ̸= 0 ∧∆M
[5..d]
i,j = 0, where ∆M4

i,j is any difference.
We next prove that the upper bound above is the upper bound for all other plaintext

differences. Observe that the event (Sd−1,2
i , Sd,1

i ) = (Sd−1,2
j , Sd,1

j ) and the computation
above are similar to colls,s in Appendix B.

(C-22) First, let us assume that ∆M3
i,j ̸= 0 ∧ (∆M

[1,2]
i,j ≠ 0 ∨∆M

[5..d]
i,j ≠ 0), namely, for

some y ∈ [1..d] \ {3, 4}, we have ∆My
i,j ̸= 0, where there may be multiple indices

of y. If y = 5, we have Pr[S2,2
i = S2,2

j ] ≤ 1/2n from S2,2 = P̃2,2(S1,2, M5), and
hence the probability would be smaller. If y ∈ [1..d] \ [3..5], the event S

[1..d−3],3
i =

S
[1..d−3],3
j would be a probabilistic event. Then, for any x ∈ [3..d− 1], from Sx,2 =

P̃x,2(Sx−1,2, Sx−2,3), even if we assume Sx−1,2
i = Sx−1,2

j , the event S
[x..d−1],2
i =

S
[x..d−1],2
j would be a probabilistic event. Therefore, for ℓ ∈ [3..d− 2], we have

Pr[Sd−1,2
i = Sd−1,2

j | S2,2
i = S2,2

j ∨ ifℓ] < 1, and hence the probability would be
smaller.

(C-23) Next, consider the case ∆M3
i,j = 0 ∧ ∆M4

i,j ̸= 0. In this case, we must have
S1,2

i ̸= S1,2
j from S1,2 = P̃1,2(M3, M4). Now if we further assume that ∆M

[1,2]
i,j =

0 ∧∆M
[5..d]
i,j = 0, the input at the second round is the same difference as the initial

case of ∆M
[1,2]
i,j = 0 ∧∆M3

i,j ̸= 0 ∧∆M
[5..d]
i,j = 0, and the analysis corresponds to

the one with a reduced round version that cannot have a larger collision probability.
The case ∆M

[1,2]
i,j ≠ 0 ∨∆M

[5..d]
i,j ≠ 0 would have a smaller upper bound as in the

case (C-22).

(C-24) Finally, we consider the case ∆M
[3,4]
i,j = 0, in which case we necessarily have

∆M
[1,2]
i,j ≠ 0 ∨ ∆M

[5..d]
i,j ̸= 0. If ∆M

[5..d]
i,j ≠ 0, we consider the smallest index

x ∈ [5..d] such that ∆Mx
i,j ̸= 0. Then since ∆M

[3..x−1]
i,j = 0, it has the same

input difference as ∆M3
i,j ̸= 0 at the input of the (x− 2)-th round. In the case of

∆M
[1,2]
i,j ̸= 0 ∧∆M

[5..d]
i,j = 0, for the smallest index x ∈ {1, 2} such that ∆Mx

i,j ̸= 0,
the input difference of the (d + x− 2)-th round is the same as ∆M3

i,j ̸= 0, and hence
the final bound cannot be larger as in the analysis of the case (C-23).

Therefore, the case ∆M
[1,2]
i,j = 0 ∧ ∆M3

i,j ̸= 0 ∧ ∆M
[5..d]
i,j = 0, where ∆M4

i,j is any
difference, maximizes Eq. (30) and (d2− d− 2)/(2 · 22n) is the upper bound on a condition
in colls,s for all the cases.
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Analysis of colls,c. We next analyze a condition in colls,c. All the conditions in colls,c
are collisions between Sr−2,y and a ciphertext block for y ∈ [1..d/2]. From the symmetry
in E2,d,r and since ciphertexts are computed with the dn-bit random permutation π in the
ideal world, each probability of the collisions between Sr−2,y and a ciphertext block has
the same upper bound. Here, we consider a collision at (Sr−2,1, Cd). For r = d + 2, we
evaluate

Pr[(Sr−2,1
i , Cd

i ) = (Sr−2,1
j , Cd

j ) ∧ Sr−3,2
i ̸= Sr−3,2

j ] ≤ Pr[(Sd,1
i , Cd

i ) = (Sd,1
j , Cd

j )] . (31)

We first compute the upper bound on Eq. (31) when the plaintext difference is ∆M1
i,j =

0 ∧∆M2
i,j ̸= 0 ∧∆M [3..d] = 0. We then show that this upper bound covers all other cases.

This plaintext difference ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0 ∧∆M [3..d] = 0 is the same plaintext
difference as colls,c analyzed in the proof of Lemma 12. Therefore, we follow the same
argument as in the proof of Lemma 12, and we have S

[1..d−2],2
i = S

[1..d−2],2
j .

Now from M1
i = M1

j and M2
i ≠ M2

j , we have S1,1
i ̸= S1,1

j since S1,1 = P̃1,1(M1, M2).
It follows that a collision probability at S2,1 = P̃2,1(S1,1, M3) is Pr[S2,1

i = S2,1
j ] = 1/2n. It

is easy to see that for any x ∈ [3..d], if Sx−1,1
i = Sx−1,1

j , then S
[x..d],1
i = S

[x..d],1
j , since we

have Sx,1 = P̃x,1(Sx−1,1, Sx−2,2) and S
[1..d−2],2
i = S

[1..d−2],2
j . Therefore, for any x ∈ [3..d],

Pr[Sx,1
i = Sx,1

j ]
= Pr[Sx−1,1

i = Sx−1,1
j ] + Pr[Sx−1,1

i ̸= Sx−1,1
j ] · Pr[Sx,1

i = Sx,1
j | Sx−1,1

i ̸= Sx−1,1
j ]

≤ Pr[Sx−1,1
i = Sx−1,1

j ] + 1
2n
≤ Pr[S2,1

i = S2,1
j ] +

x∑
ℓ=3

1
2n

= x− 1
2n

.

In the ideal world, ciphertexts are computed with the dn-bit random permutation π,
and thus regardless of the plaintext difference, by following the computation in Eq. (5),
we have Pr[Cd

i = Cd
j ] ≤ 1/2n. Given the analysis so far, we obtain the upper bound on

Eq. (31) as

Eq. (31) = Pr[(Sd,1
i , Cd

i ) = (Sd,1
j , Cd

j )] = Pr[Sd,1
i = Sd,1

j ] · Pr[Cd
i = Cd

j ]

≤ d− 1
2n
· 1

2n
= d− 1

22n
,

when the plaintext difference is ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0 ∧∆M [3..d] = 0.
Next, we show that the upper bound above covers all other cases. Observe that the event

(Sd,1
i , Cd

i ) = (Sd,1
j , Cd

j ) and the computation above are similar to colls,c in Appendix B.
Since Pr[Cd

i = Cd
j ] does not depend on the plaintext difference, we focus on the analysis of

Pr[Sd,1
i = Sd,1

j ].

(C-25) First, consider the case ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0 ∧∆M [3..d] ≠ 0. In this case, the
event S

[1..d−2],2
i = S

[1..d−2],2
j would be a probabilistic event. Then, for any x ∈ [3..d],

from Sx,1 = P̃x,1(Sx−1,1, Sx−2,2), even if we assume Sx−1,1
i = Sx−1,1

j , the event
S

[x..d],1
i = S

[x..d],1
j would be a probabilistic event. Therefore, there exists a term

Pr[Sx−1,1
i = Sx−1,1

j ] that is not added to derive the upper bound on Pr[Sx,1
i = Sx,1

j ],
and hence the final probability would be smaller.

(C-26) Next, consider the case ∆M
[1,2]
i,j = 0, which implies ∆M

[3..d]
i,j ̸= 0. For the

smallest index x ∈ [3..d] such that ∆Mx
i,j ̸= 0, it has the same input difference

as ∆M1
i,j = 0 ∧ ∆M2

i,j ̸= 0 at the input of the (x − 1)-th round, i.e., this case
corresponds to the analysis of the reduced round version by (x− 2) rounds, which
cannot have a larger collision probability.
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(C-27) Finally, assume that ∆M1
i,j ̸= 0. Now if we further assume that ∆M

[2..d]
i,j = 0,

this plaintext difference is the same difference as the input of the second round
in the initial case of ∆M1

i,j = 0 ∧∆M2
i,j ≠ 0 ∧∆M [3..d] = 0, and hence this case

corresponds to the analysis of the increased round version by one round. This would
result in Pr[Sd−2,2

i = Sd−2,2
j ] ̸= 1, i.e., Sd−2,2

i = Sd−2,2
j could be a probabilistic

event, or it could be Pr[Sd−2,2
i = Sd−2,2

j ] = 0, where the latter case occurs when
∆M

[2..d]
i,j = 0. Therefore, the final bound would be smaller as in the case (C-25).

Therefore, the case ∆M1
i,j = 0 ∧∆M2

i,j ̸= 0 ∧∆M [3..d] = 0 maximizes Eq. (31) and
(d− 1)/22n is the upper bound on a condition in colls,c for all the cases.

Analysis of collc,c. Finally, we consider a condition in collc,c. From the same analysis as
in Eq. (6), the probability of a condition in collc,c is at most 1/22n. This completes the
proof of Lemma 14.

E Proof of Proposition 1
From the definition in Sect. 3, E−1

1,d,r[Ẽ1, . . . , Ẽd−1] with r = d− 1 rounds is

E−1
1,d,r[Ẽ1, . . . , Ẽd−1](X [1..d]) = Φ−1

1,d[Ẽ1] ◦ · · · ◦ Φ−1
1,d[Ẽd−2] ◦ Φ−1

1,d[Ẽd−1](X [1..d])

= (X2 ∥ Ẽ−1
1 (X2, X3) ∥ · · · ∥ Ẽ−1

d−2(Xd−1, Xd) ∥ Ẽ−1
d−1(Xd, X1)) ,

(32)

where X [1..d] = X1 ∥ · · · ∥Xd is the input. We also write Φ3,d[Ẽ′
1, . . . , Ẽ′

d−1], which is

Φ3,d[Ẽ′
1, . . . , Ẽ′

d−1](Y [1..d])
= (Ẽ′

1(Y 1, Y 2) ∥ · · · ∥ Ẽ′
d−2(Y d−2, Y d−1) ∥ Ẽ′

d−1(Y d−1, Y d) ∥ Y 1) ,
(33)

where Y [1..d] = Y 1 ∥ · · · ∥ Y d is the input.
Now let Y ℓ = Xℓ+1 for ℓ ∈ [1..d− 1], Y d = X1, and Ẽ′

x(·) = Ẽ−1
x (·) for x ∈ [1..d− 1].

Then Eq. (33) is

Φ3,d[Ẽ′
1, . . . , Ẽ′

d−1](Y [1..d]) = Φ3,d[Ẽ−1
1 , . . . , Ẽ−1

d−1](X [2..d] ∥X1)
= (Ẽ−1

1 (X2, X3) ∥ · · · ∥ Ẽ−1
d−2(Xd−1, Xd) ∥ Ẽ−1

d−1(Xd, X1) ∥X2) .
(34)

Therefore, Φ3,d in Eq. (34) is equivalent to E−1
1,d,r in Eq. (32), where the input and output

are rotated to the left by one block. Therefore, Φ3,d is equivalent to E−1
1,d,r with r = d− 1

rounds.

F Proof of Theorem 5
First, we recall the procedure of A for the case r = d2 − d + 1:

1. Fix q = 2n/2 ciphertexts C
[1..d]
1 , . . . , C

[1..d]
q such that ∆C1

i,j ̸= 0 ∧∆C
[2..d]
i,j = 0, and

make q decryption queries (See Fig. 14(d)).

2. If a collision is found among the q values of M1
i , then output 1, else output 0.

We first consider the real world. Following the proof of Lemma 7, we write P̃ ′
1, . . . , P̃ ′

r

for P̃ −1
r , . . . , P̃ −1

1 , i.e., for x ∈ [1..r], we let P̃ −1
x (·) = P̃ ′

r−x+1(·). Similarly, we write
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T 1, . . . , T r−d for the internal states Sr−d, . . . , S1 that are computed with P̃ −1
r , . . . , P̃ −1

d+1,
respectively, i.e., we let Sx = T r−d−x+1 for x ∈ [1..r − d].

In the real world, for ciphertexts with ∆C1
i,j ̸= 0∧∆C

[2..d]
i,j = 0, we always have T 1

i ̸= T 1
j

and T
[2..d−1]
i = T

[2..d−1]
j , since T 1 = P̃ ′

1(Cd, C1) and T x = P̃ ′
x(Cd−x+1, Cd−x+2) for x ∈

[2..d− 1]. That is, the difference of the input C2∥T d−1∥T d−2∥· · ·∥T 1 to the d-th round in
the decryption direction is the same as the ciphertext difference ∆C

[2..d−1]
i,j = 0∧∆Cd

i,j ̸= 0
that maximizes the collision probability among the differences in colls,s in the proof of
Lemma 7. We can then follow a similar argument to the proof of Lemma 7 by adding (d−1)
rounds, and T 1, . . . , T d2−4d+4 in the proof of Lemma 7 corresponds to T d, . . . , T d2−3d+3

in this attack. We observe that for x ∈ [1..d− 3], if T
x(d−1)+1
i = T

x(d−1)+1
j , then we have

T
x(d−1)+d
i = T

x(d−1)+d
j , and since M1 = P̃ ′

d2−2d+2(T d2−3d+3, T d2−3d+2), we also observe
that if T d2−3d+3

i = T d2−3d+3
j , then we have M1

i = M1
j .

From the analysis above and by following the computation of Eq. (23), we compute
the lower bound to have a collision at M1 in the real world as follows:

Pr[AR,R−1
= 1] = 1− Pr[∀∆T d

i,j ̸= 0] ·
d−2∏
x=1

Pr
[
∀∆T

x(d−1)+d
i,j ̸= 0

∣∣∣∣∣
x∧

ℓ=1
∀∆T

ℓ(d−1)+1
i,j ̸= 0

]

= 1−
(

q∏
i=2

2n − (i− 1)
2n

)1+(d−2)

⪆ 1− exp(−0.5(d− 1))

Note that T (d−2)(d−1)+d = T d2−2d+2 = M1 when r = d2 − d + 1.
The analysis of the ideal world is the same as in Eq. (24), except that we use π−1 to

compute plaintexts, and we thus have Pr[AI,I−1 = 1] ≤ 0.5.
Finally, we compute the lower bound of the advantage as

Advsprp
E (A) = |Pr[AR,R−1

= 1]− Pr[AI,I−1
= 1]| ⪆ 0.5− exp(−0.5(d− 1)) .

In the real world, M1 for r = d2− d + 1 corresponds to Md−x for r = d2− d−x, where
x ∈ [0..d− 2]. Therefore, it is easy to see that there is an attack with the same complexity
for d2 − 2d + 2 ≤ r < d2 − d + 2.

G Proof of Theorem 6
We consider the case r = d + 1. We first recall the procedure of A:

1. Fix q = 2n/2 plaintexts M
[1..d]
1 , . . . , M

[1..d]
q such that ∆M1

i,j = 0 ∧ ∆M2
i,j ≠ 0 ∧

∆M
[3..d]
i,j = 0 for any 1 ≤ j < i ≤ q, and make q encryption queries.

2. If a collision is found among the q values of Cd
i , then output 1, else output 0.

In the real world, with encryption queries with ∆M1
i,j = 0 ∧∆M2

i,j ≠ 0 ∧∆M
[3..d]
i,j = 0,

we always have S1,1
i ≠ S1,1

j and S
1,[2..d/2]
i = S

1,[2..d/2]
j , since S1,y = P̃1,y(M2y−1, M2y)

for y ∈ [1..d/2]. Then the input difference S1,1 ∥M3 ∥ · · · ∥ S1,d/2 ∥M1 of the second
round is identical to the plaintext difference ∆M1

i,j ̸= 0 ∧∆M
[3..d]
i,j = 0 in Lemma 12 that

maximizes the collision probability of colls,s. By adding a round at the beginning, Sx,y in
the proof of Lemma 12 corresponds to Sx+1,y in this attack. With the same argument,
for x ∈ [3..d− 1], if Sx−1,1

i = Sx−1,1
j , then we have S

[x..d−1],1
i = S

[x..d−1],1
j , and from

Cd = P̃d,1(Sd−1,1, Sd−2,2), if Sd−1,1
i = Sd−1,1

j , then we have Cd
i = Cd

j .
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From the analysis above and by following Eq. (23), we derive the lower bound on the
collision probability at Cd in the real world as follows:

Pr[AR = 1] = 1− Pr[∀∆S2,1
i,j ̸= 0] ·

d∏
x=3

Pr
[
∀∆Sx,1

i,j ̸= 0
∣∣∣∣∣

x−1∧
ℓ=2
∀∆Sℓ,1

i,j ̸= 0
]

= 1−
(

q∏
i=2

2n − (i− 1)
2n

)1+(d−2)

⪆ 1− exp(−0.5(d− 1))

Note that Sd,1 = Cd when r = d + 1.
The analysis of the ideal world is the same as in Eq. (24), and we have Pr[AI = 1] ≤ 0.5.

Finally, we obtain the lower bound of the advantage as follows:

Advprp
E (A) = |Pr[AR = 1]− Pr[AI = 1]| ⪆ 0.5− exp(−0.5(d− 1))

As noted in the proof sketch, in the real world, Cd for r = d + 1 corresponds to C1 for
r = d, and the attack works with the same complexity for the case r = d.
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