
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 4, pp. 1–23. DOI:10.46586/tosc.v2022.i4.1-23

SCB Mode: Semantically Secure
Length-Preserving Encryption

Fabio Banfi

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
fabio.banfi@inf.ethz.ch

Abstract. To achieve semantic security, symmetric encryption schemes classically
require ciphertext expansion. In this paper we provide a means to achieve semantic
security while preserving the length of messages at the cost of mildly sacrificing
correctness. Concretely, we propose a new scheme that can be interpreted as a
secure alternative to (or wrapper around) plain Electronic Codebook (ECB) mode of
encryption, and for this reason we name it Secure Codebook (SCB). Our scheme is
the first length-preserving encryption scheme to effectively achieve semantic security.
Keywords: SCB · secure codebook · semantic security · length-preserving encryption

1 Introduction
In this paper we revisit the classical insecure Electronic Codebook (ECB) mode of encryp-
tion, and transform it into one that achieves semantic security, denoted Secure Codebook
(SCB). This will be at the cost of imperfect correctness and the need of keeping state, but
we provide optimal security-correctness trade-offs depending on the setting.

1.1 Background and Motivation
Given a block cipher over {0, 1}n, typical modes of operation for symmetric encryption
map plaintext messages of length ℓn to ciphertexts of length at least (ℓ+1)n. An exception
is the Electronic Codebook (ECB) mode of operation, whose ciphertext have length exactly
ℓn, and is therefore length-preserving. Still, ECB is the archetypal example of an insecure
mode of encryption, in that it fails to achieve semantic security. The reason is that the
latter, conventionally phrased in terms of indistinguishability under a chosen-plaintext
attack (IND-CPA), is easily broken for ECB simply by comparing the encryption of a
message with repeating blocks against one without (or a uniformly chosen bit string of the
same length).

Semantic security has been initially introduced and achieved by Goldwasser and Micali
[GM82], where it was originally defined for probabilistic (public-key) encryption. Bellare et
al. [BDJR97] later adapted the notion to symmetric encryption, and subsequently Rogaway
[Rog04] initiated the rigorous study of semantically secure deterministic (symmetric)
encryption, made possible by the use of nonces. A typical example of a semantically secure
mode of encryption is counter (CTR) mode, where a nonce of n bits (or simply a random
string, if one wants to obtain a probabilistic encryption scheme) is constantly increased
and fed to the block cipher to obtain pseudorandom bit strings to be used as (one-time)
pads for each message block. By virtue of the nonce being used as a counter and thus never
repeating, and the PRP/PRF switching lemma, we are guaranteed that each block, even
repeated ones, will be padded with bit string that are computationally indistinguishable
from uniformly and independently distributed ones. But clearly, the nonce needs to be

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-09-01 Accepted: 2022-11-01 Published: 2022-12-07

https://doi.org/10.46586/tosc.v2022.i4.1-23
mailto:fabio.banfi@inf.ethz.ch
http://creativecommons.org/licenses/by/4.0/

2 SCB Mode: Semantically Secure Length-Preserving Encryption

transmitted (in or out of band) as part of the ciphertext, effectively contributing to the
expansion of the ciphertext by one block.

Still, with CTR mode one can in principle achieve length preservation by pre-agreeing
on an initial counter, and then keeping state. But crucially, it is imperative that ciphertexts
do not get reordered or dropped (deleted) in transit. To see how this is possible, imagine
that Alice and Bob agree to set the initial counter to 1, and suppose for simplicity that
Alice wants to send block messages M1, . . . , Mℓ ∈ {0, 1}n to Bob. She will encrypt each
message as Ci

.= EK(i)⊕Mi using the secret key K and a pre-agreed block cipher E, but
an adversary will reorder the ciphertexts in transit by effectively delivering the permuted
sequence C ′

1, . . . , C ′
ℓ to Bob, where C ′

i
.= Cπ(i), for some permutation π. This means that

Bob will then decrypt each message as M ′
i

.= EK(i) ⊕ C ′
i, but clearly M ′

i = Mi with
probability 1 if and only if π(i) = i. Therefore, only messages that have been encrypted
using a counter that is a fixed point of π will be correctly decrypted with probability
1. Moreover, in case even just one of the ciphertext is dropped by the adversary (and
even if the others are not permuted), correctness of the scheme is completely lost for any
subsequent message.

It is nevertheless well known that length-preserving encryption (or rather, enciphering)
is indeed possible, if one wants to give up semantic security and settle for the weaker notion
of pseudo-random permutation (PRP) security, adapted to variable length bit strings. The
study of variable-input-length (VIL) ciphers was initiated by Bellare and Rogaway [BR99],
and asks the question of how to transform a block cipher for fixed-input length into a VIL
cipher, in such a way that the length is preserved. This is useful for example in networking
applications where a packet format needs to be upgraded by adding privacy features under
the constraint that such packet preserves its exact structure.

Bellare and Rogaway stated that “semantically secure encryption cannot possibly be
length preserving”, and here we want to exactly challenge that statement. We argue that
this is not only a theoretically interesting question, but it also captures scenarios that
are not entirely unlikely in practice. For example, consider a small low-power IoT device
that needs to communicate data confidentially in a strong sense (that is, in a semantically
secure sense) via UDP packets to some server, knowing that plaintext messages might
be repeated, or might simply contain repeating blocks within or across messages. Note
that since UDP, unlike TCP, does not define a session construct, reordering and dropping
(deletion) of packets cannot be excluded. Now, it is reasonable to assume that the device
might need to regularly send and receive a small number of encrypted messages, say each
day d sessions consisting of m messages each, and that each message is made up of a small
number of blocks (whose length is defined by the block cipher), say at most b. Then, with
conventional IND-CPA secure modes of encryption, the amount of overall blocks that
need to be transmitted per day is upper bounded by dmb + dm, but if the scheme would
be length-preserving, then this bound would only amount to dmb, which for large d and
small m and b represents a significant gain in communication efficiency. To achieve length
preservation, the above approach with CTR mode would not be suitable in this setting,
because using UDP might cause ciphertexts to be reordered or deleted. This naturally
leads us to the question that we aim at answering in this paper, namely:

Can we achieve semantically secure length-preserving symmetric encryption
such that correctness is not completely lost in case of reordering or deletion?

We will answer this question in the positive for the case of reordering, and show that it is
indeed possible to achieve the desired goal at the cost of (tunable) imperfect correctness
and keeping state.

Fabio Banfi 3

1.2 Contribution
We answer the above question constructively, by providing a concrete stateful symmetric
encryption scheme that achieves semantic (IND-CPA) security, but that has imperfect
correctness. This does not mean that the scheme is impractical, but rather, that it should
be used in a way that (provably) provides the desired level of correctness. The core of our
scheme is a mode of encryption, that is, a way to use a block cipher E : {0, 1}κ×{0, 1}n →
{0, 1}n in order to encrypt bit strings whose length is a multiple of the block length n.

Our mode of encryption can be seen as a (black-box) adaptation of the classical (but
clearly not semantically secure) Electronic Codebook (ECB) mode, and for this reason
we named our new mode Secure Codebook (SCB). More precisely, given oracle access to
ECB encryption and decryption functions (that is, for an unknown secret key K1), SCB
encryption uses an additional key K2, keeps state, and uses the ECB encryption oracle, and
SCB decryption also uses K2, keeps state, and uses the ECB decryption oracle. Therefore,
if for any (probably unsound) reason a protocol employs ECB as a sub-module, it is
possible to wrap such module in a black-box way and achieve what any semantically secure
scheme would achieve in its place, without having to change the syntax of the exchanged
messages, and only at the cost of keeping some state and scarifying some correctness (still,
in a way that it is very close to perfect, if the parameters are reasonably chosen).

Our approach is quite simple: Anytime a block is repeated (within or across messages),
rather than enciphering it again with the block cipher, we will encipher a specially formatted
block that, if decrypted, with high enough probability will be detected as signaling the
repetition of a previous block. Clearly, forcing every block (even such repetition signals) to
be of the same size, must be at the cost of correctness. More precisely, we will be splitting
the block cipher domain in valid messages and repetition signals, so it is imperative to
design such split in a careful way, so that with good enough probability deciphered blocks
will not be interpreted as repetitions. Finally, applying the so-called ciphertext stealing
(CTS) paradigm, turns our mode of encryption into an encryption scheme for strings
of any length. Therefore, our scheme can also be easily adapted to be a (PRP) secure
length-preserving enciphering scheme (or VIL cipher), even though, one with imperfect
correctness. This can be achieved simply by not keeping state.

We provide two variants of our scheme. The simpler one can be used in a setting where
no reordering of transmitted ciphertexts takes place. The second one is slightly more
complex, because it assumes reordering of transmitted ciphertexts does take place. The
idea is simply to tag blocks of decrypted messages that had the structure of a repetition, but
for which no reference block has been deciphered so far. This way, if a message containing
the reference block is decrypted later, the receiver can (at least partially) reconstruct the
previous messages with tagged blocks. Note that this feature is impossible to achieve with
CTR mode, if reordering or deletion of transmitted ciphertexts take place.

1.3 Related Work
The idea of designing length-preserving (symmetric) encryption schemes is not new. What
is new is the axis used to approach this problem: Rather than asking how to appropriately
weaken the security notion of such a scheme, we ask how we can weaken its correctness,
while maintaining a high level of security, but in such a way that the scheme is still usable
in practice. In fact, previous work on length-preserving encryption (LPE) addresses the
problem we are considering here, but from a different perspective. Introduced by Bellare
and Rogaway [BR99], LPE can essentially be understood as the problem of turning a
regular (fixed-size) block cipher into a VIL cipher, such that for each possible length ℓ
(and key), the new scheme implements a permutation over bit strings of length ℓ. Clearly,
this implies that semantic security is unattainable by an LPE scheme, and therefore the
best hope is to achieve a modification the classical of pseudo-random permutation (PRP)

4 SCB Mode: Semantically Secure Length-Preserving Encryption

security notion for block ciphers, which simply asks that for each possible length ℓ (and
key), the scheme is indistinguishable from a uniformly random permutation over bit strings
of length ℓ. For this reason, it would in fact be more correct to understand the E in LPE
as enciphering, rather than encryption.

The original work by Bellare and Rogaway [BR99] provided a concrete scheme that can
be abstractly described as a two-pass CBC-MAC over the input message of arbitrary size.
Subsequently, Bleichenbacher and Desai [BD99] refined this scheme to achieve Strong PRP
(SPRP) security. More efficient constructions were later found by Patel et al. [PRS04]. In
[CYK04] and [CKY07], Cook et al. introduce the notion of elastic block ciphers (EBC),
which unlike the previous works, achieves LPE by treating only the round function of the
underlying block cipher as a black box, not the entire block cipher.

In the literature, there has been a shift in attention towards achieving tweakable LPE
from a tweakable block cipher, a primitive originally introduced by Liskov et al. [LRW02].
Two first such schemes are the modes of operation CMC [HR03] and EME [HR04], both
introduced by Halevi and Rogaway, but both limited to input lengths which are a multiple
of the block length (hence LPE schemes that are not VIL schemes). The first truly VIL
tweakable LPE scheme, the Extended Codebook (XCB) mode of operation, was described
by McGrew and Fluhrer [MF04], who combined a block cipher with an universal hash
function to realize an unbalanced three-round Feistel network. The same authors only
later formally proved its security in [MF07]. Halevi extended EME into EME* [Hal04],
achieving a fully VIL tweakable LPE scheme; Wang et al. [WFW05] proposed HCTR,
based on the counter (CTR) mode of encryption, and later Chakraborty and Nandi
[CN08] improved its security bound. A series of schemes based on ECB followed, PEP
by Chakraborty and Sarkar [CS06], TET by Halevi [Hal07], and HEH by Sarkar [Sar07].
Further schemes improving on HCTR are HSE by Minematsu and Matsushima [MM07],
HCH by Chakraborty and Sarkar [CS08], and HMC by Nandi [Nan08]. More recent
schemes include TCT1 and TCT2 by Shrimpton and Terashima [ST13] and Adiantum by
Crowley and Biggers [CB18].

We stress again that of all the above mentioned works, none provides an LPE scheme
achieving semantic security, which is precisely what we do here for the first time.

2 Preliminaries

2.1 Notation
Let N = {1, 2, . . .}. For any n ∈ N, we use the convention [n] .= {1, . . . , n}. For a set S we
denote the set of all (non-empty) sequences of length at least n over S as S≥n .= ∪i≥nSi, and
we also define S+ .= S≥1. For some x = (xℓ, . . . , x1) ∈ S+, with ℓ ∈ N, we define |x| .= ℓ
as well as [x]t

.= (xt, . . . , x1), for any 1 ≤ t ≤ ℓ. For another y = (yℓ′ , . . . , y1) ∈ S+, with
ℓ′ ∈ N, we define x∥y .= (xℓ, . . . , x1, yℓ′ , . . . , y1). When S = {0, 1}, we call such sequences
bit strings. For any n ∈ N, by Fn we denote the set of all functions {0, 1}n → {0, 1}n,
and by Pn the set of all bijections (permutations) {0, 1}n → {0, 1}n. For any k, v ∈ N, we
model a look-up table T mapping key bit strings of length k to value bit strings of length
v as a function {0, 1}k → {0, 1}v ∪ {⊥} (with ⊥ /∈ {0, 1}+), and we define the following
operations: Initializing a look-up table T to an empty one is denoted T← []; Assigning
value V to key K in T is denoted T[K]← V , and we assume that any value previously
assigned to K will be overwritten by V ; Reading the value assigned to key K in T and
assigning it in V is denoted V ← T[K], and if T does not hold any value for K (that is,
no value has been assigned to K in T before), then V will be assigned the special symbol
⊥. Finally, if X is a finite set, we let x $← X denote picking an element of X uniformly at
random and assigning it to x, and for an algorithm A we let y ← AO1,O2,... denote running
A with oracle access to O1, O2, . . ., modeled as functions, and assigning the output to y.

Fabio Banfi 5

2.2 Games, Adversaries, and Reductions
We work in the concrete security setting pioneered by Bellare et al. [BKR94, BDJR97],
and use the code-based game-playing framework of Bellare and Rogaway [BR06]. A game
G specifies a number of procedures O1, O2, . . . that model oracles for an adversary A. G
also optionally defines a procedure Init, and (if not specified otherwise), A will output
a bit b. Execution of adversary A with game G then consists of running A with oracle
access to Init (if present) and O1, O2, . . ., with the restrictions that A’s single call to Init
(if present) must be its first overall call. The output of the execution is the bit output by
A, and we use the notation Pr[G(A)] .= Pr[b = 0 | b ← AInit,O1,O2,...]. For some security
notions, when defining A’s advantage, we will directly use the right-hand side expression
with oracles modeled by regular functions parameterized by random variables.

2.3 Symmetric Encryption
In this work we consider a special type of symmetric encryption: length-preserving and
stateful. We also restrict our attention to schemes with message and ciphertext spaces
consisting of bit strings with lengths that are integer multiples of a fixed block length,
not bit strings of arbitrary length. This makes our exposition easier, and our result more
modular, because we will achieve schemes for any length by simply using ciphertext stealing
as the very last step (see Section 3.4).

Definition 1. For some n ∈ N, a Length-Preserving Stateful Encryption (LPSE) scheme
Π = (E ,D) specifies stateful algorithms E : K × ({0, 1}n)+ × S → ({0, 1}n)+ × S and
D : K × ({0, 1}n)+ × T → ({0, 1}n)+ × T , for some n ∈ N. K is the space of keys, S is
the space of encryption states, and T is the space of decryption states. The encryption
algorithm takes as input a key K ∈ K, a message M ∈ {0, 1}ℓn, for some ℓ ∈ N, and an
encryption state S ∈ S, and returns a ciphertext-state pair (C; S′)← Π.E(K, M ; S), such
that C ∈ {0, 1}ℓn (length preservation). The decryption algorithm takes as input a key
K ∈ K, a ciphertext C ∈ {0, 1}ℓn, for some ℓ ∈ N, and a decryption state T ∈ T , and
returns a message-state pair (M ; T′)← Π.D(K, C; T), such that M ∈ {0, 1}ℓn.

In this paper we will assume for simplicity that the key distribution is the uniform dis-
tribution over K. Note that we did not include any correctness requirement in Definition 1.
For better readability, we will use the following short-hand notation:

• For any key K, encryption state S, message M , decryption state T, and ciphertext
C, we define ES

K(M) .= E(K, M ; S) and DT
K(C) .= D(K, C; T).

• We assume that (syntactically) the state is “passed by reference” to the encryption
and decryption algorithms, that is, we write C ← ES

K(M) to mean the sequence of
operations (C; S′) ← ES

K(M), S ← S′, and M ← DT
K(C) to mean the sequence of

operations (M ; T′) ← DT
K(C), T ← T′, meaning that encryption and decryption

algorithms implicitly modify the state as a side effect.

Finally, we introduce a new operation that allows to enhance correctness of an LPSE
scheme in case transmitted ciphertexts are reordered (for which we already apply the
analogous above remarks).

Definition 2. For some n ∈ N, a Recoverable LPSE (R-LPSE) scheme Π = (E ,D, D̃,R)
is an LPSE scheme (E ,D) which additionally defines a tagged decryption algorithm
D̃ : K × T × ({0, 1}n)+ → ({0, 1}n)+ × {0, 1}+ and a recovery algorithm R : K ×
(({0, 1}n)+ × {0, 1}+)+ → (({0, 1}n)+)+. The tagged decryption algorithm takes as
input a key K ∈ K, a decryption state T ∈ T , and a ciphertext C ∈ {0, 1}ℓn, for some
ℓ ∈ N, and returns a tagged message (M, t) ← Π.D̃T

K(C), such that M = Π.DT
K(C)

6 SCB Mode: Semantically Secure Length-Preserving Encryption

Game Gind-cpa-0
Π

1 : procedure Init
2 : K $← K
3 : S← []
4 : procedure Enc(M)

5 : C ← Π.ES
K(M)

6 : return C

Game Gind-cpa-1
Π

1 : procedure Enc(M)

2 : C $← {0, 1}|M|

3 : return C

Figure 1: Games defining semantic security of an LPSE scheme Π.

and t ∈ {0, 1}ℓ. The recovery algorithm takes as input a key K ∈ K and a list of
tagged messages (M1, t1), . . . , (Ms, ts) ∈ ({0, 1}n)+, for some s ∈ N, and returns a list of
messages (M ′

1, . . . , M ′
s) ← Π.RK((M1, t1), . . . , (Ms, ts)), such that for any i ∈ [s], with

Mi = Mi,1∥ · · · ∥Mi,ℓ and ti = ti,1∥ · · · ∥ti,ℓ, for some ℓ ∈ N, (1) |M ′
i | = |Mi| = ℓn, and (2)

for any j ∈ [ℓ] such that ti,j = 0, M ′
i,j = Mi,j .

The intuition behind an R-LPSE scheme is that for each ciphertext C = C1∥ · · · ∥Cℓ,
for some ℓ ∈ N, tagged decryption will tag each deciphered block Mi, for i ∈ [ℓ], that
is deemed ambiguous by setting ti to 1 (and to 0 otherwise), so that the output is
(M1∥ · · · ∥Mℓ, t1∥ · · · ∥tℓ). A block is deemed ambiguous if it signals a repetition, but no
previous plaintext block can be found in the decryption state. After a batch of ciphertexts
has been transmitted (that is, after a session has terminated), if the communication channel
did not guarantee that the order was preserved, running the recovery algorithm on the
batch can then resolve any such ambiguity.

2.4 Semantic Security
For some n ∈ N, let Π be an LPSE scheme with key space K and message and ciphertext
spaces ({0, 1}n)+. We define semantic security of Π as indistinguishability from random
ciphertexts (IND-CPA) (as introduced in [AR00, RBBK01]). Considering games Gind-cpa-0

Π
and Gind-cpa-1

Π in Figure 1, we define the advantage of an IND-CPA adversary A as

Advind-cpa
Π (A) .= Pr[Gind-cpa-0

Π (A)]− Pr[Gind-cpa-1
Π (A)].

We let β(A) denote the total number of n-bit blocks queried to Enc by A.1

2.5 Correctness
For some n ∈ N, let Π be a (R-)LPSE scheme with key space K and message and ciphertext
spaces ({0, 1}n)+. We define two separate notions for correctness. The first models the
setting where ciphertexts are not reordered in transit, and therefore if Π is just an LPSE
(and not R-LPSE) scheme, it is the only correctness notion that can be achieved (if Π is an
R-LPSE, it can also satisfy this notion). The second models the setting where ciphertexts
are reordered in transit, and therefore it only applies in case that Π is an R-LPSE scheme.

2.5.1 Without Reordering of Ciphertexts

We define correctness (COR) (without reordering) of Π as the problem of distinguishing
between an oracle that, given a message, returns the decryption of its encryption, and an

1 This is a different measure than µ(A) from, e.g., [BDJR97], which measures how many bits were
queried by A. We chose this measure for convenience, but the two are simply related by β(A) = µ(A)/n.

Fabio Banfi 7

Game Gcor-0
Π

1 : procedure Init
2 : K $← K
3 : S, T← []
4 : procedure EncDec(M)

5 : C ← Π.ES
K(M)

6 : M ′ ← Π.DT
K(C)

7 : return M ′

Game Gcor-1
Π

1 : procedure EncDec(M)
2 : return M

Figure 2: Games defining correctness without reordering of an LPSE scheme Π.

Game Gcor-wr-0
Π

1 : procedure Init
2 : K $← K
3 : S, T← []
4 : procedure EncDecRec(M1, . . . , Ms, π) // π : [s] → [s] must be a permutation.

5 : for i = 1, . . . , s do
6 : Ci ← Π.ES

K(Mi)
7 : for i = 1, . . . , s do

8 : (M ′
π(i), tπ(i))← Π.D̃T

K(Cπ(i))
9 : M ′′

π(1), . . . , M ′′
π(s) ←RK((M ′

π(1), tπ(1)), . . . , (M ′
π(s), tπ(s)))

10 : return M ′′
π(1), . . . , M ′′

π(s)

Game Gcor-wr-1
Π

1 : procedure EncDecRec(M1, . . . , Ms, π) // π : [s] → [s] must be a permutation.

2 : return Mπ(1), . . . , Mπ(s)

Figure 3: Games defining correctness with reordering of an R-LPSE scheme Π.

oracle that simply returns the queried message. Considering games Gcor-0
Π and Gcor-1

Π in
Figure 2, we define the advantage of a COR adversary A as

Advcor
Π (A) .= Pr[Gcor-0

Π (A)]− Pr[Gcor-1
Π (A)].

We let β(A) denote the total number of n-bit blocks queried to EncDec by A.

2.5.2 With Reordering of Ciphertexts

Assume that Π is an R-LPSE. We define correctness with reordering (COR-WR) of Π as
the problem of distinguishing between an oracle that, given a sequence of s ∈ N messages
and a permutation on [s], (1) encrypts the messages in the given order, (2) tag-decrypts
them in the permuted order, (3) applies the recovery algorithm to the list of decrypted
messages, and (4) returns the sequence of (permuted) recovered messages, and an oracle
that simply returns the permuted sequence of queried message. Considering games Gcor-wr-0

Π
and Gcor-wr-1

Π in Figure 3, we define the advantage of a COR-WR adversary A as

Advcor-wr
Π (A) .= Pr[Gcor-wr-0

Π (A)]− Pr[Gcor-wr-1
Π (A)].

We let β(A) denote the total number of n-bit blocks queried to EncDecRec by A.

8 SCB Mode: Semantically Secure Length-Preserving Encryption

2.6 PRP Security
Let κ, n ∈ N, E : {0, 1}κ × {0, 1}n → {0, 1}n, and for any K ∈ {0, 1}κ and M ∈ {0, 1}n,
define EK(M) .= E(K, M). Then E is a block cipher if, for any K ∈ {0, 1}κ, EK is
bijective, that is, EK is a permutation on {0, 1}n. We say that E is a pseudorandom
permutation (PRP) if it is indistinguishable from a uniformly selected permutation. We
define the advantage of a PRP adversary A as

Advprp
E (A) .= Pr[b = 0 | b← AEK , K $← {0, 1}κ]− Pr[b = 0 | b← Aπ, π $← Pn].

We let q(A) denote the total number of queries to EK made by A.

2.7 Collision Resistance
Let m, n ∈ N with m > n, and H : {0, 1}m → {0, 1}n. We say that H is a collision
resistant (CR) compression (hash) function if it is hard to find two pre-images of H with
the same image. We define the advantage of a CR adversary A as

Advcr
H(A) .= Pr[X ̸= Y ∧H(X) = H(Y) | (X, Y)← A].

Note that we consider unkeyed compression functions, which means that there always
exists an efficient CR adversary with advantage 1. But as pointed out in [Rog06], this does
not imply that one can actually find such adversary. Rather, in our proofs we give explicit
constructions of CR adversaries from other adversaries (by means of a reduction). Still, it
is possible to make our results more rigorous by letting compression functions be keyed.
In this case, the target security would be weak collision resistance (WCR) from [BCK96].

3 Secure Codebook (SCB) Mode of Encryption
3.1 The Scheme
We design a stateful symmetric encryption scheme starting from a block cipher E and
a compression function H, that is, we specify a mode of encryption. The main idea is
to encipher each newly seen block normally with EK1 , for some key K1, and keep track
of how many times each blocks has been seen so far via a look-up table S that maps
blocks to integer counters; then, for each block that has been seen previously, rather than
enciphering the block again (which is what ECB would do), we generate a hash value
with H, append it to the bit string representing the number of times such block has been
previously seen (retrieved from S), pad with enough zeros, XOR with a second key K2 of
the same length as a block, and encipher the resulting bit string.

For decryption, we will also keep state by using a look-up table T mapping hash values
to blocks. For each block of a ciphertext, we initially decipher it with E−1

K1
, and then decide

whether we believe the result to be the intended bit string upon encryption, in which
case we store it under its hash value defined by H in T, or whether it was a signal of a
repetition. We always guess the latter case if the deciphered block has the right structure,
that is, if it is appropriately zero-padded, and if the last bits correspond to a hash value
that is contained in T; In this case, simply retrieve the block from T.

Clearly, things can go wrong, but we will show that under appropriate conditions, our
scheme is still practical, and achieves semantic security. The first case in which correctness
is violated, is if two blocks are mapped to the same hash value by H. Such a collision
would force encryption to signal a wrong repetition, and the probability of such an event is
upper-bounded by the collision resistance of H. The second case is if a block of a message
to be encrypted is such that when XORed with K2 has the structure of a repetition signal,
and we will bound this event with a concrete probability.

Fabio Banfi 9

SCB[E, H].ES
K1,K2

(M1∥ · · · ∥Mℓ)
1 : for i = 1, . . . , ℓ do
2 : h← H(Mi)
3 : if S[h] = ⊥ then
4 : Ci ← EK1 (Mi)
5 : S[h]← 0σ

6 : else

7 : R← 0n−σ−τ∥S[h]∥h
8 : Ci ← EK1 (K2 ⊕R)
9 : S[h]← (S[h] + 1) mod 2σ

10 : return C1∥ · · · ∥Cℓ

SCB[E, H].DT
K1,K2

(C1∥ · · · ∥Cℓ)
1 : for i = 1, . . . , ℓ do

2 : Mi ← E−1
K1 (Ci)

3 : R← K2 ⊕Mi

4 : h← R mod 2τ

5 : if R < 2σ+τ ∧T[h] ̸= ⊥ then
6 : Mi ← T[h]
7 : else
8 : h← H(Mi)
9 : T[h]←Mi

10 : return M1∥ · · · ∥Mℓ

Figure 4: Encryption and decryption algorithms of SCB[E, H].

EK1

Ci

= ⊥
N Y

K2

∥

Mi

0

S

R

W

H

+1

Ci

E−1
K1

K2

< 2σ+τ

%2τ

NY

Mi

H

T
R

W

̸= ⊥
NY

Figure 5: Schematic description of how encryption and decryption algorithms of SCB[E, H]
process each block (we assume that ⊥+ 1 .= 0).

We now formally describe the scheme, and will prove its security and correctness in
the next sections. We also provide a schematic description in Figure 5.

Definition 3. Let κ, n, σ, τ ∈ N with σ + τ < n, E : {0, 1}κ × {0, 1}n → {0, 1}n a
block cipher, and H : {0, 1}n → {0, 1}τ a compression function. Also let S be the set
of {0, 1}τ → {0, 1}σ ∪ {⊥} look-up tables, and T the set of {0, 1}τ → {0, 1}n ∪ {⊥}
look-up tables. The Secure Codebook (SCB) mode of encryption is the LPSE scheme
SCB[E, H] .= (E ,D) with key space K = {0, 1}κ × {0, 1}n, encryption states space S,
decryption states space T , and encryption and decryption algorithms E and D as defined
in Figure 4.

10 SCB Mode: Semantically Secure Length-Preserving Encryption

Game G0

1 : procedure Init
2 : K1

$← {0, 1}κ

3 : K2
$← {0, 1}n

4 : S← []
5 : procedure Enc(M)

6 : C ← SCB[E, H].ES
K1,K2 (M)

7 : return C

Game G3

1 : procedure Enc(M1∥ · · · ∥Mℓ)

2 : C $← {0, 1}ℓn

3 : return C

Adversary BEnc

1 : K2
$← {0, 1}n

2 : S← []

3 : b← AEnc∗

4 : return b

5 : procedure Enc∗(M1∥ · · · ∥Mℓ)
6 : for i = 1, . . . , ℓ do
7 : h← H(Mi)
8 : if S[h] = ⊥ then
9 : Ci ← Enc(Mi)

10 : S[h]← 0σ

11 : else

12 : R← 0n−σ−τ∥S[h]∥h
13 : Ci ← Enc(K2 ⊕R)
14 : S[h]← (S[h] + 1) mod 2σ

15 : return C1∥ · · · ∥Cℓ

Games G1, G2

1 : procedure Init
2 : π $← Pn

3 : ρ $← Fn

4 : K2
$← {0, 1}n

5 : S← []
6 : R, M← []
7 : bad← false
8 : t← 0
9 : procedure Enc(M1∥ · · · ∥Mℓ)

10 : for i = 1, . . . , ℓ do
11 : h← H(Mi)
12 : if S[h] = ⊥ then
13 : if ∃ j < t : Mi = R[j] do
14 : bad← true
15 : Ci ← π(Mi)

16 : Ci ← ρ(Mi)

17 : S[h]← 0σ

18 : M[t]← K2 ⊕Mi

19 : else

20 : R← 0n−σ−τ∥S[h]∥h
21 : if ∃ j < t : R = M[j] do
22 : bad← true
23 : Ci ← π(K2 ⊕R)

24 : Ci ← ρ(K2 ⊕R)

25 : S[h]← (S[h] + 1) mod 2σ

26 : R[t]← K2 ⊕R

27 : t← t + 1
28 : return C1∥ · · · ∥Cℓ

Figure 6: Games G0–G3 and adversary B for the proof of Theorem 1. Changes and
additions from game G0 to game G1 are highlighted in the description of G1, and the
boxed code therein is exclusive to game G2.

3.2 Security
Theorem 1. For any IND-CPA adversary A with β

.= β(A) ≤ 2σ we can construct a
PRP adversary B with q(B) = β such that

Advind-cpa
SCB[E,H](A) ≤ Advprp

E (B) + β2

2n
.

Proof. Define games G0–G3 as in Figure 6. Note that, slightly abusing notation, we have
G0 = Gind-cpa-0

SCB[E,H], G1 = Gind-cpa-0
SCB[Pn,H], G2 = Gind-cpa-0

SCB[Fn,H], and G3 = Gind-cpa-1
SCB[E,H]. Moreover, G2

and G3 are identical until bad is set to true. To see this, observe that the two games differ
in behavior only once ρ in G2 is queried a certain value twice, since in that case the output
of Enc is not an independent and uniformly random bit string. This can happen both at

Fabio Banfi 11

(a) Original (b) ECB (c) σ = 8, τ = 32 (d) σ = 16, τ = 32

Figure 7: Visualization of the impact of the security parameter σ. A 512 × 512 image
of Matterhorn (Figure 7a) has been encrypted with K1, K2 = thisisasecretkey2 using
ECB[AES-128] (Figure 7b) and SCB[AES-128, [·]τ ◦ SHA-256] for κ = n = 128, σ = 8, 16,
and τ = 32 (Figures 7c and 7d). The value chosen for τ guarantees perfect correctness.
But clearly, both the ECB encrypted image and the SCB encrypted image with σ = 8
(note the repeating patterns in the top part) do not look pseudo-random, only the one
encrypted with σ = 16 does. In fact, β = 512× 512× 3÷ 16 = 49 152 ≤ 2σ only for σ = 16.

lines 16 and 24, but crucially, any repeated query will be input to ρ once at line 16 and once
at line 24. More precisely, since β ≤ 2σ, it is impossible to query ρ twice the same value at
line 16 (this is guaranteed by the check at line 12), and it is also impossible to query ρ
twice the same value at line 24 (this is guaranteed by the constantly increasing counter).
Such collisions will happen with probability Pr[Mi = K2 ⊕R] = 2−n, and multiplying by
β, the number of times that ρ is queried in total, gives an upper bound on the probability
that bad will be set to true. Furthermore, we have

Advind-cpa
SCB[E,H](A) = Pr[G0(A)]− Pr[G3(A)] =

2∑
i=0

(Pr[Gi(A)]− Pr[Gi+1(A)]).

Let adversary B be as in Figure 6. Then:

Pr[G0(A)]− Pr[G1(A)] = Pr[Gprp-0
E (B)]− Pr[Gprp-1

E (B)]
= Advprp

E (B),
Pr[G1(A)]− Pr[G2(A)] = Pr[Bπ |π $← Pn]− Pr[Bρ | ρ $← Fn]

≤ β(β − 1)
2n+1 , (1)

Pr[G2(A)]− Pr[G3(A)] ≤ Pr[G1(A) sets bad] (2)

≤ β

2n
,

where (1) follows by the PRP/PRF Switching Lemma [BR06, Lemma 1], and (2) follows
by the Fundamental Lemma of Game Playing (FLGP) [BR06, Lemma 2]. Finally, since
β ≥ 1, we have

β(β − 1)
2n+1 + β

2n
= β(β + 1)

2n+1 ≤ β2

2n
.

In Figure 7 we provide a visual interpretation of Theorem 1. Note that the condition
β ≤ 2σ is a rough worst-case estimate. A more fine grained condition could depend on
the transmitted messages, or better, on their distribution. For example, if it is known
that among all transmitted messages, each block will not be repeated more than N ≤ 2σ

times, the condition would be unnecessary, and other more interesting properties of the
distributions could significantly relax the original condition. We leave open the problem of
improving the condition of Theorem 1 by taking into account the message distribution.

2 We set K1 = K2 only for simplicity, this should not be done practice.

12 SCB Mode: Semantically Secure Length-Preserving Encryption

Game G0

1 : procedure Init
2 : K1

$← {0, 1}κ

3 : K2
$← {0, 1}n

4 : S, T← []
5 : procedure EncDec(M)

6 : C ← SCB[E, H].ES
K1,K2 (M)

7 : M ′ ← SCB[E, H].DT
K1,K2 (C)

8 : return M ′

Game G3

1 : procedure Init
2 : S← []
3 : procedure EncDec(M1∥ · · · ∥Mℓ)
4 : for i = 1, . . . , ℓ do
5 : if S[Mi] = ⊥ then
6 : Ci ← EK1 (Mi)
7 : M ′

i ← E−1
K1 (Ci)

8 : S[Mi] = ⊤
9 : else // S[Mi] = ⊤

10 : Ci ← 0∥Mi

11 : M ′
i ← Ci mod 2n

12 : return M ′
1∥ · · · ∥M ′

ℓ

Game G4

1 : procedure EncDec(M)
2 : return M

Adversary B

1 : procedure Init
2 : X, Y ← ⊥
3 : K1

$← {0, 1}κ

4 : K2
$← {0, 1}n

5 : S, T, M← []
6 : t← 0

7 : run AEncDec∗

8 : return (X, Y)
9 : procedure EncDec∗(M1∥ · · · ∥Mℓ)

10 : for i = 1, . . . , ℓ do
11 : M[t]←Mi

12 : h← H(Mi)
13 : if ∃j < t : Mi ̸= M[j]
14 : ∧ h = H(M[j]) then
15 : (X, Y)← (Mi, M[j])
16 : t← t + 1

17 : C ← SCB[E, H].ES
K1,K2 (M1∥ · · · ∥Mℓ)

18 : M ′ ← SCB[E, H].DT
K1,K2 (C)

19 : return M ′

Figure 8: Games G0, G3, G4 and adversary B for the proof of Theorem 2.

3.3 Correctness
Theorem 2. For any COR adversary A with β

.= β(A) we can construct a CR adversary
B with q(B) = β such that

Advcor
SCB[E,H](A) ≤ Advcr

H(B) + 2σβ2

2n
.

Proof. Define games G0–G4 as in Figures 8 and 9. Note that, G0 = Gcor-0
SCB[E,H] and

G4 = Gcor-1
SCB[E,H]. Moreover, G0 and G1 are equivalent, G1 and G2 are identical until

bad0 is set to true, G2 and G3 are identical until bad1 is set to true, and G3 and G4 are
equivalent. To see that G1 and G2 are identical until bad0 is set to true, observe that the
two games differ in behavior only once a collision in H is provoked, that is, a previous
block (M[j]) different than the current one (Mi ̸= M[j]) has the same hash value as the
current one (h = H(M[j])). As long as this event does not happen, no adversary can
distinguish whether the game encodes and successively decodes repeated blocks (lines 19–20
and 24–28 in game G1) or simply (internally) marks them by prepending a bit which it
later ignores (lines 19 and 29 in game G2). We will reduce provoking such collision to
the collision resistance of H. To see that G2 and G3 are identical until bad1 is set to true,
observe that the two games differ in behavior only once a new block (that is, one that
has not been queried before) has the structure of a repeated block, that is, when XORed
with K2 it has n − σ − τ leading zeros and the last τ bits correspond to the hash of a

Fabio Banfi 13

Game G1

1 : procedure Init
2 : K1

$← {0, 1}κ

3 : K2
$← {0, 1}n

4 : S, T← []
5 : M← []
6 : bad0 ← false
7 : t← 0
8 : procedure EncDec(M1∥ · · · ∥Mℓ)
9 : for i = 1, . . . , ℓ do

10 : M[t]←Mi

11 : h← H(Mi)
12 : if ∃j < t : Mi ̸= M[j]
13 : ∧h = H(M[j]) then
14 : bad0 ← true
15 : if S[h] = ⊥ then
16 : Ci ← EK1 (Mi)
17 : S[h]← 0σ

18 : else

19 : R← 0n−σ−τ∥S[h]∥h
20 : Ci ← EK1 (K2 ⊕R)
21 : S[h]← (S[h] + 1) mod 2σ

22 : t← t + 1
23 : for i = 1, . . . , ℓ do

24 : M ′
i ← E−1

K1 (Ci)
25 : R← K2 ⊕M ′

i

26 : h← R mod 2τ

27 : if R < 2σ+τ ∧T[h] ̸= ⊥ then
28 : M ′

i ← T[h]
29 : else
30 : h← H(M ′

i)
31 : T[h]←M ′

i

32 : return M ′
1∥ · · · ∥M ′

ℓ

Game G2

1 : procedure Init
2 : K1

$← {0, 1}κ

3 : K2
$← {0, 1}n

4 : S, T← []
5 : M← []
6 : bad1 ← false
7 : t← 0
8 : procedure EncDec(M1∥ · · · ∥Mℓ)
9 : for i = 1, . . . , ℓ do

10 : M[t]←Mi

11 : if ∃j < t, S ∈ {0, 1}σ : Mi =
12 : K2 ⊕ 0n−σ−τ∥S∥H(M[j])
13 : then
14 : bad1 ← true
15 : if S[Mi] = ⊥ then
16 : Ci ← EK1 (Mi)
17 : S[Mi] = ⊤
18 : else // S[Mi] = ⊤

19 : Ci ← 0∥Mi

20 : for i = 1, . . . , ℓ do
21 : if Ci ∈ {0, 1}n then
22 : M ′

i ← E−1
K1 (Ci)

23 : R← K2 ⊕M ′
i

24 : h← R mod 2τ

25 : if R < 2σ+τ

26 : ∧T[h] ̸= ⊥ then
27 : M ′

i ← T[h]
28 : else // Ci ∈ {0, 1}1+n

29 : M ′
i ← Ci mod 2n

30 : h← H(M ′
i)

31 : T[h]←M ′
i

32 : return M ′
1∥ · · · ∥M ′

ℓ

Figure 9: Games G1 and G2 for the proof of Theorem 2. Changes and additions from
game G0 to game G1 are highlighted in the description of G1, and changes and additions
from game G1 to game G2 are highlighted in the description of G2.

previous block. By the union bound, we obtain that this happens with probability at most
β2 · 2−(n−σ−τ) · 2−τ = β2 · 2σ−n. Furthermore, we have

Advcor
SCB[E,H](A) = Pr[G0(A)]− Pr[G4(A)] =

3∑
i=0

(Pr[Gi(A)]− Pr[Gi+1(A)]).

14 SCB Mode: Semantically Secure Length-Preserving Encryption

(a) Original (b) σ = 16, τ = 8 (c) σ = 16, τ = 16 (d) σ = 16, τ = 24

Figure 10: Visualization of the impact of the correctness parameter τ . A 128 × 128
image of Tux (Figure 10a) has been encrypted and subsequently decrypted with K1, K2 =
thisisasecretkey using SCB[AES-128, [·]τ ◦ SHA-256] for κ = n = 128, σ = 16, and
τ = 8, 16, 24 (Figures 10b, 10c and 10d). The value chosen for σ guarantees that the
condition of Theorem 1 is satisfied. For τ = 8, too many collisions happened, so only
certain patterns are visible; for τ = 16, just a few collisions happened (six), but the
decrypted image still has some errors; for τ = 24 the original image was successfully
recovered without any errors.

Let adversary B be as in Figure 8. Then:

Pr[G0(A)]− Pr[G1(A)] = 0,

Pr[G1(A)]− Pr[G2(A)] ≤ Pr[G1(A) sets bad0] (3)
≤ Advcr

H(B),
Pr[G2(A)]− Pr[G3(A)] ≤ Pr[G2(A) sets bad1] (4)

≤ 2σβ2

2n
,

Pr[G3(A)]− Pr[G4(A)] = 0,

where (3) and (4) follow by the FLGP.

In Figure 10 we provide a visual interpretation of Theorem 2. Note that, even though
the factor 2σ in the second term of the correctness bound is undesirable, it still gives a
meaningful result if σ is significantly smaller than n, and moreover can in principle be
easily replaced by a better term. To see this, notice that we obtain the term because
upon decryption, SCB simply ignores the counter, in case of a repetition. It should not be
too hard to extend decryption in a way that counters are also accounted for, and in case
reordering of ciphertexts might happen, some clever counter prediction technique should
be implemented. Still, if ciphertexts do not get reordered, the term should in principle
disappear. We leave open the problem of optimizing SCB even further and improve the
factor 2σ.

3.4 Extending SCB into a Variable-Input-Length LPSE Scheme
We now show how SCB can be easily extended into the first variable-input-length (VIL)
length-preserving encryption (rather than enciphering) scheme achieving semantic security,
denoted VIL-SCB. The idea is straightforward, we just need to apply the ciphertext stealing
(CTS) paradigm (see e.g. [RWZ12]) to SCB. Informally, given a message M ∈ {0, 1}≥n of
arbitrary length (but at least n), divide it into ℓ− 1 blocks M1, . . . , Mℓ−1 of size n (defined
by the block cipher) plus a last block Mℓ of size m ≤ n. If m = n, use regular SCB for all
blocks, otherwise only encipher all but the last two blocks to obtain C1, . . . , Cℓ−2; then
encipher the penultimate block Mℓ−1, and split the output into a bit string of length m
and one of length n−m; the first m bits will form Cℓ, whereas the last n−m bits will be

Fabio Banfi 15

VIL-SCB[E, H].ES
K1,K2

(M)
1 : t← |M |
2 : ℓ← ⌈t/n⌉
3 : m← t mod n // m < n

4 : (M1, . . . , Mℓ)← blocks(M, n) // M1, . . . , Mℓ−1 ∈ {0, 1}n, Mℓ ∈ {0, 1}m

5 : for i = 1, . . . , ℓ− 1 do
6 : Ci ← SCB[E, H].EncS

K1,K2 (Mi)
7 : if m = 0 do
8 : Cℓ ← SCB[E, H].EncS

K1,K2 (Mℓ)
9 : else

10 : (Cℓ, Mℓ+1)← split(Cℓ−1, m) // Cℓ ∈ {0, 1}m, Mℓ+1 ∈ {0, 1}n−m

11 : Cℓ−1 ← SCB[E, H].EncS
K1,K2 (Mℓ∥Mℓ+1) // Mℓ∥Mℓ+1 ∈ {0, 1}n

12 : return C1∥ · · · ∥Cℓ

VIL-SCB[E, H].DT
K1,K2

(C)
1 : t← |C|
2 : ℓ← ⌈t/n⌉
3 : m← t mod n // m < n

4 : (C1, . . . , Cℓ)← blocks(C, n) // C1, . . . , Cℓ−1 ∈ {0, 1}n, Cℓ ∈ {0, 1}m

5 : for i = 1, . . . , ℓ− 1 do
6 : Mi ← SCB[E, H].DecT

K1,K2 (Ci)
7 : if m = 0 do
8 : Mℓ ← SCB[E, H].DecT

K1,K2 (Cℓ)
9 : else

10 : (Mℓ, Cℓ+1)← split(Mℓ−1, m) // Mℓ ∈ {0, 1}m, Cℓ+1 ∈ {0, 1}n−m

11 : Mℓ−1 ← SCB[E, H].DecT
K1,K2 (Cℓ∥Cℓ+1) // Cℓ∥Cℓ+1 ∈ {0, 1}n

12 : return M1∥ · · · ∥Mℓ

Figure 11: Encryption and decryption algorithms of VIL-SCB[E, H].

appended to Mℓ, thus obtaining a bitstring of length n which will be enciphered to obtain
Cℓ−1. Decryption works in the obvious way.

In order to formally describe VIL-SCB, let define SCB[E, H].EncS
K1,K2

(Mi) as the code
from lines 2–9 of SCB[E, H].ES

K1,K2
from Figure 4 plus the statement return Ci and

SCB[E, H].DecT
K1,K2

(Ci) as the code from lines 2–9 of SCB[E, H].DT
K1,K2

from Figure 4
plus the statement return Mi. Moreover, for a bit string S and an integer i ≤ |S|,
let define (S1, . . . , Sℓ) ← blocks(S, i) such that S1∥ · · · ∥Sℓ = S, S1, . . . , Sℓ−1 ∈ {0, 1}i,
Sℓ ∈ {0, 1}l if l

.= |S| mod n > 0 and Sℓ ∈ {0, 1}i otherwise, as well as (S1, S2)← split(S, i)
such that S1∥S2 = S, S1 ∈ {0, 1}i, and S2 ∈ {0, 1}|S|−i.

Formally, we consider VIL-SCB to be a VIL-LPSE scheme, which is just like a LPSE
scheme from Definition 1, but with message and ciphertext spaces {0, 1}≥n rather than
just ({0, 1}n)+. Also, note that, referring to e.g. [Dwo10, RWZ12], we are using the CS2
type of CTS, that is, the one where the last two blocks are swapped if and only if the
input message has length not multiple of n.

Definition 4. Let κ, n, σ, τ ∈ N with σ + τ < n, E : {0, 1}κ × {0, 1}n → {0, 1}n a
block cipher, and H : {0, 1}n → {0, 1}τ a compression function. Also let S be the set of

16 SCB Mode: Semantically Secure Length-Preserving Encryption

{0, 1}τ → {0, 1}σ ∪ {⊥} look-up tables, and T the set of {0, 1}τ → {0, 1}n ∪ {⊥} look-up
tables. The Variable-Input-Length Secure Codebook (VIL-SCB) mode of encryption is
the VIL-LPSE scheme VIL-SCB[E, H] .= (E ,D) with key space K = {0, 1}κ × {0, 1}n,
encryption states space S, decryption states space T , and encryption and decryption
algorithms E and D as defined in Figure 11.

Finally, note that if VIL-SCB is made stateless, that is, S and T are reset to the
empty look-up table [] upon each encryption and decryption, respectively, then we obtain
a length-preserving enciphering scheme (still with imperfect correctness), because now
the scheme will only be computationally indistinguishable from uniform permutations (for
each length at least n).

4 Recoverable SCB (RSCB) Mode of Encryption
4.1 The Scheme
We now describe how to extend SCB mode into an R-LPSE scheme, RSCB, by equipping
it with two additional algorithms, tagged decryption and recovery. For the former, the
idea is to enhance regular decryption by including a bit string of length corresponding
to the number of blocks in the message/ciphertext, where each bit signals whether the
corresponding block was ambiguous, that is, whether when XORed with K2 it is zero-
padded like a repetition signal. To recover a set of tagged messages, we then essentially
run through all blocks twice; in the first pass, we reconstruct the look-up table T, and in
the second pass we use T to check whether any ambiguous block had the structure of a
repetition, but was received before the original block.

We now formally describe the scheme, and will prove its correctness with reordering in
the next section. Note that we do not need to prove security, because it is inherited by
Theorem 1 for SCB mode.

Definition 5. Let κ, n, σ, τ ∈ N with σ + τ < n, E : {0, 1}κ × {0, 1}n → {0, 1}n a
block cipher, and H : {0, 1}n → {0, 1}τ a compression function. Also let S be the set of
{0, 1}τ → {0, 1}σ ∪ {⊥} look-up tables, and T the set of {0, 1}τ → {0, 1}n ∪ {⊥} look-up
tables. The Recoverable Secure Codebook (RSCB) mode of encryption is the R-LPSE
scheme RSCB[E, H] .= (E ,D, D̃,R) with key space K = {0, 1}κ×{0, 1}n, encryption states
space S, decryption states space T , encryption and decryption algorithms E and D as
defined in Figure 4, and tagged decryption and recovery algorithms as defined in Figure 12.

We next provide a simple example to better understand how RSCB works.

Example 1. Let M1, . . . , M7 ∈ {0, 1}n be single-block messages, and define hi
.= H(Mi)

for i ∈ [7]. Moreover, assume that M4 = M1 (message M4 is a repetition), M5 = K2 ⊕ h2
(M5 collides with a true repetition signal), M6 is such that h6 = h3 (M6 causes a collision
in H), and M7 = K2 ⊕ h with h ̸= hi for all i ∈ [7] (M7 is a false repetition signal).
Except for M4 = M1, assume all messages are different, and except for h4 = h1 and
h6 = h3, also assume no other collisions in H happen. Also assume that M4 ̸= K2 ⊕ h1
and M6 ̸= K2⊕ h3. Now, encrypting the messages with E in the specified order, we obtain
the following sequence of ciphertexts: C1 = EK1(M1), C2 = EK1(M2), C3 = EK1(M3),
C4 = EK1(K2 ⊕ h1), C5 = EK1(K2 ⊕ h2), C6 = EK1(K2 ⊕ h3), C7 = EK1(K2 ⊕ h).
Assuming that the seven ciphertexts are sent in the same order, we would obtain the
following sequence of messages after decrypting them with D: M ′

1 = M1, M ′
2 = M2,

M ′
3 = M3, M ′

4 = M ′
1 = M1 = M4, M ′

5 = M ′
2 = M2 ̸= M5, M ′

6 = M ′
3 = M3 ̸= M6,

M ′
7 = K2 ⊕ h = M7. Therefore, only the fifth and sixth messages would be compromised.

We will next see that even if we permute the order in which we (tag-)decrypt the six
ciphertexts, after applying the recovery algorithm R we would end up in the same state.

Fabio Banfi 17

RSCB[E, H].D̃T
K1,K2

(C1∥ · · · ∥Cℓ)
1 : M1∥ · · · ∥Mℓ ← RSCB[E, H].DT

K1,K2 (C1∥ · · · ∥Cℓ)
2 : for i = 1, . . . , ℓ do
3 : R← K2 ⊕Mi

4 : if R < 2σ+τ then
5 : ti ← 1
6 : else
7 : ti ← 0
8 : return (M1∥ · · · ∥Mℓ, t1∥ · · · ∥tℓ)

RSCB[E, H].RK2((M1,1∥ · · · ∥M1,ℓ1 , t1,1∥ · · · ∥t1,ℓ1), . . . , (Ms,1∥ · · · ∥Ms,ℓs
, ts,1∥ · · · ∥ts,ℓs

))
1 : T← []
2 : for i = 1, . . . , s do
3 : for j = 1, . . . , ℓi do
4 : h← H(Mi,j)
5 : T[h]←Mi,j

6 : for i = 1, . . . , s do
7 : for j = 1, . . . , ℓi do
8 : h← (K2 ⊕Mi,j) mod 2τ

9 : if ti,j = 1 ∧T[h] ̸= ⊥ then
10 : M ′

i,j ← T[Mi,j]
11 : else
12 : M ′

i,j ←Mi,j

13 : return M1,1∥ · · · ∥M1,ℓ1 , . . . , Ms,1∥ · · · ∥Ms,ℓs

Figure 12: Tagged decryption and recovery algorithms of RSCB[E, H]. Note that R does
not use K1, so we slightly abused notation in the function declaration.

Now assume that the ciphertexts are tag-decrypted with D̃ in the following order instead:
C4, C5, C6, C7, C1, C2, C3. Then, we would obtain the following sequence of message-bit
pairs: (M ′

4, 1) with M ′
4 = K2 ⊕ h1 ̸= M4, (M ′

5, 1) with M ′
5 = K2 ⊕ h2 = M5, (M ′

6, 1)
with M ′

6 = K2 ⊕ h3 ≠ M6, (M ′
7, 1) with M ′

7 = K2 ⊕ h = M7, (M ′
1, 0) with M ′

1 = M1,
(M ′

2, 0) with M ′
2 = M2, (M ′

3, 1) with M ′
3 = M3. Therefore, in this case M5 would not

have been compromised, but M4 and M6 would. Let now h′
i

.= H(M ′
i), for i ∈ [7]. When

applying the recovery algorithm R, we will first build the table T such that T[h′
i] = M ′

i ,
for i ∈ [7]. Hence, we have that T[(K2 ⊕M ′

4) mod 2τ] = T[h1] = T[h′
1] = M ′

1 = M1,
T[(K2 ⊕M ′

5) mod 2τ] = T[h2] = T[h′
2] = M ′

2 = M2, T[(K2 ⊕M ′
6) mod 2τ] = T[h3] =

T[h′
3] = M ′

3 = M3, T[(K2 ⊕M ′
7) mod 2τ] = T[h] = ⊥. Therefore, after the second pass in

R, the following sequence of messages will be output: M ′′
4 = M1, M ′′

5 = M2, M ′′
6 = M3,

M ′′
7 = M7, M ′′

1 = M1, M ′′
2 = M2, M ′′

3 = M3. Indeed, each individual message was now
decrypted the same way it would have been decrypted if the transmitted ciphertexts were
not permuted. ♢

Note that for the specific case of RSCB, tags are actually not really necessary since
they can be also computed directly by R, but in practice it might still be beneficial to the
overall efficiency of the scheme to compute them directly upon decryption. Finally, note
that RSCB can also be easily transformed into a VIL-LPSE scheme, VIL-RSCB, simply
by following the same approach used for SCB as outlined in Section 3.4.

18 SCB Mode: Semantically Secure Length-Preserving Encryption

4.2 Correctness (with Reordering)
Theorem 3. For any COR-WR adversary A with β

.= β(A) we can construct a CR
adversary B with q(B) = β such that

Advcor-wr
SCB[E,H](A) ≤ Advcr

H(B) + 2σβ2

2n
.

Proof (sketch). We only provide a high level idea of the proof, since for the most part it can
be reduced to that of Theorem 2. More specifically, one only needs to show that it is possible
to remove line 9 and replace line 8 with the statement M ′′

i ← SCB[E, H].DT
K1,K2

(Ci) in
game Gcor-wr-0

SCB[E,H]. After this modification, it is easy to see that we can further remove
lines 7–8 and replace line 6 with the statement M ′′

i ← Gcor-0
SCB[E,H].EncDec(Mi) as well as

lines 2–3 with the statement Gcor-wr-0
SCB[E,H].Init. This naturally induces a reduction to the

problem of distinguishing between Gcor-0
SCB[E,H] and Gcor-1

SCB[E,H], from which we get the bound,
since once we finally replace line 6 with the statement M ′′

i ← Gcor-1
SCB[E,H].EncDec(Mi)

(which guarantees M ′′
i = Mi), we obtain a game that behaves identically to Gcor-wr-1

SCB[E,H].
To see that we can indeed apply the first modification to Gcor-wr-0

SCB[E,H] without changing
the behavior of the game, observe that for each block we have five cases: (1) the block is
new, (2) the block is a repetition, (3) the block has the structure of a repetition signal
for another transmitted block, (4) the block is new but its hash value collides with the
hash of a previous block, and (5) the block has the structure of a repetition signal but for
a block that was not transmitted. Then, as we saw in Example 1, it is easy to see that
given a sequence of messages and a permutation, if we apply E to the sequence and then
permute the resulting ciphertexts, for each of the five cases the deciphered block is the
same whether we apply D̃ and then R to the permuted ciphertext sequence, or just D.

5 Practical Considerations
5.1 Security-Correctness Trade-Off
In the following we assume that SCB is instantiated with a keyed compression function
H : {0, 1}λ × {0, 1}n → {0, 1}τ , for some λ ∈ N. Hence we set the key space to be
K = {0, 1}κ × {0, 1}n × {0, 1}λ, and adapt encryption and decryption algorithms to use
key (K1, K2, K3) ∈ K in the obvious way, that is, simply by replacing calls to H by calls
to HK3 . Referring to our discussion in Section 2.7, this means that H must satisfy weak
collision resistance (WCR) [BCK96, Definition 3.1], which means we should simply replace
Advcr

H(B) by Advwcr
H (B′) in Theorem 2, for an appropriate WCR adversary B′. The

reason for assuming a keyed compression function, is that in order for our analysis below
to be sound, we need adversaries not being able to perform offline queries to H. Still, as
we will discuss later, our notion of correctness is quite strong, and to us it does not look
so problematic if in practice H is instantiated without keys.

Towards finding a trade-off between security and correctness, first note that both
bounds from Theorems 1 and 2 do not (explicitly) depend on the correctness parameter
τ , but exclusively on the block length n, the security parameter σ, and the total number
of transmitted blocks β. Clearly, the dominating factor is 2σβ2

2n from Theorem 2, so we
should minimize σ. Since from Theorem 1 we have the condition β ≤ 2σ, we can derive
lower and upper bounds on σ, given n and β:

log β ≤ σ ≪ n− 2 log β.

Because of the birthday bound (BB), an implicit condition on Theorem 2 is that β ≤ 2 τ
2 .

But the BB also allows us to roughly lower bound the term Advwcr
H (B′) by β2/2τ . Therefore,

Fabio Banfi 19

since this implies that we should maximize τ , and since σ + τ < n, we can derive lower
and upper bounds on τ as well, given n, σ, and β:

2 log β ≪ τ ≤ n− σ.

Note that setting τ = n − σ would imply that the condition R < 2σ+τ at line 5 of
SCB[E, H].DT

K1,K2
from Figure 4 would always be true, as n = σ + τ , but for efficiency

reasons, it might be still better not to set τ = n− σ, since this would imply less look-ups
in T on average.

For concreteness, suppose that we have n = 128 and that we estimate that the total
number of transmitted blocks will not exceed β = 210. Then, a reasonable choice of
parameters would be σ = 10 and τ = 108, since in this case 2σβ2/2n = β2/2τ = 2−98.
This essentially gives us 97 bits of security, and since we set τ to be strictly less than n−σ,
we also avoid to perform a look-up in T for every block upon decryption. But if we would
instead estimate β = 220, then the best we can do is to set σ = 20 and τ = n− σ = 108,
since in this case 2σβ2/2n = β2/2τ = 2−68. This essentially gives us 67 bits of security,
but we have to perform a look-up in T for every block upon decryption.

Finally, we remark that in principle it is possible to arbitrarily increase the level of
security by simply first applying any conventional length-preserving enciphering technique
to E in order to increase its block length, and then instantiating SCB with the resulting
block cipher. Clearly, this would be at the cost of overall increased time complexity.

5.2 Possible Modifications, Extensions, and Optimizations
An obvious modification to SCB could be to specify the key space as K .= {0, 1}κ, and then
use a pseudorandom generator PRG : {0, 1}κ → {0, 1}κ+n to obtain K1∥K2 ← PRG(K)
from K ∈ K upon initialization. This would be more in line with SCB being a wrapper
around ECB, since the key space of the latter is just K from the block cipher E. Clearly,
this would naturally extend to the case where the compression function H is keyed by some
key K3 ∈ {0, 1}λ simply by using a pseudorandom generator PRG′ : {0, 1}κ → {0, 1}κ+n+λ

instead.
A possible extension to SCB could be to compute EK1(K2 ⊕ R) ⊕ K2 instead of

EK1(K2 ⊕R) at line 8 of SCB[E, H].ES
K1,K2

from Figure 4, following the approach of the
Even-Mansour scheme [EM93, DKS12]. This could be a first step towards extending SCB
into a CCA secure scheme. Moreover, as discussed Section 3.3, it should not be too hard
to extend SCB decryption in a way that counters are also accounted for, and in case
reordering of ciphertexts might happen, some clever counter prediction technique could
allow to correctly guess that some blocks signal repetitions, even if they are transmitted
later than the original block.

In order to gain some efficiency, line 8 of SCB[E, H].ES
K1,K2

could be replaced by EK2(R)
instead (and SCB[E, H].DT

K1,K2
correspondingly adapted). The downside of this approach,

is that the resulting scheme would not be a wrapper around ECB anymore. Finally, to
construct the compression function H efficiently one could for example follow the approach
of [SS08], and then use H itself to implement the look-up tables S and T.

5.3 Further Remarks
In our notion of correctness, we only considered the case where encryption and decryption
use the same security and correctness parameters σ and τ . Interestingly, there should
enough room for σ and τ such that encrypting and decrypting with (slightly) mismatching
parameters, should yield a satisfactory level of correctness. Moreover, if parties anyway
cannot pre-agree on σ and τ , the sender could simply set a good enough σ and try increasing
the value of τ and decrypt itself the ciphertext until it sees no errors, and the receiver can
then do the same, until increasing τ does not change the decrypted message anymore.

20 SCB Mode: Semantically Secure Length-Preserving Encryption

Note that our notion of correctness is very strong: We assume that a sender could send
a potentially bad message, that is, one containing a block M such that K2 ⊕M < 2σ+τ .
Clearly, a better bound than the one from Theorem 2 could be derived, if we simply impose
that all such blocks are forbidden from being part of sent messages. But we feel that this
is too strong of a requirement in practice, considering that anyway we also still perform
the check T[h] ̸= ⊥ at line 5 of SCB[E, H].DT

K1,K2
from Figure 4, which on average would

fail most of the times.
We remark that SCB is in principle parallelizable, if thread-safe look-up tables are

available. The only caveat is that each thread should process all its blocks twice, to make
sure that repetitions of blocks processed by other threads are correctly accounted for.
Moreover, a further advantage of SCB is that error propagation is limited to single blocks,
unlike other modes such as CBC where two blocks are affected.

Finally, we believe that our scheme has efficiency comparable to that of most VIL
(tweakable) LPE schemes from the literature, while achieving better security. The code of
SCB[AES-128, [·]τ ◦ SHA-256] used to generate the images of Figures 7 and 10 is available
on https://github.com/fbanfi90/scb. A concrete estimation of the efficiency of this
particular instantiation of SCB could be carried out using the results from [KS06].

6 Conclusions and Future Work
In this paper we initiated the study of the subtle trade-off between security and correctness
of symmetric encryption, if it is required that ciphertexts preserve the length of plaintexts.
To achieve this goal, we focused on the Electronic Codebook (ECB) mode of encryption, and
enhanced it into a mode, Secure Codebook (SCB), that does not have perfect correctness,
but achieves semantic security. Even if it only has imperfect correctness, SCB is still
practical because its parameters can be set such that the probability of errors upon
decryption is negligible. Nevertheless, as previously remarked, both security and correctness
bounds we provided for SCB could in principle be improved by slight modifications of the
scheme and analysis, and we leave this task open for future work.

Clearly, there might be other ways to achieve semantically secure length-preserving
encryption, and we also leave open the question of finding other schemes with potentially
better security-correctness trade-offs. One particular aspect of SCB that might limit its
practicality is that the state linearly grows on each subsequent encryption and decryption.
Therefore a natural question that arises is whether it is possible to design a semantically
secure length-preserving encryption with constant size state. We suspect that this is not
possible (for reasonable sizes), or that it would require further trade-offs. Nevertheless, it
might be the case that schemes with better state growth rate than SCB exist.

We analyzed two different settings for correctness: without and with reordering of
ciphertexts. A further notion of correctness that could be introduced and studied for SCB,
and in general for future LPSE schemes, is one that considers deletion of ciphertexts as
well. For SCB, we would clearly still have a significant advantage over the CTR approach
outlined in the introduction, with respect to such a notion. Other interesting future
directions might be for example enhancing SCB in a way that it achieves CCA security or
even extend it into a (nonce-based) authenticated encryption scheme. For the latter, there
might be a connection to the VIL tweakable LPE schemes from the literature.

Acknowledgments
The author would like to thank Ueli Maurer, Mihir Bellare, and Giovanni Deligios for
the helpful discussions and feedback, as well as the anonymous ToSC reviewers for their
insightful comments that helped improve the quality of the paper.

https://github.com/fbanfi90/scb

Fabio Banfi 21

References
[AR00] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography. In

Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and
Takayasu Ito, editors, TCS 2000, volume 8895 of LNCS, pages 3–22. Springer,
Heidelberg, August 2000. doi:10.1007/3-540-44929-9_1.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In Neal Koblitz, editor, CRYPTO’96, volume
1109 of LNCS, pages 1–15. Springer, Heidelberg, August 1996. doi:10.1007/
3-540-68697-5_1.

[BD99] Daniel Bleichenbacher and Anand Desai. A construction of a super-
pseudorandom cipher. Manuscript, February, 1999.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete se-
curity treatment of symmetric encryption. In 38th FOCS, pages 394–403. IEEE
Computer Society Press, October 1997. doi:10.1109/SFCS.1997.646128.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block
chaining. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 341–
358. Springer, Heidelberg, August 1994. doi:10.1007/3-540-48658-5_32.

[BR99] Mihir Bellare and Phillip Rogaway. On the construction of variable-input-length
ciphers. In Lars R. Knudsen, editor, FSE’99, volume 1636 of LNCS, pages
231–244. Springer, Heidelberg, March 1999. doi:10.1007/3-540-48519-8_17.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006. doi:10.1007/11761679_25.

[CB18] Paul Crowley and Eric Biggers. Adiantum: length-preserving encryption for
entry-level processors. IACR Trans. Symm. Cryptol., 2018(4):39–61, 2018.
doi:10.13154/tosc.v2018.i4.39-61.

[CKY07] Debra L. Cook, Angelos D. Keromytis, and Moti Yung. Elastic block ciphers:
the basic design. In Feng Bao and Steven Miller, editors, ASIACCS 07, pages
350–352. ACM Press, March 2007.

[CN08] Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR.
In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS, pages 289–302.
Springer, Heidelberg, February 2008. doi:10.1007/978-3-540-71039-4_18.

[CS06] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing
a tweakable strong pseudo-random permutation. In Matthew J. B. Robshaw,
editor, FSE 2006, volume 4047 of LNCS, pages 293–309. Springer, Heidelberg,
March 2006. doi:10.1007/11799313_19.

[CS08] Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable encipher-
ing scheme using the hash-counter-hash approach. IEEE Transactions on
Information Theory, 54(4):1683–1699, 2008. doi:10.1109/TIT.2008.917623.

[CYK04] Debra L. Cook, Moti Yung, and Angelos D. Keromytis. Elastic block ciphers.
Cryptology ePrint Archive, Report 2004/128, 2004. https://eprint.iacr.
org/2004/128.

https://doi.org/10.1007/3-540-44929-9_1
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/3-540-48519-8_17
https://doi.org/10.1007/11761679_25
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://doi.org/10.1007/978-3-540-71039-4_18
https://doi.org/10.1007/11799313_19
https://doi.org/10.1109/TIT.2008.917623
https://eprint.iacr.org/2004/128
https://eprint.iacr.org/2004/128

22 SCB Mode: Semantically Secure Length-Preserving Encryption

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography:
The Even-Mansour scheme revisited. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 336–354.
Springer, Heidelberg, April 2012. doi:10.1007/978-3-642-29011-4_21.

[Dwo10] Morris Dworkin. Recommendation for block cipher modes of operation: Three
variants of ciphertext stealing for CBC mode, 2010-10-21 2010. URL: https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906929.

[EM93] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu
Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS, pages 210–224.
Springer, Heidelberg, November 1993. doi:10.1007/3-540-57332-1_17.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In 14th ACM STOC, pages
365–377. ACM Press, May 1982. doi:10.1145/800070.802212.

[Hal04] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages
with associated data. In Anne Canteaut and Kapalee Viswanathan, editors,
INDOCRYPT 2004, volume 3348 of LNCS, pages 315–327. Springer, Heidelberg,
December 2004.

[Hal07] Shai Halevi. Invertible universal hashing and the TET encryption mode. In
Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 412–429.
Springer, Heidelberg, August 2007. doi:10.1007/978-3-540-74143-5_23.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 482–499. Springer,
Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_28.

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In
Tatsuaki Okamoto, editor, CT-RSA 2004, volume 2964 of LNCS, pages 292–304.
Springer, Heidelberg, February 2004. doi:10.1007/978-3-540-24660-2_23.

[KS06] Jens-Peter Kaps and Berk Sunar. Energy comparison of aes and sha-1 for
ubiquitous computing. In Xiaobo Zhou, Oleg Sokolsky, Lu Yan, Eun-Sun Jung,
Zili Shao, Yi Mu, Dong Chun Lee, Dae Young Kim, Young-Sik Jeong, and
Cheng-Zhong Xu, editors, EUC 2006, volume 4097 of LNCS, pages 372–381.
Springer, Heidelberg, August 2006. doi:10.1007/11807964_38.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46.
Springer, Heidelberg, August 2002. doi:10.1007/3-540-45708-9_3.

[MF04] David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode
of operation. Cryptology ePrint Archive, Report 2004/278, 2004. https:
//eprint.iacr.org/2004/278.

[MF07] David A. McGrew and Scott R. Fluhrer. The security of the extended codebook
(XCB) mode of operation. In Carlisle M. Adams, Ali Miri, and Michael J.
Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 311–327. Springer,
Heidelberg, August 2007. doi:10.1007/978-3-540-77360-3_20.

[MM07] Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enciphering
schemes from hash-sum-expansion. In K. Srinathan, C. Pandu Rangan, and
Moti Yung, editors, INDOCRYPT 2007, volume 4859 of LNCS, pages 252–267.
Springer, Heidelberg, December 2007.

https://doi.org/10.1007/978-3-642-29011-4_21
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906929
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906929
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1145/800070.802212
https://doi.org/10.1007/978-3-540-74143-5_23
https://doi.org/10.1007/978-3-540-45146-4_28
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/11807964_38
https://doi.org/10.1007/3-540-45708-9_3
https://eprint.iacr.org/2004/278
https://eprint.iacr.org/2004/278
https://doi.org/10.1007/978-3-540-77360-3_20

Fabio Banfi 23

[Nan08] Mridul Nandi. Improving upon HCTR and matching attacks for hash-counter-
hash approach. Cryptology ePrint Archive, Report 2008/090, 2008. https:
//eprint.iacr.org/2008/090.

[PRS04] Sarvar Patel, Zulfikar Ramzan, and Ganapathy S. Sundaram. Efficient construc-
tions of variable-input-length block ciphers. In Helena Handschuh and Anwar
Hasan, editors, SAC 2004, volume 3357 of LNCS, pages 326–340. Springer,
Heidelberg, August 2004. doi:10.1007/978-3-540-30564-4_23.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 196–205. ACM
Press, November 2001. doi:10.1145/501983.502011.

[Rog04] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and
Willi Meier, editors, FSE 2004, volume 3017 of LNCS, pages 348–359. Springer,
Heidelberg, February 2004. doi:10.1007/978-3-540-25937-4_22.

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor,
Progress in Cryptology - VIETCRYPT 06, volume 4341 of LNCS, pages 211–228.
Springer, Heidelberg, September 2006.

[RWZ12] Phillip Rogaway, Mark Wooding, and Haibin Zhang. The security of ciphertext
stealing. In Anne Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages 180–
195. Springer, Heidelberg, March 2012. doi:10.1007/978-3-642-34047-5_11.

[Sar07] Palash Sarkar. Improving upon the TET mode of operation. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, ICISC 07, volume 4817 of LNCS, pages 180–192.
Springer, Heidelberg, November 2007.

[SS08] Thomas Shrimpton and Martijn Stam. Building a collision-resistant compression
function from non-compressing primitives. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 643–
654. Springer, Heidelberg, July 2008. doi:10.1007/978-3-540-70583-3_52.

[ST13] Thomas Shrimpton and R. Seth Terashima. A modular framework for building
variable-input-length tweakable ciphers. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 405–423.
Springer, Heidelberg, December 2013. doi:10.1007/978-3-642-42033-7_21.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors,
CISC 2005, volume 3822 of LNCS, pages 175–188. Springer, Heidelberg, 2005.
doi:10.1007/11599548_15.

https://eprint.iacr.org/2008/090
https://eprint.iacr.org/2008/090
https://doi.org/10.1007/978-3-540-30564-4_23
https://doi.org/10.1145/501983.502011
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-642-34047-5_11
https://doi.org/10.1007/978-3-540-70583-3_52
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/11599548_15

	Introduction
	Background and Motivation
	Contribution
	Related Work

	Preliminaries
	Notation
	Games, Adversaries, and Reductions
	Symmetric Encryption
	Semantic Security
	Correctness
	PRP Security
	Collision Resistance

	Secure Codebook (SCB) Mode of Encryption
	The Scheme
	Security
	Correctness
	Extending SCB into a Variable-Input-Length LPSE Scheme

	Recoverable SCB (RSCB) Mode of Encryption
	The Scheme
	Correctness (with Reordering)

	Practical Considerations
	Security-Correctness Trade-Off
	Possible Modifications, Extensions, and Optimizations
	Further Remarks

	Conclusions and Future Work
	References

