
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 3, pp. 403–447. DOI:10.46586/tosc.v2022.i3.403-447

Low-Latency Boolean Functions
and Bijective S-boxes

Shahram Rasoolzadeh

Radboud University, Nijmegen, The Netherlands
firstname.lastname@ru.nl

Abstract. In this paper, we study the gate depth complexity of (vectorial) Boolean
functions in the basis of {NAND, NOR, INV} as a new metric, called latency complexity,
to mathematically measure the latency of Boolean functions. We present efficient
algorithms to find all Boolean functions with low-latency complexity, or to determine
the latency complexity of the (vectorial) Boolean functions, and to find all the circuits
with the minimum latency complexity for a given Boolean function. Then, we present
another algorithm to build bijective S-boxes with low-latency complexity which with
respect to the computation cost, this algorithm overcomes the previous methods of
building S-boxes.
As a result, for latency complexity 3, we present n-bit S-boxes of 3 ≤ n ≤ 8 with
linearity 2n−1 and uniformity 2n−2 (except for 5-bit S-boxes for whose the minimum
achievable uniformity is 6). Besides, for latency complexity 4, we present several
n-bit S-boxes of 5 ≤ n < 8 with linearity 2n−2 and uniformity 2n−4.

Keywords: S-box · low-latency · gate depth complexity

1 Introduction
Studying properties of all n-bit Boolean functions is not an easy task when n > 5. One of
the hardware properties of (vectorial) Boolean functions to study is their latency. Finding
the minimum latency for hardware implementation of a Boolean function with a synthesizer
is not possible if the number of inputs is high and if we only use the truth table of the
function. One approach to achieve a lower latency is providing a gate-level netlist for the
synthesizer to implement the Boolean function. However, finding a gate-level netlist that
provides the lowest latency for implementing a Boolean function is usually not an easy task
when the number of input bits to the functions is high (even for 5-bit S-boxes). Typically,
gate depth complexity defined as the minimum length of the longest path from an input bit
to an output bit within all possible implementations of a (vectorial) Boolean function, is
considered to mathematically model the lowest latency for implementing that function.
But, as a result of [BMP08], determining the gate depth complexity of a Boolean function
is an NP-hard problem and consequently finding low-latency implementation of (larger)
Boolean functions stays challenging.

Furthermore, the latency metric of a circuit is practically quite complicated, since
different gates have different delays and it is dependent on several parameters that vary
under different operating conditions (such as driving power, voltage, and temperature) and
more importantly under different technologies that the circuit will be implemented. Even
if the parameters are optimized for achieving the low-latency implementation, the latency
of different logic gates covers a wide range. Therefore, it is not realistic to consider the
gate depth complexity alone as a metric for the minimum latency of a Boolean function.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-06-01 Accepted: 2022-08-01 Published: 2022-09-09

https://doi.org/10.46586/tosc.v2022.i3.403-447
mailto:firstname.lastname@ru.nl
http://creativecommons.org/licenses/by/4.0/

404 Low-Latency Boolean Functions and Bijective S-boxes

1.1 Our Contributions
In this paper, in Section 3, we use a new metric to have a model that is closer to reality
than in the case of gate depth complexity. We call it latency complexity which is the gate
depth complexity in the basis of {NAND, NOR, INV} (see Definition 8). We present a unique
structure (circuit) to model the implementation of any Boolean function with the latency
complexity of d and we show that the latency complexity is invariant under the extended
bit permutation equivalence.

In Section 4, we study the latency complexity of (vectorial) Boolean functions. We
first show that the latency complexity of (vectorial) Boolean functions stays invariant over
the extended bit permutation equivalence. Then we discuss the computation cost of the
search for determining the latency complexity of a given Boolean function and present
several techniques to make it faster. Applying these techniques, we compute the latency
complexity of all n-bit Boolean functions for up to n = 5. Besides, in Subsection 4.3 we
present an algorithm to find all Boolean functions with low-latency complexity (d ≤ 4)
for n ∈ {6, 7, 8}. Furthermore, we explain several speed-up techniques on the search
for computing the latency complexity of a given Boolean function. We present another
algorithm to find all possible structures to implement a Boolean function with a gate depth
of the same as its latency complexity. We use this algorithm to determine the latency
complexity of the previously known S-boxes in symmetric cryptography.

By applying the low-latency Boolean functions, we look for the existence of bijective
n-bit S-boxes with a given latency complexity and study their cryptographic properties
(precisely, their linearity, uniformity, and algebraic normal form degree) in Section 5. While
the previous algorithm for building S-boxes [Can07, MB19] is useful for classifying n- to
m-bit Boolean functions under linear or affine equivalences, for our need (which uses the
extended bit permutation equivalence) it is not efficient. Thereby, we introduce a new
algorithm for building S-boxes that with respect to the computation cost, our method
overcomes the previous method. As a result, for latency complexity 3, we present n-bit
S-boxes of 3 ≤ n ≤ 8 with linearity 2n−1 and uniformity 2n−2 (except for 5-bit S-boxes
that the minimum achievable uniformity is 6). Besides, we find several n-bit S-boxes of
5 ≤ n < 8 with latency complexity 4, linearity 2n−2, and uniformity 2n−4.

In Section 6, we describe an approach to optimize the suggested structures produced
by our algorithm to find a circuit with the lowest latency in a real ASIC hardware
implementation. We apply our approach to find efficient implementations for previously
known and newly introduced S-boxes that are minimized with respect to the latency and
then its area.

All the results for latency complexity of Boolean functions and S-boxes are published
publicly at https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git.

1.2 Related Works
Designing cryptographic primitives with minimum a low latency in hardware is still a
young and emergent research topic. First work in this area was [KNR12] by Knezevic,
Nikov and Rombouts that compared the latency properties of multiple (lightweight) block
ciphers. Immediately after, the first dedicated low-latency block cipher called PRINCE
introduced by Borghoff et al. [BCG+12]. Designing low-latency primitives continued
with block cipher QARMA by Avanzi [Ava17], Gimli: a high performance cross-platform
cryptographic permutation by Bernstein et al. [BKL+17], PRINCEv2: an updated version
of PRINCE, by Bozilov et al. [BEK+20], Orthros: a pseudorandom function (PRF) by
Banik et al. [BIL+21], and SPEEDY: a family of block ciphers by Leander et al. [LMMR21].

There are also some works focusing on the latency of some particular cryptographic
building blocks only. For instance, in [BFP19], Boyar, Find and Peralta present some
techniques for finding small low-depth circuits for cryptographic functions [BFP19]. In

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

Shahram Rasoolzadeh 405

[LSL+19], Li et al. show how to construct involutory low-latency Maximal Distance
Separable (MDS) matrices.

A recent work in the direction of determining circuit complexity of functions is [Sto16]
that presents a SAT-solver-based technique to optimize the implementations of some
S-boxes with respect to different criteria such as the gate depth complexity. While this
technique gives one solution for implementing small S-boxes, it is unable to find the
complexity in some cases, especially when the input size of the S-box is larger than 5.

In [BCBP03], Biryukov et al. presented an efficient algorithm to check if two functions
are equivalent and another algorithm to find the representative in the linear equivalence
or the affine equivalence class. Later in [MB19], De Meyer and Bilgin improved the
algorithm for mappings of n- to m-bit with m < n. Since we will deal with the extended
bit permutation equivalence and not the linear or affine equivalence, we modify these
algorithms according to the properties of extended bit permutation equivalence. While
these algorithms perform efficiently for linear or affine equivalence, we experienced that they
are not suitable for (extended) bit permutation equivalence. Details of the modification
and our solution for these problems are explained later.

In [BMD+20], Bilgin et al. present techniques to construct S-boxes with a low-latency
masked variants for applying in the side-channel countermeasures that basically requires a
low multiplicative depth and gate complexities. However, this is not directly related to the
development of low-latency symmetric primitives in general, as the requirements are quite
different and sometimes even direct opposites. While in regular cryptographic S-boxes,
non-linear gates are beneficial for area and latency over the linear gates, in masked S-boxes
on the other hand, linear operations are optimal and non-linear gates are the primary cost
factor [BMD+20].

2 Basics and Notations
In this section, we introduce the necessary basics related to Boolean functions and their
implementations based on the logic circuits. We assume that the reader has some, but not
necessarily extensive, familiarity with these concepts.

We use Zn to denote the finite set {0, 1, . . . , n − 1}, that is the set of non-negative
integers smaller than n. By F2, we denote the finite field of two elements, {0, 1}, and call
it the binary field where the addition of this field is denoted by ⊕ and called XOR. By Fn

2
with n being a positive integer, we denote the binary vector space of dimension n and call
it the space of n-bit vectors.

Let a ∈ Fn
2 , then by a[i] with i ∈ Zn, we denote the i-th element of a, i.e., a =

(a[0], . . . , a[n − 1]). Note that in this paper, we always count starting from 0. Let a, b ∈ Fn
2

be two n-bit binary vectors. We use ⟨a, b⟩ to denote the inner product between a and
b which is defined as ⟨a, b⟩ =

⊕n−1
i=0 a[i]b[i]. Also, by hw(a), we denote

∑n−1
i=0 a[i] that

is called the Hamming weight of a. To denote concatenation of two vectors a ∈ Fn
2 and

b ∈ Fm
2 , we use (a∥b) that is (a[0], . . . , a[n − 1], b[0], . . . , b[m − 1]).

To make it easier and space-efficient to display a binary vector, for a ∈ Fn
2 , instead of

displaying its all binary elements, we show it by its corresponding integer value in Z2n .
Precisely, we use the simple mapping of elements in Fn

2 to the elements in Z2n that maps
any a ∈ Fn

2 to
∑n−1

i=0 a[i] · 2n−i−1.

2.1 Boolean Functions
The functions from the vector space Fn

2 to the binary field F2 are called Boolean functions
with n-variables or simply n-bit Boolean functions. The number of n-bit Boolean functions
is 22n , and this number is too large to study the properties of each n-bit Boolean function
when n > 5. For this reason, determining and studying those Boolean functions satisfying

406 Low-Latency Boolean Functions and Bijective S-boxes

the target conditions is not feasible through an exhaustive computer search.1 Therefore, it
is necessary to find solutions that make it easier to study properties of Boolean functions
or find Boolean functions satisfying the target properties. In the following, we briefly
explain the necessary terms and notations of Boolean functions used in this paper.

The truth table is the most basic way to represent a Boolean function. Let f be an
n-bit Boolean function, then the truth table of f is a binary vector Tf ∈ F2n

2 such that for
any x ∈ Fn

2 , Tf [x] shows the value of f(x). Among the other classical representations of
Boolean functions, the one most often used in cryptography is the algebraic normal form
(ANF) which is the n-variable polynomial representation over F2 of the form

f(x) =
⊕
I∈Fn

2

aIxI =
⊕
I∈Fn

2

aI

(n−1∏
i=0

x
I[i]
i

)
,

where xi is the variable corresponding to the i-th bit of x, i.e., x[i]. Also, xI denotes the
monomial x

I[0]
0 · · · x

I[n−1]
n−1 , i.e., the corresponding monomial for xi variables with I[i] = 1.

Note that each aI is a binary value and every coordinate xi appears in this polynomial
with exponents at most 1. It is well-known that the ANF representation is unique2 and
can be computed for the given truth table with a complexity of n · 2n operations.

The Hamming weight of a Boolean function’s truth table is called its weight which
is the number of x ∈ Fn

2 with f(x) = 1. Balanced Boolean functions are the ones whose
weight is equal to 2n−1, i.e., for half of x ∈ Fn

2 , it maps to 1, and for the other half, it
maps to 0.

Definition 1 (Algebraic Degree). For an n-bit Boolean function f , the algebraic degree
is the maximum Hamming weight of all occurring monomials in the ANF representation
of a function which we denote by deg(f), i.e.,

deg(f) = max
I∈Fn

2 , aI =1
hw(I).

Linear Boolean functions are those Boolean functions for which, for any a, b ∈ Fn
2 , we

have f(a ⊕ b) = f(a) ⊕ f(b). Each n-bit linear Boolean function can be represented as
ℓα(x) = ⟨α, x⟩ with corresponding α ∈ Fn

2 . Note that each of these functions with α ̸= 0
are balanced.

Separating Boolean functions by their algebraic degree, the ones with degree one, two,
or three are called affine, quadratic, and cubic functions, respectively. Affine functions,
which are the extension of linear functions by a constant XOR in the output, can be
displayed as ⟨α, x⟩ ⊕ c with corresponding α ∈ Fn

2 and c ∈ F2.

2.2 Vectorial Boolean Function
While Boolean functions map n-bit vectors to a one-bit value, vectorial Boolean functions
map n-bit vectors to m-bit vectors. To specify the input and output bit size of these
functions, we call them n- to m-bit vectorial Boolean functions, and when the input and
output bit sizes are the same, we simply call them n-bit vectorial Boolean functions.
Clearly, the vectorial Boolean functions include the Boolean functions which correspond
to m = 1. In cryptography, vectorial Boolean functions are usually called S-boxes which
provide confusion in the cipher. The S-boxes play a primary role in the key-alternating
block ciphers, especially in the Substitution-Permutation-Network (SPN) ones.

1Consider determining if a 6-bit Boolean function has the target properties needs one millisecond (10−6

seconds). Then, it needs about 244 seconds (about half a million years) to visit all the 6-bit Boolean
functions.

2Precisely, the ANF polynomial in F2[x0, . . . , xn−1]/(x2
0 − x0, . . . , x2

n−1 − xn−1) is unique.

Shahram Rasoolzadeh 407

Let F be an n- to m-bit Boolean function, then the Boolean functions f0, . . . , fm−1
defined by F (x) =

(
f0(x), . . . , fm−1(x)

)
for every x ∈ Fn

2 are called coordinate functions
of F . Also, for every non-zero α ∈ Fm

2 , the Boolean function x 7→ ⟨α, F (x)⟩ is called a
component function of F , and we denote this function by ⟨α, F (x)⟩. In this paper, to denote
the truth table of F easily, we use an array of 2n elements in Z2m , i.e.,

(
F (0), . . . , F (2n−1)

)
.

As for Boolean functions, the property of balancedness plays a crucial role in vectorial
Boolean functions. An n- to m-bit Boolean function F is called balanced if it takes every
value of Fm

2 the same number of times, i.e., 2n−m times. The balanced n-bit vectorial
Boolean functions are the permutations on Fn

2 . It is well-known in the literature that an
n- to m-bit Boolean function F is balanced if and only if its all component functions are
balanced (for a proof see, e.g., [Car21]).

The algebraic degree of F is the maximum of the algebraic degrees of all coordinate
functions. Hence, we use the same definition for linear, affine, quadratic, and cubic
functions of the vectorial Boolean functions.

Definition 2 (Linearity and Differential Uniformity). For a vectorial Boolean function
F : Fn

2 → Fm
2 , the linearity and differential uniformity are defined as

lin(F) = max
α∈Fn

2 , β∈Fm
2 \{0}

∣∣#{x ∈ Fn
2 | ⟨α, x⟩ = ⟨β, F (x)⟩}−#{x ∈ Fn

2 | ⟨α, x⟩ ≠ ⟨β, F (x)⟩}
∣∣,

uni(F) = max
α∈Fn

2 \{0} , β∈Fm
2

#{x ∈ Fn
2 | F (x) ⊕ F (x ⊕ α) = β}.

Definition 3 (Full-Dependency). Let F : Fn
2 → Fm

2 be an n-bit to m-bit vectorial Boolean
function: F (x0, . . . , xn−1) =

(
f0(x0, . . . , xn−1), . . . , fm−1(x0, . . . , xn−1)

)
. We call F is

full-dependent if each of its coordinate functions fi is dependent on all the input variables,
i.e., on all the xi variables.

2.3 Equivalences
To study properties of vectorial Boolean functions, it is sometimes easier to partition them
by a defined equivalence relation for which the studied properties are invariant. Affine
equivalence and extended affine equivalence are the most applied ones in studying vectorial
Boolean functions.

Definition 4 (Linear, Affine, and Bit Permutation Equivalences). Two n- to m-bit Boolean
functions F and G are called linear equivalent if there exist an n- to n-bit linear bijection
Lin and an m- to m-bit linear bijection Lout in such a way that F = Lout ◦ G ◦ Lin.

In the same way, affine equivalence and bit permutation equivalence are defined. F and
G are called affine equivalent if there exist an n- to n-bit affine bijection Ain and an m- to
m-bit affine bijection Aout in such a way that F = Aout ◦ G ◦ Ain; and they are called bit
permutation equivalent, if there exist a bit permutation of n bits Pin and a bit permutation
of m bits Pout in such a way that F = Pout ◦ G ◦ Pin. Note that the n-bit vectorial
Boolean function P is called bit permutation of n bits, if it maps (x[0], . . . , x[n − 1]) to(
x[π(0)], . . . , x[π(n − 1)]

)
where π is a permutation of Zn.

It is clear that if F and G are bit permutation equivalent, then they are also linear and
affine equivalent. Besides, if they are linear equivalent, then they are also affine equivalent.

Similar to extending the linear equivalence to the affine equivalence, it is possible
to extend the bit permutation equivalence to what is called extended bit permutation
equivalence [LP07]. This equivalence is the most important one for our work in this paper.

Definition 5 (Extended Bit Permutation Equivalence). Two n- to m-bit Boolean functions
F and G are called extended bit permutation equivalent if there exist a bit permutation
of n bits Pin, a bit permutation of m bits Pout, α ∈ Fn

2 , and β ∈ Fm
2 in such a way that

G(x) =
(
Pout ◦ G ◦ Pin(x ⊕ α)

)
⊕ β for all x ∈ Fn

2 .

408 Low-Latency Boolean Functions and Bijective S-boxes

Note that the affine equivalence covers all the other above-mentioned equivalences. The
algebraic degree, linearity and uniformity are example properties of (vectorial) Boolean
functions that are invariant over any of these equivalences.

It is common to consider the lexicographically smallest function in an equivalence class
as the representative one. In this paper, we also use the same definition for representatives.

In [BCBP03], Biryukov, De Cannière, Braeken and Preneel presented an efficient
algorithm to check if two functions are equivalent together with another algorithm to find
the representative in the linear or in the affine equivalence class. Later in [MB19], De
Meyer and Bilgin improved the algorithm for mappings of n- to m-bit with m < n. Since
in this paper, we deal with the extended bit permutation equivalence and not the linear
or affine equivalence, we modify these algorithms according to the properties of extended
bit permutation equivalence. While these algorithms perform efficiently for the case of
linear and affine equivalences, we experienced that they are not suitable for (extended) bit
permutation equivalence. We discuss the details about this problem later in Subsection 5.1.

2.4 Implementation of Boolean Functions
To mathematically model the costs for implementing a Boolean circuit for some specific
applications, some terms are defined that are known as the complexity of the implementation.
In the following, we bring the general definition of these complexities. In all of these
definitions, we consider that G is the set of all allowed gates to use, which is usually called
the basis of implementation, e.g., all the gates with fan-in number of at most two.3 The
basis must provide completeness property with the meaning that based on the given type
of gates in this basis, it is possible to build any (vectorial) Boolean function. The most
common basis is G = {XOR, AND, INV}; but, since XOR itself can be realized based on three
AND and two INV gates, G′ = {AND, INV} is also a complete basis.

Definition 6 (Gate Count Complexity). It is the smallest number of gates required to
compute the function while type of each used gate must be included in G.

Even though different types of gates have different implementation (area) costs, this
definition is typically considered the first simplified estimation for the minimum area cost
for hardware implementation of a function. To achieve a reasonable estimation of the area
cost, it is common to consider only the gates with a fan-in number of one or two.

Definition 7 (Gate Depth Complexity). It is the minimum value for the longest path
(concerning the number of gates used in the path) from any input to any output for
implementing the function. Note that type of each used gate must be included in G.

It is clear from its definition that the gate depth complexity of a vectorial Boolean
function is the maximum of gate depth complexity for each of its coordinate Boolean
functions.

Note that if any gate with any fan-in number is allowed, then every function can
be implemented by a circuit with gate depth at most 3, e.g., by using conjunctive or
disjunctive normal form expression of the function in which there are one AND, one OR, and
probably one INV gates in each path from any input to any output. However, this can lead
to a G that is usually not available in practice. Again, it is typical to use only gates with a
fan-in of at most 2.

Similar to the gate count complexity, in the case of the gate depth complexity, even
though different types of gates have different implementation (delay) costs, this definition
is usually considered the first estimation for the minimum delay cost for hardware imple-
mentation of a function. But, as we discuss later in detail, this oversimplified metric does
not provide an appropriate estimation for the delay cost. It is mainly because of the wide

3By fan-in or fan-out numbers of the gate, we mean the number of input bits or output bits in the gate.

Shahram Rasoolzadeh 409

range of delays of different types of gates (even with the same fan-in and fan-out numbers).
Therefore, it needs a modification to be used as a close estimation for the delay cost of
implementing a function.

Generally, any costs for hardware implementation of (vectorial) Boolean functions
are invariant over bit permutation equivalence. This is because the bit permutations are
realized by wiring, which means it costs a negligible value at most. Therefore, any two
(vectorial) Boolean functions that are different only by a permutation of the input bits
and a permutation of the output bits have the same implementation cost and the same
hardware complexity in practice.

Moreover, since the cost of an inverter gate (shown by INV and in some literature is
called the NOT operation) is comparably smaller than any other gates, it is reasonable to
consider that the cost of implementing two (vectorial) Boolean functions which are different
with a constant addition in the input or the output, is not very much different. Another
reason for this consideration is that each (vectorial) Boolean function is implemented
as a combinatorial circuit. Its input and output wires are usually connected to other
combinatorial circuits. Hence, the INV gates in the input or output bits can be combined
with the gates in the previous or the following combinatorial circuits. Note that if there is a
layer of registers or a layer of buffers, such as in the round based or unrolled implementation
architectures, respectively, the INV gates in the input and the output of a combinatorial
circuit can be combined with the registers or the buffers (by changing the BUF gate to an INV
gate). Therefore, by accepting a small tolerance, it is usually considered that the hardware
implementation costs are invariant over the extended bit permutation equivalence.

As a result of [BMP08], we know that determining any of these complexities for a
Boolean function is considered to be an NP-hard problem. The SAT-solver-based tool
by Stoffelen [Sto16] finds a single solution for implementing small S-boxes. But, notice
that it does not provide all the solutions for implementing the S-box, or it cannot find the
complexity in the case when S-box size is larger than 5.

To use functionality of the gates in the equations, we use the signs ∧, ∨, ∧, and ∨ to
denote the operation of the AND, OR, NAND, and NOR gates, respectively. Besides, we use
¬f to denote the inverted value for the output of a Boolean function f , and we use x to
indicate the inverted value of the input x. Moreover, for simplicity, from now on, we do
not mention fan-in number of the gates, unless it is more than 2.

3 Latency Complexity of Boolean Functions
Due to the wide range of delays of logic gates provided by the applied ASIC library for
implementation, it is not realistic to consider the gate depth complexity as a metric for the
minimum latency of a Boolean function. For instance, in almost all the libraries, a 2-bit
XOR or XNOR gate has a latency of about twice the latency for other gates with a fan-in
number of 2. Another example is the difference in the latency of the gates with different
fan-in numbers; the latency of the gates with a higher number of fan-ins is larger than the
latency for similar gates but with fewer fan-ins. On the other hand, except for the INV gate,
whose fan-in number is one, the 2-bit NAND gate and the 2-bit NOR gate have the minimum
latency in almost all the ASIC libraries. To make a view of the latency for different gates,
we list latency and area of all logic gates (with fan-out number one) in NanGate 15 nm
and 45 nm Open Cell Libraries with typical operating conditions in Table 1.

To have a more accurate metric for the latency, we use the gate depth complexity by
restricting ourselves to only INV, 2-bit NAND and 2-bit NOR gates. But since the INV gate
has comparably lower latency than the other two gates, and more importantly, because of
the reason explained later in Proposition 1, we do not consider the INV gates in the gate
count of the implementation. We define the latency complexity of a (vectorial) Boolean
function as in the following definition.

410 Low-Latency Boolean Functions and Bijective S-boxes

Definition 8 (Latency Complexity). It is the minimum value for the longest path
(concerning the number of only NAND and NOR gates) from any input to any output for
implementing the function while the set of allowed gates to use is G = {INV, NAND, NOR}.

Similar to the case for gate depth complexity, the latency complexity of a vectorial
Boolean function is the maximum of latency complexity for each of its coordinate functions.

It is noteworthy to mention that using the basis G = {INV, NAND, NOR} is equivalent
to using G′ = {INV, NAND} or G′′ = {INV, NAND, NOR, AND, OR}. Since both AND and OR are
slower than both NAND and NOR, we exclude them from the basis. However, including NOR
makes it possible to have a more simple structure for low-latency implementation of a
Boolean function that is explained in detail in Proposition 1.

In the following example, we explain how to count the gate depth of implementation
when we are computing its latency complexity.

Example 1 (Latency Complexity of MUX2). The circuit shown in Figure 1a is an instance
for implementing the function f(x0, x1, x2) = (x0 ∧ x1) ∨ (x0 ∧ x2) using the gates in
G = {INV, NAND, NOR}. Note that f is a balanced function with the ANF representation of
x0x1 ⊕ x0x2 ⊕ x2. Besides, it represents the functionality of a multiplexer (MUX2) that x0
acts as the selector to choose either x1 or x2.

The circuit implies that y = ¬
(
¬(x0∧x1) ∨ ¬(x0∧x2)

)
and the length of the paths

from each input to the output (by counting only NAND and NOR gates) is two. Using
the equation ¬(y0 ∨ y1) = y0 ∧ y1, one can simplify the implementation in Figure 1a to
y = (x0∧x1) ∧ (x0∧x2) as in the implementation shown in Figure 1b.

Table 1: The latency (in picoseconds) and the area (in GE) of logic gates (with fan-out
number 1) in NanGate 15 nm and 45 nm open cell libraries for typical operating conditions.

Input(s) Gate Output 15 nm 45 nm
Latency Area Latency Area

x0
INV_X1 ¬x0 1.580 0.75 22.048 0.67
BUF_X1 x0 3.068 1.25 33.557 1.00

x0x1

NAND2_X1 ¬(x0 ∧ x1) 2.031 1.00 27.886 1.00
NOR2_X1 ¬(x0 ∨ x1) 2.554 1.00 40.650 1.00
AND2_X1 x0 ∧ x1 3.580 1.50 40.171 1.33
OR2_X1 x0 ∨ x1 3.644 1.50 56.414 1.33
XOR2_X1 x0 ⊕ x1 5.268 2.25 73.019 2.00
XNOR2_X1 ¬(x0 ⊕ x1) 6.788 2.25 57.604 2.00

x0x1x2

NAND3_X1 ¬(x0 ∧ x1 ∧ x2) 2.361 1.50 34.767 1.33
OAI21_X1 ¬

(
(x0 ∨ x1) ∧ x2

)
2.830 1.50 32.651 1.33

AOI21_X1 ¬
(
(x0 ∧ x1) ∨ x2

)
3.394 1.50 51.619 1.33

NOR3_X1 ¬(x0 ∨ x1 ∨ x2) 3.788 1.50 61.543 1.33
AND3_X1 x0 ∧ x1 ∧ x2 5.496 2.00 51.869 1.67
OR3_X1 x0 ∨ x1 ∨ x2 5.862 2.00 85.840 1.67
MUX2_X1 (¬x0 ∧ x1) ∨ (x0 ∧ x2) 6.133 3.25 75.175 2.33

x0x1x2x3

OAI22_X1 ¬
(
(x0 ∨ x1) ∧ (x2 ∨ x3)

)
3.776 1.75 54.596 1.67

AOI22_X1 ¬
(
(x0 ∧ x1) ∨ (x2 ∧ x3)

)
4.070 1.75 57.255 1.67

NAND4_X1 ¬(x0 ∧ x1 ∧ x2 ∧ x3) 4.659 1.75 44.487 1.67
NOR4_X1 ¬(x0 ∨ x1 ∨ x2 ∨ x3) 5.250 1.75 91.313 1.67
AND4_X1 x0 ∧ x1 ∧ x2 ∧ x3 7.125 2.25 65.492 2.00
OR4_X1 x0 ∨ x1 ∨ x2 ∨ x3 7.683 2.25 118.592 2.00

Shahram Rasoolzadeh 411

f

x1

x0

x2

(a)

f

x1

x0

x2

(b)

fx1

x0

(c)

Figure 1: Low-latency implementation of a MUX2 and an XOR.

Even though the latency complexity of implementing f is two, to determine it, we need
to consider the length of the longest path in all possible implementations for f .

It is an interesting observation that the latency of a MUX2 gate in the typical conditions
is usually about 3 times the one for NAND gate (see Table 1). Hence, if the target is to lower
the latency, one can use the implementation shown in Figure 1b instead of the MUX2 gate,
but then it needs more area compared to the case of using original MUX2 gate. Precisely,
depending on the ASIC technology, it needs 15% or 57% more area to reduce the latency
by about 30%, which sounds to be a good trade-off.

Example 2 (Latency Complexity of XOR). The XOR function of two variables can be
represented as f(x0, x1) = (x0 ∧ x1) ∨ (x0 ∧ x1). Using the same approach as in Example 1,
this representation changes to f(x0, x1) = (x0∧x1) ∧ (x0∧x1) with gate depth of two. The
implementation of this function is shown in Figure 1c which is similar to the one in
Figure 1b with an extra INV gate.

The latency complexity of XOR is also two. Considering the fact that the latency of
XOR is always more than twice the latency for NAND, it is reasonable to exclude the XOR
gate from the gate basis of the latency complexity.

Proposition 1. Any n-bit Boolean function f(x0, . . . , xn−1) with latency complexity d
can be implemented by a circuit of the structure shown in Figure 2. In this structure, each
of gi,j gates with 0 < i ≤ d and j ∈ Z2d−i are either a NAND or a NOR gate, and the inputs
to the gates in the first level is either ai or its inverted value, ai, while each ai with i ∈ Z2d

is chosen from the set {x0, . . . , xn−1}.

Proof. To prove the proposition, we need to show that any function with latency complexity
d can be implemented by 1) using INV gates only in the beginning, i.e., in the depth level
0, and 2) using the output of each gate in the input of only one gate in the next depth
level. To show the first part, we use the equations

¬(y0 ∧ y1) = y0 ∨ y1 , ¬(y0 ∨ y1) = y0 ∧ y1 .

These equations imply that if there is an INV gate in the output of a NAND or NOR gate, it
can be removed from the output and replaced in both inputs by changing the gate type
to NOR or NAND gate, respectively. Therefore, in an implementation of a function, if there
is an INV gate in the output of a NAND or a NOR gate at depth level i, we can replace it
with two INV gates in the depth level of i − 1 by changing the NAND/NOR gate’s type. Thus,
starting from depth level d, we can bring all the INV gates to the previous depth level
and update the implementation. By updating the implementation, we mean changing the
corresponding NAND or NOR gate type and removing (if there exist) two repeated INV gates
in the depth level i − 1.

To show the second part, assume that the output of a NAND or a NOR gate is used in
the input of other gates more than once, i.e., its fan-out number is greater than 1. This
can be eliminated by repeating the implementation of the corresponding sub-circuit of this
output such that the output of each repetition is used only once. Besides, assume that
the output of a gate in the depth level i is used in the depth level of i′ with i′ > i + 1.
This also can be eliminated by using similar equations to ¬y ∧ ¬y = y, i.e., repeating the

412 Low-Latency Boolean Functions and Bijective S-boxes

g1,0

g1,1

g1,2d−1−2

g1,2d−1−1

g2,0

g2,2d−2−1

gd,0

a0

a1

a2

a3

a2d−4

a2d−3

a2d−2

a2d−1

· · ·

· · ·

...
...

...
...

depth
level: 0 1 2 · · · d

Figure 2: General structure for implementing a function with latency complexity d.

inverted circuit for y. Therefore, we ensure that the output of a gate in the depth level i is
used only once in an input of a gate in the depth level of i + 1.

Note that to prove the second part in the above proof, we may repeat implementing a
sub-circuit several times, which is not efficient area-wise. We emphasize that the structure
of Figure 2 is only for a straightforward representation to implement all the Boolean
functions with latency complexity d and not for an optimized low-latency implementation.
As it comes later, it helps us to study the latency complexity of Boolean functions. Besides,
we describe a method to find the implementation with the lowest latency of a given
Boolean function in Subsection 4.4 which uses the implementation following the structure
in Figure 2.

In the structure proposed in the previous works, e.g., in [Sto16, BMD+20], it is
considered that the output of gates can be used in the input of several gates and in any
of the following depth levels. Unlike our representation, theirs needs more variables and
long-expressed equations in the SAT model, which makes solving the SAT-model harder.

As shown in Figure 2, for a low-latency implementation of a function, we only need
to use the INV gates once and at the beginning (we call it depth level 0). Since in the
unrolled implementation, it is necessary to use a layer of buffers for the input variables of
each combinatorial circuit to amplify the voltage of the wires, if the input variable needs
to go through an INV gate, there is no need to use such a buffer. This means, in the depth
level 0, each input variable ai goes through a BUF gate (with the output of ai) or through
an INV gate (with the output of āi). Besides, note that latency of an INV gate is lower
than that of a BUF gate. This is the main reason why we do not count the INV gates in
gate count of the longest path.

We emphasize neglecting latency of the depth level 0 is an oversimplification for
measuring the latency of a single S-box implementation. In our structure and the ones for
previous related works, we consider that for each repeated input variable, one independent
wire enters the combinatorial circuit. But, in reality, there are at most two wires for each
input variable entering the combinatorial circuit: one goes through a BUF and one through an
INV gate, both with a higher fan-out number. This indeed affects and increases the latency
of the implementation and should not be neglected. However, without this simplification,
it is impossible to present a solution to model this complicated implementation parameter.

In the rest of this paper, for implementing an n-bit Boolean function f , we focus on
the structure of Figure 2. By mapping each gi,j gate (with 0 < i ≤ d and j ∈ Z2d−i) to a
binary value, we use G ∈ F2d−1

2 to denote the type of gates, i.e.,

G := (g1,0, . . . , g1,2d−1−1, g2,0, . . . , g2,2d−2−1, . . . , gd,0) .

Shahram Rasoolzadeh 413

We map a NAND gate to 0 and a NOR gate to 1. By α ∈ F2d

2 , we denote whether ai with
i ∈ Z2d goes through an INV gate. More precisely, if α[i] = 1, then ai is used as the input
of the gate in depth level 1, otherwise ai itself. We use π ∈ Z2d

n to denote the choice of xj

variables by ai variables, i.e., ai = xπ[i], and by P : Fn
2 7→ F2d

2 , we denote the corresponding
mapping applied by π, i.e., x 7→ P (x) with ∀i ∈ Z2d , P (x)[i] = x[π(i)].

Besides, we use Ii,j (with 0 < i ≤ d and j ∈ Z2d−i) to denote the corresponding
sub-circuit from the inputs x0, . . . , xn−1 to the output of gate gi,j . Therefore, each Ii+1,j

(with 0 < i < d and j ∈ Z2d−i) can be represented by the tuple (Ii,2·j , Ii,2·j+1, gi,j).
Thus, Id,0 is the implementation of f . Moreover, each of Ii,j can be represented by the
corresponding (Gi,j , αi,j , πi,j) tuple where Gi,j ∈ F2i−1

2 , αi,j ∈ F2i

2 and πi,j ∈ Z2i

n .
To find the latency complexity of an n-bit Boolean function, by knowing that it is not

smaller than d, one can try all the possibilities for the structure of Figure 2. To do so, we
need to go through all 22d−1 choices for G, all 22d choices for α, and all n2d choices for π,
which ends up with a total computational complexity of about 22d·(2+log2 n). It is clear
that if d > 4, it is impossible to do this computation in practice. Even for d = 4, if n > 4,
this computation is not practical.

We applied the SAT-solver-based tool presented in [Sto16] for the gate depth optimiza-
tion. We modified it to find the latency complexity of a Boolean function by replacing the
previous model (with more gate types and free wiring style) with the one in the structure
of Figure 2. Even though this modification makes the tool faster, it only provides a single
solution for low-latency implementation of small Boolean functions, and it cannot find any
solutions for full-dependent n-bit Boolean functions with n > 5.

4 Boolean Functions with Low-Latency Complexity
In this section, we first show that the latency complexity of (vectorial) Boolean functions
stays invariant over the extended bit permutation equivalence. Next, we explain several
speed-up techniques on the search for computing the latency complexity of a given Boolean
function and also on finding all Boolean functions with a given latency complexity. Then,
we present a general algorithm to find all Boolean functions with a given latency complexity.
As a result, we determine the latency complexity of all Boolean functions up to 5 bits,
together Boolean functions of up to 8 bits with latency complexity at most 4. Afterwards,
we present another algorithm but faster one to find all possible structures to implement a
Boolean function with gate depth of same as its latency complexity.

4.1 Extended Bit Permutation Equivalence
It is clear that a bit permutation or a constant addition in the input or the output of a
Boolean function does not change the latency complexity. These properties are explained
in detail in the following proposition.

Proposition 2. Let f1 and f2 be two n-bit Boolean functions which are equivalent under
extended bit permutation equivalence, i.e., f2(x) = f1

(
P ′(x) ⊕ α′) ⊕ c for any x ∈ Fn

2 with
P ′ being a bit permutation function with corresponding permutation of π′, and α′ ∈ Fn

2 ,
c ∈ F2 being constant values. Then the latency complexity of f1 and f2 are the same.

Moreover, if (G, α, π) is one instantiation of implementing f1 in the structure of
Figure 2, with P being the mapping applied by π, the corresponding implementation for f2
can be realized by (G, α ⊕ P (α′), π ◦ π′) if c = 0; and if c = 1 then it can be implemented by
(G, α ⊕ P (α′), π ◦ π′) while G and α denote the complement value of G and α, respectively.

Proof. A bit permutation can be realized in hardware by replacing the wires, and a constant
addition can be realized by adding INV gates. Therefore, we can modify the implementation

414 Low-Latency Boolean Functions and Bijective S-boxes

Table 2: Number of Boolean functions up to the extended bit permutation equivalence.
N1, N2, N3, and N4 denote the number of all Boolean functions, full-dependent Boolean
functions, balanced Boolean functions, and full-dependent and balanced Boolean functions
up to the equivalence, respectively.

n N1 N2 N3 N4

2 4 2 2 1
3 14 10 6 4
4 222 208 58 52
5 616 126 615 904 86 603 86 545

for f1 and use it for f2 without changing the length of the longest path (by only counting
the NAND and NOR gates). Since this is true for any implementation of f1, the latency
complexity of f2 is the same as that of f1.

To prove the second part, we first consider c = 0. The input of the structure in the case of
f1 for a given x ∈ Fn

2 is P (x), then the corresponding input of the structure for the case of f2
must be P (P ′(x)⊕α′). Since P is a linear mapping, then P (P ′(x)⊕α′) = P ◦P ′(x)⊕P (α′).
The function P ◦ P ′ can be realized by applying π ◦ π′ mapping. The next part, P (α′), also
can be combined with the INV gates in the depth level of 0. To do this combination, instead
of using INV gates corresponding to α, we use INV gates corresponding to α ⊕ P ′(α′).

In the case of c = 1, we implement ¬f2 = f1
(
P ′(x) ⊕ α′) as it is explained for the case

of c = 0 and then insert an extra INV gate in the output of ¬f2 to realize implementation
of f2. It is possible to replace the INV gate in the depth level of d with two INV gates in
the depth level of d − 1 by changing the gate type, i.e., gd,0. Repeating this for d times,
we end up with 2d extra INV gates in the depth level 0 and changing all the gate types.
This means we changed G to G and α ⊕ P ′(α′) to α ⊕ P ′(α′) = α ⊕ P ′(α′).

Proposition 2 suggests that instead of studying all n-bit Boolean functions, it is
enough to evaluate the latency complexity of the representative Boolean functions for each
equivalence class. Table 2 shows the number of n-bit Boolean functions up to extended bit
permutation equivalence for n ≤ 5. There, N1 denotes the number of all Boolean functions
up to the equivalence, N2 denotes the number of full-dependent Boolean functions up to the
equivalence, N3 denotes the number of balanced Boolean functions up to the equivalence,
and N4 denotes the number of full-dependent and balanced Boolean functions up to the
equivalence. By a full-dependent function, we mean the functions in which the output is
dependent on all input variables.

To find all the representative functions, we used a technique that is based on the
following lemma.

Lemma 1. Let n-bit Boolean function f(x0, . . . , xn−1) to be in the form of

f = x0 · f0(x1, . . . , xn−1) ⊕ x0 · f1(x1, . . . , xn−1)

with f0 and f1 both being (n − 1)-bit Boolean functions; i.e., for their corresponding truth
tables, we have Tf = (Tf0 || Tf1). If f is an n-bit representative Boolean function in an
equivalence, then f0 must be an (n − 1)-bit representative Boolean function in the same
equivalence. Besides, f0 must be lexicographically smaller than the representative for f1.

Applying this lemma, for finding all the n-bit representative Boolean functions, we need
to use two (n − 1)-bit representative Boolean functions and extend the lexicographically
larger one by equivalence. Then, we need to check if the resulting n-bit function is
representative. In this case, with the extended bit permutation equivalence, for finding all
the n-bit representative Boolean functions, we need to consider about |N1,n−1|2 ·(n−1)! ·2n

Shahram Rasoolzadeh 415

possibilities to check if the resulting n-bit Boolean function is representative, where N1,n−1
denotes the number of all (n−1)-bit representative Boolean functions. For example, to find
all 5- and 6-bit representative Boolean functions, we need to check the representative-ness
of about 225 and 251 functions, respectively.

4.2 Possible Speed-Up Techniques
To find all the n-bit Boolean functions with latency complexity d, or to find all possible
implementations of a given Boolean function with latency complexity of d, one can
compute all possible functions in the structure of Proposition 1. As mentioned before,
the computational complexity of this search is about 22d·(2+log2 n). In the following, we
explain several techniques to reduce the computational complexity of the search when we
want to find 1) all the n-bit Boolean functions with latency complexity d, 2) all possible
implementations with the same depth as the latency complexity for a Boolean function.
Thereby, we try to remove all the redundant computations through all the possibilities.

Reduction on the Possibilities for G: Since both (Id−1,0, Id−1,1, gd,0) and (Id−1,1,
Id−1,0, gd,0) tuples both make the same implementation for Id,0, it is enough to check
one of these tuples. Furthermore, a similar reduction is valid for implementing the other
smaller sub-circuits; i.e., both (Ii,2j , Ii,2j+1, gi+1,j) and (Ii,2j+1, Ii,2j , gi+1,j) tuples build
the same implementation for Ii+1,j .

This redundancy can be eliminated by limiting the possibilities for G. Precisely, if
NG,i is the number of possibilities for each Gi,2j and Gi,2j+1, instead of going through
all 2N2

G,i possibilities for Gi+1,j , it is enough to only check 2 · NG,i(NG,i+1)
2 = N2

G,i + NG,i

possibilities. Note that the multiplication by 2 is because of the number of choices for
gi+1,j . Hence, the number of reduced possibilities for G after this reduction is equal to 2,
6, 42, 210.8, 221.6, and 243.3 for d to be equal to 1, 2, . . ., and 6, respectively.

Moreover, we know that if (G, α, π) is the corresponding implementation for function
f , then we can implement f ⊕ 1 function by using (G, α, π). Thus, if we are searching
for all the Boolean functions with a given latency complexity (up to the extended bit
permutation equivalence), we can use this technique to fix the type of a single gate. For
simplicity, we fix gd,0 to be a NAND gate. We emphasize that this reduction is only valid
when we are searching for the Boolean functions with a given latency complexity.

Reduction on the Possibilities for α: Similar to reducing the possibilities for G, we
can also reduce the number of possibilities for α. Since the order of inputs to a NAND
or a NOR gate does not affect the output, we can reduce the computation complexity by
fixing the order of the inputs. Precisely, by the notation of the structure in Figure 2,
xπ(2i) ⊕ α[2i] and xπ(2i+1) ⊕ α[2i + 1] are the inputs to the gate g0,i for any i ∈ Z2d−1 .
Swapping these two inputs does not change the implemented function. We can omit
this redundant computation by only considering that α[2i] ≤ α[2i + 1] for any i ∈ Z2d−1 .
Therefore, instead of checking for all 42d−1 = 22d possibilities for α, it is enough to check
only 32d−1 of them.

Using these two reductions on G and α, for a given n-bit Boolean function, determining
the all possible implementations with latency complexity d for an n-bit Boolean function
needs checking about

211.7 · n8 , 223.5 · n16 and 247 · n32

possibilities for d = 3, d = 4 and d = 5, respectively. It is clear that if d > 4, it is
impossible to do this computation in practice. Even for d = 4, if n > 4, this computation
is not practical.

416 Low-Latency Boolean Functions and Bijective S-boxes

Reduction on the Possibilities for π: To find all the Boolean functions with a given
latency complexity (up to the extended bit permutation equivalence), we can still reduce
the number of possibilities for π. The implementations based on (G, α, π) and (G, α, π ◦ π′)
by π′ being a permutation of Zn, build bit permutation equivalent Boolean functions.
Therefore, we can reduce the possibilities for π such that if we use π, we do not check for
any other π ◦ π′ choices. This reduction reduces the computational complexity by a factor
of about n!.

Besides, the implementations based on (G, α, π) and (G, α ⊕ P (α′), π) by α′ ∈ Fn
2 ,

build Boolean functions those are different only in a constant addition in the input. Again,
we can reduce the possibilities for α such that if we use α, we do not check for any other
α ⊕ P (α′) choices. Note that using this reduction requires knowing the choice for π. Since
we previously reduced the choices for α with α2i ≤ α2i+1 restriction for any i ∈ Z2d−1 , this
reduction reduces the computational complexity by a factor smaller than 2n.

Altogether, even with using all these reductions on the number of possibilities, the
computational complexity of the search for all the n-bit Boolean functions with a latency
complexity d (up-to the extended bit permutations equivalence), we need to consider more
than

211.7 · n8

n! · 2n
, 223.5 · n16

n! · 2n
and 247 · n32

n! · 2n

possible (G, α, π) tuples for d = 3, d = 4, and d = 5, respectively. For instance, finding all
the 5-bit Boolean functions with latency complexity 4 and 5, we need to consider more
than 249 and 2109 functions, respectively.

Note that each of these functions built by these tuples is not a representative function.
To achieve the set of representatives, we need to remove the equivalent functions. To
do this, we compute the representatives for each Boolean function built by these choices
and remove the duplicated representatives. We used the simplest method to compute
the representative of a Boolean function in the extended bit permutation equivalence.
We try all the equivalent Boolean functions by choosing one of the n! bit permutation
functions and one of the 2n constants in the input of the function while we choose the
output constant bit in such a way that in the resulting equivalent function, the point 0 is
mapped to 0. Hence, computing the representative for each of these Boolean functions
costs about 2n · n! operations. Therefore, computing the set of all n-bit representative
Boolean functions with latency complexity d needs the same amount of computations
as for finding all possible implementations for an n-bit Boolean function with the same
latency complexity; i.e.,

211.7 · n8 , 223.5 · n16 and 247 · n32

operations for d = 3, d = 4 and d = 5, respectively.
To remove the equivalent Boolean functions, we also tried the approach introduced

in [MB19] for determining if two functions are equivalents. We modified their method
for the case of extended bit-permutation equivalence instead of the affine equivalence.
However, due to the difference in corresponding equivalences (that the affine equivalence is
a stronger one than the extended bit-permutation), for our application in this paper, we
find using the method in [MB19] slower than using the simplest method. We emphasize
that their method is only slower here, where we are removing the equivalent Boolean
functions up to the extended bit-permutation. In the case of removing the equivalent n-bit
to m-bit vectorial Boolean functions, with a large value for n and a small value for n − m,
modification of the [MB19] method is significantly faster than the simple approach.

4.3 Finding Boolean Functions with Low-Latency Complexity
In this subsection, we present an efficient algorithm to find all the n-bit Boolean functions
with latency complexity d.

Shahram Rasoolzadeh 417

Algorithm 1: Computing Fn,d, the set of all full-dependent n-bit Boolean func-
tions with latency complexity d up to the extended bit-permutation equivalence.

Data: Fn′,d′ for all n′ ≤ n and d′ < d // the sets of all full-dependent n′-bit
Boolean functions with latency complexity d′

Result: Fn,d

1 F ← ∅ and Fn,d ← ∅
2 for n0 ← 1 to n do
3 for n1 ← max(1, n− n0) to n0 do
4 foreach d0, d1 ∈ Zd do
5 if Fn0,d0 ̸= ∅ and Fn1,d1 ̸= ∅ and (d0 = d− 1 or d1 = d− 1) then
6 foreach π ∈ Zn1

n if π follows the restrictions do // for i < j, π[i] ̸= π[j],
// and if n0 ≤ π1[i] and n0 ≤ π1[j], then π1[i] < π1[j].

7 Compute the corresponding bit-permutation function P .
8 foreach α ∈ Fn1

2 if α follows the restrictions do
// for each i such that n0 ≤ π1[i], α1[i] must be 0.

9 foreach f∗
0 ∈ Fn0,d0 and f∗

1 ∈ Fn1,d1 do
10 F ← F ∪ {f∗

0∧f∗
1 (P (·)⊕ α)}

11 foreach f ∈ F do
12 Fn,d ← Fn,d ∪ {ComputeRepresentative(f)}
13 for n′ ← 1 to n do
14 for d′ ← 0 to d do
15 if (n′, d′) ̸= (n, d) then
16 Fn,d ← Fn,d −Fn′,d′

To find all the n-bit Boolean functions with latency complexity d, we only need to find
them up to the extended bit permutation equivalence. Assume that for each d′ < d and
n′ ≤ n, we already have the set of all representative and full-dependent n′-bit Boolean
functions with latency complexity d′. We denote each of these sets by Fn′,d′ .

If f is an n-bit Boolean function with latency complexity d, then there exist two
Boolean functions f0 and f1 with latency complexity d0 and d1, respectively, such that
f = f0 ∧ f1 or f = f0 ∨ f1 and d0, d1 < d with at least one of d0 or d1 equals to d−1. Since
we are only finding the Boolean functions up to extended bit permutation equivalence, it
is enough to only consider one of the f0 ∧ f1 and f0 ∨ f1 cases that here we use f0 ∧ f1.

Assume that f0 and f1 are n0- and n1-bit full-dependent Boolean functions, respectively.
Then we know that for each k ∈ F2, there exist f∗

k ∈ Fnk,dk
, bit permutation function Pk

with corresponding permutation πk ∈ Znk
n such that for i and j with 0 ≤ i < j < nk, we

have πk(i) ̸= πk(j), αk ∈ Fnk
2 , and ck ∈ F2 which form fk, i.e., fk(x) = f∗

k

(
Pk(x)⊕αk

)
⊕ck.

The restriction on π is because the Boolean functions are full-dependent, and therefore πk

must be a permutation of Znk
. As explained previously in the speed-up techniques, we

can reduce the choices for both πk permutations and both αk constants. For simplicity,
we choose π0 = (0, . . . , n0 − 1) and α0 = 0. Besides, we put a restriction on π1 that for
0 ≤ i < j < n1, if n0 ≤ π1[i] and n0 ≤ π1[j], then π1[i] < π1[j]. Moreover, we restrict α1
in a way that for 0 ≤ i < n1 if n0 ≤ π1[i], then α1[i] = 0.

These reductions on building Fn,d, decrease the number of possibilities for π1 to
(n0! · n1!)/

(
(n − n0)! · (n − n1)! · (n0 + n1 − n)!

)
and for α1 to 2n0+n1−n. All together, if we

consider all the cases for n0, n1, d0 and d1, the computational complexity of this algorithm
to find all the n-bit Boolean functions with latency complexity d up to the extended bit
permutation equivalence is about

418 Low-Latency Boolean Functions and Bijective S-boxes

Table 3: Number of full-dependent n-bit (balanced) Boolean functions with latency
complexity d up to the extended bit permutation.

d\n 2 3 4 5 6 7 8
1 1
2 1 3 3
3 5 54 159 170 64 20
4 2 149 131 853 20 658 457 227 737 882 ?
5 2 482 072 ? ? ?
6 1820 ? ? ?

Balanced
d\n 2 3 4 5 6 7 8

2 1 1
3 2 6 8 3
4 1 45 12 757 931 780 4 436 770 4 489 235
5 1 73 778 ? ? ?
6 2 ? ? ?

∑
d0,d1,n0,n1,

n0≤n1≤n and d0,d1<d

n0! · n1! · 2n0+n1−n+2

(n − n0)! · (n − n1)! · (n0 + n1 − n)! · #Fn0,d0 · #Fn1,d1 .

We recall that the set of Boolean functions built by each of these choices is not the
same as Fn,d. To achieve Fn,d, we need to remove the equivalent functions. We compute
the representatives for each of these Boolean functions, which cost about 2n · n! operations
for each function. A pseudo-code for our approach is provided in algorithm 1.

For comparison, in the case of 5-bit Boolean functions, for latency complexity 4 and 5,
we need to consider about 229 and 248 functions, respectively. Therefore, to compute F5,4
and F5,5, we need to do about 241 and 260 computations, respectively. We recall that using
the method in Subsection 4.1 with reducing all possible reductions, these searches need
to consider more than 249 and 2109 functions while determining only the representative
functions we need about 261 and 2121 computations, respectively.

Similarly, the computational cost of F6,4, F7,4, F8,4 and F6,5 are about 249, 256, 261

and 282, respectively. Using the above algorithm, we compute all the Boolean functions
in Fn,d for n ≤ 5 with all d values and for n ≤ 8 with d ≤ 4. However, in the case of
F8,4, we only take the balanced Boolean functions and then compute their representatives.
This makes it possible to reduce the computation cost, and we can find all the balanced
Boolean functions.

The number of functions in Fn,d sets is shown in Table 3. Besides, we partition the
balanced Boolean functions in Fn,d with respect to their linearity. Table 6 and Table 5
show the number of full-dependent n-bit balanced Boolean functions categorized with their
linearity or ANF degree, and latency complexity.

4.4 Finding All Possible Implementations of a Boolean Function
In the following, we present an efficient algorithm to find all the possible implementations
of an n-bit full-dependent Boolean function whose latency complexity is d, for the cases
that either n ≤ 5, or n ∈ {6, 7, 8} with d ≤ 5. Note that here, we are only interested in the
implementations that have the minimum depth in the basis of {NAND, NOR, INV}. Precisely,

Shahram Rasoolzadeh 419

we are only looking for the implementations with structure in Figure 2 for a depth of d.
We recall that to do this, we only need to find structures up to the reductions explained in
Subsection 4.2.

For simplicity, we assume that we know what is the value for latency complexity of
the given Boolean function. Note that this assumption is based on the fact that we can
compute representative of the given n-bit full Boolean function with n! · 2n computations
and then we can search if it is in Fn,d. For the cases that n ∈ {6, 7, 8} and d > 4 that we
do not have the corresponding Fn,d sets, we assume d = 5 and try to find a structure for
its implementation and if it is not possible, we conclude that d is higher than 5.

For starting the algorithm, we assume that for each d′ < d, the set of all n-bit Boolean
functions with latency complexity d′ is already computed. We denote these sets with F∗

d′ .
Note that these functions are not necessarily full-dependent. It means F∗

d′ involves all
equivalent Boolean functions for each representative function from Fn,d′ , or each function
from Fn′,d′ extended to n bits.

If f is the given n-bit Boolean function with latency complexity d, then there exist
two Boolean functions f0 and f1, both with latency complexity less than d and such that
f = f0 ∧ f1 or f = f0 ∨ f1. We use the following lemma to find all potentially possible f0
and f1 functions to build the structure of f with the minimum depth.

Lemma 2. Let f , f0 and f1 be three n-bit Boolean functions such that f = f0 ∧ f1, then
f ∧ f0 = f ∧ f1 = f . Similarly, if f = f0 ∨ f1, then f ∨ f0 = f ∨ f1 = f . Converting the
AND and OR operations to NAND and NOR, respectively, provides similar results; if f = f0 ∧ f1,
then ¬f ∧ f0 = ¬f ∧ f1 = ¬f , and if f = f0 ∨ f1, then ¬f ∨ f0 = ¬f ∨ f1 = ¬f .

In other meaning, for the case f = f0 ∧ f1, if there is an x ∈ Fn
2 such that f(x) = 0,

then f0(x) = f1(x) = 1; and similarly for the case f = f0 ∨ f1, if there is an x such that
f(x) = 1, then f0(x) = f1(x) = 0.

For the first step of the algorithm, by applying the above lemma, we consider each
n-bit Boolean function with depth less than d as a potential candidate for f0 and f1, and
check if it the candidate function, g, satisfies ¬f ∧ g = ¬f or ¬f ∨ g = ¬f conditions. If
so, depending on which condition is fulfilled, we add the function to one of A∧ or A∨ sets.
We provide a pseudo-code of this approach at algorithm 2.

Since for a representative n′-bit full dependent Boolean function, there can be at most
2 · 2n′ · n′! ·

(
n
n′

)
equivalent n-bit Boolean function, the computation cost to complete each

of A∧ and A∨ sets is about

∑
d′,n′

n′≤n and d′<d

2 · 2n′
· n′! ·

(
n

n′

)
· |Fn′,d′ | =

∑
d′,n′

n′≤n and d′<d

2n′+1 · n!
(n − n′)! · |Fn′,d′ | .

That is for d = 4, computation costs are about 216, 220, 224, 228 and 231, for n = 4, n = 5,
n = 6, n = 7 and n = 8, respectively, and for d = 5, these numbers are about 216, 230, 241,
248 and 225 · |F8,4|. Note that this computation cannot exceed 22n , and this upper bound
only happens for d values which are close to the maximum possible latency complexity for
the corresponding n. For instance, for n = 4, it happens in the case of d ∈ {4, 5} and for
n = 5 it happens only if d = 6.

To reduce the memory usage and efficient computation of the algorithm, instead of
computing and saving the F∗

d′ sets, we can compute each element of these sets and check
if it is a valid candidate for building up the given function f . Moreover, we do not need to
compute the function from F∗

d′ completely. We only need to compute the function output
for the entries that are needed for the corresponding condition check and as soon as it
does not fulfill the condition for one entry, we reject the function. Hence, the memory
usage of this computation is only saving all of Fn′,d′ sets together with A∧ and A∨ sets.

420 Low-Latency Boolean Functions and Bijective S-boxes

Algorithm 2: Finding all possible implementations of an n-bit Boolean function
with minimum latency depth (in the basis of {NAND, NOR, INV}).

Data: F∗
d′ for all d′ // all sets of n-bit representative Boolean functions (not

necessarily full-dependent) with latency complexity d′

Result: I // all possible implementations of the given Boolean function

1 Function FindAllCircuits(f):
2 if f = xi or f = ¬xi then // the case for latency complexity of d′ = 0
3 return the corresponding xi or ¬xi

4 I ← ∅ , A∧ ← ∅ and A∨ ← ∅
5 for d′ ← 0 to d− 1 do
6 foreach g ∈ {g | g is equivalent to g∗ ∈ F∗

d′} do
7 if ¬f ∧ g = ¬f then
8 A∧ ← A∧ ∪ {g}
9 if ¬f ∨ g = ¬f then

10 A∨ ← A∨ ∪ {g}

11 foreach g, h ∈ A∧ do
12 if g ∧ h = ¬f then
13 I ← I ∪ {(FindAllCircuits(g), FindAllCircuits(h), NAND)}

14 foreach g, h ∈ A∨ do
15 if g ∨ h = ¬f then
16 I ← I ∪ {(FindAllCircuits(g), FindAllCircuits(h), NOR)}

17 if I ≠ ∅ then // this means that the latency complexity of f is d′ + 1
18 return I

19 return ⊥ // it happens if the latency complexity of f is higher than d

At the second step, for each two functions of f0 and f1 from A∧, we check if f0 ∧ f1 = f .
We repeat this step for each two functions of f0 and f1 from A∨ and check if f0 ∨ f1 = f .
If there is any (f0, f1) pair satisfying one of the equations for ∧ or ∨, then we repeat
the algorithm to find structure of implementing f0 and f1 functions with depth of d − 1.
Otherwise, if there is no such pair of functions, we conclude that the latency complexity of
f is higher than d. Note that this only happens for d = 5 with n ∈ {6, 7, 8}.

In this recursive algorithm, the bottleneck of our computations is computing A∧ and
A∨ for f function, i.e., in the depth level d. For other depth levels, even if we have several
(f0, f1) pairs to find their structure, the computations are comparably smaller.

Note that for the given function, there might be several solutions for representing it with
the structure of Figure 2 and it is not necessarily unique. Besides, the above-mentioned
algorithm to find possible structures of the given function, there might be cases where the
suggested solution does not follow the structure shown in Figure 2. This happens in the
cases where the given function f with latency complexity d can be built with two functions
f0 and f1 with latency complexities of d0 = d − 1 and d1 < d − 1, respectively. In this case,
the sub-structure for f1 will be with gate depth d1 and shorter than the one for function
f0. Clearly, it does not follow the structure of Figure 2, but it is a simplification of the
structure for implementing it.

4.5 Latency Complexity of Known S-boxes
In this subsection, we compute the latency complexity of previously introduced S-boxes in
the cryptographic primitives and compare their latency complexity together with their
cryptographic properties: linearity, uniformity, and algebraic degree. We listed all these

Shahram Rasoolzadeh 421

S-boxes together with the latency complexity of each coordinate function of the S-boxes
in Table 7 that are categorized first by the input size of the S-boxes, and then by their
uniformity and linearity. It also shows the algebraic degree (of ANF representation) for
each coordinate of the S-boxes and their inverse S-boxes (in the case of bijective ones).
Note that in the case of n-bit S-boxes with n ∈ {6, 7, 8}, if the latency complexity of a
coordinate is 5 or higher, we denote it by x.

In the case of 3-bit S-boxes, all the S-boxes have a latency complexity of 3; and for 4-bit
S-boxes, regardless of their cryptographic properties, their latency complexity is either 4
or 5, except for χ4 (which is a non-bijective S-box) and Midori-s0 S-box whose latency
complexity are 3.

Within 5-bit S-boxes, χ5, also known as KECCAK S-box, has the minimum latency
complexity, 3, whose uniformity is 8 and linearity is 16. However, to achieve the minimum
uniformity and linearity, such as in Fides-5 S-box, they have a latency complexity of 5.

For the case of 6-bit S-boxes, the only previously introduced S-boxes with a low-latency
complexity are the non-bijective χ6 function with latency complexity 3, uniformity 16 and
linearity 32, and Speedy S-box with latency complexity 4, uniformity 8 and linearity 24.

For 7-bit and 8-bit S-boxes, there is no S-box with latency complexity less than 5,
except χ7 (with uniformity 32 and linearity 64) and χ8 (non-bijective and with uniformity
64 and linearity 128) that both have latency complexity of 4. As results show, there are
very few n-bit S-boxes that are optimized for their latency, especially when n > 4.

With this motivation, using the Boolean functions with low-latency complexity found
in the previous subsections, we build and introduce some new bijective S-boxes with a
low-latency complexity in the following section.

5 Bijective S-boxes with a Low-Latency Complexity

To build an n-bit bijective S-box with latency complexity of d, as of the S-box’s coordi-
nate functions, we can use all the balanced Boolean functions equivalent to one of the
representative balanced functions in one of Fn′,d′ sets with d′ ≤ d and n′ ≤ n. One can
restrict to only those S-boxes for which each of its coordinate functions is a full-dependent
Boolean function, i.e., each output bit of the S-box is dependent on all of the input bits.
Another restriction can be to put a limit on the linearity and the uniformity of the S-boxes
or on the algebraic degree of the coordinate functions. Note that these restrictions make it
possible to find cryptographically stronger S-boxes.

Assume that F∗ is the set of all representative functions those are following our limits
for the target S-boxes, e.g., n-bit S-boxes with latency complexity of d, linearity of at
most ℓ and uniformity of at most u. Then any n-bit S-box of our target can be formed
as S = (f0, . . . , fn−1) such that for all i ∈ Zn, we have fi = f∗

i

(
Pi(·) ⊕ αi

)
⊕ ci where

f∗
i ∈ F∗, Pi is a bit permutation function, αi ∈ Fn

2 and ci ∈ F2. Searching through all the
possibilities for fi, Pi, αi, and ci, we need to consider

(
|F∗| · n! · 2n+1)n cases. By fixing

α0 = 0, P0 to the identity function, and ci = 0 for all i ∈ Zn, we can find all the S-boxes
up to the extended bit permutation equivalence. Besides, due to the bit permutation in the
output bits, we can also fix the order of the coordinate functions, e.g., for each i < j, we
fix fi to be lexicographically smaller than fj . Then the computational complexity of the
search is reduced to about |F∗|n · (n!)n−2 · 2n2−n. For instance, to build 6-bit S-boxes, the
complexity of this search is about 268 · |F∗|6. Even if we restrict ourselves to full-dependent
S-boxes with latency complexity of 4 and linearity of 16, then |F∗| = 1546 (see Table 6);
therefore, we need to consider about 2131 possibilities. In the following, we present an
algorithm to reduce the computational complexity of this search.

422 Low-Latency Boolean Functions and Bijective S-boxes

5.1 Step-By-Step Method for Building Bijective S-boxes
We use the property of the bijective S-boxes together with the definition for linearity.

Lemma 3. For an n-bit bijective S-box S with linearity ℓ, each of its component functions,
namely ⟨α, S⟩ with α ∈ Fn

2 \ {0}, is balanced and has a linearity of at most ℓ.

Using Lemma 3 makes it possible to filter out some of the possibilities, only by having
some of the coordinate functions. Precisely, assume that f∗

0 and f1 are already chosen,
then without choosing other coordinate functions, we can check for balancedness and
linearity of f∗

0 ⊕ f1. If f∗
0 ⊕ f1 is balanced and has a linearity at most ℓ, then we choose

the third coordinate function, f2. Again, we can check for balancedness and linearity
of f∗

0 ⊕ f2, f1 ⊕ f2, and f∗
0 ⊕ f1 ⊕ f2. Continuing in this way, after choosing the last

coordinate function, fn−1, we can check for balancedness and linearity of other 2n−1 − 1
component functions. If these 2n−1 − 1 conditions are met, then we have a bijective S-box
with linearity at most ℓ, and we can compute its uniformity.

Assuming that the average probability of satisfying all 2i −1 conditions over all possible
choices for fi is pi, then the computational complexity of this search is about

1
n! · |F∗| · Nf ·

(
1 + p1 · Nf ·

(
1 + p2 · Nf ·

(
. . . (1 + pn−1)

)))
≈

1
n! · |F∗| · Nf · (1 + p1 · Nf + p1 · p2 · N2

f + . . . + p1 · . . . · pn−2 · Nn−2
f)

where Nf ≈ |F∗| · n! · 2n and the first division by n! is because of that due to the output
bit permutation the coordinate functions can be ordered. Note that without using this
step-by-step choosing of the coordinate functions, the complexity of the search is about
|F∗| · Nn−1

f /n! which is significantly larger than when we choose the coordinate functions
step-by-step.

Moreover, we use the following technique to omit a dominant part of the computations.
After choosing f∗

0 in step 0, we compute the set of possible choices for f1,

F†
1 (f∗

0) =
{

f | f = f∗(
P (·) ⊕ α

)
, f∗ ∈ F∗ , α ∈ Fn

2 , P : bit permutation ,

f ⊕ f∗
0 fulfills all the conditions

}
.

By fulfilling the conditions by function g, we mean that g is balanced and lin(g) ≤ ℓ. We
know that not only f1 ∈ F†

1(f∗
0), but also all other coordinate functions must be in this

set; i.e., for each 1 ≤ i < n, fi ∈ F†
1(f∗

0). Note that determining F†
1(f∗

0), for a given f∗
0 ,

needs Nf computations and it includes Nf · p1 Boolean functions. Therefore, to build the
S-box, in step 0, we choose f∗

0 ∈ F∗ and compute F†
1 (f∗

0).
In step 1, after choosing f1 ∈ F†

1 (f∗
0), we compute the set of possible choices for f2,

F†
2 (f∗

0 , f1) =
{

f ∈ F†
1 (f∗

0) | f ⊕ f1 and f ⊕ f1 ⊕ f∗
0 fulfill the conditions

}
.

Note that since we only check for f ∈ F†
1 (f∗

0), it already fulfills the conditions for f ⊕ f∗
0 .

Again, we know that not only f2 ∈ F†
2 (f∗

0 , f1), but also all the next coordinate functions
must be in this set; i.e., for each 2 ≤ i < n, fi ∈ F†

2(f∗
0 , f1). Determining F†

2(f∗
0 , f1), for

given f∗
0 and f1, needs Nf · p1 computations and it includes Nf · p1 · p2 Boolean functions.

In step 2, after choosing f2 ∈ F†
2 (f∗

0 , f1), we compute the set of possible choices for f3,

F†
3 (f∗

0 , f1, f2) =
{

f ∈ F†
2 (f∗

0 , f1) | f ⊕ f2 , f ⊕ f2 ⊕ f1 , f ⊕ f2 ⊕ f∗
0 and

f ⊕ f2 ⊕ f1 ⊕ f∗
0 fulfill the conditions

}
.

Shahram Rasoolzadeh 423

Again, since we only check for f ∈ F†
2 (f∗

0 , f1), it already fulfills the conditions for f ⊕ f∗
0 ,

f ⊕f1, and f ⊕f1 ⊕f∗
0 . Besides, we know that not only f3 ∈ F†

3 (f∗
0 , f1, f2), but also all the

next coordinate functions must be in this set; i.e., for each 3 ≤ i < n, fi ∈ F†
3(f∗

0 , f1, f2).
Determining F†

3 (f∗
0 , f1, f2), for given f∗

0 , f1 and f2, needs Nf · p1 · p2 computations and it
includes Nf · p1 · p2 · p3 Boolean functions.

We continue in this way until we choose all the coordinate functions for the S-box
and fulfill the conditions. Therefore, the built S-box is a bijection with linearity at most
ℓ. Then, we can check for the condition on the S-box’s uniformity. On average, this
techniques reduce the computational complexity of building a bijective S-box to

1
n! · |F∗| · Nf ·

(
1 + p1 · (p1 · Nf) ·

(
1 + p2 · (p2 · Nf) ·

(
. . . (1 + pn−1)

)))
≈

1
n! · |F∗| · Nf · (1 + p2

1 · Nf + p2
1 · p2

2 · N2
f + . . . + p2

1 · . . . · p2
n−2 · Nn−2

f)

Clearly, the modification explained above makes the step-by-step algorithm much faster
than its simpler version.

We provide a pseudo-code for our new method of building S-boxes at algorithm 3. This
algorithm, in the simplest mode, needs to save all Nf ≈ |F∗| · n! · 2n Boolean functions,
in the beginning, to reduce the redundant computations in the next steps. However, it
is also possible to only save the Boolean functions in the set F †(f∗

0) for each f∗
0 ∈ F∗.

This way, we need to save only about Nf · p1 Boolean functions, significantly less than
the previous way, but on the other hand, we need to repeat computing all Nf equivalent
functions for |F∗| times. It is noteworthy that the value of p1 is strongly related to the
target properties for the S-boxes we are searching and also the functions in F∗ which is
not easy to compute.

Using the Upper Limit on the Uniformity: Similar to using the upper limit on the
S-box’s linearity, we can use the limit on the S-box’s uniformity in the intermediate steps
of the algorithm.

Lemma 4. For an n-bit S-box S = (f0, . . . , fn−1) with uniformity u, the uniformity of
sub-S-box S′

i = (f0, . . . , fi) with i < n is upper bounded by min{u · 2n−i−1, 2n}.

Applying this lemma, in step i of the step-by-step algorithm, after choosing the coordi-
nate function fi, it is possible to check uniformity of the sub-S-box S′

i = (f∗
0 , f1, . . . , fi).

Note that for small i values, this condition does not filter the choices for the coordinate func-
tion. For instance, when i = 0, then uniformity of f∗

0 is limited by min{u · 2n−1, 2n} = 2n

that is a trivial condition and indeed we do not need to check it. For i = 1, the uniformity
of (f∗

0 , f1) is limited by min{u ·2n−2, 2n}, and it is non-trivial if u = 2, i.e., it is meaningful
to check this condition if we are looking for APN S-boxes.

Comparison to the Previous Method of Building S-box In [MB19], the authors used
an algorithm to classify n- to m-bit quadratic balanced Boolean functions up to the affine
equivalence with n ≤ 6, that this algorithm is the most applied algorithm for building
S-boxes up to the applied equivalence, e.g., [Can07]. A pseudo-code of this is provided at
algorithm 4.

In this algorithm, consider that F∗ is the set of all n-bit representative Boolean functions
under the equivalence that we want to use them to build bijective n-bit S-boxes. As the
first step, we choose f∗

0 from F∗ and f1 from the set of all functions that are equivalent to
one of the functions in F∗ that we denote by F . By using these two functions together,
we have an n- to 2-bit function of the form (f∗

0 , f1) that can be checked for chosen criteria
(if there are any), e.g., balancedness and linearity. Trying this for all choices of f∗

0 and

424 Low-Latency Boolean Functions and Bijective S-boxes

Algorithm 3: The new method of building n-bit bijective S-boxes.
Data: F∗ // the set of all n-bit representative balanced Boolean functions with

linearity of at most ≤ ℓ (and extra criteria such as their latency
complexity)

Result: R // the set of all n-bit representative bijective S-boxes with linearity
of at most ℓ and uniformity of at most u

1 R← ∅ and F ← ∅
2 foreach f∗

0 ∈ F∗ do
3 S ← ∅ , R′ ← ∅ and F†

1 ← ∅
4 F ← F ∪ {f | f is equivalent to f∗

0 }
5 foreach f1 ∈ F do
6 if f1 ⊕ f∗

0 fulfills conditions then
7 F†

1 ← F
†
1 ∪ {f1}

8 foreach f1 ∈ F†
1 do

9 F†
2 ← ∅

10 foreach f2 ∈ F†
1 do

11 if f2 ⊕ f1 and f2 ⊕ f1 ⊕ f∗
0 fulfill conditions then

12 F†
2 ← F

†
2 ∪ {f2}

13 foreach f2 ∈ F†
2 do

14 F†
3 ← ∅

15 foreach f3 ∈ F†
2 do

16 if f3 ⊕ f2, f3 ⊕ f2 ⊕ f1, f3 ⊕ f2 ⊕ f∗
0 and f3 ⊕ f2 ⊕ f1 ⊕ f∗

0 fulfill conditions
then

17 F†
3 ← F

†
3 ∪ {f3}

18 foreach f3 ∈ F†
3 do

19 . . .

20 F†
n−2 ← ∅

21 foreach fn−2 ∈ F†
n−3 do

22 if 2n−3 functions of fn−2 ⊕ fn−3, . . . , and fn−2 ⊕ fn−3 ⊕ . . .⊕ f∗
0

fulfill conditions then
23 F†

n−2 ← F
†
n−2 ∪ {fn−2}

24 foreach fn−1 ∈ F†
n−2 do

25 if 2n−2 functions of fn−1 ⊕ fn−2, . . . , and fn−1 ⊕ fn−2 ⊕ . . .⊕ f∗
0

fulfill conditions then
26 S ← (f∗

0 , f1, f2, . . . , fn−1)
27 if uni(S) ≤ u then
28 S ← S ∪ {S}

29 foreach S ∈ S do
30 new← 1
31 foreach R ∈ R′ do
32 if AreTheyEquivalent(S, R) then
33 new← 0 and break the loop

34 if new = 1 then
35 R′ ←R′ ∪ {ComputeRepresentativeFunction(S)}

36 R← R∪R′

Shahram Rasoolzadeh 425

Algorithm 4: The previous method of building n-bit bijective S-boxes in [Can07].
Data: R1 // the set of all n-bit representative balanced Boolean functions
Result: Rn // the set of all n-bit representative bijective S-boxes

1 F ← {f | f is equivalent to f∗ ∈ R1}
2 for m← 1 to n− 1 do
3 S ← ∅ and Rm+1 ← ∅
4 foreach R ∈ Rm do
5 foreach fm ∈ F do
6 F ← (R, fm)
7 if IsItBalancedFunction(F) then
8 S ← S ∪ {F}

9 foreach F ∈ S do
10 new← 1
11 foreach R ∈ R′ do
12 if AreTheyEquivalent(S, R) then
13 new← 0 and break the loop

14 if new then
15 Rm+1 ←Rm+1 ∪ {ComputeRepresentativeFunction(S)}

f1, we have a set of n- to 2-bit functions that some are equivalent to each other. We
remove all equivalent ones and only keep one function within each equivalence class as a
representative for that class and put it in a set called R2. Note that here, we do not need
to consider the lexicographically smallest function as the representative one.

In the second step, we use one function from R2 and another function from F . By
using these two functions together, we have an n- to 3-bit function that can be checked for
the criteria. Again, we try this for all choices of those two functions, and then we have a
set of n- to 3-bit functions that some are equivalent to each other. By removing all the
equivalents and only keeping one for each equivalence class, we build a set called R3.

Similarly, we do another n − 3 steps to build R4, . . . , Rn that the latest one is the set
of all n-bit S-boxes up to the equivalence. Note that this algorithm can be applied for
different equivalences and not only for linear or affine equivalence.

While this method is efficient for classifying n- to m-bit Boolean functions under linear
or affine equivalences, for our need it is not that efficient. The main reason for this is that
the applied equivalences there and here are different. Extended bit permutation equivalence
is covered by affine equivalence. Hence, the number of equivalence classes in the extended
bit permutation equivalence is more than the number of classes in affine equivalence. Indeed,
there is a big difference in these numbers. While number of n- to m-bit Boolean functions
belonging to an extended bit permutation equivalence class is about 2n+m ·n! ·m! (note that
for simplicity here, we are not considering self-equivalent Boolean functions), in the affine
equivalence this number is about 2n+m ·

∏n−1
i=0 (2n − 2i) ·

∏m−1
i=0 (2m − 2i) ≈ 2n2+m2+n+m−2.

Therefore, the ratio of the probability that two n- to m-bit randomly chosen Boolean
functions are extended bit permutation equivalent to the probability that they are affine
equivalent is quite small, n! · m! · 2−n2−m2+2. For example, for n = m = 4, this ratio is
about 2−20 and for larger n values, it gets smaller. We emphasize that this probability
is not the case for ours, because it considers randomly chosen Boolean functions, while
we are dealing with balanced Boolean functions and with a limit on their linearity, hence
they are not randomly chosen, and also it does not consider the self-equivalent functions.
However, even in our case, the ratio of these two probabilities is very small.

Therefore, we find the new method more suitable and efficient for our case to find

426 Low-Latency Boolean Functions and Bijective S-boxes

bijective S-boxes with small latency complexity. Then, if there is any possible S-box to
build, by applying another algorithm, we reduce the equivalent S-boxes up to the extended
bit permutation equivalence. This algorithm of reducing the equivalent S-boxes is based
on the one explained and given in [BCBP03, MB19] for linear and affine equivalence. We
modified that algorithm for the case of extended bit permutation equivalence and made it
efficient by applying properties of this equivalence that generally do not hold for the linear
or affine equivalence.

For comparison, we applied both methods to build 5-bit S-boxes with latency complexity
3, linearity 16, and uniformity at most 8. For this, we used the balanced Boolean functions
in F5,3, together with the extension of Boolean functions in F4,3 and F3,2 ∪ F3,3 to 5-bit
Boolean functions. Altogether, up to the bit permutation equivalence, there are only 10
balanced Boolean functions with linearity 16. Using these Boolean functions and their
equivalents, based on our algorithm, it is possible to build about six thousand S-boxes with
linearity 16 and uniformity 6 or 8 that up to the equivalence they are only 509 S-boxes.
The time to find the S-boxes takes needs 2 minutes and another 2 minutes for removing
the equivalent S-boxes. We also applied the previous method to build such S-boxes which
takes about 96 minutes. Note that for both computations, we used a single thread on an
Intel i7-10610U CPU @ 1.80 GHz CPU.

As the example shows, our method is more suitable for the extended bit permutation
equivalence. We should mention that if the number of starting coordinate functions
increases (here it was 10), or we search for larger S-boxes, the efficiency of our method
increases.

5.2 Results on the Bijective S-boxes with Low-Latency Complexity
To build low-latency S-boxes, we start with the lowest possible limit on the linearity or
uniformity of the S-box. If it is not possible to build any S-boxes with such criteria, we
increase the target linearity and uniformity and repeat the search for building S-boxes.
This way, we can find the best possible S-boxes with respect to linearity and/or uniformity.

In the following, we report the best results with respect to their linearity and uniformity
for building n-bit S-boxes. Note that the list for all of these S-boxes is presented in [Ras22].
We emphasize that we only search for the bijective S-boxes and the reported number of
Boolean functions and the number of S-boxes are up to the extended bit permutation
equivalence. Also, we use Fn,d,ℓ as the set of all n-bit full-dependent balanced Boolean
functions with a latency complexity at most d and linearity of at most ℓ.

3-bit S-boxes There is one function in F3,2,4 which is equivalent to a multiplexer (see
Example 1). Using this function, it is possible to build two S-boxes with linearity 8 and
uniformity 4.

For latency complexity of 3, since all the 3-bit balanced Boolean functions with linearity
4 are included in F3,3,4, we can build all the bijective 3-bit S-boxes with linearity 4 and
uniformity 2 those are affine equivalent to the inversion in F23 . Up-to the extended bit
permutation equivalence, there are 7 of such S-boxes. Note that for the last S-box in this
list, all the coordinate functions are equivalent up the extended bit permutation.

4-bit S-boxes: By extending the only function in F3,2,4 to a 4-bit Boolean function, it is
possible to build one bijective and quadratic S-box whose linearity and uniformity, both
are 16.

For latency complexity of 3, there are 4 functions in F4,3,8 with linearity 8 that algebraic
degree of all these functions is 3. Using these functions, it is possible to build 152 S-boxes
with linearity 8 and uniformity of 4 that both are the minimum values for a 4-bit S-box.
Next, we combine F4,3,8 with extension of Boolean functions in F3,3,4 to 4-bit Boolean

Shahram Rasoolzadeh 427

functions. Using these functions, it is possible to build another 129 S-boxes with a linearity
8 and uniformity of 4.

It is noteworthy to mention that the inverse of S-boxes number 73 from the first set,
32 and 38 from the second set have latency complexity of 3 and also they can produce
involutive S-boxes. Besides, from the first set, coordinate functions for S-boxes number 22,
41, 42, 55, 80, 99, 136 and 147 are equivalent while there is no such an S-box from the
second set with this property.

In comparison with previously known S-boxes, the only S-boxes with latency complexity
3 are Midori-s0 and the non-bijective χ4 that the first one is equivalent to the representative
S-box number 32 from the second above-mentioned set. However, for the same level of
latency complexity, uniformity and linearity, the new S-boxes offer a wide variety with
respect to the algebraic degree of coordinate or component functions.

Moreover, since F4,4,8 includes all 4-bit balanced Boolean functions with linearity 8,
therefore, within latency complexity of 4, we can build any 4-bit S-box with linearity 8
and uniformity 4, those are named as Golden S-boxes by [LP07].

5-bit S-boxes: By extending the function in F3,2,4 to a 5-bit Boolean function, it is
possible to build 13 different bijective S-box whose linearity and uniformity, both are 32.

F5,3 includes 4 balanced Boolean functions with linearity 16 those build F5,3,16. Using
these functions, it is possible to build 4 S-boxes with a linearity of 16 and uniformity of 6.
Note that all the coordinate functions of these S-boxes and their inverse S-boxes have an
algebraic degree of 4. Besides, all the coordinate functions of the last S-box, are extended
bit permutation equivalent of each other.

Using the extended Boolean functions of F3,3,4 and F4,3,8 to 5-bit Boolean functions
together with the ones in F5,3,16 does not improve the minimum achievable linearity or
uniformity in the S-boxes. It only gives another 9 S-boxes with the same linearity and
uniformity values.

For the latency complexity of 4, there are 93 functions in F5,4,8. Using these functions,
it is possible to build 2514 different S-boxes with linearity 8 and uniformity 2 (due to
the large number of these S-boxes, we only provide them in [Ras22]). It is noteworthy to
mention that the coordinate functions of these S-boxes have an algebraic degree of 2 or 3,
and are equivalent to only 28 functions (out of 93).

Moreover, since all balanced 5-bit Boolean functions with minimum linearity are
included in F5,5,8, any 5-bit S-box with linearity 8 has latency complexity of at most 5.

In comparison with previously known S-boxes, the only known S-box with latency
complexity 3 is χ5 that is used in KECCAK and has uniformity 8 and linearity 16. For the
same level of latency complexity, uniformity 6 or 8, and linearity 16, the new S-boxes offer
a wide variety with respect to the algebraic degree of coordinate or component functions
and also with a higher dependency of the coordinate functions on the input variables
(while for χ function is always 3 bits).

For the case of S-boxes with uniformity 2 and linearity 8, while the previously known
S-boxes all have a latency complexity of 5, our new proposed S-boxes can achieve these
properties within the latency complexity of 4. It is noteworthy to mention that the
algebraic degree of the coordinate or component functions of these new S-boxes is either 2
or 3; there are also some S-boxes with all quadratic or all cubic coordinates.

6-bit S-boxes: Using the extension of the Boolean function in F3,2,4 to a 6-bit Boolean
function, it is possible to build 3 bijective S-box whose linearity and uniformity are 64
and 32, respectively. But these S-boxes are a combination of two parallel 3-bit S-boxes
found previously in 3-bit S-boxes. Excluding this kind of S-boxes, it is possible to build 19
bijective 6-bit S-boxes whose linearity and uniformity both are 64.

428 Low-Latency Boolean Functions and Bijective S-boxes

F6,3 includes 3 balanced Boolean functions with 3 different linearities, 24, 32 and
40. Using these Boolean functions, it is possible to build an S-box with linearity 64 and
uniformity 20 that all the coordinate functions of the S-box equivalent to the representative
function in F6,3 with linearity 32 and algebraic degree 5.

Then, we use these two functions with less linearity, i.e., F6,3,32, together with extension
of the Boolean functions in F5,3,16 to 6-bit Boolean functions. It is possible to build another
S-box with the same linearity and uniformity that all coordinate functions for this S-box
have an algebraic degree of either 4 or 5.

Next, by combining F6,3,32 and extension of Boolean functions in F5,3,16 and F4,3,8 to
6-bit Boolean functions, we could not find any S-box with the same or better linearity or
uniformity. One step more, we combine the extension of the Boolean functions in F3,3,4 to
6-bit Boolean functions, with the other three above-mentioned sets, to see if there is any
S-box with better uniformity or linearity. We found 49 new S-boxes (excluding the ones
that are a combination of two parallel 3-bit S-boxes) with linearity 32 and uniformity 16.
It is noteworthy to mention that all the coordinate functions of each last 5 S-boxes in this
list, are equivalent to each other and a single function in F3,3,4. Besides, within these 49
S-boxes, there are 15 quadratic ones (i.e., for each of these S-boxes, the algebraic degree of
all coordinate functions is 2) which are usually considered to be suitable for side-channel
countermeasures.

For the case of latency complexity 4, we first start to build quadratic bijective S-boxes.
There are only 2 quadratic Boolean functions in F6,4; one with linearity 16 and another
with linearity 32. Using the one with linearity 16, it is possible to build 4 S-boxes with
both linearity and uniformity 32. However, by involving the extension of quadratic 5-bit
Boolean functions F5,4,8 to 6-bit Boolean functions (there are 4 such functions), it is
possible to build 908 S-boxes with linearity 16 and uniformity 4. Due to the large number
of these S-boxes, we only provide them in [Ras22]. It is noteworthy to mention that in
this list, there are two S-boxes that coordinate functions of each S-box are equivalent to
each other, namely S-boxes number 496 and 775.

Then, we try to build full-dependent S-boxes and probably with higher algebraic degree.
F6,4 includes 1546 balanced Boolean functions with linearity 16 that are forming F6,4,16.
Using these Boolean functions, we find another S-box with linearity 16 and uniformity 4
that algebraic degree of its two coordinate functions are 3 and for other ones are 2.

(00,01,02,03,04,06,3e,3c,08,11,0e,17,2b,33,35,2d,19,1c,09,0c,15,13,3d,3b,31,2c,25,

38,3a,26,36,2a,34,1d,37,1e,30,1a,0b,21,2e,1f,29,18,0f,3f,10,20,28,05,39,14,24,0a,

0d,23,12,27,07,32,1b,2f,16,22)

We emphasize that since we did not finish all the computations for this search (we only
searched about 9.2 % of the whole space), we are not sure if this is the only full-dependent
6-bit S-box with latency complexity 4, linearity 16 and uniformity 4. But we know that
based on the Boolean functions in F6,4,16, it is not possible to build an S-box with linearity
16 and uniformity 4 whose coordinate functions are equivalent.

In comparison with the previously known 6-bit S-boxes, the only ones with latency
complexity less than 5, are χ6 and Speedy S-boxes. χ6 is a non-bijective function with
latency complexity 3, linearity 32 and uniformity 16. It is comparable with our 49 bijective
S-boxes with a wide variety with respect to the algebraic degree of coordinate or component
functions and also with a higher dependency of the coordinate functions on the input
variables.

Speedy S-box has a latency complexity of 4, linearity 24 and uniformity 8. For the
same level of latency complexity, we presented 908 quadratic S-boxes together with a
hybrid-quadratic-cubic S-box, all with linearity 16 and uniformity 4. While the new
S-boxes are better than Speedy S-box with respect to the uniformity or linearity, they
have a smaller algebraic degree. However, if the target is to have a higher algebraic degree,

Shahram Rasoolzadeh 429

we found several S-boxes with linearity 24, uniformity 6 and all coordinate functions have
an algebraic degree of 5. Clearly, these S-boxes have better cryptographic properties than
the Speedy S-box, but we recall that in the design of Speedy S-box, it was only restricted
to have two layers of NAND gates with fan-in number of 3 or 4 (with the same latency
complexity of 4) that makes the S-box has slightly lower latency than our S-boxes.

7-bit S-boxes: Using the extension of the function in F3,2,4 to a 7-bit Boolean function, it
is possible to build 92 bijective S-box whose both linearity and uniformity are 128. Three
of these S-boxes are parallel combination of a 3-bit S-box with a 4-bit S-box.

We repeat a similar approach to 6-bit S-boxes with latency complexity 3 for 7-bit
S-boxes. We first use extension of 6-bit functions in F6,3,32 to 7-bit Boolean functions,
to see if it is possible to build 7-bit bijective S-boxes. Then, we use F6,3,32 ∪ F5,3,16,
F6,3,32 ∪ F5,3,16 ∪ F4,3,8 and F6,3,32 ∪ F5,3,16 ∪ F4,3,8 ∪ F3,3,4, step by step. Except in
the last two step, it is not possible to build any bijective S-boxes. For the case of
F6,3,32 ∪ F5,3,16 ∪ F4,3,8 there are many S-boxes with linearity and uniformity, both to
be 128. Using F6,3,32 ∪ F5,3,16 ∪ F4,3,8 ∪ F3,3,4, there are 1074 S-boxes with linearity
64 and uniformity 32 that 152 × 7 = 1064 of them are parallel combination of a 3-bit
S-box with a 4-bit S-box those found previously in 3-bit and 4-bit S-boxes with latency
complexity 3. It is noteworthy to mention that the coordinate functions of these S-boxes,
all are extended bit permutation equivalent to extension of one function in F4,3,8 and two
functions from F3,3,4 to 7-bit Boolean functions. Moreover, in the last two S-boxes of this
list, all coordinates are extended bit permutation equivalent of each other and equivalent
to the extension of one function in F3,3,4.

For the case of latency complexity 4, we only checked building quadratic bijective
S-boxes. Using extension of the single quadratic 6-bit Boolean function in F6,4,32 to a
7-bit function, it is possible to build 1110 S-boxes with linearity 64 and uniformity 32.
Due to the large number of these S-boxes, we only provide them in [Ras22]. One step
forward, by involving the extension of four quadratic 5-bit Boolean functions F5,4,8 to 7-bit
Boolean functions, it is possible to build 134 S-boxes with linearity 32 and uniformity 8.
It is noteworthy to mention that coordinate functions for two S-boxes of this list (namely
S-boxes number 51 and 133) are equivalent to each other.

There are only two previously known 7-bit S-boxes: χ7 with a latency complexity 3,
linearity 64 and uniformity 32, and Wage S-box with a latency complexity higher than 4,
linearity 40 and uniformity 8. χ7 is comparable with the new 10 S-boxes with an algebraic
degree of 2 or 3 for the coordinate or component functions and with a higher dependency
of the coordinate functions on the input variables.

Wage S-box has a latency complexity of at least 5. However, for the latency complexity
of 4, we presented 134 quadratic S-boxes with linearity 32 and uniformity 8. Clearly, the
new S-boxes are better than Wage S-box with respect to the latency complexity, uniformity
or linearity, but they have a smaller algebraic degree. If the target is to have an S-box
with a latency complexity of 4 and a higher algebraic degree, it should be investigated
what is the best achievable linearity and uniformity.

8-bit S-boxes: Using the extension of the Boolean function in F3,2,4 to an 8-bit Boolean
function, it is possible to build 221 bijective S-box whose linearity and uniformity, both
are 256. 40 of these S-boxes are a parallel combination of two 4-bit S-boxes or one 3-bit
and one 5-bit S-boxes and the other 181 S-boxes are provided in [Ras22].

We repeat a similar approach to 6- and 7-bit S-boxes with latency complexity 3 for 8-bit
S-boxes. We use extension of functions in F6,3,32, F6,3,32 ∪ F5,3,16, F6,3,32 ∪ F5,3,16 ∪ F4,3,8
and F6,3,32 ∪ F5,3,16 ∪ F4,3,8 ∪ F3,3,4, step by step, to see if it is possible to build any 8-bit
bijective S-boxes. Excluding two last steps, it is not possible to build any 8-bit S-boxes
whose linearity and uniformity both are less than 256. Using F6,3,32 ∪ F5,3,16 ∪ F4,3,8,

430 Low-Latency Boolean Functions and Bijective S-boxes

we find 11628 S-boxes with linearity 128 and uniformity 64 that all of these S-boxes are
parallel combination of two 4-bit S-boxes, those found previously in 4-bit S-boxes.

Using F6,3,32 ∪ F5,3,16 ∪ F4,3,8 ∪ F3,3,4, we find another 12032 S-boxes with linearity
128 and uniformity 64 that 3563 of these S-boxes are parallel combination of a 3-bit S-box
with a 5-bit S-box and 8385 of them are combination of two 4-bit S-boxes. The other 84
S-boxes are listed at [Ras22]. It is noteworthy to mention that the coordinate functions of
the remaining 84 S-boxes, all are quadratic and extended bit permutation equivalent to
the extension of two functions from F3,3,4 to 8-bit Boolean functions. Moreover, within
these S-boxes, there are 29 S-boxes (the ones with index 19, 29, 31, 34, 35, 36, 41, 42, 49,
50, 51, 55, 56, 57, 58, 60, 61, 62, 68, 69, 72, 73, 75, 76, 79, 80, 81, 82 and 83) that all
coordinates are extended bit permutation equivalent of each other and to the extension of
one function in F3,3,4.

The only previously known 8-bit S-box with a latency complexity of less than 5 is
χ8 which is a non-bijective S-box with latency complexity 3, linearity 64 and uniformity
128. In Skinny-8 and CSS S-boxes, and also in their inverses, there are four coordinates
whose latency complexity is 3 or 4, but the other four coordinates it is higher than 4. For
the latency complexity of 3, we introduced new 84 quadratic and bijective S-boxes with
linearity 128 and uniformity 64.

Latency Complexity vs. Minimum Achievable Uniformity and Linearity: As reported,
up to 8-bit S-boxes, there is no n-bit S-box with a latency complexity of 2 whose both
linearity and uniformity are smaller than 2n; therefore, to achieve such a property, we
need to use S-boxes with a latency complexity of at least 3.

For latency complexity of 3, while there are 3- and 4-bit S-boxes with the minimum
linearity and uniformity, for larger S-boxes (with respect to the input size), this is not
achievable. Generally, for n-bit S-boxes with 3 ≤ n ≤ 8 and latency complexity 3, the
minimum achievable linearity and uniformity are 2n−1 and 2n−2, respectively, (except for
5-bit S-boxes in which the minimum achievable uniformity is 6).

For latency complexity of 4, it is possible to achieve the minimum linearity and
uniformity for 5-bit S-boxes which are 8 and 2, respectively. For 5-, 6-, and 7-bit S-boxes,
the minimum achievable linearity and uniformity is 2n−2 and 2n−4, respectively, and this
is probably the case for 8-bit S-boxes and it is interesting to be investigated.

6 Hardware Implementation of a Low-Latency Structure
While the proposed structure in Figure 2 helps us to study the Boolean functions with
latency complexity d, it does not promise the lowest latency in a real hardware implemen-
tation. In the following, we explain the reasons behind this statement. Then we describe
our approach for optimizing the suggested structures produced by the algorithm in Sub-
section 4.4 to find a circuit with the lowest latency in an ASIC hardware implementation.
We apply our approach to find efficient implementations for previously introduced S-boxes
that are minimized with respect to the latency and then its area.

6.1 Optimizing the Low-Latency Structure for a Boolean Function
The fact that each structure produced by the algorithm in Subsection 4.4 (which usually
follows the structure in Figure 2) do not promise the lowest latency in reality is because
we modeled the latency, a complicated hardware parameter, with an over-simplified metric,
the latency complexity. Here, we describe three main reasons that cause the latency
difference between the structures suggested by the algorithm in Subsection 4.4 for a given
Boolean function.

Shahram Rasoolzadeh 431

f
x0

x1

x2

(a)

f

x1

x0

x2

(b)

Figure 3: Two different circuits with the minimum gate depth for implementing f =
x0 ∧ (x1 ∨ x2) used in Example 3.

Different Structures for the Same Function: We recall that for the given Boolean
function the structure suggested by the algorithm in Subsection 4.4 might not be unique.
We emphasize that this algorithm already reduces the trivial equivalent structures that
are explained in Subsection 4.2. The following example is a good instance of that different
structures (with the minimum gate depth) for the same function can have different latency
values.

Example 3. Let f(x0, x1, x2) be a 3-bit Boolean function with f = x0 ∧ (x1 ∨ x2). The
latency complexity of this function is two and it can be implemented using two different
structures based on x0 ∨ (x1 ∨ x2) and (x0 ∧ x1) ∧ (x0 ∧ x2) equations. We depict the
corresponding circuits for each of these structures in Figure 3.

While for the second circuit, both of the sub-circuits have gate depth 1, in the first
circuit, the sub-circuits for gate depth 1, have different latency complexity; for one of them
(x0) is zero and for the other one is 1. Besides, in the first circuit, the input x0 is repeated
only once, while in the second circuit, the input x0 is repeated twice. This means that
in the first circuit, the INV gate for variable x0 has fan-out number 1, but in the second
circuit, the BUF gate for the same variable has fan-out number 2.

These differences in the latency of sub-circuits and in the number of fan-out numbers
for the INV and BUF gates for the input variable x0, cause that the first circuit to have a
lower latency than the one for the second circuit.

In the aforementioned equations, inputs of the equations are chosen directly from inputs
of the combinatorial circuit. If inputs of the equations each comes from other sub-circuits,
i.e., f = f0 ∧ (f1 ∨ f2), with f0, f1, f2 and f each being an n-bit Boolean function, then
the latency of two circuits based on realizing ¬f0 ∨ (f1 ∨ f2) and (f0 ∧ f1) ∧ (f0 ∧ f2) can
be much bigger than the case for f = x0 ∧ (x1 ∨ x2).

The above example shows one of the biggest differences in the latency of different
circuits for the same function, which is because of the shorter gate depth in one sub-circuit
than in the other one. However, there might be small differences in the latency of different
circuits, but with the same gate-depth value for both sub-circuits. Therefore, for a given
function if there are possible structures such that the gate depth in one of the sub-circuits
is smaller than the other one (such as the first structure in the above example), is preferred
over other suggested structures. Otherwise, if in all of the structures, the gate depth of
the sub-circuits are the same, we must consider all the structures.

Gates with Higher Fan-Out Number: In our structures, we assumed that from each
variable xi there are two wires coming to the combinatorial circuit; one goes to a BUF gate
and the other one goes to an INV gate. The fan-out number of these two gates is dependent
on the number of times that xi or ¬xi are used in the input of NAND or NOR gates in the
depth level 1. If in a combinatorial circuit, for some variable there is a BUF or INV whose
fan-out number is high, it will increase the latency of the circuit which is in contrast with
our assumption that the INV and BUF gates in the gate level 0 of the proposed structure in
Figure 2 is much smaller than the latency of the rest of the circuit. Therefore, we should
reduce the fan-out number of these BUF and INV gates to reach a lower latency.

432 Low-Latency Boolean Functions and Bijective S-boxes

The suggested structures by our algorithm, all are based on 2-bit NAND and NOR gates
with fan-out number 1. In some structures, it might be possible to use such gates but with
a higher fan-out number to reduce the fan-out number for BUF and INV gates. Consider
the case that there are two sub-circuits with outputs of f0 and f1 with f0 = f1 for all
input values. Then instead of having two separate sub-circuits for each of f0 and f1, we
can keep one of these sub-circuits just by increasing the fan-out number of the latest gate
in this sub-circuit. Thereby, we reduce the fan-out number of several BUF and INV gates,
just by increasing the fan-out number of a single gate in a middle depth level. This kind
of simplification, not only possibly reduces the latency of implementation, it reduces its
corresponding area.

Note that within the suggested structures by our algorithm, there might be different
ones that lead to the same updated circuit after these simplifications. In this case, we omit
the repeated circuits for the next step.

Different Gate Types in ASIC Libraries: The proposed structures, all are based on
only 2-bit NAND and NOR gates. However, depending on the ASIC technology used for the
hardware implementation, there are other logic gates with a higher fan-in number that
might be more efficient (with respect to the latency and the area) than its representation
with the basis of 2-bit NAND and NOR gates. Therefore, since we exclude the gates with
a higher fan-in number, the corresponding circuits for the suggested structures do not
necessarily provide the lowest possible latency.

In [LMMR21, Section 2], the authors studied the latency behavior of logic gates and
their combinations in the CMOS hardware. There, it is explained in detail that compared
to the other gates with the same fan-in number, NAND and OAI gates are the most suitable
gates to achieve a low-latency implementation. Hence, we need to adapt the circuits for
each suggested structure to apply the other low-latency gates to find the implementation
with the lowest possible latency for the corresponding function. We suggest not considering
only those 2 gates (with the best latency behavior) but to consider also similar gates (with
good latency behavior) such as NOR and AOI gates.

Thereby, for each suggested structure (remaining from the previous step), we suggest
trying all possible replacements for the aforementioned gates with the corresponding
sub-circuit (in the basis of NAND, NOR, and INV gates) and evaluate latency of the updated
circuit. We emphasize that each of these replacements does not necessarily reduce the
latency of the implementation, but for achieving the lowest latency, we need to check all
combinations of these possible replacements. In Figure 4, we provide the corresponding
sub-circuits (in the basis of 2-bit NAND, NOR and INV gates) for NAND, NOR, OAI and AOI
gates with fan-in number of 3 and 4.

The possible improvements in this step by using the gates with higher fan-in numbers
generally depend on the transistor-level design of gates and the corresponding conditions
used in the given library’s technology. While a single replacement of a gate with a higher
fan-in number by the corresponding sub-circuit, in one technology, can improve the latency
does not necessarily mean it is the same in other technology. Even in the same technology,
a possible improvement by replacing an specific gate type with its corresponding sub-circuit
in one circuit does not insure an improvement for replacing the same kind of gate in another
circuit. Therefore, we suggest trying all possible replacements of the gates with higher
fan-in numbers separately for each targeted technology.

Including XOR and XNOR Gates: In our studies, to have a better metric for the latency of
a circuit, we exclude XOR and XNOR gates from the basis of defining the latency complexity.
However, similar to the previous step, we can use equivalent sub-circuits for these two
gates to simplify the corresponding circuits for the suggested structures.

In Figure 5, we provide the corresponding sub-circuits for 2-bit XOR and XNOR gates.

Shahram Rasoolzadeh 433

x0 x1 x2

(a) NAND3

x0 x1 x2

(b) NOR3

x0 x1 x2

(c) AOI21

x0 x1 x2

(d) OAI21

x0 x1 x2 x3

(e) NAND4

x0 x1 x2 x3

(f) NOR4

x0 x1 x2 x3

(g) AOI22

x0 x1 x2 x3

(h) OAI22

Figure 4: The equivalent sub-circuits for NAND, NOR, OAI and AOI gates with fan-in number
of 3 and 4 in the basis of 2-bit NAND, NOR and INV gates.

x0 x1 x0 x1

(a) XOR

x0 x1 x0 x1

(b) XOR

x0 x1 x0 x1

(c) XNOR

x0 x1 x0 x1

(d) XNOR

Figure 5: The equivalent sub-circuits for 2-bit XOR and XNOR gates in the basis of 2-bit
NAND, NOR and INV gates.

As depicted in the figures, for implementing f0 XOR f1 or f0 XNOR f1, before any of these
replacements, we need to have separate sub-circuits for each f0, f1, ¬f0, ¬f1 functions
together with 3 NAND or NOR gates. But, after the replacement, we need to have separate
sub-circuits only for f0 and f1 functions together with an XOR or XNOR gate.

Note that latency of an XOR or an XNOR gate is higher than the latency of corresponding
equivalent structures (see Example 2). But due to reducing the fan-out number of BUF or
INV gates in the depth level 0, it can probably reduce latency of whole circuit. However,
this replacements can reduce the area of implementation significantly.

Vectorial Boolean Functions: To find the circuit with the minimum latency for imple-
menting a vectorial Boolean function, we can use a similar approach as for a Boolean
function. First, using the algorithm in Subsection 6.1 for each coordinate function, we find
all the possible structures with minimum gate depth. Then, for each combination of the
structures for the coordinate functions, we repeat the aforementioned steps for replacing
the gates with a higher fan-out number, or XOR and XNOR gates, or other different gate
types provided by the ASIC library. In other meaning, for an n-bit to m-bit vectorial
Boolean function, if there are NC0 , NC1 , . . . , and NCm−1 possible structures, respectively

434 Low-Latency Boolean Functions and Bijective S-boxes

g40

g30 g31

g20 g21 g22 g23

g10 g11 g12 g13 g14 g15 g16 g17

x1 x5 x4 x0 x2 x5 x3 x4 x0 x4 x5 x1 x3 x4 x2 x5

f0(x0x1x2x3x4x5)

g40

g30 g31

g20 g21 g22 g23

g10 g11 g12 g13 g14 g15 g16 g17

x2 x3 x0 x5 x1 x4 x0 x1 x1 x5 x0 x1 x0 x4 x2 x3

f1(x0x1x2x3x4x5)

Figure 6: One of the possible low-latency structures for the representatives of the coordinate
functions for 6-bit S-box in Example 4.

for each coordinate function, then we must try all
∏m−1

i=0 NCi
combinations, and check for

possible replacements. Completing this approach will find a circuit for implementing the
given function with minimum possible latency.

Note that all of these searches to find all possible circuits (that realize achieving the
latency complexity) for implementing a (vectorial) Boolean function can be automated
completely.

In the following, we consider the hybrid cubic-quadratic 6-bit S-box with latency
complexity 4, linearity 16 and uniformity 4 which is presented in Subsection 5.2 as an
example to show our approach for replacing the gates with good latency and higher fan-in
number in the structure of Boolean functions boxes with low latency complexity.

Example 4 (6-bit S-box with latency complexity 4, linearity 16 and uniformity 4).
Consider (y0, y1, y2, y3, y4, y5) = S(x0, x1, x2, x3, x4, x5) as this 6-bit bijective S-box with
input bits xi and output bits yi with 0 ≤ i < 6. The coordinate functions of this S-box is
equivalent to only two Boolean functions, namely f0 and f1 presented as follows:

f0 = (0000001101010110101010011111110011001111100110100110010100110000),
f1 = (0000000000001111001100110011110001010101010110101111111111110000),

f0 = x0x4 ⊕ x1x5 ⊕ x2x5 ⊕ x3x4 ⊕ x0 ⊕ x1 = x0x4 ⊕ x1x5 ⊕ x2x5 ⊕ x3x4 ,

f1 = x0x1x4 ⊕ x0x1x5 ⊕ x0x1 ⊕ x0x5 ⊕ x1x4 ⊕ x2x3 = x0x1x4 ⊕ x0x1x5 ⊕ x0x1 ⊕ x2x3 .

Therefore, to find an optimized circuit for low latency implementation of this S-box requires
finding latency-optimized circuits for each of these representative Boolean functions.

Running the algorithm in Subsection 4.4 to find low-latency structures of these functions
returns 32 and 18 different simplified circuits for implementing f0 and f1, respectively.
Note that this simplifications are only based on the basic and trivial logic equations and
do not include the simplifications based on the larger (by fan-in or fan-out) and different
gates. In Figure 6, we present one of these simplified circuits for each of f0 and f1.

About possibility of applying the larger or different gates and replacing them with their
corresponding sub-circuits, considering the gates with fan-in number 3 or 4, there are 7 and 6
possible replacements for the structures of f0 and f1 shown in Figure 6, respectively. These
replacements are the sub-circuits of (gi,2j , gi,2j+1, gi+1,j) with 1 ≤ i ≤ 3 and 0 ≤ j < 24−i

excluding (g10, g11, g20) for the structure of f1.

Shahram Rasoolzadeh 435

x1 x5 x4 x0 x2 x5 x3 x4 x0 x4 x5 x1 x3 x4 x2 x5

f0(x0x1x2x3x4x5)

OAI220

OAI221 OAI222 OAI223 OAI224

x2 x3 x0 x5 x1 x0 x4 x1 x0 x5 x0 x4 x2 x3

f1(x0x1x2x3x4x5)

OAI220

AOI212 AOI213 OAI224

Figure 7: One of the optimized circuits for the representatives of the coordinate functions
for 6-bit S-box in Example 4.

x0 x4 x3 x4 x1 x5 x2 x5

f0(x0x1x2x3x4x5)

OAI221 OAI222

Figure 8: Another optimized circuit for the representative function f0 in Example 4.

Note that to find the lowest possible latency for each of these structures in an specific
ASIC library, we need to consider all possible combinations for all replacements of previously
mentioned low-latency gates with fan-in number of 3 or 4. In this example, we start with
replacing (g30, g31, g40) with an OAI22 gate in both structures for f0 and f1. To do this, we
need remove (g30, g31, g40) and replace it with an OAI22 gate (denoted by OAI220) together
with a single INV gate for each of the four inputs to this gate. However, we can omit
these four INV gates by complementing all of gij gates with 0 ≤ i < 3 and 0 ≤ j < 24−i.
Precisely, all gij gates with i ∈ {1, 2} change to NAND gates, except g10 in the structure for
f1 which changes to a NOR gate, and all BUF gates in the depth level 0 change to INV gates
and vice versa.

Again, we can replace each of (g1,2j , g1,2j+1, g2,j) sub-circuits with 0 ≤ j < 4 (excluding
(g10, g11, g20) for the structure of f1) by an OAI22 gate, or by an AOI21 gate for 0 < j < 3
in the structure of f1. Note that all of these gates changed to a NAND gate after replacing
OAI220 gate. Similarly, we need to complement the g0j gates with 0 ≤ j < 16 (except for
some of them in the circuit of f1). This leads us to an optimized circuit shown in Figure 7.

One step forward, by considering XOR or XNOR gates, it is possible to do a further
simplification on some of the corresponding suggested circuits for the representative
function f0. One of such simplified circuits is shown in Figure 8.

436 Low-Latency Boolean Functions and Bijective S-boxes

Table 4: Latency of the circuits for 6-bit S-box used in Example 4 using behavioral and
structural modes of implementation in NanGate 15 nm and 45 nm OCLs.

Structural Behavioral Ratio
45 nm 122.677 225.917 54.30%
15 nm 14.202 19.052 74.55%

We synthesized latency of this S-box in NanGate 15 nm and 45 nm OCL with typical
operating conditions in two different types of behavioral and structural to show efficiency
of our method for simplifying the low-latency structure. While in the structural mode, we
used one of the simplified structures and simply synthesized the structure, in the behavioral
mode, we used the look-up table representation of the S-box and let the synthesizer to
optimize the circuit by using compile_ultra -incremental command for several times.
We recall that the optimization in the behavioral mode is strongly related to the methods
used in the synthesizer that in our case, it is a Synopsys Design Compiler.

The result of these syntheses are provided in Table 4 and as you can see the latency of
the structure found by our method can have about 25% lower latency compared to the
latency of the circuit found by the synthesizer itself in the behavioral mode.

It is noteworthy that we chose the structure used for the synthesis in the following way.
First, in the target library, for both f0 and f1 Boolean functions, we tried all the possible
structures and evaluate their latency. Then, for each function, we choose and used the
structures with the lowest latency in the corresponding coordinate function of the S-box.
Hence, this it is a local optimization and not generally optimized. Even for each chosen
structure for f0 and f1, there are different possibilities for their input variables to realize
the coordinate functions of the S-box. Precisely, there are 16 and 4 possible choices for
the inputs of f0 and f1, respectively, to realize the corresponding coordinate. This means
for the given structures for f0 and f1, there are 220 different possibilities for the inputs
of each coordinate function. We only considered the first possibility and used it in the
structure given to the synthesizer.

Example 5 (7-bit quadratic S-boxes with latency complexity 4, linearity 32 and uniformity
8). To provide stronger argument on the efficiency of our method for simplifying the low-
latency structure, we implement all 134 7-bit quadratic S-boxes found in Subsection 5.2
in both behavioral and structural modes. Table 8 depicts the result of these syntheses.
We recall that in the structural mode, we only try one of the simplified structures of the
S-box which might be not the one with lowest latency. In some cases, specially in the
case for 15 nm OCL, for the behavioral mode the synthesizer finds a circuit with a lower
latency than the one for the circuit we used in the structural mode. In all of these cases,
we checked the circuits found by synthesizer and realize that they are one of the possible
simplifications of the low-latency structure for the corresponding S-box. That means if we
check for all possible simplifications for the low-latency structure of the S-box, we will also
meet the circuit found by the synthesizer.

We conclude this example with that trying only a single structure suggested by our
method can improve the latency of a given S-box by 22% or 6% in average in the 45 nm
and 15 nm OCLs, respectively.

7 Conclusion and Future Works
In this paper, we mathematically studied the latency of (vectorial) Boolean functions. We
introduced the latency complexity metric to measure the latency of Boolean functions.
We presented efficient algorithms for 1) finding all Boolean functions with low-latency

Shahram Rasoolzadeh 437

complexity, 2) determining the latency complexity of the (vectorial) Boolean functions,
and 3) finding all the circuits with the minimum latency complexity for a given Boolean
function. Then, we presented another efficient algorithm to build bijective S-boxes with
low-latency complexity while the previous method of building S-boxes was not suitable for
our case.

As a result, for latency complexity 3, we found n-bit S-boxes with 3 ≤ n ≤ 8 whose
linearity are 2n−1 and uniformity are 2n−2 (except for 5-bit S-boxes that the minimum
achievable uniformity is 6). Besides, we found several 5-, 6-, and 7-bit S-boxes with latency
complexity 4 whose linearity are 2n−2 and uniformity are 2n−4.

Our research has left several possible future works that we point out some of them:

• Since determining the gate depth complexity and accordingly latency complexity
of a Boolean function is an NP-hard problem, presenting an efficient algorithm to
find an upper-bound for the latency complexity is useful. Such an algorithm would
present a low-latency implementation of the Boolean function (not necessarily with
the minimum latency as of the latency complexity), which is interesting for a designer
to reduce the latency of the implementation.

• Another future work is to complete our search for building 6-bit bijective with higher
algebraic degree S-boxes with latency complexity 4 and repeat the search for 7-
and 8-bit S-boxes. Then we can further investigate the relation between latency
complexity and minimum achievable linearity and uniformity of the S-boxes within
this latency complexity.

• Our algorithm for building bijective S-boxes is not only suitable for finding low-
latency S-boxes. With simple modifications, this algorithm is applicable to build
S-boxes with other properties and up to other equivalences. An interesting question
in this area is to find all 6-bit bijective S-boxes with minimum linearity, 16, up to
the affine equivalence.

Acknowledgments
I gratefully want to thank Thorben Moos from Universite catholique de Louvain for his
valuable help in implementing and synthesizing the S-boxes and also for his constructive
comments while preparing this work. I am also grateful to Christof Beierle and Gregor
Leander from Ruhr-University Bochum for their valuable comments on an earlier version
of this paper. Besides, this work described in this paper is supported by the Netherlands
Organisation for Scientific Research (NWO) under TOP grant TOP1.18.002 SCALAR.

References
[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over

rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BCBP03] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Preneel. A
toolbox for cryptanalysis: Linear and affine equivalence algorithms. In Eli
Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic Techniques, War-
saw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in
Computer Science, pages 33–50. Springer, 2003.

438 Low-Latency Boolean Functions and Bijective S-boxes

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science, pages 208–225. Springer, 2012.

[BEK+20] Dusan Bozilov, Maria Eichlseder, Miroslav Knezevic, Baptiste Lambin, Gregor
Leander, Thorben Moos, Ventzislav Nikov, Shahram Rasoolzadeh, Yosuke
Todo, and Friedrich Wiemer. Princev2 - more security for (almost) no overhead.
In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors,
Selected Areas in Cryptography - SAC 2020 - 27th International Conference,
Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected
Papers, volume 12804 of Lecture Notes in Computer Science, pages 483–511.
Springer, 2020.

[BFP19] Joan Boyar, Magnus Gausdal Find, and René Peralta. Small low-depth circuits
for cryptographic applications. Cryptogr. Commun., 11(1):109–127, 2019.

[BIL+21] Subhadeep Banik, Takanori Isobe, Fukang Liu, Kazuhiko Minematsu, and
Kosei Sakamoto. Orthros: A low-latency PRF. IACR Trans. Symmetric
Cryptol., 2021(1):37–77, 2021.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform
permutation. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture
Notes in Computer Science, pages 299–320. Springer, 2017.

[BMD+20] Begül Bilgin, Lauren De Meyer, Sébastien Duval, Itamar Levi, and François-
Xavier Standaert. Low AND depth and efficient inverses: a guide on s-boxes
for low-latency masking. IACR Trans. Symmetric Cryptol., 2020(1):144–184,
2020.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear
straight-line program for computing linear forms. In Edward Ochmanski and
Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer Science
2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August
25-29, 2008, Proceedings, volume 5162 of Lecture Notes in Computer Science,
pages 168–179. Springer, 2008.

[Can07] Christophe De Cannière. Analysis and design of symmetric encryption algo-
rithms. Doctoral Dissertaion, KULeuven, 2007.

[Car21] Claude Carlet. Boolean Functions for Cryptography and Coding Theory. Cam-
bridge University Press, 2021.

[KNR12] Miroslav Knezevic, Ventzislav Nikov, and Peter Rombouts. Low-latency
encryption - is "lightweight = light + wait"? In Emmanuel Prouff and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems - CHES
2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012.

Shahram Rasoolzadeh 439

Proceedings, volume 7428 of Lecture Notes in Computer Science, pages 426–446.
Springer, 2012.

[LMMR21] Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh.
The speedy family of block ciphers: Engineering an ultra low-latency cipher
from gate level for secure processor architectures. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(4):510–545, Aug. 2021.

[LP07] Gregor Leander and Axel Poschmann. On the classification of 4 bit s-boxes.
In Claude Carlet and Berk Sunar, editors, Arithmetic of Finite Fields, First
International Workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007,
Proceedings, volume 4547 of Lecture Notes in Computer Science, pages 159–
176. Springer, 2007.

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing
low-latency involutory MDS matrices with lightweight circuits. IACR Trans.
Symmetric Cryptol., 2019(1):84–117, 2019.

[MB19] Lauren De Meyer and Begül Bilgin. Classification of balanced quadratic
functions. IACR Trans. Symmetric Cryptol., 2019(2):169–192, 2019.

[Ras22] Shahram Rasoolzadeh. Low latency boolean functions and s-boxes. https:
// gitlab. science. ru. nl/ shahramr/ LowLatencySBoxes. git , 2022.

[Sto16] Ko Stoffelen. Optimizing s-box implementations for several criteria using
SAT solvers. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 140–160. Springer, 2016.

A Appendix
Table 5: Number of the balanced Boolean functions in Fn,d with categorized by their
ANF algebraic degree; i.e., number of full-dependent n-bit balanced Boolean functions
with given degree and latency complexity up to the extended bit permutation equivalence.

n d
algebraic degree

1 2 3 4 5 6 7

3
2 - 1
3 - 2
4 1 -

4
3 - - 6
4 1 10 34
5 - - 1

5

3 - - 1 7
4 - 13 575 12 169
5 - 34 2953 70 791
6 1 - - 1

6 3 - - - 1 2
4 - 2 182 56 314 875 282

7 4 - - 20 19 600 758 263 3 654 887
8 4 - - 1 3 058 144 423 1 703 200 2 638 553

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git
https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

440
Low

-Latency
Boolean

Functions
and

Bijective
S-boxes

Table 6: Number of the balanced Boolean functions in Fn,d with linearity of ℓ, i.e., number of full-dependent n-bit balanced Boolean functions
with linearity ℓ and latency complexity d up to the extended bit permutation equivalence.

n d ℓ

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

3
2 1
3 2
4 1

4
3 4 2
4 34 10 1
5 1

5

3 4 3 1
4 93 5928 5590 992 145 9
5 1274 46117 23771 2441 163 12
6 1 1

6 3 1 - 1 - 1
4 1546 44505 291336 280133 200292 66971 34470 9039 2894 493 91 10

7 4 1 7 7174 19874 255291 268255 1008535 428929 978496 241472 621429
8 4 1 - 64 95 10677

Shahram Rasoolzadeh 441

Table 7: Latency complexity of known S-boxes together with their uniformity, linearity
and algebraic degree. In the columns for algebraic degree and latency complexity, in the
case of bijective S-boxes, the second arrays are corresponding values for the inverse S-box.

n S-box uni lin algebraic degree latency complexity

3 3-WAY / χ3 2 4 (2,2,2),(2,2,2) (3,3,3),(3,3,3)
CTC (3,3,3),(2,2,3)

PRINTcipher (3,3,3),(3,3,3)
Pyjamask-3 (3,3,3),(3,3,3)

SEA (3,2,3),(3,3,2)

4 χ4 4 8 (2,2,2,2) (3,3,3,3)
CLEFIA-ss0 (3,3,3,3),(3,2,3,3) (4,4,4,3),(3,4,4,4)
CLEFIA-ss1 (3,3,3,3),(3,3,3,3) (4,4,4,4),(3,3,4,4)
CLEFIA-ss2 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
CLEFIA-ss3 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,3,4)
CS-cipher (2,2,3,3),(3,3,3,2) (2,2,4,3),(4,4,3,4)
Crypton-p1 (3,3,3,3),(3,3,3,3) (4,4,4,4),(3,4,4,4)
Elephant (3,3,3,2),(2,3,3,3) (4,4,4,4),(4,4,4,4)
Enocoro-4 (3,3,3,3),(3,3,3,3) (4,4,3,4),(4,4,4,3)

Fox-s1 (3,3,3,3),(3,3,3,3) (3,4,4,4),(4,4,4,4)
Fox-s2 (3,3,2,3),(3,3,2,3) (4,4,4,4),(4,4,2,4)
Fox-s3 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)

GOST2-s1 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,3)
GOST2-s2 (3,3,3,3),(3,3,2,3) (4,4,4,4),(4,4,4,4)

HUMMINGBIRD-s1 (3,3,3,3),(3,3,3,2)

(4,4,4,4),(4,4,4,4)HUMMINGBIRD-s2 (3,3,3,3),(3,3,3,3)
HUMMINGBIRD-s3 (3,3,3,3),(3,3,3,3)
HUMMINGBIRD-s4 (3,3,3,3),(3,3,3,3)
HUMMINGBIRD2-s1 (3,3,3,3),(3,3,3,2)

(4,4,4,4),(4,4,4,4)HUMMINGBIRD2-s2 (3,3,3,3),(3,3,3,3)
HUMMINGBIRD2-s3 (2,3,3,3),(3,3,3,3)
HUMMINGBIRD2-s4 (3,3,3,3),(2,3,3,3)

ICEBERG-s0, s1

(3,3,3,3),(3,3,3,3)

(4,4,4,4),(4,4,4,4)
JH-s0 (4,4,4,4),(4,4,4,4)
JH-s1 (4,4,4,3),(3,4,4,4)

KHAZAD-p, q

(4,4,4,4),(4,4,4,4)KLEIN

KNOT (2,2,3,3),(2,3,2,3)
LBLOCK-s0 (3,3,2,2),(2,2,3,3) (4,3,4,4),(3,3,4,4)
LBLOCK-s1 (3,3,2,2),(2,2,3,3) (4,3,4,4),(3,3,4,4)
LBLOCK-s2 (2,3,2,3),(2,2,3,3) (4,4,4,3),(3,3,4,4)
LBLOCK-s3 (3,2,3,2),(2,2,3,3) (3,4,4,4),(3,3,4,4)
LBLOCK-s4 (2,3,3,2),(2,2,3,3) (4,4,3,4),(3,3,4,4)
LBLOCK-s5 (3,2,3,2),(2,2,3,3) (4,4,3,4),(3,3,4,4)
LBLOCK-s6 (3,3,2,2),(2,2,3,3) (4,3,4,4),(3,3,4,4)
LBLOCK-s7 (3,3,2,2),(2,2,3,3) (4,3,4,4),(3,3,4,4)
LBLOCK-s8 (3,3,2,2),(2,2,3,3) (3,4,4,4),(3,3,4,4)
LBLOCK-s9 (2,2,3,3),(2,2,3,3) (4,4,3,4),(3,3,4,4)

442 Low-Latency Boolean Functions and Bijective S-boxes

Table 7: Latency Complexity of Known S-boxes (Continued).

n S-box uni lin algebraic degree latency complexity

4 LUFFA 4 8 (3,3,3,3),(3,3,3,2) (4,4,4,4),(4,4,4,3)
LUFFA-v1 (3,3,3,3),(3,3,2,2) (4,4,4,4),(4,4,3,4)
Magma-s1 (2,3,3,3),(3,2,3,3) (4,4,4,3),(4,4,4,4)
Magma-s2 (2,3,3,3),(3,3,3,3) (3,4,4,4),(4,4,4,3)
Magma-s3 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
Magma-s4 (3,3,3,3),(3,3,3,3) (4,4,3,4),(4,4,4,4)
Magma-s5 (2,3,3,3),(3,3,3,3) (3,4,4,4),(4,4,4,4)
Magma-s6 (3,3,3,2),(3,3,3,3) (4,4,4,4),(4,4,4,4)
Magma-s7 (2,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
Magma-s8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,3)

mCRYPTON-si / MIBS (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
MIDORI-s0 / MANTIS / CRAFT (3,3,2,3),(3,3,2,3) (3,3,3,3),(3,3,3,3)

MIDORI-s1 (3,3,3,3),(3,3,3,3) (3,4,3,3),(3,4,3,3)
Minalpher (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
Noekeon (2,2,3,3),(2,2,3,3) (3,4,4,4),(3,4,4,4)
Panda (3,3,3,3),(3,3,3,3) (4,3,4,4),(4,3,4,4)

Piccolo / Joltik (2,2,3,3),(3,2,2,3) (3,3,4,4),(4,4,3,4)
Present / CiliPadi (3,3,3,2),(3,3,3,2) (4,4,4,4),(4,4,4,4)/ PHOTON-4 / Orange

Pride / Prost (2,2,3,3),(2,2,3,3) (3,3,4,4),(3,3,4,4)
Pyjamask-4 (2,3,2,3),(3,2,2,3) (4,4,2,4),(3,4,4,4)
QARMA-σ0 (3,2,3,3),(3,2,3,3) (3,3,3,4),(3,3,3,4)

QARMA-σ1 / Qameleon (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
QARMA-σ2 (3,3,3,3),(3,3,3,3) (3,4,4,4),(4,3,4,3)

Rectangle / REC−1 (3,3,2,2),(3,2,2,3)

(4,4,4,4),(4,4,4,4)

SATURNIN-s0, s1
(3,3,3,3),(3,3,3,3)

SC-2000-4

SERPENT-s0 (2,3,3,3),(3,2,3,3)
SERPENT-s1 (3,2,3,3),(2,3,3,3)
SERPENT-s2 (3,3,3,2),(3,3,3,2)
SERPENT-s3 (3,3,3,3),(3,3,3,3)
SERPENT-s4 (3,3,3,2),(3,3,3,3)
SERPENT-s5 (3,3,3,2),(3,3,3,3)
SERPENT-s6 (3,3,2,3),(3,3,2,3)
SERPENT-s7 (3,3,3,3),(3,3,3,3)

Skinny-4 / Remus-4 (2,2,3,3),(3,2,2,3) (3,3,4,4),(4,4,3,4)
SMASH256-s1 (2,3,3,3),(3,3,2,3)

(4,4,4,4),(4,4,4,4)
SMASH256-s2 (3,3,2,3),(2,3,3,3)
SMASH256-s3 (3,2,3,3),(3,3,3,3)

SPONGENT (3,3,3,2),(2,3,3,3)
Spook / Clyde / Shadow (3,3,2,2),(2,3,3,2) (4,4,3,3),(3,4,4,4)

TRIFLE
(3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)

TWINE

UDCIKMP (3,2,3,2),(3,3,2,2) (4,3,4,3),(4,4,3,3)

Shahram Rasoolzadeh 443

Table 7: Latency Complexity of Known S-boxes (Continued).

n S-box uni lin algebraic degree latency complexity

4 WHIRLPOOL-E 4 8 (3,3,3,3),(3,3,3,3) (3,4,4,4),(4,4,4,3)
WHIRLPOOL-R (4,4,4,4),(4,4,3,4)

Yarara / Coral (4,4,4,4),(4,4,4,4)
Fountain-s1 6 8 (3,3,2,2),(2,2,3,3) (4,4,4,4),(4,4,4,4)
Fountain-s2 (3,3,3,3),(2,2,3,3) (4,4,4,4),(4,2,4,4)
Fountain-s3 (3,3,3,3),(2,2,3,3) (4,4,4,4),(4,2,4,4)
Fountain-s4 (3,3,3,2),(2,2,3,3) (4,4,4,3),(4,4,4,4)

GIFT / HYENA / TGIF (3,3,2,2),(2,2,3,3) (4,4,4,4),(4,4,4,4)
Lucifer-s0 6 12

(3,3,3,3),(3,3,3,3)
(4,4,4,4),(4,4,4,4)

Lucifer-s1 6 8 (4,4,4,4),(4,4,3,4)
BLAKE-s1 8 12 (2,3,3,3),(3,3,3,3) (4,4,4,4),(4,3,4,4)
BLAKE-s2 6 12 (3,3,3,2),(3,3,3,3) (4,4,4,4),(4,4,4,4)
BLAKE-s3 6 12 (3,3,3,3),(3,3,3,3) (3,4,4,3),(4,3,4,3)
BLAKE-s4 6 12 (3,3,3,3),(3,3,3,3) (4,4,3,4),(4,4,3,4)
BLAKE-s5 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,3,4,4)
BLAKE-s6 8 12 (3,3,3,3),(3,3,3,2) (4,4,4,4),(4,4,4,2)
BLAKE-s7 6 8 (3,3,2,3),(3,3,2,3) (4,4,4,4),(4,4,4,4)
BLAKE-s8 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
BLAKE-s9 6 12 (3,3,3,3),(3,3,3,3) (4,4,3,4),(4,4,4,4)
GOST-s1 6 8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,3)
GOST-s2 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,3),(3,4,4,4)
GOST-s3 6 12 (3,3,3,3),(3,3,3,3) (4,4,3,4),(4,3,4,4)
GOST-s4 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,5,4)
GOST-s5 4 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
GOST-s6 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
GOST-s7 8 12 (3,3,3,3),(3,2,3,3) (4,4,4,3),(3,4,4,4)
GOST-s8 8 12 (3,3,3,3),(3,3,3,3) (4,4,4,3),(3,4,4,4)

GOST-IETF-s1 6 12 (3,3,3,3),(3,3,3,3) (4,4,3,4),(3,4,3,3)
GOST-IETF-s2 8 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
GOST-IETF-s3 6 12 (2,3,3,3),(3,3,3,3) (4,4,3,4),(4,4,4,4)
GOST-IETF-s4 4 8 (3,2,3,3),(3,3,2,3) (4,4,4,4),(4,4,4,4)
GOST-IETF-s5 8 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(3,4,4,4)
GOST-IETF-s6 6 8 (3,3,3,3),(2,3,3,3) (4,4,4,4),(3,4,4,4)
GOST-IETF-s7 8 12 (3,3,3,3),(3,3,3,3) (4,4,3,4),(4,4,4,4)
GOST-IETF-s8 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
Twofish-q0-t0 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,3),(4,4,4,4)
Twofish-q0-t1 6 12 (3,3,3,3),(3,3,3,3) (3,4,4,4),(4,3,4,3)
Twofish-q0-t2 4 8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
Twofish-q0-t3 6 12 (3,3,3,3),(3,2,3,3) (4,4,4,4),(4,3,4,4)
Twofish-q1-t0 6 12 (3,3,3,3),(3,3,3,3) (4,3,3,4),(4,4,3,4)
Twofish-q1-t1 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,3,4)
Twofish-q1-t2 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
Twofish-q1-t3 8 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(3,4,4,4)

DES-s1,1 8 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(5,4,4,4)
DES-s1,2 8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s1,3 8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(5,4,4,4)
DES-s1,4 8 (3,2,3,2),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s2,1 6 (3,2,3,3),(3,3,3,2) (4,4,5,4),(4,4,4,4)
DES-s2,2 8 (3,3,3,2),(3,3,2,2) (5,4,4,4),(4,4,4,4)
DES-s2,3 8 (2,3,3,3),(2,3,3,3) (4,4,4,4),(4,4,4,4)

444 Low-Latency Boolean Functions and Bijective S-boxes

Table 7: Latency Complexity of Known S-boxes (Continued).

n S-box uni lin algebraic degree latency complexity

4 DES-s2,4 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s3,1 8 (3,3,3,2),(3,3,3,3) (4,4,4,4),(5,4,4,4)
DES-s3,2 8 (3,3,3,2),(3,3,2,3) (4,4,5,4),(4,4,4,4)
DES-s3,3 8 (3,2,3,3),(3,3,3,2) (4,4,4,5),(4,4,4,4)
DES-s3,4 8 (2,3,3,3),(3,2,3,3) (4,4,4,4),(4,4,4,5)
DES-s4,1 6 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s4,2 6 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s4,3 6 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s4,4 6 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s5,1 8 (3,2,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,5)
DES-s5,2 8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(5,4,4,4)
DES-s5,3 6 (3,3,3,3),(3,3,3,3) (4,4,4,4),(5,4,4,4)
DES-s5,4 6 (3,3,3,3),(3,3,3,3) (4,4,5,4),(5,4,4,4)
DES-s6,1 6 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,5)
DES-s6,2 8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s6,3 6 (3,3,3,3),(3,3,3,3) (4,4,5,4),(4,4,4,4)
DES-s6,4 6 (3,3,3,2),(2,3,3,3) (4,5,4,4),(4,4,4,4)
DES-s7,1 8 (3,2,3,3),(3,3,2,3) (4,4,5,4),(4,4,4,4)
DES-s7,2 8 (2,3,3,3),(3,3,2,3) (4,4,4,4),(4,4,4,5)
DES-s7,3 6 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s7,4 8 (3,3,3,3),(2,3,3,3) (4,4,4,5),(4,4,4,4)
DES-s8,1 6 (3,3,2,3),(2,3,2,3) (4,4,4,5),(4,4,4,4)
DES-s8,2 10 (3,3,3,3),(3,3,2,3) (5,4,4,4),(4,4,4,4)
DES-s8,3 6 (3,3,3,3),(2,3,3,3) (4,4,4,4),(4,4,4,4)
DES-s8,4 8 (3,2,3,3),(3,2,3,3) (4,4,4,4),(5,4,4,4)

Kuznyechik-ν0 6 8 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,3,4,4)
Kuznyechik-ν1 16 12 (2,2,3,2),(3,2,2,3) (4,4,4,4),(4,3,2,4)
Kuznyechik-σ 6 12 (3,3,3,3),(3,3,3,3) (4,4,4,4),(4,4,3,5)
Kuznyechik-ϕ 8 12 (3,4,4,4),(4,3,4,4) (4,4,4,4),(4,4,4,4)

5

Fides-5 / Primate
(2,2,2,2,2),(3,3,3,3,3)

(4,5,5,5,5),(5,5,5,5,5)
Shamash 2 8 (5,5,5,5,5),(5,5,5,5,5)
SC2000-5 (3,3,3,3,3),(2,2,2,2,2) (5,5,5,5,5),(5,5,5,5,4)

ASCON / ISAP (5,5,4,5,4),(5,5,5,4,5)
Dry-GASCON128 (2,2,2,2,2),(3,3,3,3,3) (4,5,4,5,5),(5,4,5,5,5)

KECCAK / χ5 8 16 (3,3,3,3,3),(5,5,5,5,5)
ICEPOLE

(4,4,4,4,4),(4,4,4,4,4)
(4,4,4,4,4),(5,5,5,5,5)

SYCON (4,4,5,5,5),(5,5,5,5,4)

6

APN-6
2 16

(4,3,4,3,4,4),(4,4,4,3,3,3) (x,. . .,x),(x,. . .,x)
Fides-6 (4,3,4,3,4,4),(4,4,4,4,3,4) (x,. . .,x),(x,. . .,x)
SC2000-6 4 16 (5,5,5,5,5,5),(5,5,5,5,5,5) (x,. . .,x),(x,. . .,x)
Speedy 8 24 (5,3,3,3,4,5),(5,4,5,4,5,5) (4,4,4,4,4,4),(x,. . .,x)

χ6 16 32 (2,2,2,2,2,2) (3,3,3,3,3,3)

7
Wage 8 40 (6,6,5,6,3,5,5),(6,5,5,6,5,6,6) (x,. . .,x),(x,. . .,x)
χ7 32 64 (2,2,2,2,2,2,2),(4,4,4,4,4,4,4) (3,3,3,3,3,3,3),(x,. . .,x)

Shahram Rasoolzadeh 445

Table 7: Latency Complexity of Known S-boxes (Continued).

n S-box uni lin algebraic degree latency complexity

8

SKINNY-8
64 128

(4,2,2,4,2,2,5,6),(2,5,2,6,2,2,3,4) (x,3,3,x,4,3,x,x),(3,x,3,x,3,3,5,x)
χ8 (2,2,2,2,2,2,2,2) (3,3,3,3,3,3,3,3)
CSS 128 256 (4,4,2,2,4,4,2,2),(4,4,2,2,4,4,2,2) (x,x,3,3,x,x,3,3),(x,x,3,3,x,x,3,3)

The latency complexity of all coordinate functions for AES, Anubis, ARIA, BelT, Camellia,
Chiasmus, CLEFIA-s0, s1, CMEA, Crypton0, Crypton1-si, CS-cipher, CSA, DBlock, E2,
Enocoro-8, Fantomas, FLY, Fox, ICEBERG-8, Iraqi, Kalyna-πi, KHAZAD-8, Kuznechik,
Lilliput, MD2, NewDES, Picaro, SAFER, SEED-s0, s1, iSCREAM, SCREAMv1, SCREAMv3,
Skipjack, SMS4, SNOW-3G, SQUARE, Twofish-p0, p1, TURING, WHIRLPOOL-8, ZORRO and ZUC-
S-boxes are higher than 4.

Table 8: Latency of the circuits for 7-bit quadratic S-boxes used in Example 5 using
behavioral and structural modes of implementation in NanGate 15 nm and 45 nm OCLs.

S-box’s Behavioral Structural Ratio [%]
Index 45 nm 15 nm 45 nm 15 nm 45 nm 15 nm

0 129.165 16.941 155.302 17.867 83.17% 94.82%
1 138.407 16.441 185.556 20.378 74.59% 80.68%
2 119.143 17.371 171.567 18.073 69.44% 96.12%
3 126.669 17.913 185.967 18.608 68.11% 96.26%
4 124.155 17.301 196.030 17.301 63.33% 100.00%
5 125.303 17.400 166.729 17.960 75.15% 96.89%
6 125.799 16.856 163.701 16.856 76.85% 100.00%
7 138.945 13.297 158.990 13.297 87.39% 100.00%
8 154.371 17.588 186.268 19.676 82.88% 89.39%
9 125.207 14.835 147.354 14.835 84.97% 100.00%
10 139.058 14.420 160.156 14.420 86.83% 100.00%
11 122.177 17.152 158.132 17.152 77.26% 100.00%
12 126.803 14.701 155.356 14.701 81.62% 100.00%
13 139.069 16.993 189.749 17.682 73.29% 96.10%
14 127.965 14.874 242.606 19.685 52.75% 75.56%
15 125.440 13.791 161.635 13.791 77.61% 100.00%
16 152.485 17.295 152.485 17.295 100.00% 100.00%
17 125.165 17.023 156.901 17.023 79.77% 100.00%
18 125.281 13.877 166.276 13.877 75.35% 100.00%
19 125.318 16.536 158.929 17.610 78.85% 93.90%
20 125.355 14.511 152.700 14.511 82.09% 100.00%
21 125.213 15.303 146.950 15.303 85.21% 100.00%
22 154.005 17.069 156.445 17.069 98.44% 100.00%
23 124.239 14.778 152.080 14.778 81.69% 100.00%
24 125.337 14.791 163.696 14.791 76.57% 100.00%
25 124.148 16.369 150.133 16.982 82.69% 96.40%
26 118.811 17.873 155.274 17.873 76.52% 100.00%
27 124.049 16.854 194.494 17.661 63.78% 95.43%
28 125.647 17.214 166.276 17.775 75.57% 96.84%
29 121.923 17.430 179.470 18.440 67.94% 94.52%
30 148.791 16.829 180.555 17.371 82.41% 96.88%
31 128.245 17.477 152.662 17.477 84.01% 100.00%
32 125.278 17.098 148.017 17.098 84.64% 100.00%
33 126.758 17.197 221.475 23.230 57.23% 74.03%
34 125.261 16.741 153.050 17.664 81.84% 94.78%
35 142.762 17.224 152.102 17.810 93.86% 96.71%

446 Low-Latency Boolean Functions and Bijective S-boxes

Table 8: Latency of the circuits for 7-bit quadratic S-boxes used in Example 5 using
behavioral and structural modes of implementation in NanGate 15 nm and 45 nm OCLs.

S-box’s Behavioral Structural Ratio [%]
Index 45 nm 15 nm 45 nm 15 nm 45 nm 15 nm

36 125.484 16.496 170.018 19.106 73.81% 86.34%
37 129.590 17.169 179.368 17.536 72.25% 97.91%
38 129.621 17.430 165.777 17.430 78.19% 100.00%
39 136.851 16.766 160.212 17.212 85.42% 97.41%
40 138.555 15.248 167.125 20.599 82.91% 74.02%
41 138.508 16.513 148.907 17.130 93.02% 96.40%
42 123.401 16.713 188.826 21.674 65.35% 77.11%
43 122.934 16.675 158.902 17.109 77.36% 97.47%
44 124.235 17.136 183.760 17.136 67.61% 100.00%
45 118.856 17.824 155.621 17.824 76.38% 100.00%
46 125.128 13.845 160.424 13.845 78.00% 100.00%
47 149.929 17.250 155.617 17.250 96.34% 100.00%
48 131.261 14.110 149.421 14.110 87.85% 100.00%
49 131.200 13.530 154.018 13.530 85.18% 100.00%
50 129.777 17.177 153.938 19.272 84.30% 89.13%
51 130.908 14.844 174.856 14.962 74.87% 99.21%
52 130.774 16.999 197.211 17.910 66.31% 94.91%
53 125.245 17.794 149.951 18.446 83.52% 96.47%
54 150.089 14.660 150.089 14.660 100.00% 100.00%
55 160.323 17.552 173.747 18.211 92.27% 96.38%
56 134.071 16.870 156.903 18.063 85.45% 93.39%
57 121.557 18.210 170.474 18.442 71.31% 98.74%
58 139.527 13.829 146.471 13.829 95.26% 100.00%
59 128.070 16.870 167.073 17.789 76.65% 94.84%
60 137.717 16.325 174.132 17.518 79.09% 93.19%
61 129.509 16.905 171.160 17.569 75.67% 96.22%
62 129.524 15.111 149.915 17.885 86.40% 84.49%
63 124.022 16.716 157.395 18.861 78.80% 88.62%
64 124.342 16.820 187.842 19.586 66.19% 85.88%
65 123.714 14.701 179.887 17.683 68.77% 83.14%
66 124.998 15.936 152.578 17.710 81.92% 89.98%
67 124.132 16.668 189.164 18.577 65.62% 89.73%
68 124.237 17.615 241.162 21.399 51.52% 82.31%
69 182.229 15.147 200.098 19.969 91.07% 75.85%
70 129.485 14.869 159.079 18.274 81.40% 81.36%
71 128.543 17.060 164.101 17.060 78.33% 100.00%
72 133.167 16.648 160.375 17.738 83.03% 93.86%
73 130.494 17.563 148.900 18.053 87.64% 97.29%
74 154.039 16.918 158.345 16.918 97.28% 100.00%
75 171.496 15.333 185.126 17.805 92.64% 86.12%
76 122.100 15.575 161.860 18.659 75.44% 83.47%
77 150.250 15.847 158.544 16.132 94.77% 98.23%
78 122.495 15.038 185.036 18.141 66.20% 82.90%
79 154.354 15.963 170.426 15.963 90.57% 100.00%
80 122.713 17.104 153.997 17.104 79.69% 100.00%
81 122.800 18.643 211.289 20.904 58.12% 89.19%
82 125.253 14.687 186.895 14.687 67.02% 100.00%
83 128.550 17.073 200.854 21.766 64.00% 78.44%
84 130.381 15.395 179.444 18.841 72.66% 81.71%
85 125.198 16.363 155.266 16.363 80.63% 100.00%
86 123.618 16.647 166.857 16.961 74.09% 98.15%

Shahram Rasoolzadeh 447

Table 8: Latency of the circuits for 7-bit quadratic S-boxes used in Example 5 using
behavioral and structural modes of implementation in NanGate 15 nm and 45 nm OCLs.

S-box’s Behavioral Structural Ratio [%]
Index 45 nm 15 nm 45 nm 15 nm 45 nm 15 nm

87 166.197 16.971 196.960 18.010 84.38% 94.23%
88 142.484 16.916 163.248 18.188 87.28% 93.01%
89 124.247 15.390 213.786 18.263 58.12% 84.27%
90 133.458 14.097 172.738 17.774 77.26% 79.31%
91 124.135 16.941 167.264 16.985 74.22% 99.74%
92 121.606 16.064 188.440 16.867 64.53% 95.24%
93 122.818 15.600 169.862 19.921 72.30% 78.31%
94 120.927 16.456 163.972 19.343 73.75% 85.08%
95 125.073 15.386 183.935 15.386 68.00% 100.00%
96 123.474 16.746 148.494 18.022 83.15% 92.92%
97 125.310 17.922 171.919 17.922 72.89% 100.00%
98 132.407 17.625 173.632 18.121 76.26% 97.26%
99 146.222 15.504 209.732 15.997 69.72% 96.92%
100 132.326 17.110 153.561 18.648 86.17% 91.75%
101 133.038 14.725 161.401 18.565 82.43% 79.32%
102 132.740 15.950 160.581 16.373 82.66% 97.42%
103 137.655 16.332 172.679 17.939 79.72% 91.04%
104 123.959 15.281 163.758 15.281 75.70% 100.00%
105 146.842 17.519 154.856 17.565 94.82% 99.74%
106 120.251 17.570 232.800 17.570 51.65% 100.00%
107 122.997 17.689 181.379 18.447 67.81% 95.89%
108 126.929 17.329 211.439 17.329 60.03% 100.00%
109 157.838 15.750 170.634 18.738 92.50% 84.06%
110 128.409 16.010 148.747 16.234 86.33% 98.61%
111 126.437 17.746 186.929 18.581 67.64% 95.51%
112 149.297 16.796 161.742 20.035 92.31% 83.83%
113 122.346 18.000 206.107 20.060 59.36% 89.73%
114 124.172 16.869 181.923 16.869 68.26% 100.00%
115 123.478 17.517 170.058 18.915 72.61% 92.61%
116 125.348 16.922 186.242 16.922 67.30% 100.00%
117 124.138 16.303 179.561 17.639 69.13% 92.43%
118 125.559 16.251 183.799 19.482 68.31% 83.41%
119 120.788 14.196 159.386 14.196 75.78% 100.00%
120 118.445 17.450 180.114 18.577 65.76% 93.93%
121 122.318 16.822 202.930 20.620 60.28% 81.58%
122 154.161 16.261 159.797 18.031 96.47% 90.18%
123 123.622 16.054 169.045 18.423 73.13% 87.14%
124 122.712 18.319 165.366 18.745 74.21% 97.73%
125 123.985 17.708 166.640 18.920 74.40% 93.59%
126 122.664 17.648 158.553 17.916 77.36% 98.50%
127 124.454 15.789 158.640 18.615 78.45% 84.82%
128 165.664 16.936 165.664 19.015 100.00% 89.06%
129 124.077 16.408 157.027 20.085 79.02% 81.69%
130 130.412 14.085 185.064 14.985 70.47% 94.00%
131 120.896 17.353 153.509 17.353 78.76% 100.00%
132 156.675 17.434 191.844 17.935 81.67% 97.21%
133 159.382 15.567 170.861 18.402 93.28% 84.59%

	Introduction
	Our Contributions
	Related Works

	Basics and Notations
	Boolean Functions
	Vectorial Boolean Function
	Equivalences
	Implementation of Boolean Functions

	Latency Complexity of Boolean Functions
	Boolean Functions with Low-Latency Complexity
	Extended Bit Permutation Equivalence
	Possible Speed-Up Techniques
	Finding Boolean Functions with Low-Latency Complexity
	Finding All Possible Implementations of a Boolean Function
	Latency Complexity of Known S-boxes

	Bijective S-boxes with a Low-Latency Complexity
	Step-By-Step Method for Building Bijective S-boxes
	Results on the Bijective S-boxes with Low-Latency Complexity

	Hardware Implementation of a Low-Latency Structure
	Optimizing the Low-Latency Structure for a Boolean Function

	Conclusion and Future Works
	Appendix

