
Low-Latency Boolean Functions & Bijective S-boxes

Shahram Rasoolzadeh, Radboud University, Nijmegen, The Netherlands

FSE 2023, March 20, 2023

1 / 18

Introduction

S-boxes

• used for substitutions, to provide confusion and non-linearity

• n- to m-bit vectorial Boolean functions

• F : Fn
2 7→ Fm

2 with F = (f0, . . . , fm−1)

• coordinate functions: fi

• component functions: Fα := ⟨F , α⟩⊕m−1
i=0 αi fi with α ∈ Fm

2 \ {0}

Balanced S-boxes

• each output value occurs uniformly, i.e., 2n−m times

• equivalent to each component function is a balanced Boolean function

2 / 18

Introduction

S-boxes

• used for substitutions, to provide confusion and non-linearity

• n- to m-bit vectorial Boolean functions

• F : Fn
2 7→ Fm

2 with F = (f0, . . . , fm−1)

• coordinate functions: fi

• component functions: Fα := ⟨F , α⟩⊕m−1
i=0 αi fi with α ∈ Fm

2 \ {0}

Balanced S-boxes

• each output value occurs uniformly, i.e., 2n−m times

• equivalent to each component function is a balanced Boolean function

2 / 18

Introduction

S-boxes

• used for substitutions, to provide confusion and non-linearity

• n- to m-bit vectorial Boolean functions

• F : Fn
2 7→ Fm

2 with F = (f0, . . . , fm−1)

• coordinate functions: fi

• component functions: Fα := ⟨F , α⟩⊕m−1
i=0 αi fi with α ∈ Fm

2 \ {0}

Balanced S-boxes

• each output value occurs uniformly, i.e., 2n−m times

• equivalent to each component function is a balanced Boolean function

2 / 18

Introduction

S-boxes

• used for substitutions, to provide confusion and non-linearity

• n- to m-bit vectorial Boolean functions

• F : Fn
2 7→ Fm

2 with F = (f0, . . . , fm−1)

• coordinate functions: fi

• component functions: Fα := ⟨F , α⟩⊕m−1
i=0 αi fi with α ∈ Fm

2 \ {0}

Balanced S-boxes

• each output value occurs uniformly, i.e., 2n−m times

• equivalent to each component function is a balanced Boolean function

2 / 18

Properties

Cryptographic Properties

• uniformity:

uni(F) =

max
α∈Fn

2\{0} , β∈Fm
2

#{x ∈ Fn
2 | F (x)⊕ F (x ⊕ α) = β}

3 / 18

Properties

Cryptographic Properties

• uniformity:

• linearity:

lin(F) =

max
α∈Fn

2 , β∈Fm
2 \{0}

∣∣2 ·#{x ∈ Fn
2 | ⟨α, x⟩ = Fβ(x)} − 2n

∣∣

3 / 18

Properties

Cryptographic Properties

• uniformity:

• linearity:

• algebraic degree:

maximum number of input variables in each monomial of the

ANF representation of each coordinate function

3 / 18

Properties

Cryptographic Properties

• uniformity:

• linearity:

• algebraic degree:

maximum number of input variables in each monomial of the

ANF representation of each coordinate function

Implementation Properties

• area • latency • power

• gate count • gate depth • . . .

3 / 18

Properties

Cryptographic Properties

• uniformity:

• linearity:

• algebraic degree:

maximum number of input variables in each monomial of the

ANF representation of each coordinate function

Implementation Properties

• area • latency • power

• gate count • gate depth • . . .

Implementation Complexities

• gate count comp. • gate depth comp. • multiplicative comp. • . . .

3 / 18

Equivalency

• Bit-Permutation:

F = Pout ◦ G ◦ Pin

with Pin and Pout being bijective bit-permutation functions

Eq. Fun. ≤ n! ·m!

4 / 18

Equivalency

• Bit-Permutation:

• Ext. Bit-Perm.:

F = Pout ◦ G ◦ Pin(·+ α) + β

with Pin and Pout being bijective bit-permutation functions

Eq. Fun. ≤ n! ·m! · 2n+m

4 / 18

Equivalency

• Bit-Permutation:

• Ext. Bit-Perm.:

• Linear:

F = Lout ◦ G ◦ Lin
with Lin and Lout being bijective linear functions

Eq. Fun. ≤ ∏n−1
i=0 (2

n − 2i) ·∏m−1
i=0 (2m − 2i)

4 / 18

Equivalency

• Bit-Permutation:

• Ext. Bit-Perm.:

• Linear:

• Affine:

F = Aout ◦ G ◦ Ain

with Ain and Aout being bijective affine functions

Eq. Fun. ≤ ∏n−1
i=0 (2

n − 2i) ·∏m−1
i=0 (2m − 2i) · 2n+m

4 / 18

Equivalency

• Bit-Permutation:

• Ext. Bit-Perm.:

• Linear:

• Affine:

• Ext. Affine:

F = Aout ◦ G ◦ Ain + L

with Ain and Aout being bijective affine functions and L being a

linear function

Eq. Fun. ≤ ∏n−1
i=0 (2

n − 2i) ·∏m−1
i=0 (2m − 2i) · 2nm+n+m

4 / 18

Equivalency

• Bit-Permutation:

• Ext. Bit-Perm.:

• Linear:

• Affine:

• Ext. Affine:

F = Aout ◦ G ◦ Ain + L

with Ain and Aout being bijective affine functions and L being a

linear function

Eq. Fun. ≤ ∏n−1
i=0 (2

n − 2i) ·∏m−1
i=0 (2m − 2i) · 2nm+n+m

Extended Affine Equivalent Examples

• linearity / uniformity

• algebraic degree (of non-linear functions)

• multiplicative count / depth complexities

4 / 18

Equivalency

• Bit-Permutation:

• Ext. Bit-Perm.:

• Linear:

• Affine:

• Ext. Affine:

F = Aout ◦ G ◦ Ain + L

with Ain and Aout being bijective affine functions and L being a

linear function

Eq. Fun. ≤ ∏n−1
i=0 (2

n − 2i) ·∏m−1
i=0 (2m − 2i) · 2nm+n+m

Bit-Permutation Equivalent Examples

• circuit implementation costs: area / latency / power

• gate depth / count complexities

4 / 18

Equivalency

• Bit-Permutation:

• Ext. Bit-Perm.:

• Linear:

• Affine:

• Ext. Affine:

F = Aout ◦ G ◦ Ain + L

with Ain and Aout being bijective affine functions and L being a

linear function

Eq. Fun. ≤ ∏n−1
i=0 (2

n − 2i) ·∏m−1
i=0 (2m − 2i) · 2nm+n+m

Extended Bit-Permutation Semi-Equivalent Examples

• By accepting small tolerances,

• and due to combing small circuits/functions to build larger circuits/functions,

bit-perm. equivalent properties are extended bit-perm. semi-equivalent properties.

4 / 18

Latency Complexity

Latency

the time required to compute all the outputs of a circuit

• circuit-specific property • technology-specific property

Gate Depth Complexity

the minimum possible value for the longest path (concerning the number of gates

used in the path) from any input to any output for implementing the function

in the basis of all gates with fan-in number 1 or 2

Latency Complexity

the gate depth complexity in the basis of {NAND2, NOR2, INV} without counting INVs

5 / 18

Latency Complexity

Latency

the time required to compute all the outputs of a circuit

• circuit-specific property

• technology-specific property

Gate Depth Complexity

the minimum possible value for the longest path (concerning the number of gates

used in the path) from any input to any output for implementing the function

in the basis of all gates with fan-in number 1 or 2

Latency Complexity

the gate depth complexity in the basis of {NAND2, NOR2, INV} without counting INVs

5 / 18

Latency Complexity

Latency

the time required to compute all the outputs of a circuit

• circuit-specific property • technology-specific property

Gate Depth Complexity

the minimum possible value for the longest path (concerning the number of gates

used in the path) from any input to any output for implementing the function

in the basis of all gates with fan-in number 1 or 2

Latency Complexity

the gate depth complexity in the basis of {NAND2, NOR2, INV} without counting INVs

5 / 18

Latency Complexity

Latency

the time required to compute all the outputs of a circuit

• circuit-specific property • technology-specific property

Gate Depth Complexity

the minimum possible value for the longest path (concerning the number of gates

used in the path) from any input to any output for implementing the function

in the basis of all gates with fan-in number 1 or 2

Latency Complexity

the gate depth complexity in the basis of {NAND2, NOR2, INV} without counting INVs

5 / 18

Latency Complexity

Latency

the time required to compute all the outputs of a circuit

• circuit-specific property • technology-specific property

Gate Depth Complexity

the minimum possible value for the longest path (concerning the number of gates

used in the path) from any input to any output for implementing the function

in the basis of all gates with fan-in number 1 or 2

Latency Complexity

the gate depth complexity in the basis of {NAND2, NOR2, INV} without counting INVs

5 / 18

Latency Complexity

Latency

the time required to compute all the outputs of a circuit

• circuit-specific property • technology-specific property

Gate Depth Complexity

the minimum possible value for the longest path (concerning the number of gates

used in the path) from any input to any output for implementing the function

in the basis of all gates with fan-in number 1 or 2

Gate NAND2 NOR2 AND2 OR2 XOR2 XNOR2

15 nm 2.031 2.554 3.580 3.644 5.268 6.788

45 nm 27.886 40.650 40.171 56.414 73.019 57.604

Latency Complexity

the gate depth complexity in the basis of {NAND2, NOR2, INV} without counting INVs

5 / 18

Latency Complexity

Latency

the time required to compute all the outputs of a circuit

• circuit-specific property • technology-specific property

Gate Depth Complexity

the minimum possible value for the longest path (concerning the number of gates

used in the path) from any input to any output for implementing the function

in the basis of all gates with fan-in number 1 or 2

Latency Complexity

the gate depth complexity in the basis of {NAND2, NOR2, INV} without counting INVs

5 / 18

General Structure of a Circuit w.r.t. Latency Complexity

Proposition 1

Any Boolean function f (x0, . . . , xn−1) with latency complexity d can be implemented

by a circuit of the following structure:

g1,0

g1,1

g1,2d−1−2

g1,2d−1−1

g2,0

g2,2d−2−1

gd,0

a0

a1

a2

a3

a2d−4

a2d−3

a2d−2

a2d−1

· · ·

· · ·

...
...

...
...

depth
level: 0 1 2 · · · d

6 / 18

Building Representative Functions of Fn,d

7 / 18

Number of Representative Functions in Fn,d

d/n 2 3 4 5 6 7 8

1 1

2 1 3 3

3 5 54 159 170 64 20

4 2 149 109 674 20 658 457 227 737 882 ?

5 2 506 005 ? ? ?

6 66 ? ? ?

Balanced

d/n 2 3 4 5 6 7 8

2 1 1

3 2 6 8 3

4 1 45 12 128 931 780 4 436 770 4 489 235

5 1 74 389 ? ? ?

6 30 ? ? ?
8 / 18

Finding All Possible Lowest-Depth Implementations of a Function

9 / 18

Latency Complexity of Previously Known S-boxes

• 3-bit: d = 3 for all of them.

• 4-bit:

except for Midori-s0 and χ4 with d = 3,

others have d = 4 or d = 5.

• 5-bit:

χ5 has d = 3 with ℓ = 16 and u = 8,

while APN S-boxes such as Fides-5 have d = 5.

• 6-bit:

χ5 has d = 3 with ℓ = 32 and u = 16,

Speedy S-box has d = 4 with ℓ = 24 and u = 8.

• 7- and 8-bit:

except χ7 and χ8 there is no S-box with d ≤ 5.

10 / 18

Latency Complexity of Previously Known S-boxes

• 3-bit: d = 3 for all of them.

• 4-bit:

except for Midori-s0 and χ4 with d = 3,

others have d = 4 or d = 5.

• 5-bit:

χ5 has d = 3 with ℓ = 16 and u = 8,

while APN S-boxes such as Fides-5 have d = 5.

• 6-bit:

χ5 has d = 3 with ℓ = 32 and u = 16,

Speedy S-box has d = 4 with ℓ = 24 and u = 8.

• 7- and 8-bit:

except χ7 and χ8 there is no S-box with d ≤ 5.

10 / 18

Latency Complexity of Previously Known S-boxes

• 3-bit: d = 3 for all of them.

• 4-bit:

except for Midori-s0 and χ4 with d = 3,

others have d = 4 or d = 5.

• 5-bit:

χ5 has d = 3 with ℓ = 16 and u = 8,

while APN S-boxes such as Fides-5 have d = 5.

• 6-bit:

χ5 has d = 3 with ℓ = 32 and u = 16,

Speedy S-box has d = 4 with ℓ = 24 and u = 8.

• 7- and 8-bit:

except χ7 and χ8 there is no S-box with d ≤ 5.

10 / 18

Latency Complexity of Previously Known S-boxes

• 3-bit: d = 3 for all of them.

• 4-bit:

except for Midori-s0 and χ4 with d = 3,

others have d = 4 or d = 5.

• 5-bit:

χ5 has d = 3 with ℓ = 16 and u = 8,

while APN S-boxes such as Fides-5 have d = 5.

• 6-bit:

χ5 has d = 3 with ℓ = 32 and u = 16,

Speedy S-box has d = 4 with ℓ = 24 and u = 8.

• 7- and 8-bit:

except χ7 and χ8 there is no S-box with d ≤ 5.

10 / 18

Latency Complexity of Previously Known S-boxes

• 3-bit: d = 3 for all of them.

• 4-bit:

except for Midori-s0 and χ4 with d = 3,

others have d = 4 or d = 5.

• 5-bit:

χ5 has d = 3 with ℓ = 16 and u = 8,

while APN S-boxes such as Fides-5 have d = 5.

• 6-bit:

χ5 has d = 3 with ℓ = 32 and u = 16,

Speedy S-box has d = 4 with ℓ = 24 and u = 8.

• 7- and 8-bit:

except χ7 and χ8 there is no S-box with d ≤ 5.

10 / 18

Building S-boxes with Low-Latency Complexity

Criteria

1 latency complexity

2 linearity

3 uniformity

4 algebraic degree (quadratic or maximum)

Method of Building S-boxes:

• Stepping over the coordinates of S-box

• S = (f0, f1, . . . , fn−1)

• F : the set of all Boolean functions satisfying the criteria 1, 2 (and 4)

• R1: the set of all representatives from F

11 / 18

Building S-boxes with Low-Latency Complexity

Criteria

1 latency complexity

2 linearity

3 uniformity

4 algebraic degree (quadratic or maximum)

Method of Building S-boxes:

• Stepping over the coordinates of S-box

• S = (f0, f1, . . . , fn−1)

• F : the set of all Boolean functions satisfying the criteria 1, 2 (and 4)

• R1: the set of all representatives from F

11 / 18

Building S-boxes with Low-Latency Complexity

Criteria

1 latency complexity

2 linearity

3 uniformity

4 algebraic degree (quadratic or maximum)

Method of Building S-boxes:

• Stepping over the coordinates of S-box

• S = (f0, f1, . . . , fn−1)

• F : the set of all Boolean functions satisfying the criteria 1, 2 (and 4)

• R1: the set of all representatives from F

11 / 18

Building S-boxes with Low-Latency Complexity

Criteria

1 latency complexity

2 linearity

3 uniformity

4 algebraic degree (quadratic or maximum)

Method of Building S-boxes:

• Stepping over the coordinates of S-box

• S = (f0, f1, . . . , fn−1)

• F : the set of all Boolean functions satisfying the criteria 1, 2 (and 4)

• R1: the set of all representatives from F

11 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅

2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .
2a If F fulfills the criteria, add it to S.

3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

2a If F fulfills the criteria, add it to S.
3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

2a If F fulfills the criteria, add it to S.

3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

2a If F fulfills the criteria, add it to S.
3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

2a If F fulfills the criteria, add it to S.
3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

2a If F fulfills the criteria, add it to S.
3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

2a If F fulfills the criteria, add it to S.
3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates [Can07]

1 Set i = 2, and S = R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

2a If F fulfills the criteria, add it to S.
3 For each F1 ∈ S, set new = 1

3a For each F0 ∈ Ri , check if F1 is equivalent to F0.

• If they are equivalent, set new = 0 and break the loop.

3b If new = 1, add F1 to Ri .

4 Increase i , if i ≤ m. Set S = ∅ and go to step 4.

12 / 18

Building S-boxes with Steps on Coordinates (Improved 1)

1 Set i = 2, and R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

• If F fulfills the criteria, compute its representative and add it to Ri .

3 Increase i , if i ≤ m go to step 4.

Improved Complexity

Time =
m−1∑
i=1

|F| · |Ri | · (tcriteria check + pi · trepresentative computation)

Memory = |F|+max
i

|Ri |

13 / 18

Building S-boxes with Steps on Coordinates (Improved 1)

1 Set i = 2, and R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

• If F fulfills the criteria, compute its representative and add it to Ri .

3 Increase i , if i ≤ m go to step 4.

Improved Complexity

Time =
m−1∑
i=1

|F| · |Ri | · (tcriteria check + pi · trepresentative computation)

Memory = |F|+max
i

|Ri |

13 / 18

Building S-boxes with Steps on Coordinates (Improved 1)

1 Set i = 2, and R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

• If F fulfills the criteria, compute its representative and add it to Ri .

3 Increase i , if i ≤ m go to step 4.

Improved Complexity

Time =
m−1∑
i=1

|F| · |Ri | · (tcriteria check + pi · trepresentative computation)

Memory = |F|+max
i

|Ri |

13 / 18

Building S-boxes with Steps on Coordinates (Improved 1)

1 Set i = 2, and R2 = · · · = Rm = ∅
2 For each F ′ ∈ Ri−1 and each f ∈ F , compute F = F ′ ∥ f .

• If F fulfills the criteria, compute its representative and add it to Ri .

3 Increase i , if i ≤ m go to step 4.

Improved Complexity

Time =
m−1∑
i=1

|F| · |Ri | · (tcriteria check + pi · trepresentative computation)

Memory = |F|+max
i

|Ri |

13 / 18

Building S-boxes with Steps on Coordinates (Improved 2)

1 Set R2 = · · · = Rm = ∅
2 For each f0 ∈ R1 and each f1 ∈ F , compute F2 = f0 ∥ f1.

2a If F2 fulfills the criteria, compute its representative and add it to R2,

otherwise, choose another f1.

2b For each f2 ∈ F , compute F3 = F2 ∥ f2.
• If F3 fulfills the criteria, compute its representative and add it to R3,

otherwise, choose another f2.

• For each f3 ∈ F , compute F4 = F3 ∥ f3 . . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F| · (t0 + p2 · t1 + p2 · |F| · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p1|F|+ p1p2|F|2 + . . .) + t1p1 · (1 + p2|F|+ . . .)

)
Memory = |F|+

m∑
i=1

|Ri |

14 / 18

Building S-boxes with Steps on Coordinates (Improved 2)

1 Set R2 = · · · = Rm = ∅
2 For each f0 ∈ R1 and each f1 ∈ F , compute F2 = f0 ∥ f1.

2a If F2 fulfills the criteria, compute its representative and add it to R2,

otherwise, choose another f1.

2b For each f2 ∈ F , compute F3 = F2 ∥ f2.
• If F3 fulfills the criteria, compute its representative and add it to R3,

otherwise, choose another f2.

• For each f3 ∈ F , compute F4 = F3 ∥ f3 . . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F| · (t0 + p2 · t1 + p2 · |F| · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p1|F|+ p1p2|F|2 + . . .) + t1p1 · (1 + p2|F|+ . . .)

)
Memory = |F|+

m∑
i=1

|Ri |

14 / 18

Building S-boxes with Steps on Coordinates (Improved 2)

1 Set R2 = · · · = Rm = ∅
2 For each f0 ∈ R1 and each f1 ∈ F , compute F2 = f0 ∥ f1.

2a If F2 fulfills the criteria, compute its representative and add it to R2,

otherwise, choose another f1.

2b For each f2 ∈ F , compute F3 = F2 ∥ f2.

• If F3 fulfills the criteria, compute its representative and add it to R3,

otherwise, choose another f2.

• For each f3 ∈ F , compute F4 = F3 ∥ f3 . . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F| · (t0 + p2 · t1 + p2 · |F| · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p1|F|+ p1p2|F|2 + . . .) + t1p1 · (1 + p2|F|+ . . .)

)
Memory = |F|+

m∑
i=1

|Ri |

14 / 18

Building S-boxes with Steps on Coordinates (Improved 2)

1 Set R2 = · · · = Rm = ∅
2 For each f0 ∈ R1 and each f1 ∈ F , compute F2 = f0 ∥ f1.

2a If F2 fulfills the criteria, compute its representative and add it to R2,

otherwise, choose another f1.

2b For each f2 ∈ F , compute F3 = F2 ∥ f2.
• If F3 fulfills the criteria, compute its representative and add it to R3,

otherwise, choose another f2.

• For each f3 ∈ F , compute F4 = F3 ∥ f3 . . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F| · (t0 + p2 · t1 + p2 · |F| · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p1|F|+ p1p2|F|2 + . . .) + t1p1 · (1 + p2|F|+ . . .)

)
Memory = |F|+

m∑
i=1

|Ri |

14 / 18

Building S-boxes with Steps on Coordinates (Improved 2)

1 Set R2 = · · · = Rm = ∅
2 For each f0 ∈ R1 and each f1 ∈ F , compute F2 = f0 ∥ f1.

2a If F2 fulfills the criteria, compute its representative and add it to R2,

otherwise, choose another f1.

2b For each f2 ∈ F , compute F3 = F2 ∥ f2.
• If F3 fulfills the criteria, compute its representative and add it to R3,

otherwise, choose another f2.

• For each f3 ∈ F , compute F4 = F3 ∥ f3 . . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F| · (t0 + p2 · t1 + p2 · |F| · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p1|F|+ p1p2|F|2 + . . .) + t1p1 · (1 + p2|F|+ . . .)

)
Memory = |F|+

m∑
i=1

|Ri |

14 / 18

Building S-boxes with Steps on Coordinates (Improved 2)

1 Set R2 = · · · = Rm = ∅
2 For each f0 ∈ R1 and each f1 ∈ F , compute F2 = f0 ∥ f1.

2a If F2 fulfills the criteria, compute its representative and add it to R2,

otherwise, choose another f1.

2b For each f2 ∈ F , compute F3 = F2 ∥ f2.
• If F3 fulfills the criteria, compute its representative and add it to R3,

otherwise, choose another f2.

• For each f3 ∈ F , compute F4 = F3 ∥ f3 . . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F| · (t0 + p2 · t1 + p2 · |F| · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p1|F|+ p1p2|F|2 + . . .) + t1p1 · (1 + p2|F|+ . . .)

)
Memory = |F|+

m∑
i=1

|Ri |
14 / 18

Building S-boxes with Steps on Coordinates (Improved 3)

4 For each f0 ∈ R1

4a Compute F†
1 = {f1 ∈ F | (f0 ∥ f1) fulfills the criteria}

4b For each f1 ∈ F†
1

1 Compute representative of (f0 ∥ f1) and add it to R2

2 Compute F†
2 = {f2 ∈ F†

1 | (f0 ∥ f1 ∥ f2) fulfills the criteria}
3 For each f2 ∈ F†

2

. . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F†
1 | · (t0 + p2 · t1 + p2 · |F†

2 | · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p21 |F|+ p21p

2
2 |F|2 + . . .) + t1p1 · (1 + p1p2|F|+ . . .)

)

15 / 18

Building S-boxes with Steps on Coordinates (Improved 3)

4 For each f0 ∈ R1

4a Compute F†
1 = {f1 ∈ F | (f0 ∥ f1) fulfills the criteria}

4b For each f1 ∈ F†
1

1 Compute representative of (f0 ∥ f1) and add it to R2

2 Compute F†
2 = {f2 ∈ F†

1 | (f0 ∥ f1 ∥ f2) fulfills the criteria}
3 For each f2 ∈ F†

2

. . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F†
1 | · (t0 + p2 · t1 + p2 · |F†

2 | · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p21 |F|+ p21p

2
2 |F|2 + . . .) + t1p1 · (1 + p1p2|F|+ . . .)

)

15 / 18

Building S-boxes with Steps on Coordinates (Improved 3)

4 For each f0 ∈ R1

4a Compute F†
1 = {f1 ∈ F | (f0 ∥ f1) fulfills the criteria}

4b For each f1 ∈ F†
1

1 Compute representative of (f0 ∥ f1) and add it to R2

2 Compute F†
2 = {f2 ∈ F†

1 | (f0 ∥ f1 ∥ f2) fulfills the criteria}

3 For each f2 ∈ F†
2

. . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F†
1 | · (t0 + p2 · t1 + p2 · |F†

2 | · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p21 |F|+ p21p

2
2 |F|2 + . . .) + t1p1 · (1 + p1p2|F|+ . . .)

)

15 / 18

Building S-boxes with Steps on Coordinates (Improved 3)

4 For each f0 ∈ R1

4a Compute F†
1 = {f1 ∈ F | (f0 ∥ f1) fulfills the criteria}

4b For each f1 ∈ F†
1

1 Compute representative of (f0 ∥ f1) and add it to R2

2 Compute F†
2 = {f2 ∈ F†

1 | (f0 ∥ f1 ∥ f2) fulfills the criteria}
3 For each f2 ∈ F†

2

. . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F†
1 | · (t0 + p2 · t1 + p2 · |F†

2 | · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p21 |F|+ p21p

2
2 |F|2 + . . .) + t1p1 · (1 + p1p2|F|+ . . .)

)

15 / 18

Building S-boxes with Steps on Coordinates (Improved 3)

4 For each f0 ∈ R1

4a Compute F†
1 = {f1 ∈ F | (f0 ∥ f1) fulfills the criteria}

4b For each f1 ∈ F†
1

1 Compute representative of (f0 ∥ f1) and add it to R2

2 Compute F†
2 = {f2 ∈ F†

1 | (f0 ∥ f1 ∥ f2) fulfills the criteria}
3 For each f2 ∈ F†

2

. . .

Time = |R1| · |F| · (t0 + p1 · t1 + p1 · |F†
1 | · (t0 + p2 · t1 + p2 · |F†

2 | · (. . .)))
= |R1| · |F| ·

(
t0 · (1 + p21 |F|+ p21p

2
2 |F|2 + . . .) + t1p1 · (1 + p1p2|F|+ . . .)

)
15 / 18

More Speed-Up Techniques

Ordering Coordinates

• We are interested to find the functions up-to the selected equivalency.

• We can order the coordinates due to the output mapping in equivalency equation.

Case of Extended Bit-Permutation Equivalence

f0 < f1 < . . . < fm−1

Criteria Check

• Linearity: we only need to check linearity of 2x−2 Boolean functions.

• Uniformity: uni(Sx) ≤ 2m−x · uni(Sx∥Sm−x)

16 / 18

More Speed-Up Techniques

Ordering Coordinates

• We are interested to find the functions up-to the selected equivalency.

• We can order the coordinates due to the output mapping in equivalency equation.

Case of Extended Bit-Permutation Equivalence

f0 < f1 < . . . < fm−1

Criteria Check

• Linearity: we only need to check linearity of 2x−2 Boolean functions.

• Uniformity: uni(Sx) ≤ 2m−x · uni(Sx∥Sm−x)

16 / 18

More Speed-Up Techniques

Ordering Coordinates

• We are interested to find the functions up-to the selected equivalency.

• We can order the coordinates due to the output mapping in equivalency equation.

Case of Extended Bit-Permutation Equivalence

f0 < f1 < . . . < fm−1

Criteria Check

• Linearity: we only need to check linearity of 2x−2 Boolean functions.

• Uniformity: uni(Sx) ≤ 2m−x · uni(Sx∥Sm−x)

16 / 18

More Speed-Up Techniques

Ordering Coordinates

• We are interested to find the functions up-to the selected equivalency.

• We can order the coordinates due to the output mapping in equivalency equation.

Case of Extended Bit-Permutation Equivalence

f0 < f1 < . . . < fm−1

Criteria Check

• Linearity: we only need to check linearity of 2x−2 Boolean functions.

• Uniformity: uni(Sx) ≤ 2m−x · uni(Sx∥Sm−x)

16 / 18

Results

Latency Complexity d = 2

• 3-bit: 2 S-boxes with ℓ = 8 and u = 4

• 4-bit: 1 S-box with ℓ = u = 16

• 5-bit: 13 S-boxes with ℓ = u = 32

• 6-bit: 19 S-boxes with ℓ = u = 64

• 7-bit: 125 S-boxes with ℓ = u = 128

• 8-bit: 181 S-boxes with ℓ = u = 256

17 / 18

Results

Latency Complexity d = 3

• 3-bit: all the S-boxes

• 4-bit: 281 S-boxes with ℓ = 8 and u = 4

• 5-bit: 13 S-boxes with ℓ = 16 and u = 6

• 6-bit: 49 quadratic S-boxes with ℓ = 32 and u = 16

• 7-bit: 10 quadratic S-boxes with ℓ = 64 and u = 32

• 8-bit: 84 quadratic S-boxes with ℓ = 128 and u = 64

17 / 18

Results

Latency Complexity d = 4

• 4-bit: all the Golden S-boxes: ℓ = 8 and u = 4

• 5-bit: 2510 APN S-boxes: ℓ = 8 and u = 2

• 6-bit: 908 quadratic S-boxes with ℓ = 16 and u = 4

together with one cubic S-box with ℓ = 16 and u = 4 used in BipBip TBC

• 7-bit: 134 quadratic S-boxes with ℓ = 32 and u = 16

17 / 18

Summary

• an algorithm to find all the Boolean functions with low-latency complexity

• an algorithm to find all the possible circuit corresponding to the latency complexity

• an improved algorithm for building S-boxes up-to the given criteria

• several low-latency S-boxes with good cryptographic properties

• an algorithm to optimize the theoretical circuit for real ASIC implementation

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

Thank you for your attention!

18 / 18

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

Summary

• an algorithm to find all the Boolean functions with low-latency complexity

• an algorithm to find all the possible circuit corresponding to the latency complexity

• an improved algorithm for building S-boxes up-to the given criteria

• several low-latency S-boxes with good cryptographic properties

• an algorithm to optimize the theoretical circuit for real ASIC implementation

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

Thank you for your attention!

18 / 18

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

Summary

• an algorithm to find all the Boolean functions with low-latency complexity

• an algorithm to find all the possible circuit corresponding to the latency complexity

• an improved algorithm for building S-boxes up-to the given criteria

• several low-latency S-boxes with good cryptographic properties

• an algorithm to optimize the theoretical circuit for real ASIC implementation

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

Thank you for your attention!
18 / 18

https://gitlab.science.ru.nl/shahramr/LowLatencySBoxes.git

