
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 3, pp. 368–402. DOI:10.46586/tosc.v2022.i3.368-402

Hybrid Code Lifting on Space-Hard Block Ciphers
Application to Yoroi and SPNbox

Yosuke Todo1 and Takanori Isobe2

1 NTT Social Informatics Laboratories, Tokyo, Japan
yosuke.todo.xt@hco.ntt.co.jp

2 University of Hyogo, Kobe, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. There is a high demand for whitebox cryptography from the practical
use of encryption in untrusted environments. It has been actively discussed for two
decades since Chow et al. presented the whitebox implementation of DES and AES.
The goal is to resist the key extraction from the encryption program and mitigate the
code lifting of the program. At CCS2015, Bogdanov and Isobe proposed space-hard
block ciphers as a dedicated design of whitebox block ciphers. It ensures that the key
extraction is as difficult as the key recovery in the standard blackbox model. Moreover,
to mitigate code lifting, they introduce space hardness, a kind of leakage-resilient
security with the incompressibility of a huge program. For space-hard ciphers, code
lifting (a partial leakage of the entire program) is useless to copy the functionality.
In this paper, we consider a new attack model of space-hard block ciphers called
hybrid code lifting. Space-hard block ciphers are intended to ensure security under
a size-bounded leakage. However, they do not consider attackers (in the standard
blackbox model) receiving the leakage by code lifting. If such attackers can recover
the encryption program of a space-hard block cipher, such a cipher does not always
satisfy the intention. We analyze Yoroi proposed in TCHES 2021. We introduce the
canonical representation of Yoroi. Using the representation enables the recovery of
the programs of Yoroi-16 and Yoroi-32 with 233 and 265.6 complexities, respectively,
in spite of slight leakage. The canonical representation causes another attack against
Yoroi. It breaks an authors’ security claim about the “longevity”. We additionally
analyzed SPNbox proposed in Asiacrypt 2016. As a result, considering security on
the hybrid code lifting, the original number of rounds is insufficient to achieve 128-bit
security under quarter-size leakage.
Keywords: Whitebox cryptography · Space-hard block cipher · Code lifting ·
Blackbox analysis · Truncated differential · Secret S-box recovery · Longevity

1 Introduction
The use of block ciphers has become common in various environments. If block ciphers
work in unreliable environments, attackers can access or modify their implementations.
They exploit unavailable information for attackers in the blackbox model. In particular,
attackers being allowed unlimited access or modification of their implementations are
the strongest that can be assumed. We call such an attack model a whitebox model.
Whitebox cryptography aims to ensure security against attackers in the whitebox model.
The high demand for whitebox cryptography has been discussed, particularly in the
software environment [All14, int18].

Chow et al. introduced whitebox cryptography two decades ago [CEJvO02a, CEJvO02b].
They provided whitebox implementations of block ciphers DES and AES. The primary
goal is to make it difficult for an attacker in the whitebox model to extract the secret

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-06-01 Accepted: 2022-08-01 Published: 2022-09-09

https://doi.org/10.46586/tosc.v2022.i3.368-402
mailto:yosuke.todo.xt@hco.ntt.co.jp
mailto:takanori.isobe@ai.u-hyogo.ac.jp
http://creativecommons.org/licenses/by/4.0/

Yosuke Todo and Takanori Isobe 369

key from the implementation. The basic idea is to implement DES or AES by only
continual lookups in several tables embedded with round keys. Random linear and
nonlinear transformations are applied before and after each table to hide round keys
from tables. Since the seminal paper by Chow et al., many other whitebox implemen-
tations have been proposed [BCD06, Kar10, LN05]. Unfortunately, almost all have been
broken [BGE04, WMGP07, MWP10, MRP12, LRM+13, con17]. Recently, Bock et al.
pointed out that even attackers in a graybox model (limited whitebox model) are sufficient
to extract the secret key from some whitebox implementations [BHMT16, BBB+19]. There-
fore, state-of-the-art whitebox implementations aim to ensure security against attackers in
such a limited whitebox model [BBIJ17, BU18, CC19, BU21].

Another direction is designing dedicated whitebox block ciphers, whose whitebox
implementations are easy [BBK14, BI15, BIT16, FKKM16]. A space-hard block cipher
proposed by Bogdanov and Isobe [BI15] is one of the successful ciphers in this direction.
Like whitebox implementations, they use a table, but the table is generated by a secure
block cipher (such as AES). A whitebox attacker can observe the table, but extracting the
secret key is equivalently difficult to the key-recovery attack in the blackbox model. Thus,
we expect that space-hard block ciphers are secure against the key extraction.

Therefore, the main interest of space-hard block ciphers moves to mitigate code
lifting, another whitebox attack model. The goal is to isolate the program and copy it
instead of the secret key. To mitigate the code lifting, Bogdanov and Isobe introduced
space hardness [BI15]. When the size of the program (table) is T , it guarantees that the
probability that random plaintexts are successfully encrypted is at most 2−Z by using
M(≪ T) partial table entries. The intuitive understanding is leakage-resilient security.
Even if a whitebox attacker looks at the table and extracts M -bit information from the
table, the extracted data does not help to copy the encryption program. Considering
the table size ranges from KB to GB orders in common space-hard block ciphers, even
the partial data (usually, quarter-size, i.e., M/T = 2−2) is large, and leaking them
is not easy to hide from users. Nowadays, many space-hard block ciphers have been
proposed [BIT16, FKKM16, CCD+17, KSHI20, KLLM20].

At TCHES 2021 [KI21], a new dedicated space-hard block cipher, Yoroi, was proposed.
Yoroi has a new functionality called longevity beyond conventional space-hard block
cipher. It enables us to update the table, and the functionality as block cipher is compatible
before and after updating the table. Specifically, ciphertexts (generated by the old table)
can be decrypted using the updated table. The goal is to ensure security against the
following attack. An attacker leaks slight data about the table over a long time to avoid
being found by users. For example, assuming the attacker leaks 16MB every day, 1600MB
of data can be collected in 100 days. Eventually, the attacker can collect all table entries.
An updatable table (but the secret key is not updated) is promising to address this attack.
Once the table of Yoroi is updated, a whitebox attacker needs to restart leaking table
entries from the beginning. To our knowledge, Yoroi is the only such cipher with this
functionality.

1.1 Our Contribution
Hybrid Code Lifting. Considering the intention of the leakage-resilient security of space-
hard block ciphers, we introduce a new attack model called hybrid code lifting. Our attack
model is regarded as the hybrid of blackbox and whitebox models.

In the first phase, an attacker is in the whitebox model, looks at and analyzes the
implementation, and leaks size-bounded arbitrary data. In the second phase, a collaborative
blackbox attacker receives the leakage and analyzes the block cipher in the standard
blackbox model. We say that the block cipher is insecure against the hybrid code lifting if
the collaborative attacker can recover the encryption program faster than an exhaustive
search of the secret key by exploiting the leakage.

370 Hybrid Code Lifting on Space-Hard Block Ciphers

Table 1: Summary of hybrid code lifting on Yoroi and SPNbox.

target code-lifting phase blackbox phase remark reference
time leak bit size (ratio) complexity‡

Yoroi-16 218.8 800 (2−11.94) 233 verified practically Sect. 5
Yoroi-32 235.9 3008 (2−27.03) 265.5 Sect. 5

SPNbox-16 214 16× 214 (1/4) 2124.09 Sect. 7
SPNbox-24 222 24× 222 (1/4) 2102.27 Sect. 7
SPNbox-32 230 32× 230 (1/4) 295.84 Sect. 7
Complexity‡ represents the time and data complexities to recover the encryption program
from the leaked information.

Table 2: Summary of attacks on the longevity of Yoroi.

target code-lifting phase complexity‡ remark reference
model time #updates

Yoroi-16 arbitrary† 218.8 171 negl. Sect. 6.2
Yoroi-32 arbitrary† 235.9 342 negl. Sect. 6.2
Yoroi-16 known space - 235.97 248.78 break claimed security Sect. 6.3
Yoroi-32 known space - 268.95 298.86 break claimed security Sect. 6.3
Arbitrary† represents a whitebox attacker w/o nonvolatile memory.
Complexity‡ represents the time complexity to recover the encryption program from
collected leakages, and a query is not required.

At first glance, space-hard block ciphers look secure against hybrid code lifting. However,
this intuition is not valid. First, the space hardness assumes leaking table entries directly.
Next, it does not assume a blackbox attacker receiving the leakage. We believe that our
attack model is natural and not extraordinarily strong for the security of space-hard ciphers.
In practice, the strong incompressibility [FKKM16], which is a security model of whitebox
encryption scheme, assumes similar attackers. Note that, as the authors of [FKKM16]
already say, the strong incompressibility is not introduced for space-hard block ciphers.
In practice, any space-hard block cipher does not satisfy the strong incompressibility
because of a trivial attack. Our attack model can be regarded as the revision of the strong
incompressibility so that it is compatible with space-hard block ciphers and still can be
demanded.

Applying Hybrid Code Lifting to Yoroi and SPNbox. To discuss the impact of our attack
model, we apply this attack to Yoroi [KI21], which was recently proposed in TCHES
2021, in Sect. 5. Table 1 summarizes our attacks. If we expect Yoroi to be secure until
a quarter-size leakage of the encryption program, 96 KB and 12 GB in Yoroi-16 and
Yoroi-32, respectively, we fall short of the expectation by our attacks. Our leakage size is
significantly smaller than the quarter size. Specifically, only 800-bit leakage, whose ratio is
800/(3× 216 × 16) ≈ 2−11.94, is sufficient to recover the encryption program of Yoroi-16.
Besides, the time complexity to attack Yoroi-16 is even practical. We need to say that
this attack is outside the authors’ security claims. However, we believe that their claimed
security is too optimistic to claim that the practical use case of Yoroi can be secure.

We applied the hybrid code lifting to another space-hard block cipher SPNbox [BIT16]
in Sect. 7. Unlike Yoroi, we do not find an extreme vulnerability. However, the original
number of rounds would not achieve 128-bit security under quarter-size leakage.

Yosuke Todo and Takanori Isobe 371

Breaking Claimed Security of Yoroi. We also show another attack against Yoroi in
Sect. 6. This attack breaks one of the authors’ security claims. The attack target is the
longevity of Yoroi. An attacker collects many leakages every table update. The attacker
analyzes these leakages and tries to recover the encryption program without querying
plaintexts/ciphertexts to encryption/decryption oracles. Table 2 summarizes our attacks.
We can recover the encryption program by leakage based on the known-space attack
model [BIT16, KI21], which the authors of Yoroi claimed as infeasible. Thus, this attack
breaks one of the authors’ security claims.

Organization. The rest of this paper is organized as follows. Section 2 introduces whitebox
cryptography and space-hard block ciphers. We introduce a hybrid code lifting, a new
attack model on space-hard block ciphers, in Sect. 3. The preliminaries for our attacks
against Yoroi are summarized in Sect. 4. Sections 5 and 6 show the hybrid code lifting
and attacks against the longevity, respectively. The hybrid code lifting on SPNbox is
introduced in Sect. 7. Finally, Section 8 concludes the paper.

2 Whitebox Cryptography and Space-Hard Block Cipher
2.1 Block Cipher and Its Whitebox Security
Definition 1 (Block cipher). A block cipher is a function E : Fκ

2 ×Fn
2 → Fn

2 , where κ and
n denote a key length and block length, respectively. The function E is invertible. Then,
there is the decryption function D : Fκ

2 × Fn
2 → Fn

2 such that D(K, E(K, P)) = P for all
P ∈ Fn

2 . We denote by EK and DK as encryption and decryption of the block cipher with
the fixed secret key K ∈ Fκ

2 .

We introduce the term program inherited from [DLPR13]. We use a program as the
word in the language-theoretic sense. A program is interpreted in the explicit context of
programming and execution models. Successive executions are stateless, i.e., it returns a
deterministic output given a fixed input.

There is an efficient program to implement the encryption/decryption of the block
cipher, where an efficient program denotes a program that is implementable by reasonable
resources and returns output with reasonable time on a modern computer. An attacker
can access an encryption (and/or decryption) oracle in the blackbox model. In contrast,
in the whitebox model, an attacker can additionally access the program of the block
cipher unlimitedly. Specifically, supposing that lookup tables are continuously used in
the encryption, such as Chow et al.’s implementation or space-hard block ciphers, the
attacker can look at the entire table. We introduce two well-discussed security goals for
the whitebox security of the block cipher.

2.1.1 Key Extraction

The first-priority goal is to resist the key extraction. The goal of the key extraction is to
extract K from the program, where a whitebox attacker can unlimitedly access and modify
the program. The straightforward implementation does not resist the key extraction
because the whitebox attacker can observe and extract the input of the key schedule.
Chow et al. and many subsequent researchers proposed whitebox implementations of
DES or AES to resist the key extraction [CEJvO02a, CEJvO02b, BCD06, Kar10, LN05].
Unfortunately, many attacks have been proposed, and almost all implementations were
eventually broken [BGE04, WMGP07, MWP10, MRP12, LRM+13]. The state-of-the-art
is how to resist attacks in a limited whitebox model such as differential computation
analysis [BHMT16, BBB+19] and its generalization [BBIJ17, BU18, BU21].

372 Hybrid Code Lifting on Space-Hard Block Ciphers

One of the successful directions resisting the key extraction is the dedicated design
of whitebox block ciphers [BBK14, BI15]. For example, a space-hard block cipher [BI15],
which is our focus, is such a cipher and guarantees that the key extraction is as hard as
the key recovery attack against a common block cipher in the blackbox model. Thus, the
main interest of dedicated design moves to the security against the code lifting.

2.1.2 Code Lifting and Related Works for Its Mitigation

The code lifting is to extract the program directly instead of extracting K. Attackers can
easily encrypt any message once they successfully extract it. A space hardness, described
later in detail, is introduced as a mitigation of code lifting in a space-hard block cipher.
There are other mitigations, such as external encoding [CEJvO02a], binding [BBF+20],
and incompressibility [DLPR13]. Although understanding other mitigations is not always
necessary to understand our paper, we briefly introduce them.

The external encoding was suggested by Chow et al [CEJvO02a]. It provides a program
of E′ = Ql ◦E ◦Qf instead of E, where the block cipher is masked by secret functions Qf

and Ql. We cannot evaluate E using E′ without Qf and Ql. Note that valid users need
to use them when they want to use the block cipher. Therefore, the external encoding is
helpful in the environment using the trusted hardware, where Qf and Ql are not exposed
to attackers in even the whitebox model.

When the execution of block ciphers is bounded by trusted hardware or application, the
encryption program does not work outside of the bound environment. Recently, binding
using the technique of public-key cryptography have been discussed, e.g., a scheme using
indistinguishability obfuscation [BBF+20] or LWE [ABCW21]. Note that binding requires
the trusted hardware that attackers never touch in even the whitebox model.

To the best of our knowledge, Delerablée et al. first introduced incompressibility
as a security notion for whitebox cryptography in [DLPR13]1. Given an encryption
program, incompressibility says that an attacker cannot compress the encryption program
to a program whose size is significantly smaller in the whitebox model. They supposed
the security risk in digital rights management (DRM), which is one of the most typical
applications of whitebox cryptography. In DRM, attackers own the decryption program to
decrypt protected contents, and the risk (of a content provider) is the re-distribution of the
decryption program. Assuming the encryption program is large, the re-distribution may
be somewhat discouraged due to the huge size. Note that the naive incompressibility is not
always useful for the use case of whitebox cryptography except for the DRM [BABM20].

The mitigations above are not the only ones. For example, there are traceabil-
ity [DLPR13], one-wayness [DLPR13], strong whitebox security [BBK14], and so on. Al-
though we concentrate on the space hardness in this paper, we stress that there are some
cases in that other mitigations are more helpful. Space hardness is superior to or inferior
to other mitigations in some respects. For example, large program size is necessary for a
space-hard block cipher, which is a disadvantage. On the other hand, it does not require
trusted hardware, which is an advantage.

2.2 Space-Hard Block Cipher
2.2.1 Space Hardness and Space-Hard Block Cipher

Bogdanov and Isobe introduced the space hardness [BI15], which is similar to the incom-
pressibility but intends more leakage-resilient security than the incompressibility.

Definition 2 ((M, Z)-space hardness [BI15]). The implementation of a block cipher EK

is (M, Z)-space hard if it is infeasible to encrypt (decrypt) any randomly drawn plaintext
(ciphertext) with probability higher than 2−Z given any code (table) of size less than M .

1Biryukov et al. introduced a similar security notion as weak whitebox security in [BBK14].

Yosuke Todo and Takanori Isobe 373

Figure 1: Overview of SPACE.

As shown in existing works (e.g., §5.3.2 in [BI15] or §2.3 in [KI21]), the space hardness is
the expected security notion for a leakage-resilient system. Even if an attacker successfully
steals part of the entire table, the attacker cannot correctly encrypt (decrypt) a randomly
drawn plaintext (ciphertext) with a high probability by using the stolen table entries when
the space hardness is guaranteed.

A space-hard block cipher is the block cipher satisfying space hardness. The whitebox
implementation (program) of a space-hard block cipher is generated by the following
compiler.

Definition 3 (Compiler of space-hard block ciphers). A compiler of space-hard block
ciphers is a function CE : Fκ

2 ×R → T , taking a key k ∈ Fκ
2 and possibly a randomness

r ∈ R drawn from some randomness2 space R. It outputs a table T ∈ T . Then, there is a
program ẼT , which has the same functionality as the original block cipher EK , namely,
ẼT (P) = EK(P) for all P ∈ Fn

2 . Note that the size of the table denoted by size(T) is
much larger than the size of the original key.

A space-hard block cipher is specified by continual lookups in several tables. The
idea is to make tables from well-analyzed block ciphers such as AES for the whitebox
implementation.

A block cipher family, SPACE, is the first instantiation [BI15]. SPACE is based on a
target heavy Feistel construction in which the F function is generated by a well-analyzed
block cipher (AES in their example) with the secret key by constraining the plaintext
and truncating the ciphertext. Figure 1 shows the rth and (r + 1)th round functions of
SPACE. The compiler loads the secret key, calculates 2na table entries, and outputs the
program using the table. In contrast, another implementation uses a short key, where AES
runs every round instead of the table. Then, it does not satisfy the space hardness.

To be precise, space hardness depends on the attack mode in the whitebox. Bogdanov
et al. introduced three attack models in [BIT16].

Definition 4 (Attack Models [BIT16]). Let F be a table used in the whitebox implemen-
tation of a space-hard block cipher.

• Known-Space Attack (KSA) extracts M pairs of inputs and corresponding outputs
of tables (xi, F (xi)) for i ∈ {1, 2, . . . , M}.

• Chosen-Space Attack (CSA) extracts M pairs of inputs and corresponding outputs of
tables (xi, F (xi)) for i ∈ {1, 2, . . . , M}, where xi is chosen in advance by attackers.

• Adaptive Chosen-Space Attack (ACSA) extracts M pairs of inputs and corresponding
outputs of tables (xi, F (xi)) for i ∈ {1, 2, . . . , M}, where xi is adaptively chosen by
attackers. Specifically, xa can be chosen after obtaining (xa−1, F (xa−1)).

2Many space-hard block ciphers such as SPACE [BI15], SPNbox [BIT16], Whiteblock [FKKM16] or
WEM [CCD+17] do not accept this randomness, but Yoroi [KI21] can accept it to achieve longevity.

374 Hybrid Code Lifting on Space-Hard Block Ciphers

Cho et al. introduced a more straightforward extraction, where an attacker leaks
ciphertexts of chosen plaintexts [CCD+17]. Then, it cannot hope for a space hardness
better than Z = n− log(T) when the attacker can leak (T × n) bits. Recently published
space-hard block ciphers such as Galaxy [KSHI20] or Yoroi [KI21] mainly focus on the
space hardness against the KSA/CSA.

Space-hard block ciphers are promising as the ciphers in the leakage-resilient system.
However, the space hardness and existing attack models are not sufficient to claim such
security. First, we should suppose attackers extracting arbitrary leakage rather than
extracting table entries or plaintexts because there is no reason for attackers to restrict
their actions in the whitebox model. Moreover, we need to assume a collaborative blackbox
attacker receiving the leakage. If the blackbox attacker can recover the encryption program,
we cannot say that such a cipher is leakage-resilient secure. These two insufficiencies
motivate us to consider a new extended attack model for space-hard block ciphers in
Sect. 3.

2.2.2 Strong Incompressibility [FKKM16]

Fouque et al. introduced strong incompressibility (IND-COM and ENC-COM) in [FKKM16].
The strong incompressibility treats a symmetric-key encryption scheme rather than a block
cipher. Unlike the space hardness, it supposes a blackbox attacker receiving the output of
an arbitrary leakage function f . The only limitation imposed to f is that the min-entropy
of the key remains sufficiently large after the leakage. Then, IND-COM ensures indistin-
guishability, and ENC-COM ensures that plaintexts are not successfully encrypted without
the encryption oracle. We refer to [FKKM16] for the detailed definitions.

The strong incompressibility provides strong security under the leakage by a whitebox
attacker. The authors of [FKKM16] mentioned

Note that in the following definitions, f is not computationally bounded, so
generating the tables via a pseudorandom function is not possible.

before the definition of the strong incompressibility. Space-hard block ciphers generate the
table via a pseudorandom function, e.g., AES. Since the function f is not computationally
bounded, the attacker can choose the function that exhaustively searches the secret key by
checking the consistency of the stored table of space-hard block ciphers. It implies that
space-hard block ciphers never satisfy the strong incompressibility.

Remember that strong incompressibility is introduced to obtain provable security. On
the other hand, a space-hard block cipher ensures its security based on the analysis of the
best attack algorithm like the security of block ciphers.

3 Hybrid Code Lifting on Space-Hard Block Ciphers
As discussed in Sect. 2, the intention of the space hardness is to ensure security under
the leakage by a whitebox attacker. However, the space hardness does not suppose a
blackbox attacker receiving the leakage. We believe that supposing the blackbox attacker
is necessary to satisfy the intent of the secure leakage-resilient system. Therefore, we
evaluate space-hard block ciphers from a similar aspect to the strong incompressibility.
Unfortunately, any space-hard ciphers never satisfy the strong incompressibility as discussed
in Sect. 2. Therefore, we need to introduce a similar but different attack model to be sound
for space-hard ciphers.

3.1 Attack Model
Figure 2 shows the high-level overview of our attack model. The hybrid code lifting
consists of two phases: the 1st and 2nd phases suppose whitebox and blackbox attackers,

Yosuke Todo and Takanori Isobe 375

Program
Partial program

Program recovery !

Program

Pi

EK(Pi)

The first (code-lifting) phase The second (blackbox) phase

Figure 2: Hybrid code lifting.

respectively. Whether the attacker wins or not is finally determined in the 2nd phase. The
attack is parameterized by (λ, τw, q, τb), where λ and τw are parameters for the 1st phase,
and q and τb are parameters for the 2nd phase.

Definition 5 (Hybrid code lifting with parameter (λ, τw, q, τb)). Let ẼT : Fn
2 → Fn

2 denote
a program of a space-hard block cipher. We assume the attacker consists of two phases.

In the 1st (code-lifting) phase, we assume an attacker who hacks into the encryption
program and can do everything against ẼT . Specifically, the attacker can read the whole
table entries of the space-hard block cipher and perform arbitrary computations on it. The
goal is to generate and leak at most λ bits. Note that the time complexity of this phase is
bounded by 2τw . In practice, the attacker in this phase may be malware or the attacker
who temporarily steals the device.

In the 2nd (blackbox) phase, we assume an attacker receiving the leakage generated in
the 1st phase. The attacker no longer analyzes ẼT in the whitebox model but analyzes
ẼT in the blackbox model. Specifically, the attacker queries plaintexts/ciphertexts to the
encryption/decryption oracles up to q times. The goal is to recover the encryption program.
In other words, the goal is to successfully construct an efficient program Q : Fn

2 → Fn
2

such that Q(P) = ẼT (P) for all P ∈ Fn
2 . Note that the time complexity of this phase is

bounded by 2τb .

Remark on Parameters. There are four parameters (λ, τw, q, τb). The parameter λ is the
size bound of the leakage. When λ = size(T), the attacker always wins by leaking the
table T itself. Thus, we consider λ < size(T). Some space-hard block ciphers are expected
to be secure even if a quarter of table entries is leaked [BI15, BIT16, KI21]. When we
inherit this heuristic bound, λ ≤ size(T)/4 would be required. The parameters τw and τb

are the bounds of the time complexity in the 1st and 2nd phases, respectively. To avoid
a trivial exhaustive search, 2τw + 2τb < 2κ is necessary. The parameter q must be lower
than 2τb . Note that constructing an efficient program is non-trivial, even using the full
codebook. Namely, when κ > τb > n, q = 2n is a possible parameter. It is similar to the
non-triviality of recovering the secret key of the block cipher with the full codebook.

3.2 Motivation of Hybrid Code Lifting
Hybrid code lifting is a hybrid of blackbox and whitebox models. We discuss why our
attack model reflects the intention of space-hard block ciphers. We also show the difference
from previous models.

Blackbox model after receiving leakage. We mainly focus on an attacker in the blackbox
model, where the attacker receives the leakage generated by a whitebox attacker. Consid-
ering such an attacker is not new in whitebox cryptography. For example, Fouque et al.
already supposed such an attacker in the strong incompressibility [FKKM16]. We discuss

376 Hybrid Code Lifting on Space-Hard Block Ciphers

the necessity to consider such an attacker from the practical motivation of space-hard
block ciphers.

The space hardness intends that ignoring slight leakage does not cause any security
risk. Reflecting such an intention, the authors of [KI21] suggested the combined use with
an anomaly detection system that detects huge leakage by monitoring process or outgoing
packets. In other words, they suppose that detecting slight leakage is difficult, and it is
not convincing that the attack model changes before and after slight leakage. If we do
not need to consider a blackbox attacker after the leakage, the use case of the space-hard
block cipher is limited, e.g., there are no blackbox attackers in the first place, or leakage
is detectable despite the leakage size. The former is unlikely as a model for whitebox
cryptography, and the latter loses the advantage of using space-hard block ciphers.

Hybrid Code Lifting and Longevity. Yoroi can update the table entries to enhance
the security against the code lifting. Therefore, the authors suggested the following use
case: users monitor the total amount of data traffic sent from the encryption device or the
number of executions of the encryption program. If these numbers reach the threshold,
which is equivalent to (size(T)/64)-bit leakage, users update their own table. If Yoroi is
secure up to (size(T)/64)-bit leakage every table update, this use case is promising.

To provide protection in the use case above, the security claimed by the space hardness
is too weak. Assuming that the cipher is vulnerable against the hybrid code lifting with
parameters (λ, τw, q, τb), where λ < size(T)/64, the use case above would be insecure
because the implementation method does not matter for the blackbox attacker. Even if
each table entry is updated, it does not contribute to security once we go to the blackbox
phase.

Difference from Strong Incompressibility. As discussed in Sect. 2, space-hard block
ciphers do not satisfy the strong incompressibility [FKKM16] because of a trivial attack.
However, the attack model behind the strong incompressibility is crucial for the leakage-
resilient system. Therefore, we revisit a similar security in space-hard block ciphers. Due to
the similarity of the motivation, hybrid code lifting is similar to the strong incompressibility.

Considering the table entries of space-hard block ciphers are generated by block ciphers,
only limiting leakage size is not sufficient. To avoid an exhaustive search by the leakage
function f , we introduce a bound for the time complexity of the leakage function (whitebox
attacker) instead of restriction by a min-entropy. We believe this revision is natural because
code lifting is regarded as noise-free leakage by a whitebox attacker with limited running
time in practice.

The other main difference is the attack goal. Unlike the strong incompressibility, the
goal of the hybrid code lifting is the program recovery, which is the most powerful attack. It
is interesting to discuss similar, stronger security (like indistinguishability) for space-hard
block ciphers. However, since our primary focus is the attack, we do not discuss such
security in our paper.

3.3 General Attack Idea for Program Recovery
In our hybrid scenario, the collaborative blackbox attacker exploits size-bounded leakage
generated by the whitebox attacker. However, since the target cipher is a space-hard
block cipher, it still contains large secret information after leakage. For example, the code
(table) size of SPNbox-16 is 216 × 16 bits. Assuming a quarter-size leakage, the remaining
is 3/4× 216 × 16 bits. It is significantly larger than a usual block cipher implementation
loading 128 or 256-bit secret key. Thus, it is not easy for the collaborative blackbox
attacker to recover the full program even after the leakage.

Yosuke Todo and Takanori Isobe 377

To recover the vast secret information (table entries), we present attack procedures that
recover a part of (unleaked) table entries. This procedure highly depends on the target
cipher: we use a truncated differential in Yoroi but a more straightforward guess-and-
determine approach in SPNbox. In many cases, we recover table entries picked randomly.
Namely, the procedure often reveals table entries known already. This is very similar to
the so-called coupon collector’s problem. The goal is to collect all table entries (coupons).

Theorem 1 (Coupon Collector’s Problem). There are n coupons. We already have k0
coupons. When one trial randomly opens 1 coupon, the expected number of trials to collect
all n coupons is nHn−k0 ≈ n(ln(n− k0) + γ), where Hn is the nth harmonic number, and
γ is the Euler’s constant, i.e., γ ≈ 0.577.

Theorem 1 is available to estimate the required number of procedures to collect all table
entries. Often, there is a case that we cannot collect all coupons (table entries) by simply
repeating the same attack procedure. Then, we want to estimate how many the limited
trials can recover coupons (table entries). For that, we present the following corollary, a
variant of the coupon collector’s problem.

Corollary 1. There are n coupons. We already have k0 coupons. When one trial randomly
opens one coupon, the expected total number of coupons collected by t trials is

k + (t− n× (Hn−k0 −Hn−k))× n− k

n
,

where k = ⌊n− eln (n−k0)− t
n ⌋.

Proof. The first trial opens a new coupon with a probability of n−k0
n . Therefore, n

n−k0
trials are required to collect an additional coupon (k0 + 1 coupons in total). The expected
number of the remaining trials is t − n

n−k0
after k0 + 1 coupons are collected. After

repeating the procedure up to collecting k coupons, the expected number of the remaining
trials is

t− n

n− k0
− n

n− k0 − 1 − · · · −
n

n− (k − 1) = t− n× (Hn−k0 −Hn−k)

after k coupons are collected.
When t− n× (Hn−k0 −Hn−k) = 0, the expected number of the remaining trials is 0.

Therefore,

t = n× (Hn−k0 −Hn−k) ≈ n× (ln (n− k0)− ln (n− k))
k ≈ n− eln (n−k0)− t

n ,

and we expect k = ⌊n− eln (n−k0)− t
n ⌋. The probability that we can collect the (k + 1)th

new coupon is estimated by

(t− n× (Hn−k0 −Hn−k))× n− k

n
.

Thus, the expected number is

k + (t− n× (Hn−k0 −Hn−k))× n− k

n
.

378 Hybrid Code Lifting on Space-Hard Block Ciphers

4 Preliminaries for Our Attacks against Yoroi
Before demonstrating the concrete attacks on Yoroi, we present the specification of
Yoroi and some technical preliminaries used in our attacks shown in Sects. 5 and 6.

We provide some important theorems and corollaries. The coupon collector’s problem
and its variants are often used in our analysis. Moreover, we introduce a perfect decomposi-
tion, which is based on random graph theory, to estimate the attack complexity. We finally
show a canonical representation of Yoroi. Our attack recovers the table of the canonical
representation. We emphasize that the designers of Yoroi overlooked the existence of
this canonical representation, and it causes the critical flaw of Yoroi.

4.1 Yoroi: Updatable Space-Hard Block Cipher
The updatable space-hard block cipher Yoroi was proposed at TCHES 2021 [KI21].

Partial table-entry leakage is not critical for space-hard block ciphers. It enables to
mitigate the risk of code lifting by monitoring processes and/or outgoing packets. However,
what about attackers leaking slight information from the table over a long time so as not to
be found out by users? This is unlikely to be detectable. The designers of Yoroi tackled
this problem and introduced a new unique functionality called longevity, where the table
can be updated while maintaining the functionality of block ciphers.

4.1.1 Specification of Yoroi

Yoroi is a space-hard block cipher. There are two variants: Yoroi-16 and Yoroi-32
adopt key-dependent 16- and 32-bit tables (bijective functions), respectively, to build
128-bit block ciphers. Let P ∈ (Fnin

2)ℓ and C ∈ (Fnin
2)ℓ be a plaintext and ciphertext,

respectively, and C is computed from P as C = A◦γR
(
⃝R−1

r=1 (θ ◦ σr ◦ γr)
)

(P). We define
the Yoroi-core part as γR

(
⃝R−1

r=1 (θ ◦ σr ◦ γr)
)
. Each component is defined as follows:

S-layer γr. The S-layer γr : (Fnin
2)ℓ → (Fnin

2)ℓ consists of ℓ key-dependent nin-bit
bijective functions. S1 and S3 are applied for the first and last rounds, respectively, and
S2 is applied for the rest of the rounds.

γr : (x1, . . . , xℓ)→ (Sj(x1), . . . , Sj(xℓ)),

where j = 1 for r = 1, j = 3 for r = R, and j = 2 for the rest of r.

Linear layer θ. The linear layer θ : (Fnin
2)ℓ → (Fnin

2)ℓ consists of an MDS matrix
M ∈ (Ft

2)ℓ×ℓ. The ith nin-bit output of Sj , denoted by xi, is divided into the top m bits,
xL

i , and last t bits, xR
i , i.e., nin = m + t. The MDS matrix is multiplied with the last t

bits of ℓ elements.

θ : (x1, . . . , xℓ)→ (xL
1 ∥x′R

1 , . . . , xL
ℓ ∥x′R

ℓ),

where xi = xL
i ∥xR

i and (x′R
1 , . . . , x′R

ℓ) = (xR
1 , . . . , xR

ℓ)×M .

Affine layer σr. In the add-constant layer σr : (Fnin
2)ℓ → (Fnin

2)ℓ, t-bit constants are
added in the lsb t bits of each element of the state.

σr : (x1, . . . , xℓ)→ (xL
1 , . . . , xL

ℓ)⊕ (xR
1 + Cr, . . . , xR

ℓ + Cr),

where Cr = r.

AES layer A. Finally, the AES with a fixed key KA is applied.

Yosuke Todo and Takanori Isobe 379

4.1.2 Updating Tables and Longevity

Yoroi has a unique feature called longevity, where updating the table is possible while
maintaining the functionality. It intends to ensure security even if partial table entries are
leaked every table update, and in total, it accepts massive leakage beyond the program
size.

To achieve the longevity, Yoroi prepares a secure m-bit block cipher E and updates
three tables as

T1 ← (E∥I) ◦ S1, T2 ← (E∥I) ◦ S2 ◦ (E−1∥I), T3 ← S3 ◦ (E−1∥I),

where (E∥I)(x) = E(xL)∥xR. Since θ and σi do not change the top m-bit values of
each branch, the application of (E∥I) after the rth S-layer is canceled out by applying of
(E−1∥I) before the (r + 1)th S-layer.

As shown in Definition 3, the whitebox compiler can output a fresh table by using
different randomness. To the best of our knowledge, Yoroi is the only space-hard block
cipher accepting randomness. Note that updating the table of Yoroi is possible with an
old table, and the secret key is unnecessary.

4.1.3 Parameters and Claimed Security

Yoroi-16 uses (nin, m, t, ℓ, R) = (16, 12, 4, 8, 8). Yoroi-32 uses (nin, m, t, ℓ, R) = (32, 28, 4,
4, 16). The following are the designer’s security claims.

• Secure against any attack in the blackbox model.
• Secure against key extraction in the whitebox model.
• ((3× 2nin)/4, 128)-space hardness against KSA3.
• ((3× 2nin)/64, 128)-space hardness against KSA every table update.

For example, in Yoroi-16, encrypting a random plaintext is not possible even if (3× 214)
table entries are leaked by the KSA. Moreover, for longevity, encrypting a random plaintext
is not possible even if (3× 210) table entries are leaked by the KSA every table update. In
other words, it accepts massive leakages, e.g., further beyond 3× 2nin as long as the table
is updated with the proper interval.

4.2 Canonical Representation of Yoroi
We introduce the canonical representation of Yoroi, and it plays a crucial role in our attack.
Yoroi is specified by three original tables S1, S2, and S3, but there are implementations
using T1, T2, and T3 with maintaining its functionality. The canonical representation is
uniquely determined by the original three tables and easily computed by three tables T1,
T2, and T3.

Figure 3 shows the representation. Three tables T1, T2, and T3 are table entries used in
the implementation ẼT . The representation additionally involves m-bit permutation Er,
but these applications are always canceled out by applying Dr in the next round4. One
important remark is that we can assign any (Er, Dr = E−1

r) such that whole encryption is
perfectly preserved. Then, the tables used in the 1st and last rounds are T̃1 = (E1∥I) ◦ T1
and T̃R = T3 ◦ (DR−1∥I), respectively. A table used in the rth round is T̃r = (Er∥I) ◦ T2 ◦
(Dr−1∥I) for r ∈ {2, 3, . . . , R− 1}.

3The designers of Yoroi claimed the security against the KSA/CSA. However, we found a trivial CSA
to break the security (see Sect. A in detail). We contacted the authors, and they admitted they had
overlooked this. In practice, the authors discuss the security against only the KSA in [KI21].

4Note that this property is originally introduced for the longevity of Yoroi. When a common m-bit
block cipher E is used for all r ∈ {1, . . . , R − 1}, it is equivalent to the table update of Yoroi.

380 Hybrid Code Lifting on Space-Hard Block Ciphers

T1

C1

T1

C1

T1

C1

T1

C1

T2

C2

T2

C2

T2

C2

T2

C2

T2

CR-1

T2

CR-1

T2

CR-1

T2

CR-1

T3 T3 T3 T3

A

E1 E1 E1 E1

E2 E2 E2 E2

D1 D1 D1 D1

DR−1 DR−1 DR−1 DR−1

DR−2 DR−2 DR−2 DR−2

ER−1 ER−1 ER−1 ER−1

T̃1

T̃2

T̃R−1

T̃R

Figure 3: Canonical representation of encryption algorithm of Yoroi.

We now exploit the freedom of Er and construct T̃r for r ∈ {1, 2, . . . , R− 1} satisfying
the following property.

Property 1. When lsbt(T̃r(x)) = lsbt(T̃r(x′)) = 0, msbm(T̃r(x)) < msbm(T̃r(x′)) holds
for all x < x′.

Here, lsbt denotes a t-bit string from the LSB, and msbm denotes an m-bit string from
the MSB. Given Er−1 and T , Algorithm 1 finds Er satisfying Property 1 in T̃r. Appendix B
provides a small example to understand Property 1.

Proposition 1. Tables (T̃1, . . . , T̃R) satisfying Property 1 are uniquely determined by S1,
S2, and S3.

Proof. We first look at the 1st round, where T1 = (E∥I) ◦ S1. Then,

T̃1 = (E1∥I) ◦ T1 = ((E1 ◦ E)∥I) ◦ S1.

We focus on the set S1 := {x|lsbt(T1(x)) = 0}. Since E1 ◦ E is not applied to the LSB
t bits, S1 is determined by S1 only. According to Property 1, S1 is sorted by ascending
order. For any x, x′ ∈ S1, we assign (E1 ◦E) such that T̃1(x) < T̃1(x′) for all x < x′. Such
(E1 ◦ E) is uniquely determined, and T̃1 is uniquely determined.

We next look at the 2nd round, where T2 = (E∥I) ◦ S2 ◦ (D∥I). Then,

T̃2 = (E2∥I) ◦ T2 ◦ (D1∥I) = ((E2 ◦ E)∥I) ◦ S2 ◦ ((D ◦D1)∥I).

Recall that (E1 ◦ E) is uniquely determined by S1. Since the inverse (D ◦ D1) is also
uniquely determined, S2 ◦ ((D ◦D1)∥I) is uniquely determined by S1 and S2. Similar to
the 1st round, (E2 ◦ E) is uniquely determined, and T̃2 is uniquely determined.

Yosuke Todo and Takanori Isobe 381

Algorithm 1 Algorithm to determine Er satisfying Property 1 in T̃r.
Require: T : Fnin

2 → Fnin
2 , (Er−1 : Fm

2 → Fm
2)

Ensure: Er s.t. Property 1 holds in T̃r = (Er∥I) ◦ T ◦ (E−1
r−1∥I).

1: if Er−1 is provided then
2: T ← T ◦ (E−1

r−1∥I)
3: cnt = 0
4: for all x ∈ Fnin

2 do
5: if lsbt(T (x)) = 0 then
6: Er[msbm(T (x))] = cnt
7: cnt← cnt + 1
8: return Er

The iterative application shows (Er ◦ E) is uniquely determined by S1 and S2 until
r = R− 1. We finally look at the last round, where T3 = S3 ◦ (D∥I):

T̃R = T3 ◦ (DR−1∥I) = S3 ◦ ((D ◦DR−1)∥I).

Since (ER−1 ◦ E) is uniquely determined by S1 and S2, the inverse (D ◦ DR−1) is also
uniquely determined. Thus, T̃R is uniquely determined by S1, S2, and S3.

Proposition 1 shows that Yoroi has a unique canonical representation determined
by S1, S2, and S3 only. Our attack recovers the canonical representation T̃r for all
r ∈ {1, 2, . . . , R}. In other words, we do not recover S1, S2, and S3. Note that T̃r for all
r ∈ {1, 2, . . . , R} (and the KA) are sufficient to encrypt (resp. decrypt) any plaintext (resp.
ciphertext).

4.3 Perfect Decomposition
In our attack procedure, we sometimes divide the set Fn

2 into 2n−m subsets, where each
subset contains 2m elements, to recover the canonical representation T̃r. Specifically, each
subset contains all xs whose lsbt(T̃r(x)) is the same. The attack procedure can detect
whether two elements belong to the same subset or not probabilistically. For example,
when the attack procedure detects that x1 and x2 belong to the same subset and x1 and
x3 belong to the same subset, it derives that x2 and x3 belong to the same subset without
having to detect it via the attack procedure. We regard this behavior as the connectivity
of the random graph.

Theorem 2 (Connectivity of random graph [ER59]). Let G(n, p) be a random graph,
where there are n vertices, and each edge is included in the graph with a probability of
p. Then, the probability that the graph G(n, p) is connected is estimated as e−e−c , where
c = p× n− ln n.

We consider 2n−m random graphs. Each random graph contains 2m vertices. It
is assumed that one procedure detects that each edge is included in the graph with a
probability of p. When we repeat the procedure s times, we simply assume that the
probability that each edge is included in the graph is enhanced to p× s. Then, the goal of
the perfect decomposition is to construct 2n−m disjoint connected random graphs. We call
this problem (n, m, p)-perfect-decomposition.

Proposition 2 ((n, m, p)-perfect-decomposition.). The set Fn
2 can be divided into 2n−m

subsets, where each subset contains 2m elements. Let p denote the probability that one
procedure detects (x, x′) ∈ (Fn

2 × Fn
2) belong to the same subset, and we assume that the

probability increases to s× p by s repetitions, where s≪ 1/p. Let psucc be the probability

382 Hybrid Code Lifting on Space-Hard Block Ciphers

that s procedures can divide the set Fn
2 into 2n−m subsets (with size 2m). Then, the number

of required repetitions to reach the probability of psucc is

s = p−1 × 2−m ×
(
ln 2m − ln

(
−2m−n × ln(psucc)

))
.

Proof. We first consider the probability that s procedures can find a subset whose number
of elements is 2m. Assuming each pair is independent, we can regard this problem as the
connectivity problem of a random graph, where there are 2m vertices and every possible
edge occurs independently with probability s× p. Due to Theorem 2,

e−e−c

,

where c = p× s× 2m − ln 2m.
We need 2n−m connected graph. Assuming they are independent, the probability is

estimated as

(e−e−c

)2n−m

.

The parameter c required to achieve the success probability psucc is

(e−e−c

)2n−m

= psucc,

e−e−c

= p2m−n

succ ,

e−c = −2m−n × ln(psucc),
c = − ln

(
−2m−n × ln(psucc)

)
.

Therefore,

p× s× 2m − ln 2m = − ln
(
−2m−n × ln(psucc)

)
,

s = p−1 × 2−m ×
(
ln 2m − ln

(
−2m−n × ln(psucc)

))
.

We provide some examples.

Example 1 ((16, 12, 2−24)-perfect decomposition). This is the parameter for Step 2-(a)
to attack Yoroi-16 shown in Sect. 5.1. The number of procedures to achieve the success
probability psucc = 0.5 is estimated as

s = p−1 × 2−m ×
(
ln 2m − ln

(
−2m−n × ln(psucc)

))
= 224 × 2−12 ×

(
ln 212 − ln

(
2−4 × ln 2

))
≈ 215.52.

Example 2 ((32, 28, 2−56)-perfect decomposition). This is the parameter for Step 2-(a)
to attack Yoroi-32 shown in Sect. 5.1. The number of procedures to achieve the success
probability psucc = 0.5 is estimated as

s = p−1 × 2−m ×
(
ln 2m − ln

(
−2m−n × ln(psucc)

))
= 256 × 2−28 ×

(
ln 228 − ln

(
2−4 × ln 2

))
≈ 232.45.

5 Hybrid Code Lifting on Yoroi
We consider the security of the hybrid code lifting against Yoroi. The following is the
notation used in our attack.

• n: block length, i.e., n = 128.

Yosuke Todo and Takanori Isobe 383

x0,0

x0,1

x0,i

x0,2t−1

x1,0

x1,1

x1,i

x1,2t−1

x2,0

x2,1

x2,i

x2,2t−1

xj,0

xj,1

xj,i

xj,2t−1

x2m−2,0 x2m−1,0

x2m−2,1 x2m−1,1

x2m−2,i x2m−1,i

x2m−2,2t−1 x2m−1,2t−1

A0

A1

Ai

A2t−1

B0 B1 B2 Bj B2m−2 B2m−1

lsbt(T̃r(x∗,i)) = i

msbm(T̃r(xj,∗)) = j T̃r(xj,i) = j‖i

<< << << << << << <<

Figure 4: Structure and strategy to recover T̃r.

• nin: bit size of table, i.e., nin = 16 for Yoroi-16, and nin = 32 for Yoroi-32.

• ℓ: number of tables in every round, i.e., ℓ = 8 and ℓ = 4 for Yoroi-16 and Yoroi-32,
respectively. Note that n = nin × ℓ.

• m: bit size, where MDS and constant XORing are not applied in θ and σi, i.e.,
m = 12 and m = 28 for Yoroi-16 and Yoroi-32, respectively.

• t: bit size, where MDS and constant XORing are applied in θ and σi, i.e., t = 4.
Note that nin = m + t.

• P = (P [1], P [2], . . . , P [ℓ]) ∈ (Fnin
2)ℓ: plaintext.

• C = (C[1], C[2], . . . , C[ℓ]) ∈ (Fnin
2)ℓ: ciphertext.

• lsbt(X): t-bit string from the LSB of X ∈ F∗
2.

• msbm(X): m-bit string from the MSB of X ∈ F∗
2.

We introduce notations used in the analysis based on the canonical representation. We use
the following notations to recover the table T̃r of the canonical representation.

• ρ ∈ (Fm
2)2t : 2t-dimensional vector whose elements take a value over Fm

2 .

• Ai := {x ∈ Fnin
2 |lsbt(T̃r(x)) = i}. Since T̃r is a permutation, the number of elements

of Ai is 2m for any i ∈ Ft
2. We sometimes use Aρi

when ρ has not been recovered
yet. Then, when x, x′ ∈ Aρi , lsbt(T̃r(x)) = lsbt(T̃r(x′)).

• η ∈ (Ft
2)2m : 2m-dimensional vector whose elements take a value over Ft

2.

• Bj := {x ∈ Fnin
2 |msbm(T̃r(x)) = j}. Since T̃r is permutation, the number of elements

of Bj is 2t for any j ∈ Fm
2 . We sometimes use Bηj when η has not been recovered

yet. Then, when x, x′ ∈ Bηj
, msbm(T̃r(x)) = msbm(T̃r(x′)).

• xj,i ∈ Fnin
2 : input of T̃r such that T̃r(xj,i) = j∥i.

Figure 4 summarizes these notations. We show the following Lemma.

Lemma 1. The table T̃r of the canonical representation can be recovered by Ai and Bηj

for all i and j.

Proof. In A0, inputs satisfying lsbt(T̃r(x)) = 0 are stored. For any x, x′ ∈ A0 and x < x′,
msbm(T̃r(x)) < msbm(T̃r(x′)) holds due to Property 1 in the canonical representation.
Let xj′,0 be the j′th element of the (ascending) sorted A0. Then, when xj′,0 ∈ Bηj

, we
obtain ηj = j′. We now obtain Ai and Bj for all i and j. Thus, when x ∈ Ai and x ∈ Bj ,
T̃r(x) = j∥i.

384 Hybrid Code Lifting on Space-Hard Block Ciphers

On the canonical representation, Ai and Bηj
for all i and j are enough to recover T̃r.

We do not need to know η because it can be complemented from A0.

5.1 Attack Procedure
We show a detailed attack procedure. For the sake of simplicity, we first show an attack
whose leakage size is 128 + (R − 1)× 2t × nin bits. We later reduce the leakage size to
128 + (R− 1)× 6× nin bits with a negligible impact on the complexity.

5.1.1 The 1st (Code Lifting) Phase

The 1st phase is the code lifting by a whitebox attacker. The attacker generates a leakage,
which is useful in the 2nd phase.

The attacker first extracts the AES key KA from the encryption program. It might not
be easy assuming there is a secure whitebox implementation of AES. However, in practice,
realizing such a secure implementation is difficult [BHMT16, BBIJ17, BU18]. Therefore,
we assume the AES key can be extractable. Note that the designers of Yoroi introduced
the AES layer for security in the blackbox model and do not expect the layer to mitigate
code lifting [KI21].

The knowledge of KA reveals the Yoroi-core part. We notice the Yoroi-core part only
is an insecure block cipher because it has a non-trivial truncated differential distinguisher
(see Fig. 5 and the 2nd phase in detail). Despite such a weakness, recovering all table
entries is non-trivial because we cannot guess the correct secret table due to huge search
space, e.g., 216! ≈ 2954036. For the practical attack, we leak small fragments about the
table.

We focus on the canonical representation of Yoroi. By applying Algorithm 1 from r = 1
to r = (R− 1) iteratively, the whitebox attacker generates (T̃1, . . . , T̃R) of the canonical
representation. We finally leak all elements in B0, i.e., x0,i satisfying T̃r(x0,i) = (0∥i) for
all i ∈ Ft

2, of T̃r from r = 1 to R− 1. Note that we do not leak B0 of T̃R. Please refer to
Sect. 5.1.2 on how to exploit the leakage.

We finally summarize the attack complexity in the code lifting phase. Generating the
table of the canonical representation (and retrieving x0,i satisfying T̃r(x0,i) = (0∥i)) is
possible with the complexity of 2nin for each r. Therefore, the complexity is (R− 1)× 2nin ,
which is about 218.8 and 235.9 for Yoroi-16 and Yoroi-32, respectively. The leakage size
is 128 + (R− 1)× 2t × nin bits, which are 1920 and 7808 bits in Yoroi-16 and Yoroi-32,
respectively.

5.1.2 The 2nd (Blackbox) Phase

The 2nd phase is the differential cryptanalysis by a blackbox attacker receiving the leakage
generated by the 1st phase. We ignore the last AES layer and regard the output of the
Yoroi-core part as ciphertexts because the leakage includes KA.

We first show that the Yoroi-core part is easily distinguished from ideal block ciphers.
Recall the linear layer θ, where the MDS matrix is only applied to the last t bits of each
output of T̃r. Therefore, θ does not diffuse active branches when there is no difference in
the last t bits. This causes the truncated differential shown in Fig. 5, where ∆ denotes any
non-zero difference. The probability of satisfying this truncated differential is 2−t(R−1).
Thus, a distinguishing attack is easy. On the other hand, the attack goal is the program
recovery5. We use the following procedure.

5In practice, distinguishing attacks are less interesting for the goal of the hybrid code lifting. This is
because a whitebox attacker can leak any plaintext-ciphertext pairs. Therefore, a collaborative blackbox
attacker can distinguish by querying the leaked plaintexts. Of course, as we demonstrated, a non-trivial
distinguisher would allow the blackbox attacker to recover all table entries. Therefore, the designer should
eliminate such a distinguisher.

Yosuke Todo and Takanori Isobe 385

T̃1T̃1T̃1T̃1

T̃2T̃2T̃2T̃2

T̃RT̃RT̃RT̃R

∆

∆

0

0 0 0 0 0 0 0

∆ 0 0 0 0 0 0 0

∆ 0 0 0 0 0 0 0

∆ 0 0 0 0 0 0 0

∆ 0 0 0 0 0 0 0

0 0

∆ 0 0 0

2−t

1

2−t

1

1

2−t×(R−3)

nin

m t

Figure 5: Truncated differential of Yoroi-core part.

Step 2a. Following the truncated differential shown in Fig. 5, the blackbox attacker runs
the following procedure.

1. Prepare a set with 2nin plaintexts as following: For the 1st element, we takes all
values over Fnin

2 . For the others, we take randomly-chosen fixed values. Then, we
have 2nin plaintexts and obtain corresponding ciphertexts by using the encryption
oracle.

2. List pair (P [1], P ′[1]) satisfying the partial collision lsbnin(ℓ−1)(C ⊕ C ′) = 0.

Every procedure requires 2nin times, data, and memory complexities, and all (=
(2nin

2
)
≈

22nin−1) pairs are checked at the same time. Assuming that (P [1], P ′[1]) belong to the
same subset Aρi

, the probability that such pairs can be detected by one procedure is
2−t×(R−2). We estimate the required number of procedures to divide Fnin

2 into Aρi . As
shown in Proposition 2, it is regarded as (nin, m, 2−t×(R−2))-perfect-decomposition. Let s
be the required number of procedures to divide Fnin

2 into Aρi
with the success probability

of 50%. Then, the total complexity is estimated as follows.
In Yoroi-16, s = 215.52. Thus, the total complexity is 215.52 × 216 ≈ 231.52.
In Yoroi-32, s = 232.45. Thus, the total complexity is 232.45 × 233 ≈ 264.45.

Step 2b. Step 2a does not recover ρi. We refer to the leakage and retrieve the data about
ρi. The leakage includes x0,i′ satisfying lsbt(T̃1(x0,i′)) = (0∥i′) for all i′ ∈ Ft

2. Therefore,
we check if the subset Aρi

includes x0,i′ or not. When x0,i′ ∈ Aρi
, ρi = i′.

Step 2c. We next recover Bηj
. The truncated differential shown in Fig. 5 is not helpful.

We use the modified truncated differentials shown in Fig. 6, where α is a m-bit arbitrary
difference, and β is a t-bit non-zero difference chosen by the blackbox attacker. Then,
difference ζl ∈ Ft

2 is a non-zero difference determined as (ζ1, ζ2, . . . , ζℓ) = (β, 0, 0, . . . , 0) ·
M−1.

The subset Ai is already recovered in Step 2a and Step 2b. Moreover, the attacker
knows x0,i that satisfies T̃1(x0,i) = (0∥i) by using the leakage. By using them, the attacker
runs the following procedure.

386 Hybrid Code Lifting on Space-Hard Block Ciphers

T̃1T̃1T̃1T̃1

0 0 0

0 0 0 0 0 0

∆ 0 0 0

2−m

1

2−t×(R−2)

ζ1 ζ2 ζ3 ζ�

β

(A0×Aζ2)

(R− 1) − round truncated differential

α

α

nin

m t

(x0,i3 , x0,i3⊕ζ3) (x0,i� , x0,i�⊕ζ�)(Ai1 × Ai1⊕ζ1)

Figure 6: Another truncated differential of Yoroi-core part.

1. Compute (ζ1, ζ2, . . . , ζℓ) from a non-zero β ∈ Ft
2.

2. Prepare a set with 22m plaintexts as follows: For the 1st element, we use a subset
Ai1 , where i1 denotes a randomly chosen index. For the 2nd element, we use A0.
For other lth elements, we randomly choose one text x0,il

stored in the leakage,
i.e., T̃1(x0,il

) = (0∥il). Then, we have 22m plaintexts and obtain corresponding
ciphertexts by using the encryption oracle.

3. Prepare another set with 22m plaintexts as follows: For the 1st element, we use
Ai1⊕ζ1 . For the 2nd element, we use A0⊕ζ2 . For the lth elements, we choose a text
x0,il⊕ζl

from the leakage, where T̃1(x0,il
) ⊕ T̃1(x0,il⊕ζl

) = (0∥ζl) holds. Then, we
have 22m plaintexts and obtain corresponding ciphertexts by using the encryption
oracle.

4. Search for pairs (P [2], P ′[2]) satisfying the partial collision, lsbnin(ℓ−1)(C ⊕ C ′) = 0.

Each procedure requires 22m+1 time, data, and memory complexities. It checks all pairs
(P [2], P ′[2]) ∈ (A0×Aζ2) for a fixed ζ2(̸= 0). Assume that P [2] and P ′[2] belong to the same
subset Bηj

, i.e., msbm(T̃1(P [2])) = msbm(T̃1(P ′[2])). When a pair (P [2], P ′[2]) is checked,
the probability that such a pair is detected in this procedure is 2−t(R−2). One procedure
checks this pair 22m times by trying out the value in P [1]. Since 22m × 2−t(R−2) = 1 for
both Yoroi-16 and Yoroi-32, the probability that the pair is not detected is estimated
as e−1 due to the Poisson distribution. After d repetitions, the probability that the pair is
not detected is estimated as e−d.

We try out 2t−1 possible β. Then, it eventually checks all pairs (P [2], P ′[2]) ∈ (A0×Aζ2)
for all ζ2(̸= 0). To detect all pairs, i.e., (2t− 1)× 2m ≈ 2nin pairs, d = ⌈ln 2nin⌉ repetitions
are required, which are 12 and 23 in Yoroi-16 and Yoroi-32, respectively. Then, the
total complexity is estimated as follows:

In Yoroi-16, the total complexity is 12× 15× 225 ≈ 232.49.
In Yoroi-32, the total complexity is 23× 15× 257 ≈ 264.43.

Step 2d. The attacker has already recovered Ai for all i ∈ Ft
2 and Bηj

for all j ∈ Fm
2 . As

shown in Lemma 1, they recover ηj and T̃1 thanks to the canonical representation.

Step 2e. The attacker can remove the first round because T̃1 is already recovered. The
attacker can use the same procedure above to recover T̃2, T̃3, . . . , T̃R−1. The probability of
the truncated differential increases compared with the one to recover T̃1. Thus, the attack
complexity decreases. We regard these complexities as negligible.

Yosuke Todo and Takanori Isobe 387

Step 2f. The attacker already has (T̃1, T̃2, . . . , T̃R−1) and finally recovers T̃R. It is easy
to recover the table entry of T̃R by checking the consistency with the ciphertext given by
the encryption oracle.

5.1.3 Reducing Leakage Size

We show an additional technique that reduces the leakage size by more than half with a
negligible complexity increase.

The idea is to leak specific partial elements of B0 instead of all elements. Specifically,
we assume to leak the following six elements

x0,0, x0,1, x0,2, x0,4, x0,8, x0,15,

where T̃r(x0,i) = (0∥i). This technique enables us to reduce the leakage size to 128 + (R−
1)× 6× nin bits, which are 800 and 3008 bits of Yoroi-16 and Yoroi-32, respectively.

When we use less leakage, we cannot retrieve ten elements of ρi from the leakage in Step
2b. In other words, we cannot determine i such that ρi ∈ {3, 5, 6, 7, 9, 10, 11, 12, 13, 14}.
Nevertheless, these ten unknown elements are efficiently recovered by tweaking the proce-
dure of Step 2c. Referring to Fig. 6, we consider constructing a pair satisfying the truncated
differential using only six limited elements. First, when il, il⊕ζl ∈ {0, 1, 2, 4, 8, 15}, there is
a pair (x0,il

, x0,il⊕ζl
) for any ζl ∈ Ft

2(= F4
2). For example, when ζl = 7, a pair (x0,8, x0,15)

is available, and T̃r(x0,8)⊕ T̃r(x0,15) = (0∥7). Similarly, there is an i1, where both Ai1 and
Ai1⊕ζ1 are known for any ζ1 ∈ Ft

2. Finally, A0 is known, and we try out all unknown Aρi

for Aζ2 , where ζ2 ∈ {3, 5, 6, 7, 9, 10, 11, 12, 13, 14}. Then, we detect ρi = ζ2 by observing
one truncated differential.

The procedure above is more efficient than Step 2c because we do not need to recover
Bηj

completely. Only observing one truncated differential is enough to detect ρi = ζ2
because the probability that truncated differential holds is very low, i.e., 2−nin×(ℓ−1) when
wrong ρi is used. Specifically, 2m+m/2+1 time, data, and, memory complexities are required
to recover one unknown ρi, and in total 10 × 2m+m/2+1. The complexity is negligible
compared to Step 2a and Step 2c.

5.1.4 Summary of Results

Our results are summarized in Table 1. Our attack uses 800-bit leakage and 3008-bit
leakage for Yoroi-16 and Yoroi-32, respectively. These leakage sizes are significantly
less than size(T)/64.

The time complexity of the code-lifting phase is about 2nin . Thus, the complexity of
the 1st phase is practical for both Yoroi-16 and Yoroi-32.

The time complexity of the blackbox phase is about 233 to attack Yoroi-16. Therefore,
the time complexities of both 1st and 2nd phases are practical. On the other hand, the
time complexity is about 265.5 to attack Yoroi-32. While we cannot say this is practical
for a single PC, the complexity of 264 is usually not recommended.

We finally remark that this attack is outside of the security claim of Yoroi. On the
other hand, we need to stress that the claimed security of Yoroi is too weak to claim
that the use case of Yoroi can be secure. Note that we break Yoroi’s claimed security
for longevity in Sect. 6.

5.1.5 Experimental Verification

We implemented our attack against Yoroi-16 for the verification. We tried to recover T̃1
10 times, and Table 3 shows the experimental results for the attack on Yoroi-16. The
theoretical estimation of s in Step 2a is 215.52, and the corresponding average value in our
experiments is 48232.8 ≈ 215.56. Therefore, our theoretical estimation works well. The

388 Hybrid Code Lifting on Space-Hard Block Ciphers

Table 3: Experimental results for the attack on Yoroi-16.

trial 1 2 3 4 5 6 7 8 9 10 average
s in Step 2a 46332 55660 48532 49984 44176 41712 53108 46288 47124 49412 48232.8
d in Step 2c 12 14 10 13 13 15 12 14 12 11 12.6

theoretical estimation of d in Step 2c is 12, and the corresponding average value in our
experiments is 12.6. Again, our theoretical estimation works well.

5.2 Hybrid Code Lifting using More Leakage
Drawing the trade-off between the leakage size and attack complexity is interesting. We
now present another simple attack using more leakage (but the size is still smaller than
3×2nin

4 table entries).
The simple attack no longer exploits the specific property of Yoroi, such as the

canonical representation. Assuming that s1 and s2 table entries are leaked from T1 and
T2, respectively, the total leakage is s1 + s2 < 3×2nin

4 . Note that we assume the AES key
KA is also leaked. Then, we can prepare sℓ

1 chosen plaintexts, where the first round can
be computed. The probability that these chosen plaintexts are successfully encrypted
by one round before the last round is (s2

2nin
)ℓ×(R−2). Ciphertexts corresponding to the

chosen plaintexts are obtained by asking the encryption oracle, and the outputs of the
Yoroi-core part can be computed. As a result, we have sℓ

1× (s2
2nin

)ℓ×(R−2)× ℓ overlapping
table entries about S3, and if the the following inequality

sℓ
1 ×

(s2

2nin

)ℓ×(R−2)
× ℓ ≥ 2ninH2nin (1)

holds, we can recover the full table entries of S3 because of Theorem 1.
Equation (1) holds when s1 = 22192 on Yoroi-32. Then, we query 221924 ≈ 257.75

chosen plaintexts. The data and time complexities to recover S3 are 257.75, which is faster
than the attack shown in Sect. 5.1. Of course, the required leakage size is much larger, i.e.,
32× 3×232

4 bits ≈ 12GB.
Unlike Yoroi-32, this simple attack does not draw an interesting trade-off on Yoroi-16.

The same analysis holds when s1 = 24, but the required data and time complexities are
236.68, which is much higher than the attack shown in Sect. 5.1.

6 Attacks against Longevity of Yoroi
In this section, we provide another attack, where the target is the longevity of Yoroi.
An attacker collects leakage every table update and tries to recover the program without
querying oracle. Figure 7 shows the overview of the attack. If the table leakage is limited
by the KSA, the designers of Yoroi claimed the ((3× 2nin)/64, 128)-space hardness.

The canonical representation is useful in this attack too. We show three different attack
models. The first one is the strongest, and it is unlikely to resist such attacks in general.
The last one is the weakest, which corresponds to the known-space attack. Note that the
last attack breaks one of the designers’ security claims about longevity.

6.1 Attack in Whitebox Model with Nonvolatile Memory
Let us assume a whitebox model, where a nonvolatile memory is available. An attacker
can memorize the old program on the encryption device and leak a little bit of the old
program with each table update. Considering such a model, bounding the leakage size of

Yosuke Todo and Takanori Isobe 389

Program

Partial program

Program recovery !

table update

Program

Partial program

table update

Program

Partial program

Figure 7: Attacks against longevity.

every table update no longer restricts the ability of the whitebox attacker. Therefore, such
attacks are unavoidable.

6.2 Attack in Whitebox Model without Nonvolatile Memory
For more constructive discussion, we next assume a weakened whitebox model, where
nonvolatile memory is not available, and all knowledge about the old program is lost after
the table update. We believe that such a weakened model is still reasonable enough for
the discussion of the whitebox model.

Unfortunately, Yoroi is insecure against such a weakened model. Recall that Yoroi
has the canonical representation. The attacker can reconstruct the canonical representation
from every updated table by using Algorithm 1. Therefore, the attacker leaks the partial
data of (T̃1, T̃2, . . . , T̃R) every table update. Specifically, it leaks 3× 2nin/64 table entries
every table update. We can collect (T̃1, T̃2, . . . , T̃R) by receiving leakage with⌈

R× 2nin

3× 2nin/64

⌉
= ⌈64R/3⌉

table updates, which are 171 and 342 in Yoroi-16 and Yoroi-32, respectively.

6.3 Known-Space Attack: Breaking Security Claim
We finally present an attack using the known-space attack (KSA) model only. The authors
claim the space hardness when at most 2nin/64 = 2nin−6 table entries are extracted by
the KSA every table update. We break this security claim. Specifically, we reconstruct the
encryption program by using the leakage generated by the KSA model only. Since the
attacker can encrypt any plaintext with the reconstructed program, a space-hardness is
lost.

In the KSA, the attacker cannot modify table entries. The attacker extracts only partial
data about T1, T2, and T3 but cannot choose extracted entries. To avoid the confusion, we
use T

(T)
1 , T

(T)
2 , and T

(T)
3 to represent three tables at time T . When a table is updated,

three tables are updated to T
(T +1)
1 , T

(T +1)
2 , and T

(T +1)
3 . The attack goal is to recover

the canonical representation, i.e., we recover T̃1, T̃2, . . . T̃R. Note that we assume the AES
key KA is known or extractable. Otherwise, the discussion is meaningless because it is
secure regardless of the Yoroi-core part.

390 Hybrid Code Lifting on Space-Hard Block Ciphers

C1T̃1 T̃2

T
(T)
1

E
(T)
1 D

(T)
1

T
(T)
2

E
(T)
2

Figure 8: Relationship between T
(T)
1 , T̃1, T

(T)
2 , and T̃2.

6.3.1 Recovery of T̃1

The first goal is to recover T̃1, where T̃1 = (E(T)
1 ∥I) ◦ T

(T)
1 . The attacker extracts

α ≈ 2nin−6 table entries

((x1, T
(T)
1 (x1)), (x2, T

(T)
1 (x2)), . . . , (xα, T

(T)
1 (xα)))

and checks lsbt(T (T)
1 (xi)). Since the mask E

(T)
1 is not applied to the last t bits,

lsbt(T̃1(xi)) = lsbt(T (T)
1 (xi)).

Therefore, we can easily recover Ai := {x ∈ Fnin
2 |lsbt(T̃1(x)) = i} by observing T

(T)
1 (xi)

for all xi.
We next recover Bηj

. Note that the mask E
(T)
1 is applied, and this mask changes every

T . On the other hand, collision pairs are preserved independently of E
(T)
1 . Therefore, we

search for (x, x′) satisfying

msbm(T̃1(x)⊕ T̃1(x′)) = 0⇔ msbm(T (T)
1 (x)⊕ T

(T)
1 (x′)) = 0.

About
(

α
2
)
× 2−m ≈ 22nin−13−m pairs can be observed every T . By collecting leakages

with different T , we recover Bηj
for all j ∈ Fm

2 .
In the canonical representation, T̃1 can be recovered by Ai and Bηj for all i and j (see

Lemma 1). We omit to estimate the complexity because this step is more negligible than
the following steps.

6.3.2 Recovery of T̃2

The second goal is to recover T̃2, where T̃2 = (E(T)
2 ∥I) ◦ T

(T)
2 ◦ (D(T)

1 ∥I). Unlike the first
round, we need to remove the pre-mask (D(T)

1 ∥I). Otherwise, we cannot compute the
input of T̃2 from the leaked T

(T)
2 .

Figure 8 shows the relationship among T
(T)
1 , T̃1, T

(T)
2 , and T̃2. Some table entries of

E
(T)
1 are constructed as

msbm(T (T)
1 (xi))

E
(T)
1−−−→ msbm(T̃1(xi)).

We now have α ≈ 2nin−6 table entries of T
(T)
1 and T̃1 is already recovered. In other words,

we collect some table entries of E
(T)
1 by α trials, and Corollary 1 is available to estimate

the number of recovered table entries.
We applied this analysis to Yoroi-16. We use Corollary 1 with (n, k0, t) = (212, 0, 210).

Then, the expected number of recovered table entries is 906.143. In other words, we know
906.143 table entries about E

(T)
1 (and also D

(T)
1).

Yosuke Todo and Takanori Isobe 391

We have β ≈ 210 table entries of T
(T)
2 . Therefore, we have β × 906.143

212 ≈ 226.536 table
entries about T

(T)
2 ◦ (D(T)

1 ∥I).
The attack procedure to recover T̃2 is the same as T̃1, but the number of available table

entries decreases from 210 to 226.536. Therefore, the cost to recover T̃2 is larger than the
cost to recover T̃1. The more rounds we analyze, the more cost increases.

6.3.3 Recovery of T̃R−1

Similarly to the recovery of T̃2, we recover partial data of E
(T)
r (D(T)

r) and T
(T)
r+1 ◦(D

(T)
1 ∥I)

for each T and obtain partial data of T̃r+1. By collecting many leakage every T , we
recover all table entries of T̃r+1. The following is the summary of this analysis.

• Use Corollary 1 with (n, k0, t) = (212, 0, 210). There are 906.143 available table entries
about E

(T)
1 . Then, 226.536 table entries about T

(T)
2 ◦ (D(T)

1 ∥I) are available.

• Use Corollary 1 with (n, k0, t) = (212, 0, 226.536). There are 220.412 available table
entries about E

(T)
2 . Then, 55.103 table entries about T

(T)
2 ◦ (D(T)

2 ∥I) are available.

• Use Corollary 1 with (n, k0, t) = (212, 0, 55.103). There are 54.741 available table
entries about E

(T)
3 . Then, 13.685 table entries about T

(T)
2 ◦ (D(T)

3 ∥I) are available.

• Use Corollary 1 with (n, k0, t) = (212, 0, 13.685). There are 13.664 available table
entries about E

(T)
4 . Then, 3.416 table entries about T

(T)
2 ◦ (D(T)

4 ∥I) are available.

• Use Corollary 1 with (n, k0, t) = (212, 0, 3.416). There are 3.415 available table entries
about E

(T)
5 . Then, 0.8537 table entries about T

(T)
2 ◦ (D(T)

5 ∥I) are available.

• Use Corollary 1 with (n, k0, t) = (212, 0, 0.854). There are 0.854 available table entries
about E

(T)
6 . Then, 0.213 table entries about T

(T)
2 ◦ (D(T)

6 ∥I) are available.

To recover T̃R−1 = T̃7 = (E(T)
7 ∥I) ◦T

(T)
2 ◦ (D(T)

6 ∥I), the number of available table entries
is 0.213. Even finding only 1 table entry needs to rely on the probabilistic event.

Let us estimate the number of required table updates. We can use the analysis on the
basis of the perfect decomposition shown in Sect. 4.3. Assuming that (x, x′) satisfying

msbm(T̃7(x)⊕ T̃7(x′)) = msbm((T (T)
2 ◦ (D(T)

6 ∥I))(x)⊕ (T (T)
2 ◦ (D(T)

6 ∥I))(x′)) = 0,

the probability that x (resp. x′) appears as known table entries is estimated as 0.213×2−16.
Thus, the probability that both x and x′ appear as known table entries is 0.2132 × 2−32.
In other words, this is (16, 4, 0.2132 × 2−32)-perfect-decomposition. The required number
of table updates is estimated as

s = (0.2132 × 2−32)−1 × 2−4 × (ln 24 − ln(−2−12 × ln(psucc))).

With psucc = 0.5, s ≈ 235.97. Therefore, we need to collect leakage of (T (T)
1 , T

(T)
2 , T

(T)
3)

with 235.97 T .
To recover T̃R−1, we analyze 2nin−6 leaked table entries every table update. Thus, the

attack complexity for each table update is roughly estimated as (R− 1)× 2nin−6, which is
212.81 in Yoroi-16. Thus, the total time complexity is 212.81+35.97 ≈ 248.78.

6.3.4 Recovery of T̃R

We finally recover T̃R.

392 Hybrid Code Lifting on Space-Hard Block Ciphers

Table 4: Experimental result for the attack on the longevity of Yoroi-10.

trial 1 2 3 4 average theoretical
s 11644781 8896042 8045264 7639131 9056304.5 ≈ 223.11 223.26

• We use Corollary 1 with (n, k0, t) = (212, 0, 0.2134). There are 0.2134 available table
entries about E

(T)
7 . Then, about 0.05336 table entries about T

(T)
3 ◦ (D(T)

7 ∥I) are
available.

The probability 0.05336 is lower than 0.2134, which is the case to recover T̃R−1. However,
we do not need to search for collision in this step because of no post-mask, i.e., T̃R−1 =
T

(T)
3 ◦ (D(T)

7 ∥I). Due to the coupon collector’s problem, we need to check roughly 220

values. Therefore, 1/0.05336× 220 ≈ 224.23 table updates are required to recover T̃R, but
it is negligible compared to 235.97.

6.3.5 Remark on Yoroi-32

The same analysis can be applied to Yoroi-32. Similarly to Yoroi-16, the dominant part
is the recovery of T̃15. At this step,

• There are 0.853 available table entries about E
(T)
14 . Then, about 0.213 table entries

about T
(T)
2 ◦ (D(T)

14 ∥I) are available.

Assuming that (x, x′) satisfies

msbm(T̃15(x)⊕ T̃15(x′)) = msbm((T (T)
2 ◦ (D(T)

14 ∥I))(x)⊕ (T (T)
2 ◦ (D(T)

14 ∥I))(x′)) = 0,

the probability that x (resp. x′) appears as known table entries is estimated as 0.213×2−32.
Thus, the probability that both x and x′ appear as known table entries is 0.2132 × 2−64.
In other words, this is a (32, 4, 0.2132× 2−64)-perfect-decomposition. The required number
of table updates is estimated as

s = (0.2132 × 2−64)−1 × 2−4 × (ln 24 − ln(−2−28 × ln(psucc))).

With psucc = 0.5, s ≈ 268.95.
The total time complexity is (R− 1)× 232−6 × 268.95 = 229.91+68.95 = 298.86.

6.4 Experimental Reports
Considering the attack complexity of 248.78 for Yoroi-16, our attack is difficult to ex-
perimentally verify. Therefore, to verify the correctness of our complexity analysis, we
implemented our attack with small-scaled Yoroi. We use Yoroi-10, where nin = 10,
t = 4, m = 6, and R = 5.

We first show the theoretical analysis.

• Use Corollary 1 with (n, k0, t) = (26, 0, 24). There are 14.266 available table entries
about E

(T)
1 . Then, 3.566 table entries about T

(T)
2 ◦ (D(T)

1 ∥I) are available.

• Use Corollary 1 with (n, k0, t) = (26, 0, 3.566). There are 3.494 available table entries
about E

(T)
2 . Then, 0.874 table entries about T

(T)
2 ◦ (D(T)

2 ∥I) are available.

• Use Corollary 1 with (n, k0, t) = (26, 0, 0.874). There are 0.8735 available table entries
about E

(T)
3 . Then, 0.218 table entries about T

(T)
2 ◦ (D(T)

3 ∥I) are available.

Yosuke Todo and Takanori Isobe 393

To recover T̃R−1 = T̃4 = (E(T)
4 ∥I) ◦T

(T)
2 ◦ (D(T)

3 ∥I), the number of available table entries
is 0.218. The probability that x (resp. x′) appears as known table entries is estimated as
0.218× 2−10. Thus, the probability that both x and x′ appear as known table entries is
0.2182 × 2−20. In other words, this is (10, 4, 0.2182 × 2−20)-perfect-decomposition. The
required number of table updates is estimated as

s = (0.21842 × 2−20)−1 × 2−4 × (ln 24 − ln(−2−6 × ln(psucc))).

With psucc = 0.5, s ≈ 223.26.
Table 4 shows the experimental results for the number of the required table updates to

recover T̃R−1. We conducted four experiments, and the average number of required table
updates is about 223.11. Therefore, our theoretical estimation works very well.

6.5 Remark on ACSA and Countermeasure
In the KSA, we need to rely on probabilistic events to recover table entries about E

(T)
r

and T
(T)
2 ◦ (D(T)

r−1∥I). Therefore, the increase in the number of rounds makes the KSA
difficult. However, we do not think such a countermeasure is reasonable because it is
unlikely to resist not only arbitrary leakage but also the ACSA. In the ACSA, the attacker
can extract table entries such that as many table entries about E

(T)
r and T

(T)
2 ◦ (D(T)

r−1∥I)
as possible are known. Therefore, the security enhancement is slow even if the number of
rounds increases.

We believe that space-hard block ciphers should be secure against not only the KSA but
also ACSA. Thus, the problem of how to design space-hard block ciphers with longevity
goes back to being an open problem.

7 Hybrid Code Lifting on SPNbox
The hybrid code lifting is an attack model to evaluate the blackbox security after the code
lifting by a whitebox attacker. It is interesting if other space-hard block ciphers are still
secure in this attack model. In this section, we discuss the security against the hybrid
code lifting on SPNbox [BIT16].

SPNbox has four variants: SPNbox-32, SPNbox-24, SPNbox-16, and SPNbox-8.
For each, the whitebox implementation uses a single table Tb : Fnin

2 → Fnin
2 , where nin is

32, 24, 16, and 8, respectively, and the number of rounds of all variants is R = 10. We
denote the number of table entries by N , and the claimed security of all variants in the
whitebox model is (N/4, 64)-space hardness.

We evaluate the security against the hybrid code lifting with parameter (λ, τw, τb) =
(T/4 × nin, 264, 2128). In other words, we evaluate if SPNbox still maintains 128-bit
security against key-recovery attacks in the blackbox model even if T/4 table entries are
leaked.

7.1 Specifications of SPNbox
SPNbox has four variants of SPNbox-8, SPNbox-16, SPNbox-24, and SPNbox-32 [BIT16].
SPNbox-nin is a substitution-permutation network (SPN) with a block length of n bits, a
128-bit secret key, and based on nin-bit substitution boxes. For SPNbox-8, SPNbox-16,
and SPNbox-32, the block length is n = 128 bits, whereas SPNbox-24 has n = 120.

The state of SPNbox-nin is organized as a vector of ℓ = n/nin elements of nin bits
each:

X = {X1, . . . , Xℓ}.

394 Hybrid Code Lifting on Space-Hard Block Ciphers

A plaintext X0 is encrypted to a ciphertext XR by applying R rounds of the following
round transformation to the plaintext:

XR =
(
⃝R

r=1 (σr ◦ θ ◦ γ)
)

(X0).

For all concrete proposals, SPNbox-8, SPNbox-16, SPNbox-24, and SPNbox-32, we set
the number of rounds to R = 10. We now define each of the components γ, θ, and σr.

The Nonlinear Layer γ. γ is a nonlinear substitution layer, in which t key-dependent
identical bijective nin-bit S-boxes are applied to the state:

γ : (Fnin
2)ℓ → (Fnin

2)ℓ

(X1, . . . , Xℓ) → (Snin
(X1), . . . , Snin

(Xℓ)) .

In SPNbox-nin, the substitution Snin
is realized by a dedicated small block cipher of

block length nin. In this paper, we omit the specifications of small block ciphers and refer
to [BIT16] for the details.

The Linear Layer θ. θ is a linear diffusion layer that applies a t× t MDS matrix to the
state:

θ : (Fnin
2)ℓ → (Fnin

2)ℓ

(X1, . . . , Xℓ) 7→ (X1, . . . , Xℓ) ·Mnin .

We denote by cir(a0, . . . , aℓ−1) the ℓ×ℓ circulant matrix A with the coefficients a0, . . . , aℓ−1
in the first row; and by had(a0, . . . , aℓ−1) the ℓ× ℓ Hadamard matrix A with coefficients
Ai,j = ai⊕j , with ℓ a power of two.

For the concrete proposals SPNbox-nin with nin = 32, 24, 16, 8, the matrix Mnin is
defined as follows:

M32 = cir(1x, 2x, 4x, 6x) for nin = 32,

M24 = cir(1x, 2x, 5x, 3x, 4x) for nin = 24,

M16 = had(1x, 3x, 4x, 5x, 6x, 8x, bx, 7x) for nin = 16,

and

M8 = had(08x, 16x, 8ax, 01x, 70x, 8dx, 24x, 76x,

a8x, 91x, adx, 48x, 05x, b5x, afx, f8x)
for nin = 8.

The Affine Layer σr. σr is an affine layer that adds round-dependent constants to the
state:

σr : (Fnin
2)ℓ → (Fnin

2)ℓ

(X0, . . . , Xℓ−1) 7→ (X1 ⊕ Cr
1 , . . . , Xℓ ⊕ Cr

ℓ) ,

with Cr
i = (r − 1) · ℓ + i for 1 ≤ i ≤ ℓ.

7.2 Attack Procedure
7.2.1 Code-Lifting Phase

The hybrid code lifting allows not only table entries but also arbitrary leakage. For
example, extracting plaintext-intermediatetext pairs is possible, but it is non-trivial to

Yosuke Todo and Takanori Isobe 395

Table 5: Summary of simple hybrid code lifting on SPNbox.

cipher nin ℓ N M0 M Mℓ (M/2nin)(R−2)×ℓ

SPNbox-32 32 4 38612034 79 1187519920 2120.66 2−59.35

SPNbox-24 24 5 120662 11 4638747 2110.82 2−74.19

SPNbox-16 16 8 294 3 18116 2113.31 2−118.72

SPNbox-8 8 16 0 0 64 296 2−256

recover the encryption program from them. As far as we analyze, there are no better
methods than extracting a part of table entries.

Let ℓ be the number of S-boxes each round, i.e., 10ℓ table lookups are used to encrypt
one plaintext. A whitebox attacker first picks M0 table entries, and then, N ≤ Mℓ

0
plaintexts are always encrypted up to the 1st round. The attacker additionally extracts
table entries that enable us to encrypt these N plaintexts up to one round before the last
round. Then, N × (R− 2)× ℓ (overlapping) table entries are extracted. This is equivalent
to the coupon collector’s problem, where there are 2nin coupons and 2nin−2 coupons are
collected with N × (R− 2)× ℓ trials6. Due to Corollary 1,

2nin−2 ≈ 2nin − eln(2nin)− N ×(R−2)×ℓ

2nin ,

N ≈
⌊

2nin × (ln 2nin − ln(2nin − 2nin−2))
(R− 2)× ℓ

⌋
.

We estimate N and M0 on each parameter, and Table 5 summarizes these results. We
notice N = 0 in SPNbox-8, but this is convincing because we need (R− 2)× 16 = 128
table lookups but the size of leaked table entries is only 64 (= 28

4).

7.2.2 Blackbox Phase

The blackbox phase consists of two steps.

The 1st Step. In the 1st step of the blackbox phase, N chosen plaintexts are encrypted
up to one round before the last round in the local of the blackbox attacker. The attacker
also queries these chosen plaintexts to the encryption oracle. Then, N × ℓ (overlapping)
table entries are extracted from the last round. This is equivalent to the coupon collector’s
problem, where there are 2nin coupons, 2nin−2 coupons are already collected, and additional
coupons are collected by N × ℓ trials. Due to Corollary 1, the number of finally collected
table entries is estimated as follows.

M≈ ⌊2nin − eln(2nin −2nin−2)− N ×ℓ

2nin ⌋.

We estimate M on each parameter, and Table 5 summarizes these results.

The 2nd Step (Simple Procedure). The goal of this step is to recover the whole
table entries. We already have M table entries. The coupon collector’s problem is
useful to estimate how many (overlapping) table entries are required to collect all table
entries. Due to Theorem 1, the number of trials to collect all coupons is estimated as
2nin × (ln(2nin −M) + 0.577), which are 236.49, 228.08, 219.50, and 210.54 for SPNbox-32,
SPNbox-24, SPNbox-16, and SPNbox-8, respectively.

6Accurately, there are 2nin coupons, we already have M0 coupons, and 2nin−2 − M0 coupons are
collected with N × (R − 2) × ℓ trials. However, we neglect the impact on M0 for simplicity. In practice,
the attacker can repeat this procedure and find M0 table entries such that N plaintexts can be encrypted
up to one round before the last round by using 2nin−2 leaked table entries. Because M0 is very small, it
is easy to find such table leakage for a whitebox attacker running in time 2τw .

396 Hybrid Code Lifting on Space-Hard Block Ciphers

Whether we can obtain these overlapping table entries is important. There are Mℓ

chosen plaintexts that are encrypted up to the 1st round. Since lookups of each S-box
are known with probability of (M/2nin), the probability that we can encrypt Mℓ chosen
plaintexts up to one round before the last round is (M/2nin)(R−2)×ℓ. These values on
each parameter are summarized in Table 5. In SPNbox-32 and SPNbox-24, the following

Mℓ × (M/2nin)(R−2)×ℓ
> 1

holds. Then, we observe
⌊
Mℓ × (M/2nin)(R−2)×ℓ

⌋
× ℓ (overlapping) table entries, which

are 263.23 and 238.86 for SPNbox-32 and SPNbox-24, respectively. Since they are larger
than 236.49 and 228.08, respectively, it recovers the whole table entries of both SPNbox-32
and SPNbox-24. The number of required chosen plaintexts is 236.49/2−59.35 = 295.84 and
228.08/2−74.19 = 2102.27 of SPNbox-32 and SPNbox-24, respectively. Moreover, the time
complexity is the same as the data complexity. On the other hand, this procedure cannot
find any table entry of SPNbox-16 and SPNbox-8.

According to Table 2 in [BIT16], N/23.20 and N/22.57 random table entries are required
to encrypt a plaintext with probability 2−128 of SPNbox-32 and SPNbox-24, respectively.
Thus, it is natural that they are vulnerable to the hybrid code lifting when quarter-size table
entries are leaked. On the other hand, N/21.61 table entries are required of SPNbox-16
in [BIT16]. Thus, it is interesting whether SPNbox-16 is secure against the hybrid code
lifting or not.

The 2nd Step (Filter-then-Guess). To attack SPNbox-16, we consider a more advanced
technique, which accepts some unknown table entries7.

When there are s unknown table entries to encrypt plaintexts, we guess s unknown
table entries. However, we face two difficulties. 1) Is it possible that we guess s unknown
table entries whose time complexity is faster than 2128? 2) Is it possible to filter all wrong
guesses? For the 1st question, the filter-then-guess procedure is useful. We first filter
available data, reduce the size, and then guess unknown table entries. For the 2nd question,
we use the case that some table entries are known in the last round, and wrong keys are
filtered by comparing these known entries and ciphertexts given by the encryption oracle.

Let s⃗ = (s1, s2, . . . , sR) be a vector representation, where sr denotes the number of the
access to unknown table entries in the rth round. When we use Mℓ chosen plaintexts,
we can always evaluate the first round, i.e., s1 = 0, and there are Mℓ inputs for the 2nd
round. Given Mℓ inputs, we accept s2 accesses to unknown table entries. Therefore, the
filter-then-guess procedure generates

Mℓ ×

{(
ℓ

s2

)
×
(

1− M2nin

)s2

×
(
M

2nin

)ℓ−s2
}
× (2nin −M)s2

outputs, which becomes inputs of the 3rd round. Note that the time complexity is the
same as the value above. Given s⃗, the time complexity can be evaluated by the iterative
applications, and we only use s⃗’s such that the time complexity is enough lower than 2128,
i.e., ≤ 2120. Let S be the set of such an s⃗, and the total time complexity is the sum of the
time complexity each s⃗ ∈ S.

The probability that plaintexts can be encrypted (accepting these guesses) up to one
round before the last round is

p =
∑
s⃗∈S

(
R−1∏
r=2

(
ℓ

sr

))
×
(

1− M2nin

)s

×
(
M

2nin

)(R−2)×ℓ−s

,

7The authors of [CCD+17] also discussed a similar analysis accepting guesses of some unknown table
entries. They analyzed whether there is a plaintext that is successfully encrypted with a probability higher
than 2−128. The difference is that we show a concrete attack procedure whose running time is lower than
2128.

Yosuke Todo and Takanori Isobe 397

Table 6: Summary of filter-then-guess technique on SPNbox.

cipher R s N M p time pw M′

SPNbox-16 10 4 294 18116 2−94.41 2124.09 2−3.98 216.69

SPNbox-16 11 6 261 17925 2−100.32 2126.57 2−16.61 24.97

SPNbox-24 13 3 87754 4519115 2−86.05 2123.93 2−6.57 220.79

SPNbox-24 14 4 80441 4492370 2−91.25 2125.11 2−16.06 211.74

SPNbox-24 15 4 74253 4469694 2−100.30 2125.69 2−25.17 22.62

SPNbox-32 16 3 22064019 1139258434 2−91.85 2123.31 2−12.50 228.49

SPNbox-32 17 3 20593084 1134932419 2−98.60 2123.36 2−19.289 215.62

SPNbox-32 18 3 19306017 1131142294 2−118.74 2123.55 2−26.51 28.40

where s =
∑R−1

r=2 sr. Therefore, Mℓ × p plaintexts can be successfully encrypted (if
each guess is correct) up to one round before the last round. However, as we already
mention in the 2nd question, we need to filter wrong guesses. Since there are at most
(2nin − M)s expansions each plaintext by guessing table entries, we observe at most
(2nin −M)s ×Mℓ × p wrong encryptions. To filter them, we use data, where s + 1 out
of ℓ accesses to table entries are known in the last round. The probability that such
data appears is f =

(
ℓ

s+1
)
×
(
1− M

2nin

)ℓ−s−1 ×
(M

2nin

)s+1. For wrong guess, we have
((s + 1)×nin)-bit filter. Therefore, when pw = (2nin −M)s×Mℓ× p× f × 2−(s+1)nin < 1,
we expect that all wrong guesses are discarded. On the other hand, when we correctly
guess, M ℓ × p× f plaintexts are available, and M′ = M ℓ × p× f × (ℓ− 1) (overlapping)
table entries are recovered.

Table 6 summarizes the time complexity and the size of the recovered (overlapping) table
entries for each parameter. Note that these recovered table entries are not overlapped in the
originalM entries, but they could be overlapped inside of the recovered entries. In SPNbox-
16, 216 − 18116 = 47420 and because of Corollary 1, 47420− eln(47420)− 216.69

47420 ≈ 215.37 new
table entries are recovered. The remaining table entries are easily recovered because almost
all table entries (214 + 215.37 ≈ 215.88) are recovered already.

For 11-round SPNbox-16, 24.97 (overlapped) table entries are recovered. However,
since our goal is to recover the full table entries, it has not been clear whether 11-round
SPNbox-16 can be attacked or not. As far as we analyze, we cannot recover any table
entry for 12-, 16, and 19-round SPNbox-16, SPNbox-24, and SPNbox-32, respectively.

8 Conclusion
In this paper, we propose a new attack model called hybrid code lifting for space-hard
block ciphers. We implicitly expected the leakage-resilient security by the space hardness,
but it is not always equal. Our attack model reflects the leakage-resilient security, where
λ-bit leakage by a whitebox attacker running in time 2τw does not decrease the blackbox
security. As an application, we showed practical program recovery attacks on Yoroi.
Moreover, we also break the security claim about the longevity.

Hybrid code lifting and our attack against longevity present many future topics for
both attacks and designs for space-hard block ciphers.

On attacks, the security against hybrid code lifting on existing space-hard block ciphers
such as SPACE [BI15] or WhiteBlock [FKKM16] can be discussed. We evaluated SPNbox,
but the technique is straightforward. More advanced and non-trivial attacks are open
questions. In particular, we leave it as an open question whether we can attack 12-, 16-,
and 19-round SPNbox-16, SPNbox-24, and SPNbox-32, respectively.

In designs, our attacks against the longevity on Yoroi are critical, and Yoroi is not
easy to tweak to resist our attack. Although it would be possible to resist only known-space

398 Hybrid Code Lifting on Space-Hard Block Ciphers

attacks by increasing the number of rounds, it is unlikely to resist not only arbitrary
leakage but also adaptive chosen-space attacks. The problem of designing such ciphers
goes back to being an open problem.

Our attack goal was a program recovery to demonstrate apparent vulnerability in the use
case of space-hard ciphers. On the other hand, for future design, only defending program
recovery is unlikely sufficient. For example, we should not allow blackbox attackers to
recover the program, which can encrypt/decrypt many (but not all) plaintexts/ciphertexts.
It is unavoidable that λ-bit leakage can leak λ-bit plaintext-ciphertext pairs. Therefore, one
of the possible security goals is that blackbox attackers cannot output plaintext-ciphertext
pairs beyond λ-bit data without an encryption oracle. In practice, as far as we analyze,
12-round SPNbox-16 can be a good candidate for ensuring such strong security.

Acknowledgments
The authors would like to thank the reviewers of ToSC. Their comments are very helpful
to improve our paper. Takanori Isobe is supported by JST, PRESTO Grant Number
JPMJPR2031 and Grant-in-Aid for Scientific Research (B)(KAKENHI 19H02141).

References
[ABCW21] Shashank Agrawal, Estuardo Alpirez Bock, Yilei Chen, and Gaven J. Watson.

White-box cryptography with device binding from token-based obfuscation
and more. IACR Cryptol. ePrint Arch., page 767, 2021.

[All14] Smart Card Alliance. A smart card alliance mobile & nfc council white paper,
host card emulation (hce) 101, 2014.

[BABM20] Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil Michiels.
On the security goals of white-box cryptography. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):327–357, 2020.

[BBB+19] Estuardo Alpirez Bock, Joppe W. Bos, Chris Brzuska, Charles Hubain, Wil
Michiels, Cristofaro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen, and
Alexander Treff. White-box cryptography: Don’t forget about grey-box
attacks. J. Cryptol., 32(4):1095–1143, 2019.

[BBF+20] Estuardo Alpirez Bock, Chris Brzuska, Marc Fischlin, Christian Janson,
and Wil Michiels. Security reductions for white-box key-storage in mobile
payments. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 221–252. Springer, 2020.

[BBIJ17] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjerregaard
Jepsen. Analysis of software countermeasures for whitebox encryption. IACR
Trans. Symmetric Cryptol., 2017(1):307–328, 2017.

[BBK14] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Crypto-
graphic schemes based on the ASASA structure: Black-box, white-box, and
public-key (extended abstract). In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 63–84. Springer,
2014.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White Box
Cryptography: Another Attempt. IACR Cryptology ePrint Archive, 2006:468,
2006.

Yosuke Todo and Takanori Isobe 399

[BGE04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a
White Box AES Implementation. In SAC 2004, pages 227–240, 2004.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differ-
ential computation analysis: Hiding your white-box designs is not enough.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume
9813 of LNCS, pages 215–236. Springer, 2016.

[BI15] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 1058–1069. ACM, 2015.

[BIT16] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards prac-
tical whitebox cryptography: Optimizing efficiency and space hardness. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 126–158, 2016.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for
white-box designs. In Thomas Peyrin and Steven D. Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 373–402. Springer,
2018.

[BU21] Alex Biryukov and Aleksei Udovenko. Dummy shuffling against algebraic
attacks in white-box implementations. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 219–248. Springer, 2021.

[CC19] CryptoExperts and Cybercrypt. The WhibOx Contest - edition 2.
https://whibox.io/contests/2019/, 2019. CHES 2019 Capture the Flag Chal-
lenge.

[CCD+17] Jihoon Cho, Kyu Young Choi, Itai Dinur, Orr Dunkelman, Nathan Keller,
Dukjae Moon, and Aviya Veidberg. WEM: A new family of white-box block
ciphers based on the even-mansour construction. In Helena Handschuh,
editor, CT-RSA 2017, volume 10159 of LNCS, pages 293–308. Springer, 2017.

[CEJvO02a] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, 2002.

[CEJvO02b] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Joan Feigenbaum,
editor, ACM CCS-9, DRM 2002, volume 2696 of LNCS, pages 1–15. Springer,
2002.

[con17] ECRYPT-CSA consortium. The WhibOx Contest: An ecrypt white-box
cryptography competition. https://whibox.io/contests/2017/, 2017. CHES
2017 Capture the Flag Challenge.

[DLPR13] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja
Lange, Kristin E. Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282
of LNCS, pages 247–264. Springer, 2013.

[ER59] P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae
Debrecen, 6:290–297, 1959.

400 Hybrid Code Lifting on Space-Hard Block Ciphers

[FKKM16] Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud.
Efficient and provable white-box primitives. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
159–188, 2016.

[int18] intertrust. Intertrust white paper, taking steps to protect financial mobile
applications, 2018.

[Kar10] Mohamed Karroumi. Protecting White-Box AES with Dual Ciphers. In
ICISC 2010, pages 278–291, 2010.

[KI21] Yuji Koike and Takanori Isobe. Yoroi: Updatable whitebox cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):587–617, 2021.

[KLLM20] Jihoon Kwon, ByeongHak Lee, Jooyoung Lee, and Dukjae Moon. FPL: white-
box secure block cipher using parallel table look-ups. In Stanislaw Jarecki,
editor, CT-RSA 2020, volume 12006 of LNCS, pages 106–128. Springer, 2020.

[KSHI20] Yuji Koike, Kosei Sakamoto, Takuya Hayashi, and Takanori Isobe. Galaxy: A
family of stream-cipher-based space-hard ciphers. In Joseph K. Liu and Hui
Cui, editors, ACISP 2020, volume 12248 of LNCS, pages 142–159. Springer,
2020.

[LN05] Hamilton E. Link and William D. Neumann. Clarifying Obfuscation: Im-
proving the Security of White-Box DES. In ITCC 2005, pages 679–684,
2005.

[LRM+13] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two Attacks on a White-Box AES Implementation. In SAC 2013,
pages 265–285, 2013.

[MRP12] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao -
Lai White-Box AES Implementation. In SAC 2012, pages 34–49, 2012.

[MWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a
Perturbated White-Box AES Implementation. In INDOCRYPT 2010, pages
292–310, 2010.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis
of White-Box DES Implementations with Arbitrary External Encodings. In
SAC 2007, pages 264–277, 2007.

Yosuke Todo and Takanori Isobe 401

A Trivial Chosen-Space Attack
The authors of [KI21] claimed the (N/4)-space hardness against the known/chosen-space
attack. However, the analysis described in [KI21] is only for the known-space attack, and
the authors overlooked a gap between the known-space attack and chosen-space attack
when the space-hard block cipher uses multiple tables. Yoroi has S1, S2, and S3, and
S2 is used more than S1 and S3. Therefore, extracting more table entries from S2 is
advantageous for attackers.

Let us consider the case of Yoroi-16. We extract 2nin/8, 2nin/2, and 2nin/8 table
entries from S1, S2, and S3, respectively. The total leakage size is

2nin ×
(

1
8 + 1

2 + 1
8

)
= 3× 2nin × 1

4 .

Then, the probability that any randomly drawn plaintext is encrypted is

2−3×8 × 2−6×8 × 2−3×8 = 2−96,

which is clearly higher than 2−128.

B Understanding Canonical Representation
We exploit the canonical representation in our attacks against Yoroi. In this appendix,
we provide a small example to understand the representation.

Let us consider a small-scaled Yoroi, where a 4-bit bijective function is used instead
of the nin bijective function. We use t = 2 and m = 2. Namely, θ and σr are applied to
the last 2 bits, and the top 2 bits become a direct input of the next round. We suppose
that θ and σr are revised adequately according to the change of bit length.

As an example, let us consider the following 4-bit bijective function S.

x 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
S(x) 0001 1010 0100 1100 0110 1111 0011 1001 0010 1101 1011 0111 0101 0000 1000 1110

We divide 4 bits into top 2 bits and bottom 2 bits. Let Ai := {x ∈ F4
2|lsb2(S(x)) = i}.

Then, with ρ ∈ (F2
2)2,

Aρ00 := {0000, 0111, 1001, 1100} ρ00 = 01

Aρ01 := {0001, 0100, 1000, 1111} ρ01 = 10

Aρ10 := {0010, 0011, 1101, 1110} ρ10 = 00

Aρ11 := {0101, 0110, 1010, 1011} ρ11 = 11

Similarly, let Bj := {x ∈ F4
2|msb2(S(x)) = j}. Then, with η ∈ (F2

2)2,

Bη00 := {0000, 0110, 1000, 1101} η00 = 00

Bη01 := {0001, 0111, 1010, 1110} η01 = 10

Bη10 := {0010, 0100, 1011, 1100} η10 = 01

Bη11 := {0011, 0101, 1001, 1111} η11 = 11

Note that we can compute S(x) for any x from Ai and Bj . For example, S(1010) =
η01∥ρ11 = 1011 because 1010 belongs to Aρ11 and Bη01 .

402 Hybrid Code Lifting on Space-Hard Block Ciphers

We now change this S-box to the one in the canonical representation, where Property 1
holds in (E∥I) ◦ S. Specifically, we focus on A00, and

0010 S−→ 0100
E∥I−−→ 0000,

0011 S−→ 1100
E∥I−−→ 0100,

1101 S−→ 0000
E∥I−−→ 1000,

1110 S−→ 1000
E∥I−−→ 1100.

Then, E is defined as follows.

x 00 01 10 11
E(x) 10 00 11 01

Note that the canonical representation does not change Ai, but it changes the index ηj of
Bηj

. Corresponding ηj can be computed by sorting all elements of A0. In the case above,
we focus on A00 = {0010, 0011, 1101, 1110}. Then, 0010, 0011, 1101, and 1110 belong to
Bη10 , Bη11 , Bη00 , and Bη01 , respectively. After applying (E∥I),

η10 < η11 < η00 < η01

holds, and it implies

η10 = 00, η11 = 01, η00 = 10, η01 = 11

when the canonical representation is used.
After we change the S-box to the one in the canonical representation by applying E∥I

after the S-box, we next go to the next round. Note that the S-box in the next round is
S ◦ (E−1∥I) to maintain the functionality. Therefore, we next change S ◦ (E−1∥I) to the
one in the canonical representation.

	Introduction
	Our Contribution

	Whitebox Cryptography and Space-Hard Block Cipher
	Block Cipher and Its Whitebox Security
	Space-Hard Block Cipher

	Hybrid Code Lifting on Space-Hard Block Ciphers
	Attack Model
	Motivation of Hybrid Code Lifting
	General Attack Idea for Program Recovery

	Preliminaries for Our Attacks against Yoroi
	Yoroi: Updatable Space-Hard Block Cipher
	Canonical Representation of Yoroi
	Perfect Decomposition

	Hybrid Code Lifting on Yoroi
	Attack Procedure
	Hybrid Code Lifting using More Leakage

	Attacks against Longevity of Yoroi
	Attack in Whitebox Model with Nonvolatile Memory
	Attack in Whitebox Model without Nonvolatile Memory
	Known-Space Attack: Breaking Security Claim
	Experimental Reports
	Remark on ACSA and Countermeasure

	Hybrid Code Lifting on SPNbox
	Specifications of SPNbox
	Attack Procedure

	Conclusion
	Trivial Chosen-Space Attack
	Understanding Canonical Representation

