
Hybrid Code Lifting on

Space-Hard Block Ciphers
--Application to Yoroi and SPNbox--

NTT Social Informatics Laboratories, University of Hyogo

Yosuke Todo and Takanori Isobe

FSE 2023 (Beijing and Kobe)

Goal of whitebox block ciphers

Whitebox cryptography

P C

Block cipher

Blackbox attack Whitebox attack

• An attacker can observe/choose

plaintexts and ciphertexts.

• The attacker never watch the

inside of the encryption.

• An attacker can observe

everything including the

inside of the encryption.

• Demanded security when the

encryption can be used on

untrusted environment.

• Primary goal is to resist the key extraction attack.

• Secondary goal is to resist the code lifting.

2

• Proposed by Bogdanov and Isobe at CCS 2015.

• Security against key extraction attack.

– Extracting the short secret key is as difficult as the blackbox attack against AES.

• Security against code lifting.

– So-called space hardness.

Space-hard block ciphers

Block cipher, SPACE.

3

• (M,Z)-space hardness

– The implementation of a block cipher is (M,Z)-space hard if it is
infeasible to encrypt (decrypt) any randomly drawn plaintext
(ciphertext) with probability higher than 2−𝑍 given any code (tale)
of size less than M.

• Attack models

– Known space (KS) leaks M table entries randomly.

– Chosen space (CS) leaks M chosen table entries.

– Adaptive chosen space (ACS) leaks M adaptively chosen table
entries.

– Arbitrary leakage.

Space hardness

4

• Even if a whitebox attacker can successfully extract the M

code from the implementation, the attacker can’t imitate

the cipher.

• Is this intention true??

– Space hardness doesn’t suppose the blackbox attacker receiving

the leakage.

– It doesn’t satisfy the intention if slight leakage allows the blackbox

attacker to recover the full program!!

Behind intention of space hardness

5

• The first phase is code lifting by a whitebox attacker.

– The attacker analyzes the implementation like “known-key(table) attack”,

and outputs leakage whose size is up to M.

• The second phase is a classical blackbox attacker.

– They can exploit the leakage generated by the whitebox attacker.

Hybrid scenario

6

• Yoroi (from CHES2021)

– Yoroi has very unique functionality called longevity.

– The implementation is updatable while maintaining the functionality.

• SPNbox (from Asiacrypt2016)

– As far as we know, SPNbox is the most efficient space-hard ciphers.

– In other words, it doesn’t have enough security margin.

Let’s discuss hybrid scenario

7

We consider a new attack model

taking the intention of the space hardness into consideration.

Note that the authors of existing ciphers don't claim such security.

Security of Yoroi

with hybrid scenario

• Three S-boxes, S1, S2, and S3 are used.

• 𝜎 is constant addition

• 𝜃 is the multiplication of the MDS.
– 𝜎 and 𝜃 are only applied to the last t bits.

• Finally, AES 𝒜 is applied.

• Security claims.
– 128-bit security against blackbox attacker.

– 128-bit security against key extraction.

–
2𝑛𝑖𝑛

4
, 128 -space hard against KSA

(the ability of the whitebox attacker is limited
to random table entry extraction.).

Yoroi

9

• Yoroi was designed to aim for the unique property, longevity.

• Longevity: updatable implementation.

– The functionality is maintained.

– Once the implementation (table) is updated, attackers need to re-leak the

updated table from the beginning to copy the functionality.

– It can be promising countermeasure against the following attack.

• Leak slight data every day such that it’s not detectable by anomaly detection.

• Leak much data by spending many days.

– e.g., 10MB / day. Then, we can collect 1GB in 100 days.

Unique property: longevity of Yoroi

10

• Apply m-bit block cipher 𝐸𝐾
to top m bits of output of each S-box.

• They are cancelled out in the next round.

• Security claim.

–
2𝑛𝑖𝑛

64
, 128 -space hard against KSA each table

update.

Yoroi – How to update implementation

11

• Canonical representation

– Introduce a canonical representation of Yoroi

that can be quickly reconstructed from implementation.

• Leakage

– Leak the AES key (128 bits) and slight table entries.

• Blackbox attack using the leakage

– Construct efficient truncated differential.

– Recover table entries of the canonical representation.

Attack overview

12

• We choose 𝐸𝑟 such that ෩𝑇𝑟 satisfies

Property 1.

• The converted table is unique

independent of the table update.

Property 1

Canonical representation of Yoroi

t bitsm bits
fixed

෩𝑇𝑟𝑥𝑖

t bitsm bits
fixed

෩𝑇𝑟𝑥𝑗

𝑦𝑖

𝑦𝑗

Yoroi has a unique canonical representation independent of the implementation.
13

If 𝑥𝑖 < 𝑥𝑗 , 𝑦𝑖 < 𝑦𝑗 holds.

• High-probability truncated differential allows us to detect the

partial collision of each table entry.

• It’s useful to recover the table of the canonical representation.

How to recover the canonical representation?

14

• Only 800-bit leakage (the ratio is 2−11.94) is enough to recover the

full program of Yoroi-16 with practical time complexity!!

• SPNbox is not catastrophic like Yoroi, but impossible to maintain

128-bit security.

Summary of results

15

Attack against Longevity

• Hybrid attack doesn’t break the authors’ security claim.

• Discuss the longevity, which was the design motivation of Yoroi.

Motivation

17

• Arbitrary leakage.

– Just copy the old program and leak it.

– It’s impossible to ensure such security in general.

• Arbitrary leakage without non-volatile memory.

– Compute the unique canonical representation and leak it.

– Since Yoroi has the canonical representation,

it’s impossible to ensure such security.

• KSA leakage.

– Designers’ claim.

– Is it possible to recover the full program only by this assumption?

Three leakage assumptions

18

19

Attack by KSA leakage: recover ෨𝑇1
Try to recover Use the canonical

representation again.

1. Observe the partial entries of 𝑇1
(𝒯)

as leakage.

– The canonical representation, ෨𝑇1, is independent of 𝐸1
(𝒯)

.

– It’s not difficult to recover ෨𝑇1.

Attack by KSA leakage: recover ෨𝑇1
Try to recover Use the canonical

representation again.

20

Leaked
(every imp.)

21

Attack by KSA leakage: recover ෨𝑇2
Fully recovered Use the canonical

representation again.

Leaked
(every imp.)

Try to recover

Attack by KSA leakage: recover ෨𝑇2
Fully recovered Use the canonical

representation again.

22

Leaked
(every imp.)

Partially recovered
(every imp.)

Try to recover

1. Recover the partial entries of 𝐸1
(𝒯)

by using ෨𝑇1 and 𝑇1
(𝒯)

(leakage).

1. Recover the partial entries of 𝐸1
(𝒯)

by using ෨𝑇1 and 𝑇1
(𝒯)

(leakage).

2. Get the partial entries of 𝐷1
(𝒯)

.

Attack by KSA leakage: recover ෨𝑇2
Fully recovered Use the canonical

representation again.

23

Leaked
(every imp.)

Partially recovered
(every imp.)

Partially recovered
(every imp.)

Try to recover

1. Recover the partial entries of 𝐸1
(𝒯)

by using ෨𝑇1 and 𝑇1
(𝒯)

(leakage).

2. Get the partial entries of 𝐷1
(𝒯)

.

3. Observe the partial entries of 𝑇2
(𝒯)

as leakage.

Attack by KSA leakage: recover ෨𝑇2
Fully recovered Use the canonical

representation again.

24

Leaked
(every imp.)

Partially recovered
(every imp.)

Leaked
(every imp.)

Try to recover

Partially recovered
(every imp.)

1. Recover the partial entries of 𝐸1
(𝒯)

by using ෨𝑇1 and 𝑇1
(𝒯)

(leakage).

2. Get the partial entries of 𝐷1
(𝒯)

.

3. Observe the partial entries of 𝑇2
(𝒯)

as leakage.

4. Get the partial entries of 𝑇2
(𝒯)

∘ (𝐼||𝐷1
𝒯
).

– The canonical representation, ෨𝑇2, is independent of 𝐸2
(𝒯)

.

– It’s not difficult to recover ෨𝑇2.

Attack by KSA leakage: recover ෨𝑇2
Fully recovered Use the canonical

representation again.

25

Leaked
(every imp.)

Partially recovered
(every imp.)

Partially recovered
(every imp.)

Try to recover

Summary of attacks

26

• We propose the hybrid code lifting and demonstrate the impact.

• We break the security claim about the longevity of Yoroi.

– With complexity of 248.78, we can recover the full program.

• Countermeasure?

– Increasing number of rounds.

• It’s useful only for the attack using the KSA leakage.

• It’s difficult to ensure the security on not only arbitrary but also ACSA leakage.

• The open question is how to design an updatable space-hard

cipher, ensuring security against arbitrary leakage.

Conclusion

27

