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Abstract. Mixed Integer Linear Programming (MILP) solver has become one of
the most powerful tools of searching for cryptographic characteristics. It has great
significance to study the influencing factors of the efficiency of MILP models. For
this goal, different types of MILP models should be constructed and carefully studied.
As Boolean functions are the fundamental cryptographic components, in this paper,
we study the descriptive models of Boolean functions. Here, a descriptive model of
a Boolean function refers to a set of integer linear inequalities, where the set of the
binary solutions to these inequalities is exactly the support of this Boolean function.
Previously, it is hard to construct various types of descriptive models for study, one
important reason is that only a few kinds of inequalities can be generated. On seeing
this, a new approach, called SuperBall, is proposed to generate inequalities. The
SuperBall approach is based on the method of undetermined coefficients, and it
could generate almost all kinds of inequalities by appending appropriate constraints.
Besides, the Sasaki-Todo Algorithm is also improved to construct the descriptive
models from a set of candidate inequalities by considering both their sizes and
strengths, while the strengths of descriptive models have not been considered in the
previous works. As applications, we constructed several types of descriptive models
for the Sboxes of Liliput, SKINNY-128, and AES. The experimental results first prove
that the diversity of the inequalities generated by the SuperBall approach is good.
More importantly, the results show that the strengths of descriptive model do affect
the efficiencies, and although there is not a type of descriptive model having the best
efficiency in all experiments, we did find a specific type of descriptive model which
has the minimal size and relatively large strength, and the descriptive models of this
type have better efficiencies in most of our experiments.
Keywords: MILP · Inequality · Boolean function · Sbox · linear layer

1 Introduction
In 2009, Borghoff et al. firstly applied the Mixed Integer Linear Programming (MILP)
method to attack Bivium [BKS09]. Although they did not get outstanding results at that
time, they believed that this kind of attacks was also applicable to other cryptographic
algorithms. In 2011, the MILP method was used for cryptanalyses by Mouha et al.
[MWGP11] and Wu et al. [WW11] again. The authors transformed the problem of
counting the minimal number of active S-boxes into an MILP problem. Mouha et al.
proposed the MILP modelings for the XOR operation and the linear transformations,
but they could not model the differential properties of Sboxes. Thus, only word-oriented
models were constructed, and these models cannot be applied to all kinds of ciphers at
that time, e.g. Present [BKL+07] and Gift [BPP+17]. In 2014, Sun et al. proposed
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two methods to model the possible and impossible differential propagations of the Sboxes
in [SHW+14a, SHW+14b], so they could find the differential characteristics automatically
for bit-oriented block ciphers. Since then, MILP methods have been widely applied in
cryptanalysis, including differential attacks [SHW+14a, SHW+14b, FWG+16, ZZDX20],
impossible differential attacks [ST17b], and cube attacks [XZBL16, SWW17, TIHM18,
HW18, WHG+19, HLM+20].

Usually, the propagation property of a cryptographic component (e.g. Sbox) can be
represented as a Boolean function. For a Boolean function F , to model F by an MILP
method is to compute a set of integer linear inequalities such that the set of binary
solutions to these inequalities is exactly the support of F . For convenience, we call the set
of inequalities that models F as a descriptive model of F . According to [BC20], two
problems should be solved if we want to compute a descriptive model of F .
Problem 1: How to generate inequalities such that the bit vectors in the support of F
are all solutions to these inequalities?
Problem 2: If the first problem is solved, then among the candidate inequalities, how to
choose a set of inequalities that models F?

For Problem 1, Sun et al. proposed two methods to generate inequalities in [SHW+14a,
SHW+14b], the convex hull method and the logical condition method. In the convex hull
method, the inequalities were generated by computing the H-representation of the convex
hull of all points corresponding to possible differential propagations. The convex hull can
be computed by the Sage software [Dev16]. The logical condition method could generate
an inequality for every point corresponding to the impossible differential propagation.
However, both of the above methods can only work on small Sboxes, e.g. 4-bit Sboxes. In
2017, Abdelkhalek et al. gave the first MILP model for 8-bit Sboxes in [AST+17], they
studied the product-of-sum representation and generated the inequalities via the Espresso
algorithm. In 2020, Boura and Coggia proposed several techniques to generate inequalities
for Sboxes and linear layers in [BC20]. They extended the logical condition method to
exclude more points, and considered the inequalities with zero coefficients. Here, the points
excluded by an inequality refer to the points that are not solutions of this inequality. They
also constructed a kind of new inequalities, called distorted balls. More importantly, the
authors proposed a method of generating new inequalities from existing inequalities. And
their experimental results also showed that Boura and Coggia’s methods generated more
kinds of inequalities than the previous works. Although Boura and Coggia’s methods
could still only generate some special kinds of inequalities, their work greatly motivated
the following studies. In 2021, Udovenko proposed a new approach to generate inequalities
in [Udo21]. His idea is similar to ours, but the details are distinct. Both Udovenko’s work
and ours were done independently almost at the same time. We will provide more details
about Udovenko’s work in the end of this section.

For Problem 2, Sun et al. gave a greedy method to remove redundant inequalities in
[SHW+14b]. Their idea is to iteratively select the inequality, which excludes the most
points, from the set of unselected inequalities. Sun et al.’s method could reduce the
size of a descriptive model, but cannot reach the optimal size. In 2017, Sasaki and Todo
proposed a new algorithm to reduce the size of a descriptive model automatically in [ST17a].
Specifically, in order to choose a set of inequalities that models a Boolean function F ,
a binary variable is assigned to each candidate inequality to show if this inequality is
selected, and a constraint is added to each bit vector that is outside the support of F .
These constraints ensure that each bit vector outside the support of F is rejected by at
least one inequality. Then, an MILP model is constructed to find out a descriptive model
with the specified size. Generally, the objective of the MILP model is to minimize the
number of inequalities, so the inequalities which reject as many bit vectors outside the
support of F as possible are preferred. The Sasaki-Todo algorithm has been widely used
in the follow-up research.
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Motivations: Since MILP models have been widely used in cryptanalyses, it is impor-
tant to improve the efficiency of solving MILP models. However, it still remains unclear
which type of descriptive model could achieve the best efficiency. Previously, the descrip-
tive models that have minimal sizes were assumed to have better efficiencies, but some
counter-examples in [ST17a] showed that this type of descriptive model may not be so
efficient sometimes. To resolve this problem, various types of descriptive models should be
constructed and carefully studied. And for this goal, the first step is to generate various
inequalities, because all descriptive models are constructed from a set of candidate inequal-
ities. If the candidate inequalities have less diversity, the differences in the efficiencies
between the descriptive models will not be so obvious, which may prevent us from finding
out the most efficient descriptive models.
Contributions: Firstly, we propose a novel approach, called the SuperBall1 approach, to
generate inequalities for Boolean functions and the sets of inequalities generated by the
SuperBall approach have greater diversities than those in previous. Existing methods could
only generate some special kinds of inequalities. Unlike the previous works, the SuperBall
approach generates inequalities in a new way. By using the method of undetermined
coefficients, we regard the coefficients and constant terms of the inequalities as unknowns,
and formulate the constraints that the unknowns should satisfy. Then new inequalities
can be obtained by solving the constructed systems. To make the constructed systems
easier to study as well as to speed up the solving procedure, we use the divide-and-conquer
strategy. Specifically, we divide the set of general inequalities into several patterns, and in
each pattern, the signs of coefficients in the inequalities are fixed, which makes the related
studies much easier. The detailed studies can be found in Sec. 3. In this paper, we use
the concept of diversity to evaluate a set of inequalities. If the number of inequalities
is large and the inequalities generated are “different” from each other, we say the set of
inequalities has a great diversity. To measure the diversity of the sets of inequalities, we
define the diversity index in Definition 5. We compared the diversity indexes of the sets of
inequalities generated by our approach with those of [SHW+14b] and [AST+17] in Table 1.
Because the candidate inequalities of [BC20] and [Udo21] were not available, we generated
some other descriptive models with minimal sizes instead. The comparisons are shown in
Table 2. The results show that the set of inequalities generated by the SuperBall approach
has a greater diversity than previous works.

Secondly, we improve the Sasaki-Todo algorithm by considering both the sizes and
strengths of descriptive models, while the strengths of models have not been considered
before. “Strength”, also called “tightness” in some papers (e.g. [MELR13]), is defined as
the search space (relaxed feasible region) that the solver needs to explore in order to find
the (optimal integer) solution. The descriptive model of a Boolean function that has the
largest strength is just the convex hull of the support of the Boolean function. However, the
size, i.e. the number of inequalities, of the convex hull is large. In [Vie15], Vielma pointed
out that an efficient descriptive model should balance the size and the strength. But since
the strength is hard to be controlled when we are selecting inequalities from a candidate
set, we define the concepts of approximate strength and cover rate for a descriptive model.
Then we improve the Sasaki-Todo algorithm by bounding the approximate strength and
maximizing the cover rate at the same time. Specifically, given an approximate strength
s ≥ 0, the improved Sasaki-Todo algorithm computes a descriptive model that has the
minimal size and a relatively large cover rate among the ones whose approximate strengths
are at least s. The definitions of approximate strength and cover rate, as well as the details
about the improved Sasaki-Todo algorithm come in Sec. 4.

Thirdly, we find and suggest a type of descriptive model which has a better efficiency

1In [BC20], Boura and Coggia’s methods of generating inequalities were called standard or distorted
ball methods. As our approach could generate more kinds of inequalities, following the names of standard
or distorted balls, we call our approach as the SuperBall approach.
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in most of our experiments for the first time, although there is not a type of descriptive
models having the best efficiency in all experiments. The great diversity of the set of
inequalities enables us to construct several different types of descriptive models for the
Sboxes of Liliput, SKINNY-128, and AES, where the types of descriptive models are mainly
defined by their strengths. We designed two search tasks, verifying the differential pairs
and finding the minimal numbers of active Sboxes, to test the efficiencies of descriptive
models. As a result, we found the strengths of descriptive models do affect the efficiencies,
and the descriptive models that have minimal sizes and relatively high cover rates often
have better efficiencies in our experiments.

Our conclusion seems to contradict with the previous counter-examples in which
showed that the descriptive models minimal sizes may not be so efficient sometimes, e.g.
experiments in [ST17a]. We think we can explain this phenomenon in two aspects. Firstly,
the sets of inequalities generated before the work [BC20] lack good diversity, and the
strength factor related to inequalities is also not considered when the inequalities are
generated, so we think the diversity of the candidate inequalities used previously is not
great enough. Secondly, there exist many descriptive models that have the same minimal
size, but the strengths of these descriptive models are distinct. Among these minimal
descriptive models, the ones with the cover rate 0 may lead to much worse efficiencies than
the ones with high cover rates in our experiments. So we guess the descriptive models
used in the counter-examples perhaps have low cover rates.
Relation to Udovenko’s work in [Udo21]: Udovenko proposed a similar idea for
generating inequalities concurrently and independently of our work. The original manuscript
of our paper [Sun21] was submitted to eprint slightly earlier than Udovenko’s paper. Besides
the high-level ideas, Udovenko also used the same divide-and-conquer strategy to study
the inequalities in specific patterns, but his method of calculating the inequalities is
different from our work. Specifically, in order to compute all maximal sets of points
that can be removed by a single inequality (referred as maximal 1-removable sets in
[Udo21]), Udovenko utilized the techniques for learning monotone Boolean functions. In
the enumeration procedure, he first constructed an oracle to check whether a set is 1-
removable, and then the maximal 1-removable sets can be generated by calling the oracle
and updating some 1-removable sets with special properties for a few times, the constrains
for these sets can be generated in the same time. But in this paper, we use the method of
undetermined coefficients such that the above inequalities can be computed by only one call
of the MILP solver. Besides the advantage in the efficiency, the method of undetermined
coefficients also gives us a great flexibility to generate various kinds inequalities, e.g. the
inequalities that balance the size and strength factors, as well as the inequalities containing
many zero coefficients.

All source codes of the algorithms in this paper, the inequalities in the descriptive
models, and the MILP models used in the experiments, can be found at https://github.
com/ysun0102/superball.
Organization: Some necessary notations and preliminaries are presented in Sec. 2. We
introduce the SupberBall approach for generating inequalities in Sec. 3, and the improved
Sasaki-Todo algorithm is presented in Sec. 4. Experiments are shown in Sec. 5. We
conclude this paper in Sec. 6.

2 Preliminaries
2.1 Notations
Let F be a Boolean function from Fn

2 to F2, where F2 is the field consisting of {0, 1}.
In this paper, the n-bit vector v = (v0, v1, . . . , vn−1) ∈ Fn

2 is also called as a point and
written as v0v1 · · · vn−1 for short. The support of F consists of the points on which F

https://github.com/ysun0102/superball
https://github.com/ysun0102/superball
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takes 1, i.e. Supp(F ) := {v ∈ Fn
2 | F (v) = 1}. Let wt(v) denote the Hamming weight of

the point v.
The inequality discussed in this paper always has the following linear form

a0x0 + a1x1 + · · ·+ an−1xn−1 + b ≥ 0, (1)

where ai’s and b are integers in Z and xi ∈ {0, 1} ⊂ Z for 0 ≤ i < n. Please note that, in
the Boolean function F , operations are bit AND and XOR (⊕), while in the inequality (1),
integer multiplication and addition (+) are used. For sake of simplification, we also say
xi ∈ F2 if no confusion arises.

Denote the linear polynomial a0x0 + a1x1 + · · ·+ an−1xn−1 + b by f ∈ Z[x0, . . . , xn−1].
Studying the inequality (1) actually equals to studying the polynomial f . The value of f
taking on v = (v0, v1, . . . , vn−1) ∈ Fn

2 is the integer a0v0 + · · ·+ an−1vn−1 + an ∈ Z. The
set of solutions to an inequality f ≥ 0 is defined as Sol(f ≥ 0) := {x ∈ Fn

2 | f(x) ≥ 0},
and the set of common solutions to several inequalities, say {f0 ≥ 0, . . . , fm ≥ 0}, is
Sol(f0 ≥ 0, . . . , fm ≥ 0) := {x ∈ Fn

2 | fi(x) ≥ 0, for 0 ≤ i ≤ m}.
Therefore, to model a Boolean function F with inequalities, is to find a set of

inequalities {f0 ≥ 0, . . . , fm ≥ 0} such that Sol(f0 ≥ 0, . . . , fm ≥ 0) = Supp(F ). And we
call the set {f0 ≥ 0, . . . , fm ≥ 0} that models F as a descriptive model of F .

The strength (also called tightness) of a descriptive model reflects the scale of the search
space (relaxed feasible region) that the solver needs to explore in order to find the optimal
integer solution [MELR13]. The smaller the search space is, the greater the strength
of a descriptive model has. To measure the strength factor related to an inequality, we
define the strength index of an inequality f ≥ 0 as the cardinality of the set Sol(f = 0).
Figure 1 shows that if the sets Sol(f = 0) of inequalities are larger, the descriptive model
constructed by these inequalities may have a larger strength. Given two sets of inequalities
P = {fi ≥ 0, 0 ≤ i ≤ 2} and P ′ = {f ′

i ≥ 0, 0 ≤ i ≤ 2}, for any inequality fi ≥ 0 in P ,
there always exists an inequality f ′

i ≥ 0 in P ′ such that Sol(fi < 0) = Sol(f ′
i < 0) and

Sol(fi = 0) ⊂ Sol(f ′
i = 0). The descriptive models constructed by P and P ′ have the same

integer solutions. However, the search space related to P is larger than that of P ′ as shown
in Figure 1, so solving the model constructed by P ofter costs more time.

P  
P’  

Figure 1: The search spaces of the models constructed by P and P ′.

To construct good descriptive models which balance the size and the strength, for an
inequality f ≥ 0, we also consider the set Sol(f < 0) := {x ∈ Fn

2 | f(x) < 0} and the set
Sol(f = 0) := {x ∈ Fn

2 | f(x) = 0}. We will see in Sec. 4 that an inequality f ≥ 0 with a
large Sol(f < 0) is usually selected into the minimal descriptive model.

2.2 Some Boolean functions to be modeled
In automatic search models, propagation patterns of components need to be represented
by MILP models. We consider three kinds of Boolean functions that are deduced from the
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Differential Distribution Tables (DDTs) of Sboxes, linear layers, and division property.
Boolean functions from DDTs of Sboxes

Generally, DDTs are used to describe the differential propagation of Sboxes. For an
m-bit Sbox S, let α, β ∈ Fm

2 be input and output differential pair. Then DDT(α, β) is the
cardinality of the set {x ∈ Fm

2 | S(x) ⊕ S(x ⊕ α) = β}. The Boolean function deduced
from the DDT of S is:

(α, β) ∈ F2m
2 7→

{
1, if DDT(α, β) > 0,

0, if DDT(α, β) = 0.

Boolean functions from linear layers
For a linear layer, the output y ∈ Fm

2 can usually be represented as a linear transform
of the input x ∈ Fm

2 , i.e. yT = MxT , where M is an m×m matrix in Fm×m
2 . Thus, the

Boolean function deduced from the linear layer is:

(x, y) ∈ F2m
2 7→

{
1, if MxT = yT ,

0, if MxT ̸= yT .

Boolean functions from division property
As the bit-based division property can propagate like the differential characteristics

[XZBL16], the Boolean functions can be deduced similarly by enumerating all feasible
input and output pairs. However, since the algebraic structures of the propagations are
clear, the division property is often modeled by inequalities that use additional auxiliary
variables, e.g. [TIHM18, HW18, WHG+19, HLM+20, HSWW20].

3 The SuperBall approach for generating inequalities
Let F be a Boolean function from Fn

2 to F2, and S be the set Supp(F ) ⊂ Fn
2 . To model the

boolean function F , we need to find a set of inequalities such that the set of their common
solutions is exactly S. For this aim, we first propose a new approach, called SuperBall, to
generate various inequalities in this section. Next, we improve Sasaki-Todo algorithm for
selecting inequalities in the next section.

To illustrate our approach, we use the following toy example throughout this paper.

Example 1. Let S = {1000, 1010, 0110, 1110, 1001, 0101, 1101} ⊂ F4
2 be the support of a

Boolean function F , where 1101 is short for the point (1, 1, 0, 1) ∈ F4
2. We want to compute

a set of inequalities that models F , or equivalently, to compute a set of linear polynomials
{f0, f1, . . . , fm} ⊂ Z[x0, x1, x2, x3], such that Sol(f0 ≥ 0, . . . , fm ≥ 0) = S.

3.1 Main ideas
Given a set S ∈ Fn

2 , to compute an inequality such that the points in S are all solutions to
this inequality, our first idea is to use the method of undetermined coefficients. Specifically,
in Example 1, to solve for a polynomial f = a0x0 + · · ·+a3x3 + b such that S ⊂ Sol(f ≥ 0),
we regard a0, a1, a2, a3, b as unknowns in Z and solve the following system:

f(1000) = a0 + b ≥ 0,
f(1010) = a0 + a2 + b ≥ 0,
f(0110) = a1 + a2 + b ≥ 0,
f(1110) = a0 + a1 + a2 + b ≥ 0,
f(1001) = a0 + a3 + b ≥ 0,
f(0101) = a1 + a3 + b ≥ 0,
f(1101) = a0 + a1 + a3 + b ≥ 0.

(2)
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The system (2) consists of |S| constraints. Clearly, this system has a huge number
of solutions in Z5, and each solution (ã0, ã1, ã2, ã3, b̃) ∈ Z5 deduces a polynomial f̃ =
ã0x0 + · · · + ã3x3 + b̃, as well as an inequality f̃ ≥ 0. According to the constraints
in (2), we must have S ⊂ Sol(f̃ ≥ 0). However, most solutions of the system (2) are
useless. For example, if there are two deduced polynomials, say f and f ′, such that
Sol(f ≥ 0) = Sol(f ′ ≥ 0) and Sol(f = 0) = Sol(f ′ = 0), then one of them is useless.

Moreover, in practical applications, we usually have extra requests on the inequalities.
For example, we often expect a polynomial f such that the set Sol(f < 0) is as large as
possible, since this kind of inequalities is useful to reduce the sizes of descriptive models.
To satisfy this request, we hope the following constraints to hold as many as possible:

f(0000) = b < 0, f(0100) = a1 + b < 0,
f(1100) = a0 + a1 + b < 0, f(0010) = a2 + b < 0,
f(0001) = a3 + b < 0, f(0011) = a2 + a3 + b < 0,
f(1011) = a0 + a2 + a3 + b < 0, f(0111) = a1 + a2 + a3 + b < 0,
f(1111) = a0 + a1 + a2 + a3 + b < 0.

(3)

The number of constraints in (3) is 2n − |S|.
Please note that, unlike the constraints in (2) that should hold at the same time, only

some of the constraints in (3) can hold generally. And for the latter case, the difficulty is
how to determine which of these constraints could hold simultaneously. In [Udo21], the
author used a testing method to resolve this problem. That is, some constraints in (3) are
chosen first, and then combined with the constraints in (2), a test is performed to check
whether there is a solution to the constructed system. As the number of constraints in (3)
is often large, this method is not very efficient. We use a simpler method to resolve this
problem in Sec. 3.3.

The method of undetermined coefficients is able to compute a polynomial f such that
S ⊂ Sol(f ≥ 0), but it may not be efficient because the numbers of constraints in (2) and
(3) are often large, which makes the constructed system hard to solve. So our second idea
is to use the divide-and-conquer strategy. Note that the difference between the inequalities
a0 + b ≥ 0 and a0 + a2 + b ≥ 0 in the system (2) is only a2. If we assume a2 ≥ 0, then the
former inequality implies the latter one. This means the numbers of constraints in (2) and
(3) can be reduced significantly if we know the signs of the coefficients ai’s.

Thus, instead of computing a polynomial f = a0x0 + · · ·+a3x3 +b when the coefficients
aj ’s are in Z, we only consider a specific pattern of f each time by fixing the signs of aj ’s.

Definition 1. For a polynomial f = a0x0 + · · ·+ an−1xn−1 + b ∈ Z[x0, . . . , xn−1], we say
f is in a pattern if there exists a set P ⊂ {0, 1, . . . , n− 1} such that aj ≥ 0 for j ∈ P and
aj ≤ 0 for j /∈ P . Let c = (c0, c1, . . . , cn−1) be a point in Fn

2 such that cj = 0 for j ∈ P
and cj = 1 for j /∈ P . We call c is the center of this pattern. For simplicity, we also say f
is in the pattern c.

If a polynomial f is in the pattern c, then f takes the minimal value on the center c,
since xi ∈ {0, 1} for 0 ≤ i < n. For example, one pattern of f = a0x0 + · · ·+ a3x3 + b is
{a0 ≥ 0, a1 ≥ 0, a2 ≤ 0, a3 ≤ 0} and the center of this pattern is 0011. Then f takes the
minimal value on the center point 0011, i.e. x0 = 0, x1 = 0, x2 = 1, x3 = 1. Particularly, a
polynomial may be in several patterns if some of its coefficients are zeros.

By definition, there are 2n patterns in all. To solve for all possible polynomials (as well
as inequalities), we can perform the computations in each pattern first, and then gather
all results. In fact, this divide-and-conquer strategy not only speeds up the computations,
but also makes the study of inequalities easier in each pattern. Because by the following
proposition and corollaries, to compute a polynomial in some pattern c, it suffices to
compute a polynomial in the pattern 0.
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Proposition 1. Let f̄ = ā0x0 + · · · + ān−1xn−1 + b̄ be a polynomial in the pattern 0.
Let c = (c0, . . . , cn−1) be a point in Fn

2 , and P be the subset of {0, 1, . . . , n− 1} such that
cj = 0 for j ∈ P and cj = 1 for j /∈ P . Denote f := a0x0 + · · · + an−1xn−1 + b, where
aj := āj for j ∈ P , aj := −āj for j /∈ P , and b := b̄ +

∑
j /∈P āj. Then f is in the pattern

c, and for any v ∈ Fn
2 , we have f(v) = f̄(v⊕ c).

Proof. Since f̄ is in the pattern 0, we have āj ≥ 0 for 0 ≤ j < n. So aj = āj ≥ 0 for j ∈ P
and aj = −āj ≤ 0 for j /∈ P , which means f is in the pattern c.

For any v = (v0, . . . , vn−1) ∈ Fn
2 , we have

f̄(v⊕ c) = ā0(v0 ⊕ c0) + · · ·+ ān−1(vn−1 ⊕ cn−1) + b̄

=
∑

j∈P ājvj +
∑

j /∈P āj(1− vj) + b̄

=
∑

j∈P ājvj +
∑

j /∈P (−āj)vj +
∑

j /∈P āj + b̄

=
∑

j∈P ajvj +
∑

j /∈P ajvj + b

= f(v),

where the second equality follows from that fact that vj ⊕ cj = vj for j ∈ P and
vj ⊕ cj = 1− vj for j /∈ P .

Corollary 1. Given a set S ⊂ Fn
2 , to compute a polynomial f in the pattern c such

that S ⊂ Sol(f ≥ 0), it suffices to compute a polynomial f̄ in the pattern 0 such that
{v⊕ c | v ∈ S} ⊂ Sol(f̄ ≥ 0).

Proof. Assume f̄ is any polynomial in the pattern 0 such that {v⊕c | v ∈ S} ⊂ Sol(f̄ ≥ 0),
then we have f̄(v ⊕ c) ≥ 0 for any v ∈ S. Let f be the polynomial defined in Prop. 1,
then f is in the pattern c, and for any v ∈ S, we have f(v) = f̄(v⊕ c) ≥ 0.

Similarly, we have the following two corollaries.

Corollary 2. Given a set N ⊂ Fn
2 , to compute a polynomial f in the pattern c such

that N = Sol(f = 0), it suffices to compute a polynomial f̄ in the pattern 0 such that
{v⊕ c | v ∈ N} = Sol(f̄ = 0).

Corollary 3. Given a set E ⊂ Fn
2 , to compute a polynomial f in the pattern c such

that E = Sol(f < 0), it suffices to compute a polynomial f̄ in the pattern 0 such that
{v⊕ c | v ∈ E} = Sol(f̄ < 0).

By the above corollaries, we can see that computing a polynomial in the pattern c can
always be converted to computing a polynomial in the pattern 0. All we need to do is
to transform related point v to v⊕ c. Thus, it suffices to study the polynomials in the
pattern 0 in the rest of this section. For convenience, if a polynomial f is in the pattern 0,
we say it is in the normal form.

3.2 Properties of points in Fn
2 with respect to a set S̄

By Cor. 1, given a set S ⊂ Fn
2 , to compute a polynomial f in a pattern c such that

S ⊂ Sol(f ≥ 0), it suffices to calculate a polynomial f̄ in the normal form such that
{v ⊕ c | v ∈ S} ⊂ Sol(f̄ ≥ 0). Denote S̄ := {v ⊕ c | v ∈ S}, before discussing how to
compute f̄ using the method of undetermined coefficients, we study the properties of the
points in S̄ and Fn

2 \ S̄ first. The properties of these points will significantly reduce the
number of constraints that are used in the computation.

We still use Example 1 to illustrate the related conceptions. To compute a polynomial in
the pattern c = 0011 with respect to the set S = {1000, 1010, 0110, 1110, 1001, 0101, 1101} ⊂
F4

2, it suffices to compute a polynomial f̄ = ā0x0 + · · · + ā3x3 + b̄ in the normal form
such that S̄ ⊂ Sol(f̄ ≥ 0) where S̄ = {1011, 1001, 0101, 1101, 1010, 0110, 1110}. To ensure
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that the condition S̄ ⊂ Sol(f̄ ≥ 0) holds, the undetermined coefficients ā0, ā1, ā2, ā3 and
constant term b̄ must satisfy the following constraints:

f̄(1011) = ā0 + ā2 + ā3 + b̄ ≥ 0,

f̄(1001) = ā0 + ā3 + b̄ ≥ 0,

f̄(0101) = ā1 + ā3 + b̄ ≥ 0,

f̄(1101) = ā0 + ā1 + ā3 + b̄ ≥ 0,

f̄(1010) = ā0 + ā2 + b̄ ≥ 0,

f̄(0110) = ā1 + ā2 + b̄ ≥ 0,

f̄(1110) = ā0 + ā1 + ā2 + b̄ ≥ 0.

(4)

Note that, since āj ≥ 0 for 0 ≤ j < n, some constraints in (4) can be implied by others,
e.g. f̄(1011) ≥ 0 is implied by f̄(1001) ≥ 0 and f̄(1110) ≥ 0 is implied by f̄(1010) ≥ 0.
Similarly, if we require the set Sol(f̄ < 0) is as large as possible, we need the following
constraints to hold as many as possible:

f̄(0011) = ā2 + ā3 + b̄ < 0,

f̄(0111) = ā1 + ā2 + ā3 + b̄ < 0,

f̄(1111) = ā0 + ā1 + ā2 + ā3 + b̄ < 0,

f̄(0001) = ā3 + b̄ < 0,

f̄(0010) = ā2 + b̄ < 0,

f̄(0000) = b̄ < 0,

f̄(1000) = ā0 + b̄ < 0,

f̄(0100) = ā1 + b̄ < 0,

f̄(1100) = ā0 + ā1 + b̄ < 0.

However, we can now determine the constraint f̄(1111) < 0 cannot hold, because we
have f̄(1011) ≥ 0 and ā1 ≥ 0. That is, although the point 1111 ∈ Fn

2 \ S̄, we must have
1111 ∈ Sol(f̄ ≥ 0) if we require S̄ ⊂ Sol(f̄ ≥ 0).

The above example shows that the properties of points in S and those of points in
Fn

2 \ S are different. To study the points, we need the following partial ordering and
theorem.

Definition 2. For two points v = (v0, v1, . . . , vn−1), u = (u0, u1, . . . , un−1) ∈ Fn
2 , we say

v ⪯ u if vi ≤ ui for 0 ≤ i < n. Particularly, if v ⪯ u and v ̸= u, we write v ≺ u.

Theorem 1. Let f̄ = ā0x0 + · · ·+ ān−1xn−1 + b̄ be a polynomial in the normal form, and
v, u ∈ Fn

2 be two points such that v ⪯ u. Then we have f̄(v) ≤ f̄(u). Moreover, f̄(v) ≥ 0
implies f̄(u) ≥ 0, and f̄(u) < 0 implies f̄(v) < 0.

The proof of theorem is straightforward since āj ≥ 0 for 0 ≤ j < n. Next, we give the
definitions of some special points in Fn

2 w.r.t. S̄.

Definition 3. Let S̄ be a subset of Fn
2 .

1. For a point v ∈ Fn
2 \ S̄, we say v is a region point w.r.t. S̄, if there does not exist

u ∈ S̄, such that u ⪯ v.

2. For a point v ∈ S̄, we say v is a border point w.r.t. S̄, if there exists a region point
u w.r.t. S̄, such that u ≺ v and wt(u) = wt(v)− 1, where wt(u) and wt(v) are the
Hamming weights of u and v.

3. For a point v ∈ S̄, we say v is a minimal border point w.r.t S̄, if there does not
exist another border point u w.r.t. S̄, such that u ≺ v.
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Please note that region, border, and minimal border points are all defined with respect
to the set S̄. But for simplicity, we usually omit “w.r.t. S̄” if there is no confusion about
the set S̄.

Consider the set S̄ = {1011, 1001, 0101, 1101, 1010, 0110, 1110}, which is transformed
from the set S in Example 1 by XORing the point c = 0011. All points in S̄ are border
points, and 1001, 0101, 1010, 0110 are minimal border points. Region points are 0011,
0001, 0010, 0000, 1000, 0100, and 1100.

Region points and minimal border points have the following properties.

Proposition 2. If v ∈ Fn
2 \ S̄ and v is not a region point, ∃u ∈ S̄ such that u ≺ v.

Proposition 3. If v ∈ S̄, there exists a minimal border point u ∈ S̄, such that u ⪯ v.

Corollary 4. If v ∈ Fn
2 is not a region point, then there exists a minimal border point

u ∈ S̄, such that u ⪯ v. Therefore, for any polynomial f̄ in the normal form such that
S̄ ⊂ Sol(f̄ ≥ 0), we have f̄(v) ≥ 0.

Corollary 5. Let f̄ be a polynomial in the normal form such that S̄ ⊂ Sol(f̄ ≥ 0), then
all points in Sol(f̄ < 0) are region points.

Corollary 6. Given a set S ⊂ Fn
2 and a point c ∈ Fn

2 , if c ∈ S, then for any polynomial
f in the pattern c such that S ⊂ Sol(f ≥ 0), we have Sol(f < 0) = ∅.

Proof. If 0 ∈ S̄, then 0 is the only one minimal border point w.r.t. S̄ and there is no
region points w.r.t. S̄ at all. By Cor. 5, for any polynomial f̄ in the normal form such that
S̄ ⊂ Sol(f̄ ≥ 0), we have Sol(f̄ < 0) = ∅. Then this proposition is proved by Cor. 1.

Continue the above example, as 1001, 0101, 1010, 0110 are minimal border points. This
implies only the constraints f̄(1001) ≥ 0, f̄(0101) ≥ 0, f̄(1010) ≥ 0, and f̄(0110) ≥ 0 are
necessary in (4). Since 0111 and 1111 are not region points, so the constraints f̄(0111) < 0
and f̄(1111) < 0 cannot hold if the constraints in (4) are met.

Given a set S̄, Alg. 1 computes the region, border, and minimal border points.

3.3 Computing a polynomial f̄ in the normal form
Our final goal is to compute a set of inequalities to model a Boolean function F , such
that the set of common solutions to these inequalities are exactly the set Supp(F ). As
we will consider the sizes and strengths of the descriptive models, the size and strength
factors of the inequalities should also be considered when they are generated. According
to the Sasaki-Todo algorithm, an inequality f ≥ 0 is preferred if the set Sol(f < 0) is large,
because this kind of inequalities helps to reduce the sizes of descriptive models. So the
size factor of the inequality is related to the set Sol(f < 0). By the definition of strength
index, the strength factor of the inequality f ≥ 0 is related to the set Sol(f = 0).

To make our approaches more understandable, we first discuss how to generate an
inequality by only considering its size factor. By Cor. 1, we only need to focus on the
problem: given a set S̄, how to compute a polynomial f̄ in the normal form, such that
S̄ ⊂ Sol(f̄ ≥ 0) and the set Sol(f̄ < 0) is as large as possible.

Again, we consider the set S̄ = {1011, 1001, 0101, 1101, 1010, 0110, 1110}, which is
transformed from the set S in Example 1 by XORing the point c = 0011. In the last
subsection, we know miniBorder = {1001, 0101, 1010, 0110} consists of all minimal
border points, and Region = {0011, 0001, 0010, 0000, 1000, 0100, 1100} contains all region
points. To make the constraints in {f̄(v) < 0 | v ∈ Region} hold as many as possible, we
introduce an auxiliary binary variable, say yv, to determine when the constraint f̄(v) < 0
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Algorithm 1: Region&Border
Input: S̄: A set of points in Fn

2 .
Output: The sets of region, border, and minimal border points.

1 begin
2 if 0 ∈ S̄ then
3 return ∅, {0}, {0}
4 Region, Border, miniBorder←−{0}, ∅, ∅
5 weight[i]←−{v ∈ Fn

2 | wt(v) = i}, for 0 ≤ i ≤ n
6 for i from 1 to n do
7 for v ∈ weight[i] do
8 D←−{u | u ≺ v} ∩ weight[i− 1]
9 if v ∈ S̄ then

10 if ∃u ∈ D s.t. u ∈ Region then
11 Border←−Border ∪ {v}
12 if ∀u ∈ D s.t. u ∈ Region then
13 miniBorder←−miniBorder ∪ {v}

14 else
15 if ∀u ∈ D s.t. u ∈ Region then
16 Region←−Region ∪ {v}

17 return Region, Border, miniBorder

holds. Next, we use the following MILP model to solve for the coefficients of f̄ , where f̄(v)
has the form of ā0x0 + ā1x1 + ā2x2 + ā3x3 + b̄:

Maximize :
∑

v∈Region

yv, (5)

s.t.

{
f̄(v) ≥ 0, v ∈ miniBorder,

f̄(v)− γ · (1− yv) < 0, v ∈ Region,

where γ is a positive integer and its value is discussed below.
Please note that in the above MILP model, āj ’s are all unknown positive integers and

b̄ is an unknown integer, and they have lower and upper bounds in an MILP solver. For
ā0, ā1, ā2, ā3, we assume they are not bigger than a positive integer R, i.e. āj ∈ [0, R],
which means 0 ≤ āj ≤ R. Here, the constant R is usually chosen as a multiple of the
dimension n = 4, e.g. R = 25n. With this setting, the value of ā0x0 + ā1x1 + ā2x2 + ā3x3
ranges from 0 to 4R, so the range of b̄ is set as [−4R, 0]. Because if b̄ < −4R or b̄ > 0, we
always have f̄(v) < 0 and f̄(v) > 0 for all v ∈ F4

2. Therefore, the range of the values of f̄
is [−4R, 4R]. Then the constant γ is often set as 4R + 1, such that if yv = 1, the constraint
f̄(v)− γ · (1− yv) = f̄(v) < 0 works; otherwise, f̄(v)− γ · (1− yv) = f̄(v)− (4R + 1) < 0
always holds and hence does not constrain the values of āj ’s and b̄.

After solving the MILP model (5), the optimal solution leads to a polynomial f̄0 =
2x0 + x1 + 3x2 + 3x3 − 4. We can verify that f̄0(v) ≥ 0 for all v ∈ S̄, and Sol(f̄0 <
0) = {1100, 1000, 0100, 0010, 0001, 0000}. However, as the model (5) does not consider the
strength index of the inequality, the generated polynomial f̄0 is not good enough, and we
only have Sol(f̄0 = 0) = {0110, 0101}.

To increase the strength of an inequality f̄ ≥ 0, we expect the set Sol(f̄ = 0) also
contains as many border points as possible, because we believe in this case the inequality
f̄ ≥ 0 can eliminate many useless numerical solutions and hence leads to a better strength.
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To compute a polynomial f̄ by considering both Sol(f̄ < 0) and Sol(f̄ = 0)∩{border points
of S̄}, the idea is the same as that used to maximize the size of Sol(f̄ < 0). Specifically,
we introduce a new auxiliary binary variable, say zv, to determine whether a border point
v is in Sol(f̄ = 0). Assume the sets Region, Border, and miniBorder contain all region,
border, and minimal border points w.r.t. S̄. We use the following MILP model to compute
the desired polynomials:

Maximize : α(
∑

v∈Region

yv) + β(
∑

v∈Border

zv), (6)

s.t.


f̄(v) ≥ 0, v ∈ miniBorder,

f̄(v)− γ · (1− yv) < 0, v ∈ Region,

f̄(v)− γ · (1− zv) ≤ 0, v ∈ Border,

where γ is a positive integer. And as discussed in the above, we usually choose γ = nR + 1
and R is the upper bound of the coefficients in f̄ .

In the model (6), we have two parameters, α and β, to adjust the weights of points
in Sol(f̄ < 0) and Sol(f̄ = 0) ∩ Border. For example, if we set α = 2n and β = 1, then
the above model will first try to find the polynomials f̄ ’s such that Sol(f̄ < 0) is maximal,
and then among these f̄ ’s, the model finds the one such that the set Sol(f̄ = 0) ∩Border
is maximal. Note that the MILP model (5) is a specialization of the model (6) when α = 1
and β = 0.

Let us consider the set S̄ = {1011, 1001, 0101, 1101, 1010, 0110, 1110} again. We know
Region = {0011, 0001, 0010, 0000, 1000, 0100, 1100}, Border = S̄, and miniBorder =
{1001, 0101, 1010, 0110}. By solving model (5), we obtain a polynomial f̄0 = 2x0 +
x1 + 3x2 + 3x3 − 4, and Sol(f̄0 < 0) = {1100, 1000, 0100, 0010, 0001, 0000}. But the set
Sol(f̄0 = 0) only contains two border points, 0110 and 0101. Solving the MILP model (6)
by setting α = 24 and β = 1, we get the polynomial f̄ ′

0 = x0 + x1 + 2x2 + 2x3 − 3. For this
f̄ ′

0, we have Sol(f̄ ′
0 < 0) = Sol(f̄0 < 0) and Sol(f̄ ′

0 = 0)∩Border = {1010, 0110, 1001, 0101},
which means the inequalities f̄ ′

0 ≥ 0 and f̄0 ≥ 0 have the same size factor, but f̄ ′
0 ≥ 0 has

a larger strength index.

Computing irredundant polynomials: By adjusting the values of α and β in the model
(6), we can generate many polynomials, but we need to prevent the model from computing
the redundant polynomials. We define a polynomial f̄ is redundant if there exists another
polynomial f̄ ′ such that Sol(f̄ < 0) ⊂ Sol(f̄ ′ < 0) and Sol(f̄ = 0) ⊂ Sol(f̄ ′ = 0).

With the above example, to compute another polynomial that is irrendundant to
f̄ ′

0 = x0 +x1 +2x2 +2x3−3, we can append the constraint : y0011 +z1011 +z1101 +z1110 ≥ 1
to the MILP model (6), since y0011 = 0 and z1011 = z1101 = z1110 = 0 holds in the solution
corresponding to f̄ ′

0. By solving this new MILP model, we obtain f̄ ′
1 = 5x0+5x1−x2−x3−6,

and Sol(f̄ ′
1 < 0) = {0011, 1000, 0100, 0010, 0001, 0000} ̸⊂ Sol(f̄ ′

0 < 0), which means f̄ ′
1 is

irredundant to f̄ ′
0.

In fact, by appending new constraints to the model (6) iteratively, we can compute
almost all irredundant polynomials in theory. Please note that we say “almost all” instead
of “all”, because we have the following conjecture but we cannot prove it at present.

Conjecture 1. There exists a positive constant R in Z, such that for any polynomial f̄ ,
there always exists a polynomial f̄ ′ s.t. Sol(f̄ < 0) = Sol(f̄ ′ < 0), Sol(f̄ = 0) = Sol(f̄ ′ = 0),
and the absolute values of the coefficients in f̄ ′ are not bigger than R.

The following algorithm computes all irredundant polynomials if Conj. 1 is true.



Ting Li and Yao Sun 353

Algorithm 2: IrredundantPolynomials
Input: S̄: a set of points in Fn

2 ; α, β: constants.
Output: The set of all irredundant polynomials f̄ ’s such that S̄ ⊂ Sol(f̄ ≥ 0).

1 begin
2 Region, Border, miniBorder←−Region&Border(S̄)
3 Prepare an empty MILP model M
4 M.var←− āj as an integer variables with the range [0, R], for 0 ≤ j < n

5 M.var←− b̄ as an integer variable with the range [−nR, 0]
6 M.var←− yv as a binary variable, for v ∈ Region
7 M.var←− zv as a binary variable, for v ∈ Border

8 M.con←− f̄(v) ≥ 0, for v ∈ miniBorder

9 M.con←− f̄(v)− (nR + 1) · (1− yv) ≤ −1, for v ∈ Region

10 M.con←− f̄(v)− (nR + 1) · (1− zv) ≤ 0, for v ∈ Border
11 M.obj←−maximize(α(

∑
v∈Region yv) + β(

∑
v∈Border zv))

12 Result←−∅
13 M.optimize()
14 while M is not infeasible do
15 Let {ãj ’s, b̃, ỹv’s, z̃v’s} be an optimal solution of M
16 Result←−Result ∪ {ã0x0 + · · ·+ ãn−1xn−1 + b̃}
17 M.con←−

∑
ỹv=0 yv +

∑
z̃v=0 zv ≥ 1

18 M.optimize()
19 return Result

We briefly talk about the complexity of Alg. 2. The complexity of Alg. 2 contains two
parts. The first part is the complexity of computing one polynomial. This complexity is
usually determined by the number of constraints added in Line 8 ∼ 10. According to our
experiments, the size of the set Region dominates this complexity. That is, the larger the
set Region is, the longer time it takes to compute a polynomial. The second part is the
number of possible irredundant polynomials, which is usually determined by the size of
Region ∪Border. Generally, if the dimension n is large, e.g. n ≥ 12, it takes too long to
obtain all irredundant polynomials. So in this case, we often stop the algorithm after a
number of polynomials have been obtained.
Computing other special polynomials: More special polynomials can also be gen-
erated by adding corresponding constraints to the model (6). For example, we can even
generate the sparsest polynomials by using auxiliary binary variables to determine whether
coefficients are 0’s. Specifically, assume āj is a coefficient ranging from 0 to R. Let wj be
a binary variable, then the following constraints could determine whether āj is 0:

āj ≥ 1− wj and āj ≤ R · (1− wj).

Note that if wj = 1, we must have āj = 0; otherwise, we have 1 ≤ āj ≤ R. So by adding∑
wj to the objective function, we can control the number of nonzero coefficients in f̄ .

4 Generating a descriptive model of a Boolean function
Generally, a descriptive model is used as a component of automatic search programs.
Different descriptive models of the same Boolean function often lead to distinct efficiencies
of automatic search programs.

Given a set of candidate inequalities, Sasaki and Todo proposed an algorithm to select
inequalities such that the number of selected inequalities is minimal in [ST17a], i.e. the
Sasaki-Todo algorithm generates a descriptive model with the minimal size. This algorithm
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was also used in the follow-up research, including [BC20, Udo21]. However, it is found
that the descriptive model with the minimal size does not always lead to the best efficiency
of the automatic search programs. For this phenomenon, we think there are two possible
reasons. Firstly, the inequalities in consideration are not good enough, because before this
paper, the kinds of inequalities that can be generated were quite limited. Secondly, the
Sasaki-Todo algorithm only considers the size of the descriptive models but ignores the
influence from the strength of the descriptive models.

In [Vie15], the author pointed out that the descriptive models which balance the size
and strength usually lead to better efficiencies. We agree with this viewpoint, but think it
is not easy to apply this viewpoint to practical computations, because the strengths of the
descriptive models are hard to be calculated when we are selecting the inequalities. So we
need an approximate concept to evaluate the strengths of descriptive models.

Given a Boolean function F , the convex hull of Supp(F ) has the largest strength
[Hoj21]. Intuitively, one important characteristic of the convex hull is that, every point on
the “surface” of Supp(F ) often lies on many hyperplanes of the convex hull. We plan to
use this feature to define the approximate strength of a descriptive model. Note that the
point on the “surface” is in fact a border point with respect to some set, and a point v
lying on a hyperplane defined by the inequality f ≥ 0 equals to v ∈ Sol(f = 0). Then we
have the following definition.

Definition 4. Let F be a Boolean function from Fn
2 to F2, and S̄c := {v⊕c | v ∈ Supp(F )}

for c ∈ Fn
2 . Denote B by the set of all border points w.r.t. S̄c, i.e.

B :=
⋃

c∈Fn
2

{border points w.r.t. S̄c}.

Let D = {f0 ≥ 0, f1 ≥ 0, . . . , fm ≥ 0} be a set of inequalities that models F , we define
the approximate strength of D as

minv∈B |{fi | v ∈ Sol(fi = 0), 0 ≤ i ≤ m}|,

where | · | means the cardinality of a set. Particularly, to differentiate the descriptive
models whose approximate strengths are 0’s, we define the cover rate of D as

|(∪0≤i≤mSol(fi = 0)) ∩B|/|B|.

Please note that, for a point v, the number |{fi | v ∈ Sol(fi = 0), 0 ≤ i ≤ m}| is
actually the number of hyperplanes that v lies on. Besides, if the approximate strength of
D is not 0, then its cover rate is surely 1. So the cover rate is mainly used to compare the
strengths of descriptive models whose approximate strengths are 0’s. With conception of
the approximate strength, then we can classify the descriptive models into different types
according to their approximate strengths.

Since B is the set of all border points, we have B ⊆ Supp(F ) according to Definition 3.
Actually, we always have B = Supp(F ) in our experiments. Besides, we generated many
sets of points by random, and computed their convex hulls. The approximate strengths
of these convex hulls are all large. So we think the definition of approximate strength is
reasonable.

Next, we present an algorithm (Alg. 3) to compute a descriptive model by balancing the
size and the approximate strength. This algorithm improves the Sasaki-Todo algorithm,
and computes a descriptive model with a minimal size among the descriptive models
with an approximate strength being at least s. When s = 0, this algorithm computes a
descriptive model with the minimal size, and the cover rate of this descriptive model is
maximal in this size.

The constraint in Line 9 ensures the approximate strength of the output descriptive
model is at least s. In case s = 0, the objective function 2n · (

∑
0≤i≤m di) −

∑
v∈B cv
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guarantees the output descriptive models must have the minimal size first, and then guides
the solver to find a descriptive model with a relatively high cover rate (

∑
v∈B cv)/|B|.

Algorithm 3: BalanceSize&Strength
Input: F : a Boolean function; P = {f0 ≥ 0, f1 ≥ 0, . . . , fm ≥ 0}: a set of

candidate inequalities s.t. Supp(F ) ⊂ Sol(fi ≥ 0) for 0 ≤ i ≤ m; s: an
approximate strength.

Output: D: a descriptive model of F , with the minimal size such that the
approximate strength of D is at least s.

1 begin
2 B←−

⋃
c∈Fn

2
{border points w.r.t. S̄c}, where S̄c = {v⊕ c | v ∈ Supp(F )}

3 Prepare an empty MILP model M
4 M.var←− di as a binary variable, for 0 ≤ i ≤ m
5 M.var←− cv as a binary variable, for v ∈ B
6 for v ∈ Fn

2 \ Supp(F ) do
7 M.con←−

∑
v∈Sol(fi<0) di ≥ 1

8 for v ∈ B do
9 M.con←−

∑
v∈Sol(fi=0) di ≥ s

10 M.con←−
∑

v∈Sol(fi=0) di ≥ cv

11 M.obj←−minimize(2n · (
∑

0≤i≤m di)−
∑

v∈B cv)
12 M.optimize()
13 return {fi ≥ 0 | di = 1}

Next, we compute two descriptive models for the Boolean function in Example 1. The
support of the Boolean function is S = {1000, 1010, 0110, 1110, 1001, 0101, 1101} ⊂ F4

2.
To generate the candidate inequalities, parameters are set as α = 24, β = 1, and

R = 100 in Alg. 2, and polynomials in all 24 patterns are computed. The following
inequalities are the results.

pattern 0000 : 100x0 + 99x1 + x2 + x3 − 100 ≥ 0,
x0 + x1 − 1 ≥ 0,

pattern 0100 : x0 − 99x1 + 100x2 + 100x3 − 1 ≥ 0,
−x1 + x2 + x3 ≥ 0,

pattern 1100 : −x1 + x2 + x3 ≥ 0,
pattern 0010 : x0 + x1 − 1 ≥ 0,
pattern 0001 : x0 + x1 − 1 ≥ 0,
pattern 0011 : x0 + x1 − 2x2 − 2x3 + 1 ≥ 0,

5x0 + 5x1 − x2 − x3 − 4 ≥ 0,
−x2 − x3 + 1 ≥ 0,

x0 + x1 − 1 ≥ 0,
pattern 1011 : −x2 − x3 + 1 ≥ 0,
pattern 0111 : −x2 − x3 + 1 ≥ 0,
pattern 1111 : −x2 − x3 + 1 ≥ 0.

Note that there are no inequalities for the pattern v ∈ S, because for any inequality
f ≥ 0 in the pattern v ∈ S, we have Sol(f < 0) = ∅. Besides, some inequalities belong
to several patterns, e.g. −x2 − x3 + 1 ≥ are in the patterns 0011, 1011, 0111, and
1111, because its coefficients of x0 and x1 are zeros. Thus, the candidate inequalities are
P = {100x0 + 99x1 + x2 + x3 − 100 ≥ 0, x0 + x1 − 1 ≥ 0, x0 − 99x1 + 100x2 + 100x3 − 1 ≥
0,−x1+x2+x3 ≥ 0, x0+x1−2x2−2x3+1 ≥ 0, 5x0+5x1−x2−x3−4 ≥ 0,−x2−x3+1 ≥ 0}.

Setting s = 0 in Alg. 3, the algorithm computes a descriptive model with the minimal
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size and a relatively large cover rate. The result consists of the following two inequalities:

x0 + x1 − 2x2 − 2x3 + 1 ≥ 0,
x0 − 99x1 + 100x2 + 100x3 − 1 ≥ 0.

Note that in this example, we have B = S. But Sol(x0 + x1−2x2−2x3 + 1 = 0)∪Sol(x0−
99x1 + 100x2 + 100x3 − 1 = 0) = {1001, 0101, 1010, 0110, 1000} ≠ S. So the approximate
strength of this descriptive model is 0, and the cover rate is 5/7.

By setting s = 1 in Alg. 3, the output descriptive model contains three inequalities:

5x0 + 5x1 − x2 − x3 − 4 ≥ 0,
x0 + x1 − 2x2 − 2x3 + 1 ≥ 0,

−x1 + x2 + x3 ≥ 0.

From the above example, we can see that the approximate strengths of the descriptive
models with the minimal sizes tend to be 0, and to get larger approximate strengths, more
inequalities are needed.

5 Experiments
We designed two types of experiments. The first type of experiment aims to test the
diversity of the inequalities generated by the SuperBall approach. In the second type of
experiment, we generated several types of descriptive models of different Boolean functions,
trying to find out which type of descriptive model leads to a better efficiency.

5.1 Testing the diversity of inequalities
By saying a set of inequalities, say P = {f0 ≥ 0, f1 ≥ 0, . . . , fm ≥ 0} has a good diversity,
we tried to mean that the number of irredundant inequalities in P is large, and the solutions
of the functions fi’s are different from each other. To reflect the diversity of a set of
inequalities, we have the following definition.

Definition 5. Let F be a Boolean function from Fn
2 to F2 and PF = {f0 ≥ 0, f1 ≥

0, . . . , fm ≥ 0} be a set of inequalities which describes F . We define the diversity index
of PF as

|{(v1, v2) ∈ Fn
2 \ Supp(F ) | ∃f ≥ 0 ∈ PF s.t. f(v1) < 0 and f(v2) < 0}|,

where Supp(F ) is the support of F and | · | is the cardinality of a set.

We say PF has a good “diversity”, if its diversity index is large.
We compared the diversity indexes of the sets of inequalities generated by the SuperBall

approach with those generated by the Convex hull method [SHW+14b] or Espresso method
[AST+17]. In practice, there are off-the-shelf softwares to implement the Convex hull
method [SHW+14b] or Espresso method, such as Sage and Logic Friday. So we generated
the inequalities by Sage and Logic Friday, then computed the diversity indexes and the
minimal sizes of the descriptive models of Sboxes. Since the method in [SHW+14b] could
not be applied to large Sboxes, we only consider the Boolean functions deduced from the
4-bit Sboxes.

The results in Table 1 show that the diversities of the sets of inequalities generated
by our approach are greater than those of [SHW+14b] and [AST+17]. Table 1 also lists
the maximum values of the diversity index (max D.I.) for each Sbox. For a Boolean
function F , we compute its maximum value of the diversity index as follows. For any pair
(v1, v2) ∈ Fn

2 \ Supp(F ), we construct the MILP model via the undetermined coefficients
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method to verify whether there exists an inequality f ≥ 0 such that f(v1) < 0 and
f(v2) < 0. The coefficients of the inequality have the same ranges as Alg. 2. The number
of pairs (v1, v2) that v1 and v2 can be rejected by one inequality simultaneously is the
maximum value of the diversity index. For the 4-bit Sbox in Table 1, the diversity index of
the set of inequalities generated by the SuperBall approach has reached its maximum value.
Besides, we also computed the minimal descriptive models and found that the size of the
minimal descriptive models could reflect the diversity of the set of candidate inequalities.
That is, for a Boolean function, if its minimal descriptive model has a smaller size, the
corresponding set of candidate inequalities always has a greater diversity.

Table 1: Comparisons of diversity indexes (D.I.) of sets of candidate inequalities and the
minimal size of descriptive models. Boolean functions are deduced from Sboxes.

Sage LogicalFriday Our results Max D.I.D.I. Size D.I. Size D.I. Size
Present [BKL+07] 1489 21 226 38 2007 16 2007

Klein [GSL11] 1072 21 191 43 1565 18 1565
Twine [KSMM12] 1175 23 224 47 1621 19 1621
Prince [BCG+12] 1245 22 270 53 1644 18 1644
Piccolo [SIH+11] 1711 21 759 31 2764 14 2764

MIBS [ISSK09] 1094 23 161 52 1437 20 1437
LBlock S0-1,5-8 [WZ11] 2008 24 586 30 2898 15 2898
LBlock S2-4,9 [WZ11] 2008 24 603 31 2898 15 2898
Serpent S0 [BAK98] 1436 21 227 37 1940 16 1940
Serpent S1 [BAK98] 1414 21 286 38 1896 16 1896
Serpent S2 [BAK98] 1574 21 233 43 2019 17 2019
Serpent S3 [BAK98] 1227 27 162 49 1572 20 1572
Serpent S4 [BAK98] 1257 23 207 43 1601 18 1601
Serpent S5 [BAK98] 1358 23 231 42 1729 18 1729
Serpent S6 [BAK98] 1393 21 296 41 1936 16 1936
Serpent S7 [BAK98] 1148 27 292 41 1483 20 1483
Liliput [ATPC+19] 1185 23 232 47 1636 19 1636

Minalpher [YYK+14] 1162 22 232 52 1634 18 1634
Midori S0 [BBI+15] 1521 21 459 48 2098 16 2098
Midori S1 [BBI+15] 1429 22 306 57 1771 20 1771

Rectangle [ZBL+14] 1708 21 302 31 2303 15 2303
Skinny-64 [BJK+16] 1711 21 759 31 2764 14 2764

Gift [BPP+17] 1664 21 332 34 2284 16 2284
Pride [ADK+14] 1955 21 796 31 3087 16 3087

Since the sets of the candidate inequalities in [BC20] and [Udo21] are not available, the
diversities can not be computed directly. Our way of testing the diversity of inequalities
generated by the methods of [BC20] and [Udo21] is as follows. Firstly, we generate
three kinds of inequalities via Alg. 22 by setting (α = 2n, β = 1), (α = 1, β = 2n),
and (α = 1, β = 1), and gather all inequalities. Then, we compute a descriptive model
with the minimal size via the Sasaki-Todo algorithm. Thirdly, we compare the sizes of
descriptive models with existing best results, e.g. results in [BC20, Udo21]. As the authors
in [BC20, Udo21] also used the Sasaki-Todo algorithm to obtain the minimal sizes, the
differences between the minimal sizes would reflect the diversities of the set of candidate
inequalities. Specifically, the smaller the size is, the greater diversity of inequalities is,

2The number of irredundant polynomials in a pattern is huge if the dimension n is large, so we stop
the algorithm when 3 ∼ 5 polynomials in the pattern are obtained.
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which is demonstrated by the results in Table 1.
In the experiments, we considered the Boolean functions deduced from Sboxes, linear

layers, and the division property. The comparisons of minimal descriptive models from
different Sboxes are shown in Table 2. Generally, if an Sbox has more invalid differential
propagations, the number of region points of the Sbox is larger. That is because the region
consists of invalid differential propagations. For example, the block cipher SKINNY-128 has
54067 invalid differential propagations through an Sbox, while other 8-bit Sboxes have
only 33150, so the maximal number of region points of SKINNY-128 is abnormally higher
compared to others. As the number of region points in a pattern reflects the difficulty of
computing inequalities, we also list the maximal number of region points among the 2n

patterns in the table. Comparisons of minimal descriptive models from different linear
layers and the division properties are shown in Table 3.

From Table 2 and 3, we can see that the sizes of our descriptive models are always
the smallest. Udovenko’s method found the minimal sizes of descriptive models for many
Sboxes, but his method failed for the Sboxes of Keccak , Fides-6, SC2000-6, and AES.
We think the main reason is that, Udovenko’s method can only compute one kind of
inequalities, i.e. his algorithm is equivalent to Alg. 2 by setting α = 2n and β = 0. But
we generated three kinds of inequalities. So the diversity of our inequalities is better
than Udovenko’s. Besides, we think the efficiency of Udovenko’s method also limits its
performance.

In all, the experimental results show that the inequalities generated by the SuperBall
approach have a great diversity.

5.2 Finding out the most efficient descriptive models
To find out the most efficient descriptive models, we considered the Boolean functions
deduced from the Sboxes of three block ciphers, Liliput, SKINNY-128, AES. We prepared
4 types of descriptive models generated by Alg. 3 as well as 4 counterparts from existing
works. To check the efficiency, we designed two traditional search tasks for each cipher.

Specifically, the descriptive models in consideration were generated as follows.
Balance-s: These types of descriptive models were generated in the following two steps.

Firstly, three kinds of inequalities were generated using Alg. 23 by setting (α = 2n, β = 1),
(α = 1, β = 2n), and (α = 1, β = 1). Secondly, Alg. 3 was called to compute the descriptive
models by setting the approximate strength bound as s. Particularly, in case s = 0, the
descriptive model output by Alg. 3 also has the maximal cover rate, so we denote the
descriptive model of this type as Balance-0-crmax.

Balance-0-cr0: The descriptive model of this type was modified4 from the correspond-
ing descriptive model Balance-0-crmax. For each inequality f ≥ 0 in Balance-0-crmax, we
computed a new polynomial f ′, such that Sol(f ′ < 0) = Sol(f < 0) and Sol(f ′ = 0) = ∅.
Thus, the size of Balance-0-cr0 is the same as that of Balance-0-crmax, but there is no
border points lying on the hyperplanes of the inequalities of Balance-0-cr0, which means
the cover rate of Balance-0-cr0 is 0. So Balance-0-crmax always has a slightly larger
strength than Balance-0-cr0. By considering this type of descriptive model, we hope to see
whether the strength really affects the efficiency.

Sage+ST: Descriptive models of this kind were constructed by the algorithm in [ST17a].
The candidate inequalities were generated by Sage [Dev16], and then the Sasaki-Todo
algorithm was applied to find the descriptive models with the minimal sizes.

Sage+Greedy: Descriptive models of this kind were constructed by the algorithm
in [SHW+14a]. The candidate inequalities were generated by Sage, and then a greedy
method was used to reduce the sizes of descriptive models.

3The algorithm is stoped when 3 ∼ 5 polynomials are obtained in each pattern.
4This modification is also done by the method of undetermined coefficients, by converting the desired

requests to constraints on the coefficients and constant terms.
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Table 2: Comparisons of the minimal sizes of descriptive models. Boolean functions are
deduced from Sboxes.

Sbox Max |Region| [BC20] [Udo21] Our results
4-bit Sboxes (n = 8)

Present [BKL+07] 30 17 16 16
Klein [GSL11] 27 19 18 18

Twine [KSMM12] 28 19 19 19
Prince [BCG+12] 40 19 18 18
Piccolo [SIH+11] 49 16 14 14

MIBS [ISSK09] 26 20 20 20
LBlock † [WZ11] 55 17 - 15

Serpent S0 [BAK98] 30 17 - 16
Serpent S1 [BAK98] 30 17 - 16
Serpent S2 [BAK98] 33 18 - 17
Serpent S3 [BAK98] 24 20 - 20
Serpent S4 [BAK98] 32 19 - 18
Serpent S5 [BAK98] 32 19 - 18
Serpent S6 [BAK98] 30 17 - 16
Serpent S7 [BAK98] 24 20 - 20
Liliput [ATPC+19] 28 19 - 19

Minalpher [YYK+14] 25 19 - 18
Midori S0 [BBI+15] 51 16 16 16
Midori S1 [BBI+15] 35 20 20 20

Rectangle [ZBL+14] 39 17 15 15
Skinny-64 [BJK+16] 49 16 14 14

Gift [BPP+17] 36 17 16 16
Pride [ADK+14] 43 16 16 16

5-bit Sboxes (n = 10)
Keccak [BDPA11] 231 34 - 26
Ascon [DEMS21] 139 32 27 27
Fides-5 [BBK+13] 74 61 57 57

SC2000-5 [SYY+01] 68 64 60 60
6-bit Sboxes (n = 12)

APN-6 [BDMW10] 183 167 145 145
Fides-6 [BBK+13] 123 180 166 165

SC2000-6 [SYY+01] 112 214 205 202
7-bit Sboxes (n = 14)

WG-7 [LCGL10] 350 - - 562
Misty S7 [Mat97] 187 - - 693
Wage [MRG+19] 246 - - 588

8-bit Sboxes (n = 16)
AES [DR05] 356 2882 2699 2425

Skinny-128 [BJK+16] 20362 302 - 177
ZUC [Tea18] 354 - - 2417

ARIA S2 [KKP+03] 372 - - 2427
† LBlock represents for LBlock S0∼9 .

Sage: The descriptive model of this kind consists of all inequalities generated by Sage.
So the descriptive model is in fact the convex hull, and has the largest strengths, as well
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Table 3: Comparisons of the minimal sizes of descriptive models. Boolean functions are
deduced from linear layers and division properties.

Cipher Dim. Max |Region| [BC20] [XZBL16] [HSWW20] Our results
Linear layers

Midori [BBI+15] 8 73 32 8
Skinny-128 [BJK+16] 8 125 18 6
Minalpher [YYK+14] 8 73 32 8

Craft [BLMR19] 8 132 16 8
Two-subset division property

Simon [BSS+13] 8 145 6* 3
Trivium [DCP08] 10 664 7* 6

Three-subset division property without unknown subset
Simon [BSS+13] 8 175 10* 3

Trivium [DCP08] 10 781 13* 4
* The inequalities involve auxiliary variables.

as large sizes.
Espresso: Descriptive models of this kind were constructed by the algorithm in

[AST+17]. The authors used the Espresso algorithm implemented by Logic Friday
(http://sontrak.com/) to generate linear inequalities for the DDT of an Sbox. They
translated the problem of searching for inequalities into the classical problem of minimiza-
tion of the product-of-sum representation of Boolean functions, which is a well-studied
problem, and Espresso algorithm is a heuristic method to solve this problem.

The sizes and strengths of the above descriptive models are shown in Table 4. Please
note that the numbers in the table are all related to one single Sbox. If k Sboxes are used
in a cipher, the numbers of constraints per round in the search model should be k times of
the corresponding numbers in the table.

Table 4: The sizes (Size), approximate strengths (A.S.), and cover rates (C.Rate) of
descriptive models (for a single Sbox) of Liliput, SKINNY, and AES.

Liliput SKINNY AES
Size A.S. C.Rate Size A.S. C.Rate Size A.S. C.Rate

Balance-0-cr0 19 0 0 177 0 0 2425 0 0
Balance-0-crmax 19 0 93/106 177 0 6420/11469 2425 0 15584/32386

Balance-1 22 1 1 189 1 1 3423 1 1
Balance-3 34 3 1 367 3 1 8806 3 1
Sage+ST 23 0 101/106 - - - - - -

Sage+Greedy 26 0 102/106 - - - - - -
Sage 324 12 1 - - - - - -

Espresso - - - 377 4 1 8310 1 1

Two traditional search tasks were prepared as follows.
Verification of differential pairs: For an r-round cipher, this task is to check

whether a given input and output difference pair (δin, δout) is possible, i.e. whether there
exists a differential trail connecting δin and δout. In each search, the program is stopped if
one differential trail is found or the model is proved infeasible. For Liliput and SKINNY,
we generated 1000 random input and output pairs, and took the average time. For round-
reduced AES algorithm, we only considered 250 random input and output pairs, since
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each search of AES took more time than the other two ciphers.
Finding the minimal number of active Sboxes: For an r-round cipher, this task is

to find out the minimal number of active Sboxes in feasible differential trails. In this task,
there are no constraints on the input and output differential pairs. For each round-reduced
cipher, we conducted 5 searches and took the average time. Since this task costs too much
computing time for the cipher AES, we only report the times for the ciphers Liliput and
SKINNY-128.

As we only want to compare the performances of different types of descriptive models
for the Sboxes, the constraints of the other components, e.g. the linear layers, are all the
same in the experiments. The comparisons are shown in Table 5, 6, and 7. Our platform
is AMD Threaddripper 3990x 2.9GHz, 256 GB RAM, running Ubuntu 20.04. The tables
also show the numbers of rounds, the numbers of Sboxes in total, and the total numbers
of inequalities related to these Sboxes.

Table 5: Comparisons on Liliput. There are 16 Sboxes in each round.

Verification of Differential pairs
28 rounds (448 Sboxes) 30 rounds (480 Sboxes)
Time(sec) #Ineq. Time(sec) #Ineq.

Balance-0-cr0 7.75 8512 9.24 9120
Balance-0-crmax 6.38 8512 7.56 9120

Balance-1 6.87 9856 8.35 10560
Balance-3 7.82 15232 9.97 16320
Sage+ST 7.68 10304 9.02 11040

Sage+Greedy 7.19 11648 8.61 12480
Sage 24.73 145152 26.97 155520

Finding least active Sboxes
4 rounds (64 Sboxes) 6 rounds (96 Sboxes)

Time(sec) #Ineq. Time(sec) #Ineq.
Balance-0-cr0 39.62 1216 696.16 1824

Balance-0-crmax 8.22 1216 535.81 1824
Balance-1 13.93 1408 758.58 2112
Balance-3 10.85 2176 2330.98 3264
Sage+ST 13.58 1472 741.67 2208

Sage+Greedy 14.72 1664 854.73 2496
Sage 71.02 20736 1603.77 31104

From the experimental results in Table 5, 6, and 7, we have three observations.
Firstly, the strengths of descriptive models affect the efficiency. Note that although

many descriptive models have the same minimal size, the strengths of them are still
different, while the differences are reflected on the cover rates. This is why we design the
comparisons between “Balance-0-crmax” and “Balance-0-cr0”. By definition, the cover rate
of Balance-0-cr0 is 0, but Balance-0-crmax usually has a high cover rate. The experimental
results show that the descriptive model Balance-0-crmax always has a better efficiency than
Balance-0-cr0. We think this fact is reasonable, because there are fewer useless numerical
solutions to the descriptive model Balance-0-crmax than those of Balance-0-cr0, the MILP
solver should have fewer obstacles to find out the useful integer solutions.

Secondly, although there is no type of descriptive model that always has the best
efficiency, but the descriptive model Balance-0-crmax, which has the minimal size and
a relatively high cover rate, has a better efficiency in most of experiments, particularly
when the total number of Sboxes is large. In our opinion, although the descriptive models
with larger strengths contain fewer useless numerical solutions, the sizes of the descriptive
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Table 6: Comparisons on SKINNY-128. There are 16 Sboxes in each round.

Verification of Differential pairs
30 rounds (480 Sboxes) 32 rounds (512 Sboxes)
Time(sec) #ineq. Time(sec) #ineq.

Balance-0-cr0 26.61 84960 27.61 90624
Balance-0-crmax 24.61 84960 26.17 90624

Balance-1 31.35 90720 33.56 96768
Balance-3 87.51 174720 115.73 187904
Espresso 93.41 180960 129.46 193024

Finding least active Sboxes
3 rounds (48 Sboxes) 5 rounds (80 Sboxes)

Time(sec) #ineq. Time(sec) #ineq.
Balance-0-cr0 61.54 8496 >6000 14160

Balance-0-crmax 59.94 8496 >6000 14160
Balance-1 14.87 9072 >6000 15120
Balance-3 178.35 17616 2170.58 29360
Espresso 87.22 18096 2556.91 30160

Table 7: Comparisons on AES. There are 16 Sboxes in each round.

Verification of Differential pairs
3 rounds (48 Sboxes) 5 rounds (80 Sboxes)
Time(sec) #ineq. Time(sec) #ineq.

Balance-0-cr0 115.30 116400 571.61 194000
Balance-0-crmax 103.26 116400 511.36 194000

Balance-1 100.68 164304 731.20 273840
Balance-3 363.49 422688 2268.45 704480
Espresso 331.75 398880 1874.49 664800

models play a more important role in the solving procedure. Specifically, to solve an MILP
model, the solvers always finds a numerical solution to the model first, and then searches
for integer solutions around the numerical one. We think solving of an MILP model that
has a larger strength may save some time in the second phase. But the matrix operations
are the fundamental operations in both phases, and the sizes of the matrices are directly
determined by the sizes of the descriptive models. So the sizes of descriptive models often
affect the efficiency more. The descriptive model Balance-0-crmax has the smallest size
and a not bad strength, so we think this is why it performs better in most experiments.

Thirdly, if the difference between the sizes is not large, the descriptive models that
have larger approximate strengths may have better efficiencies. This phenomenon appears
in the task of finding least active Sboxes of SKINNY-128.

Thus, in all, we suggest the type of descriptive model that has the minimal size and
relatively high cover rate. Although this type of descriptive model does not achieve the
best efficiency all the time, it has a relatively stable performance.

6 Conclusions
In this paper, we propose the SuperBall approach to generate various inequalities. Since
the method of undetermined coefficients is used, we are able to generate any kinds of
inequalities by adding appropriate constraints in theory. However, not all inequalities are
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useful for constructing efficient descriptive models. We focus on the inequalities that could
affect the sizes and strengths of descriptive models. Specifically, we only consider the
inequality f ≥ 0 such that Sol(f < 0) and Sol(f = 0) are large. But we cannot guarantee
the other kinds of inequalities are useless.

Our initial goal is to find a type of descriptive model such that the models of this type
always have the best efficiencies. We think this goal is partially reached. We found one
type of descriptive model, and the models of this type have better performances in most of
our experiments. But we should admit that descriptive models of this type are not always
the most efficient. Thus, for other ciphers that are not considered in this paper, we suggest
using the descriptive model that has the minimal size and a relatively high cover rate first.
If the efficiency of this descriptive model is not good enough, one could try to improve this
descriptive model by generating other kinds of inequalities by the SuperBall approach.
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