

Towards Tight Differential Bounds of Ascon

A Hybrid Usage of SMT and MILP

FSE 2023

Rusydi H. Makarim and Raghvendra Rohit

Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi

[Ascon](#page-1-0)

- Ascon is a family of of authenticated encryption and hashing algorithms designed by \blacktriangleright Dobraunig, Eichlseder, Mendel, and Schläffer (2014)
- Sponge-based mode of operation \blacktriangleright
- Ascon-permutation *p ^r* with state size 320 bits and *r* rounds

- Ascon is a family of of authenticated encryption and hashing algorithms designed by Dobraunig, Eichlseder, Mendel, and Schläffer (2014)
- Sponge-based mode of operation
- Ascon-permutation *p ^r* with state size 320 bits and *r* rounds
- Selected as primary choice for lightweight authenticated encryption in the final portfolio of the CAESAR competition
- Selected as new standard for lightweight cryptography in the NIST lightweight cryptography cometition

- Ascon is a family of of authenticated encryption and hashing algorithms designed by Dobraunig, Eichlseder, Mendel, and Schläffer (2014)
- Sponge-based mode of operation
- Ascon-permutation *p ^r* with state size 320 bits and *r* rounds
- Selected as primary choice for lightweight authenticated encryption in the final portfolio of the CAESAR competition
- Selected as new standard for lightweight cryptography in the NIST lightweight cryptography cometition

Our goal: Investigate the tight bounds for the differential and linear properties of *p r* .

Ascon: Round function (*p* **)**

$$
\textcolor{red}{\blacktriangleright} \ \ p := p_L \circ p_S \circ p_C
$$

Sbox and linear layer

Sbox algebraic normal form

$$
y_0 = x_4x_1 + x_3 + x_2x_1 + x_2 + x_1x_0 + x_1 + x_0
$$

\n
$$
y_1 = x_4 + x_3x_2 + x_3x_1 + x_3 + x_2x_1 + x_2 + x_1 + x_0
$$

\n
$$
y_2 = x_4x_3 + x_4 + x_2 + x_1 + 1
$$

\n
$$
y_3 = x_4x_0 + x_4 + x_3x_0 + x_3 + x_2 + x_1 + x_0
$$

\n
$$
y_4 = x_4x_1 + x_4 + x_3 + x_1x_0 + x_1
$$

Linear layer

$$
X_0 \leftarrow \Sigma_0(Y_0) = Y_0 + (Y_0 \gg 19) + (Y_0 \gg 28)
$$

\n
$$
X_1 \leftarrow \Sigma_1(Y_1) = Y_1 + (Y_1 \gg 61) + (Y_1 \gg 39)
$$

\n
$$
X_2 \leftarrow \Sigma_2(Y_2) = Y_2 + (Y_2 \gg 1) + (Y_2 \gg 6)
$$

\n
$$
X_3 \leftarrow \Sigma_3(Y_3) = Y_3 + (Y_3 \gg 10) + (Y_3 \gg 17)
$$

\n
$$
X_4 \leftarrow \Sigma_4(Y_4) = Y_4 + (Y_4 \gg 7) + (Y_4 \gg 41)
$$

Differential and linear properties of Sbox and linear layer

Sbox

- DDT has entries 2, 4 and 8 meaning the differential probabilities are 2^{-4} , 2^{-3} and 2^{-2} , respectively.
- LAT has entries 4, -4, 8, -8 meaning the bias are $2^{-3},\ -2^3,\ 2^{-2}$ and $-2^{-2},$ respectively. \mathbf{E}

Linear layer

The differential and linear branch number is 4.

[Ascon Permutation](#page-8-0) [Differential and](#page-8-0) [Linear Bounds](#page-8-0)

Bounds on the number of active Sboxes \mathbf{E}

- We found many differential trails with 44 active Sboxes for 4 rounds.
- We did not find a trail with weight better than 107 and 190 for 4 and 5 rounds.
- \triangleright We proved that the weight of any 3 round differential trail is at least 40 (with MILP + SMT). This was also proved independently in [EME22].

▶ Bounds on the squared correlation

The trail for 5 rounds we found has 78 active Sboxes and squared correlation 2^{-184} while the previous best one has 67 active Sboxes and squared correlation $2^{-186}.$ We found multiple linear trails with 43 active Sboxes for 4 rounds but could not improve the squared correlation. We also proved that there is no 3-round linear trail with 14 active Sboxes.

[Our Approach](#page-22-0)

Motivation and basic idea

- \triangleright SMT or MILP or CP has its own advantage in solving a specific problem, for e.g., SMTs are highly efficient for (un)satisfiability problems while MILP performs well for optimization problems.
- The prior works on automated tools have analyzed ciphers independently with CP, MILP and SMT.
- The run-time becomes difficult to predict for large instances.

Motivation and basic idea

- \triangleright SMT or MILP or CP has its own advantage in solving a specific problem, for e.g., SMTs are highly efficient for (un)satisfiability problems while MILP performs well for optimization problems.
- The prior works on automated tools have analyzed ciphers independently with CP, MILP and SMT.
- The run-time becomes difficult to predict for large instances.

Our approach: Use SMT and MILP in a hybrid manner.

Please see our paper for the model details.

Step 1: Valid configurations of active Sboxes for 2 rounds

- Using SMT model, find all valid pairs (d_0, d_1) which results in a differential trail with d_0 and *d*¹ active Sboxes at round 0 and 1, respectively.
- Example of valid pairs: $(1, 3)$, $(1, 11)$, $(2, 4)$, \cdots
- Example of invalid pairs: (3, 4), (10, 3), (16, 3), (18, 3)
- Time: It took seconds for Step 1.

Step 2: Valid configurations of active Sboxes for 3 rounds

- Pre-filter some candidates using Step 1.
- Using SMT model, find all valid pairs (d_0, d_1, d_2) which results in a differential trail with d_0 , d_1 and d_2 active Sboxes at round 0, 1 and 2, respectively.

Total configurations

 \triangleright Comparison of number of configurations for 3-round trails. Here U denotes the number of remaining cases left to solve for completing the search space for a given *n*.

 \rightarrow The average time to solve a single instance was around 15-20 minutes. Some instances could be solved in seconds while others took more than an hour. $12/19$

Proof: Minimum weight of 3-round differential trail

We take all configurations up to 20 active Sboxes and find their weight using MILP.

Step 3: Valid configurations of active Sboxes for 4 rounds

Pre-filter some candidates using invalid pairs from Step 1 and Step 2. ($\#$ candidates \blacktriangleright ≈ 72000

Step 3: Valid configurations of active Sboxes for 4 rounds

- Pre-filter some candidates using invalid pairs from Step 1 and Step 2. ($\#$ candidates ≈ 72000
- Using SMT and MILP, pre-filter more candidates by extending 3-round valid configurations in forward and backward directions. See Lemmas 1-4 in our paper. We found a differential trail with 43 active Sboxes at this stage. (# candidates \approx 11496). It took around 8 CPU days for this reduction.

Step 3: Valid configurations of active Sboxes for 4 rounds

- Pre-filter some candidates using invalid pairs from Step 1 and Step 2. ($\#$ candidates ≈ 72000
- Using SMT and MILP, pre-filter more candidates by extending 3-round valid configurations in forward and backward directions. See Lemmas 1-4 in our paper. We found a differential trail with 43 active Sboxes at this stage. (# candidates \approx 11496). It took around 8 CPU days for this reduction.
- ▶ There are at least 36 active Sboxes for 4 rounds (result from [EME22]). This reduces the number of cases to 9793.

There are easy configurations which returns False within $2 - 20$ minutes while there are \blacktriangleright some which require even 2 hours or more.

- There are easy configurations which returns False within $2 20$ minutes while there are some which require even 2 hours or more.
- Out of the 9793 cases, there are 954 cases where $d_0 = 5$. We find that a necklace with weight 5 at round 0 on average require 2.5 minutes to return True or False (checked with around 105 necklaces).

- There are easy configurations which returns False within $2 20$ minutes while there are some which require even 2 hours or more.
- \triangleright Out of the 9793 cases, there are 954 cases where $d_0 = 5$. We find that a necklace with weight 5 at round 0 on average require 2.5 minutes to return True or False (checked with around 105 necklaces).
- Out of the 9793 cases, there are 504 cases where $d_1 = 5$. We solved all 119133 necklaces in 5 days and could not find any 4-round trail of the form $(d_0, 5, d_2, d_3)$ such that $d_0 + 5 + d_2 + d_3 \leq 42$.

- There are easy configurations which returns False within $2 20$ minutes while there are some which require even 2 hours or more.
- \triangleright Out of the 9793 cases, there are 954 cases where $d_0 = 5$. We find that a necklace with weight 5 at round 0 on average require 2.5 minutes to return True or False (checked with around 105 necklaces).
- Out of the 9793 cases, there are 504 cases where $d_1 = 5$. We solved all 119133 necklaces in 5 days and could not find any 4-round trail of the form $(d_0, 5, d_2, d_3)$ such that $d_0 + 5 + d_2 + d_3 \leq 42$.
- $#$ remaining cases: 9289

- There are easy configurations which returns False within $2 20$ minutes while there are some which require even 2 hours or more.
- \triangleright Out of the 9793 cases, there are 954 cases where $d_0 = 5$. We find that a necklace with weight 5 at round 0 on average require 2.5 minutes to return True or False (checked with around 105 necklaces).
- \triangleright Out of the 9793 cases, there are 504 cases where $d_1 = 5$. We solved all 119133 necklaces in 5 days and could not find any 4-round trail of the form $(d_0, 5, d_2, d_3)$ such that $d_0 + 5 + d_2 + d_3 \leq 42$.
- $#$ remaining cases: 9289
- Difficult to predict time to find the exact bound. However, some other techniques may filter these cases in an efficient way.

Extension to 5 rounds and linear trails

- We used a similar approach to find the 5-round differential trail with 72 active Sboxes. The configuration is (5, 9, 10, 23, 25).
- Again, we use the same approach to find the new 5-round linear trail with 78 [21, 5, 9, 11, 30] active Sboxes and correlation 92 [21, 5, 18, 18, 30].

[Concluding Remarks](#page-39-0)

- We improved the differential and linear bounds of Ascon using MILP and SMT in a hybrid manner.
- Finding exact differential and linear bounds for 4 rounds Ascon is still challenging.
- Finding all 3-round valid/invalid choices up to 30 active Sboxes will reduce the number of cases significantly.
- The hybrid approach could be utilized for other ciphers as well.

https://github.com/Crypto-TII/ascon_hybrid_milp_smt <https://tosc.iacr.org/index.php/ToSC/article/view/9859/9358>

