
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 3, pp. 239–270. DOI:10.46586/tosc.v2022.i3.239-270

Finding Collisions against 4-Round SHA-3-384
in Practical Time

Senyang Huang1,3†, Orna Agmon Ben-Yehuda2, Orr Dunkelman3 and
Alexander Maximov4

1 Department of Electrical and Information Technology, Lund University, Lund, Sweden
senyang.huang@eit.lth.se

2 Caesarea Rothschild Institute for Interdisciplinary Applications of Computer Science (CRI),
University of Haifa, Haifa, Israel

ladypine@gmail.com
3 Department of Computer Science, University of Haifa, Haifa, Israel

orrd@cs.haifa.ac.il
4 Ericsson Research, Lund, Sweden
alexander.maximov@ericsson.com

Abstract. The Keccak sponge function family, designed by Bertoni et al. in 2007,
was selected by the U.S. National Institute of Standards and Technology (NIST)
in 2012 as the next generation of Secure Hash Algorithm (SHA-3). Due to its
theoretical and practical importance, cryptanalysis of SHA-3 has attracted a lot of
attention. Currently, the most powerful collision attack on SHA-3 is Jian Guo et
al.’s linearisation technique. However, this technique is infeasible for variants with a
smaller input space, such as SHA-3-384.
In this work we improve upon previous results by utilising three ideas which were
not used in previous works on collision attacks against SHA-3. First, we use 2-block
messages instead of 1-block messages, to reduce constraints and increase flexibility in
our solutions. Second, we reduce the connectivity problem into a satisfiability (SAT)
problem, instead of applying the linearisation technique. Finally, we propose an
efficient deduce-and-sieve algorithm on the basis of two new non-random properties
of the Keccak non-linear layer.
The resulting collision-finding algorithm on 4-round SHA-3-384 has a practical time
complexity of 259.64 (and a memory complexity of 245.94). This greatly improves
upon the best known collision attack so far: Dinur et al. achieved an impractical 2147

time complexity. Our attack does not threaten the security margin of the SHA-3
hash function. However, the tools developed in this paper could be used to analyse
other cryptographic primitives as well as to develop new and faster SAT solvers.
Keywords: SHA-3 hash function · collision attack · deduce-and-sieve algorithm ·
SAT solver

1 Introduction
Cryptographic hash functions are unkeyed primitives that accept an arbitrarily long input
message and produce a fixed length output hash value, or digest for short. Since Diffie and
Hellman [DH76] suggesting signing a cryptographic hash value of a message rather than the
message itself, hash functions became extremely useful in various cryptographic protocols:
authentication (e.g., HMAC [BCK96]), password protection, commitment schemes, key

†This work was partially done when Senyang Huang was a post-doc researcher at the University of
Haifa.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-06-01 Accepted: 2022-08-01 Published: 2022-09-09

https://doi.org/10.46586/tosc.v2022.i3.239-270
mailto:senyang.huang@eit.lth.se
mailto:ladypine@gmail.com
mailto:orrd@cs.haifa.ac.il
mailto:alexander.maximov@ericsson.com
http://creativecommons.org/licenses/by/4.0/

240 Finding Collisions against 4-Round SHA-3-384 in Practical Time

exchange protocols, etc. Hence, the need for a secure and efficient hash function is great,
both for real life applications and as a component of more complex constructions.

The first de-facto cryptographic hash function was MD5 [Riv92], developed by Rivest
to fix a few issues with its predecessor MD4. Later, the US National Institute of Standards
in Technology (NIST) published the SHA standard [NIS93]. Two years later, SHA was
updated into the later named SHA-1 [NIS95] to prevent some attacks that were not
disclosed to the public (but were later rediscovered by Chabaud and Joux [CJ98]). With
the need for output sizes larger than SHA-1’s 160-bit, NIST published a new family of
hash functions, called SHA-2, with output sizes of 224–512 bits [NIS02].

In 2005, Wang et al. [WLF+05, WY05, WYY05] broke several cryptographic functions.
These fundamental works demonstrated the way to attack most of the existing hash
functions using several techniques and ideas: using modular differences (i.e., using both an
XOR difference and an additive difference); using multi-block collisions (i.e., collisions that
span over several blocks, an idea independently discovered in [BCJ15]); and introducing
the message modification technique (a method to tweak a pair of messages conforming to
some differential characteristic up to a certain round, so that it satisfies the characteristic
for more rounds).

These advances, along with results on the Merkle-Damgård hash function [Dam89,
Mer89], which is the design all previously mentioned hash functions followed, led NIST
to start a cryptographic competition for the selection of a new hash function standard.
The process started in 2008, and in 2015 Keccak [BDPA] was published as the new SHA-3
standard [NIS15].

Keccak [BDPA], designed by Bertoni et al., is a sponge construction. It has a 1600-bit
state which is updated by XORing message blocks to the state. The number of bits that
compose a message block depends on the required output size as the capacity of the sponge
function should be twice as large as the output size, and the remaining bits are XORed
with the message block. Then, a 24-round permutation, Keccak-f, is applied to the state
and another block is absorbed into the state, until the last block is absorbed. Finally, the
internal state is updated again using Keccak-f, and some bits of the internal state are
revealed as the output.

The Keccak sponge function can be deployed in different modes, namely, keyed mode
and unkeyed mode. Since the publication of Keccak in 2008, the analysis of both keyed
mode and unkeyed mode Keccak has attracted considerable attention. For the keyed
Keccak, a cube-like attack proposed by Dinur et al. [DMP+15] and a conditional cube
attack proposed by Huang et al. [HWX+17] are the most powerful tools for analysing
primitives based on the Keccak sponge function.

The purpose of a collision attack on a hash function H is to find a pair of distinct
messages M and M ′ such that H(M) = H(M ′). Finding a colliding pair should be
computationally difficult for a secure hash function. In 2011, Naya-Plasencia et al. re-
ported a collision attack on 2-round Keccak-512.1, among several other practical attacks
on the Keccak hash function [NRM11]. In 2012, Dinur et al. proposed practical collision
attacks on 4-round Keccak-224/256 [DDS12]: they combined a 1-round connector with
a 3-round low weight characteristic by algebraic techniques. In 2013, the same authors
constructed practical collision attacks on 3-round Keccak-384 and Keccak-512 and theo-
retical attacks on 4-round Keccak-384 and 5-round Keccak-256 using generalised internal
differentials [DDS13].

Currently, the most powerful tool for building a practical collision attack against
the SHA-3 hash function is the linearisation technique [QSLG17, SLG17, GLL+20]. In
[QSLG17], Qiao et al. followed the framework proposed by Dinur et al. in [DDS12] and
extended the previous 1-round connector by one more round. In that work, the authors
developed a novel algebraic technique to linearise all S-boxes in the first round. Song et

1SHA-3-n differs from Keccak-n only in the padding rule.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 241

Table 1: Summary of existing collision attacks on SHA-3.

Rounds Target Complexity Reference
4 Keccak-224 Practical [DDS12]
5 SHA-3-224 Practical [QSLG17]
4 Keccak-256 Practical [DDS12]
5 Keccak-256 2115 [DDS13]
5 SHA-3-256 Practical [QSLG17]
3 Keccak-384 Practical [DDS13]
4 Keccak-384 2147 [DDS13]
4 SHA-3-384 259.64 Section 7
2 Keccak-512 Practical [NRM11]
3 Keccak-512 Practical [DDS13]

al. [SLG17] developed a new non-full linearisation technique to save degrees of freedom
in the attack. Using this new technique, they launched several practical collision attacks
on the Keccak family, such as 5-round SHA-3-224 and 5-round SHA-3-256. Jian Guo
et al. recapped the two results [QSLG17, SLG17] in [GLL+20]. There was no further
development after that. However, that technique cannot be directly applied to variants
with a smaller input space, such as SHA-3-384 and SHA-3-512. It is because the appended
conditions consume many degrees of freedom, which variants with a smaller input space
cannot provide enough of.

Morawiecki et al. [MS13] applied a SAT solver to the analysis of an unkeyed mode
modified Keccak, using different parameters than the recommended ones, to find the
preimage of a hash value up to 3 rounds. However, the authors did not consider Keccak’s
algebraic structure in their work, which reduces SAT solver’s power. In our collision attack,
we combine algebraic non-random characteristics with a SAT solver to make full use of its
efficiency.

Our Contributions Our work extends previous results [DDS12] on finding collisions in
SHA-3: a 3-round differential characteristic that leads to a collision is used in rounds 2–4,
whereas a connecting phase is used in the first round to lead the input message pair into
the input difference of the differential characteristic.

Inspired by the collision attacks proposed by Boissier et al. in [BNR21] and the preimage
attacks against Keccak-224/256 proposed in [LS19] by Li et al., we use more than a single
block in the colliding message pair. Unlike the inner collision attacks against smaller
Keccak variants in [BNR21], our technique can work on the outer part of a Keccak default
variant. Namely, we noticed that often good input differences impose conditions on the
input that cannot be satisfied (as they are in the capacity part of the state). By first
finding a message pair that satisfies these conditions, we levy this restriction. This step
increases the flexibility in choosing a differential characteristic. In addition, we use the
first block to set some capacity bits to values that help the connectivity step.

In addition, we introduce another two techniques into collision attacks on Keccak. Our
second contribution is to replace the linearisation connection phase that was used before
in [GLL+20] with a SAT-connection phase. This idea is inspired by the dedicated collision
attack against SHA-1 with aid of a SAT solver, proposed by Stevens et al. in [SBK+17].
Namely, we use SAT solvers to find message values that satisfy the required difference
conditions while previous works [GLL+20, QSLG17, SLG17] did the connection from the
input difference of the characteristic to the message conditions using linearisation. Again,
there are two advantages for this approach — the first, is that we gain greater flexibility
in choosing the differential characteristic as now we can “connect” to a wider range of
input differences. Secondly, non-linear conditions which are useful in finding collisions (i.e.,
fixing intermediate bits to some values) are much easier to be satisfied using this sort of
tools.

242 Finding Collisions against 4-Round SHA-3-384 in Practical Time

The third contribution is the introduction of detection and sieving tools. They complete
internal states more efficiently than applying a SAT solver directly on non-linear problems.
This reduces the number of unknowns and simplifies relations, making SAT solvers more
efficient by orders of magnitude. We introduce a Truncated Difference Transform Table: for
a given truncated differential transition, the table stores the possible differential transitions.
I.e., if a truncated differential is followed. The table allows to efficiently find actual
bit differences that were involved in the transition. We also introduce a Fixed Value
Distribution Table, a precomputed table used to efficiently identify values that correspond
to certain truncated difference transitions (just like in the original work of [BS93] stored in
the difference distribution table also the values that correspond to the transition). Using
these two tools enables, for each pair, the deduction of information needed to satisfy the
differential characteristic.

We combine these ideas and produce the first practical attack that can find collisions
in 4-round SHA-3-384. The expected running time of this attack is below 260 (we remind
the reader that the SHA-1 collision found by [SBK+17] used about 263 computation).
While we implemented the attack and verified it, our best result at the moment is a 4-bit
semi-free internal collision, which is to date, the best known semi-free against SHA-3-384.
We compare our result with previous results of collision attacks on SHA-3 in Table 1.

Moreover, our two-block collision attack can be extended to a multi-block attack, where
the first few blocks can be chosen prefixes with meaningful information. This idea is
inspired by the chosen-prefix collision attacks against MD5 [SLdW07] proposed by Stevens
et al. and against SHA-1 [LP19] proposed by Leurent et al. A chosen-prefix collision attack
is to find messages (M,M ′) such that H(P ||M) = H(P ′||M ′), where P and P ′ are chosen
prefixes and || denotes concatenation [SLdW07]. In this situation, the attacker’s task is
then to find a collision while starting from a random difference in the internal state (due
to the prefixes pair that is not controlled at all by the attacker). Chosen-prefix collision
attacks are more difficult to mount but are stronger attacks more relevant to practice
because the chosen prefixes can be arbitrary meaningful texts.

Organisation of the paper The rest of the paper is organised as follows. In Section 2, we
describe the SHA-3 hash function and properties of the Keccak round function. In Section 3,
we revisit the collision attack proposed by Guo et al. The new framework of our attack
is illustrated in Section 4. The methods of constructing the differential characteristic
and generating the first blocks are stated in Section 5. The SAT-connection phase is
described in Section 6. In Section 7, experimental results of our attack are given. Finally,
we conclude the paper in Section 8.

2 Background
2.1 SHA-3 hash function
The Keccak algorithm. In this section we describe the Keccak hash function in its default
version. We refer the reader to [BDPA, NIS15] for the complete Keccak specification.

The Keccak hash function works on a 1600-bit state A, which is treated as a three-
dimensional array of bits, namely A[5][5][64]. As shown in Figure 1, the one-dimensional
arrays A[][y][z], A[x][][z] and A[x][y][] are called a column, a row and a lane, respectively;
the two-dimensional array A[][][z] is called a slice. The coordinates are considered modulo
5 for x and y, and modulo 64 for z. A 1600-bit string a is converted to the state A in the
following manner: the (64(5y + x) + z)th bit of a becomes A[x][y][z].

We will also utilise a one-dimensional manner for referring to a single related bit. For
example, we use A[i] to represent the bit A[ψ0(i)][ψ1(i)][ψ2(i)], where ψ0(i) = ⌊i/320⌋,
ψ1(i) = ⌊i/64⌋ mod 5, ψ2(i) = i mod 64, ⌊ ⌋ is the floor function, and 0 ≤ i < 1600. We

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 243

state

slice

row

bit

lane

column

Figure 1: Terminologies in Keccak.

also define a function ϕ0 such that the bit A[i] is in the ϕ0(i)th column of the state A,
where ϕ0(i) = 64ψ1(i) + ψ2(i).

There are four different variants of the Keccak hash function, namely Keccak-224,
Keccak-256, Keccak-384 and Keccak-512. For each n ∈ {224, 256, 384, 512}, Keccak-n
corresponds to the parameters r (bitrate) and c = 2n (capacity), where r + c = 1600. The
capacity c is 448, 512, 768, 1024 and the bitrate r is 1152, 1088, 832, 576, respectively for
Keccak-224, Keccak-256, Keccak-384 and Keccak-512.

Initially, the state is filled with zeroes and the message is split into r-bit blocks. There
are two phases in the Keccak hash function. In the absorbing phase, the next r-bit message
block is XORed with its first r-bit segment of the state and then the state is processed
by an internal permutation that consists of 24 rounds. After all the blocks are absorbed,
the squeezing phase begins. In the squeezing phase, Keccak-n iteratively returns the first
r bits of the state as the output of the function with the internal permutation, until an
n-bit digest is produced.

In the permutation, the round function R consists of five operations, namely, θ, ρ, π, χ
and ι. The round function is defined as R = ι◦χ◦π ◦ρ◦θ, with the following sub-functions:

θ : A[i][j][k]← A[i][j][k] + Σ4
j′=0A[i− 1][j′][k] + Σ4

j′=0A[i+ 1][j′][k − 1],
ρ : A[i][j]← A[i][j] ≫ r[i, j], r[i, j]s are constants,
π : A[j][2i+ 3j]← A[i][j],
χ : A[i][j]← A[i][j] + (A[i+ 1][j] + 1)A[i+ 2][j][k],
ι : A[0][0]← A[0][0] +RCir

, RCir
is the irth round constant,

where 0 ≤ i < 5, 0 ≤ j < 5, 0 ≤ k < 64 and 0 ≤ ir < 24.
The operation θ diffuses the state. In the operation θ, the bit A[i] is summed up with

the ϕ1(i)th and ϕ2(i)th columns of bits, where ϕ1(i) = 64((ψ0(i)− 1) mod 5) + ψ2(i) and
ϕ2(i) = 64((ψ0(i) + 1) mod 5) + ((ψ2(i)− 1) mod 5).

The operations ρ and π implement a bit-level permutation of the state. Let us denote
this combined permutation by σ = π◦ρ, which forms a mapping on integers {0, 1, · · · , 1599}
such that σ(i) is the new position of the i-th bit in the state after applying π ◦ ρ. We
denote by L the first three linear operations θ, ρ and π, which we call a half round. We
rewrite the expression of L in Equation 1:

B[i] = A[σ−1(i)]⊕ col[ϕ1(σ−1(i))]⊕ col[ϕ2(σ−1(i))]. (1)

In Equation 1, A is the input state of L while B is the output state. col[ϕ1(σ−1(i))] and
col[ϕ2(σ−1(i))] are the sums of the five bits in the ϕ1(σ−1(i))th and ϕ2(σ−1(i))th columns,
respectively. The sum of the five bits in one column is called a column sum.
Padding rule. The Keccak hash function uses a multi-rate padding rule. By this rule,
the original message M is appended with a single bit 1 followed by the minimum number

244 Finding Collisions against 4-Round SHA-3-384 in Practical Time

of 0 bits and a single 1 bit such that the resulting message is of length that is a multiple
of the bitrate r. Specifically, the resulting padded message is M = M |10 ∗ 1.

In the four Keccak variants adopted by the SHA-3 standard, the message is first
appended with ‘01’, then the padding rule is applied. Namely, the resulting padded
message is M = M |0110 ∗ 1.

2.2 Properties of the Keccak round function
In this section we show five properties of the Keccak round function. The first property is
called the column parity kernel (CP-kernel) equation: for states in which all columns have
even parity, θ is the identity [BDPA]. This property has been widely used in cryptanalysis
of Keccak. E.g., the attacks in [HWX+17] use it to control the diffusion of cube variables.
Property 1. (CP-kernel Equation) For every i-th and j-th bits in the same column of
the state A we have:

A[i]⊕A[j] = B[σ(i)]⊕B[σ(j)],
where A and B are the input and output states of L, respectively, and 0 ≤ i, j < 1600, i ̸= j.

Property 1 can be easily verified through Equation 1. As the operations in the first
half round are all linear, the equality also holds for differences of corresponding bits.

Before we present four differential properties of the non-linear operation χ, we first
recall the definition of the difference distribution table (DDT) of χ [BS93]. The operation
χ is applied to each row of the state independently, and can be regarded as an S-box.
In differential cryptanalysis proposed by Biham and Shamir in [BS93], the DDT of an
S-box counts the number of cases where the input difference of a pair is a and the output
difference is b. In our case, for an input difference a ∈ F5

2 and an output difference b ∈ F5
2,

the entry δ(a, b) of the DDT of the Keccak S-box S is:

δ(a, b) = |{z ∈ F5
2|S(z)⊕ S(z ⊕ a) = b}|.

The set {z ∈ F5
2|S(z)⊕ S(z ⊕ a) = b} is called a solution set.2 We present an important

property of the solution set as follows.
Property 2. ([Dae95, DDS12, BDPA]) For every a, b ∈ F5

2, the solution set of the Keccak
S-box, {z ∈ F5

2|S(z)⊕ S(z ⊕ a) = b} forms an affine subspace of F5
2.

In Property 3 and Property 4, we will show that for some special output differences of
the Keccak S-box, the input difference should follow certain conditions. The two properties
can be easily proven by checking the DDT of the Keccak S-box. Suppose a 5-bit input
difference of the S-box is δin = (δin[4], δin[3], δin[2], δin[1], δin[0]) and the output difference
is δout = (δout[4], δout[3], δout[2], δout[1], δout[0]). Property 3 and Property 4 are then as
follows.
Property 3. If δout = 0x1 then δin[0] = 1.
Property 4. If δout = 0x3 then δin[1]⊕ δin[3] = 1.

We summarise all cases with special output differences in Table 2 when the output
differences in Property 3 and Property 4 are shifted to the right.

Table 2: Summary of conditions for special output differences of χ.

Output Difference Conditions Output Difference Conditions
0x1 δin[0] = 1 0x3 δin[1] ⊕ δin[3] = 1
0x2 δin[1] = 1 0x6 δin[2] ⊕ δin[4] = 1
0x4 δin[2] = 1 0xc δin[3] ⊕ δin[0] = 1
0x8 δin[3] = 1 0x18 δin[4] ⊕ δin[1] = 1

0x10 δin[4] = 1 0x11 δin[0] ⊕ δin[2] = 1

2The idea of the solution set first appeared in Biham and Shamir’s original work on differential
cryptanalysis.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 245

If only one input bit of the Keccak S-box is known, two output differences of the S-box
become linear. Let us show only the case when the least significant input bit is given in
Property 5. The other cases are shown in Appendix A. Suppose the two 5-bit inputs of the
Keccak S-box are x4x3x2x1x0 and x′

4x
′
3x

′
2x

′
1x

′
0. The corresponding outputs are y4y3y2y1y0

and y′
4y

′
3y

′
2y

′
1y

′
0.

Property 5. ([GLL+20]) Given x1 and x′
1, δout[0] is a linear combination of δin[0], x2

and x′
2. Similarly, δout[4] is a linear combination of δin[4], x1 and x′

1.

Property 5 directly follows from the algebraic relation between the input and the
output of χ. When x1 and x′

1 take different values, the expressions of δout[0] and δout[4]
are linearised as shown in Table 3.

Table 3: Linear expressions of δout[0] and δout[4] with different x1 and x′
1.

Conditions Linear Expressions
x1 = x′

1 = 0 δout[0] = δin[0] + δin[2] δout[4] = δin[4]
x1 = x′

1 = 1 δout[0] = δin[0] δout[4] = δin[4] + δin[0]
x1 = 1, x′

1 = 0 δout[0] = δin[0] + x′
2 δout[4] = δin[4] +x0 + 1

x1 = 0, x′
1 = 1 δout[0] = δin[0] + x2 δout[4] = δin[4] +x′

0 + 1

3 Guo et al.’s collision attacks on SHA-3
In this section we revisit the most dedicated existing collision attacks against the SHA-3
hash function. They were constructed by Guo et al. utilising an algebraic and differential
hybrid method [GLL+20], which follows the 1-round connector technique proposed by
Dinur et al. in [DDS12].

The framework of the attack against SHA-3-n is shown in Figure 2. Given an n2-round
high-probability differential characteristic ∆SI → ∆SO with the first n bits of the output
difference ∆SO as zeros, the attack consists of two stages. In the first stage the adversary
applies an n1-round connector by linearising the first n1 rounds. Thus the adversary
obtains message pairs as {(M1,M

′

1)|Rn1(M1||0)⊕Rn1(M′
1||0) = ∆SI}, where ∆SI is the

input difference of the differential characteristic. In the second stage, the adversary finds a
colliding pair following the n2-round differential characteristic by searching through pairs
of messages obtained in the first stage.

-round connector -round differential trail

𝑟

𝑐

𝑛1

𝑛

Δ𝑆𝐼 Δ𝑆𝑂

𝑛2

Figure 2: Overview of Guo et al.’s (n1 + n2)-round collision attacks.

The main drawback of this approach is that in the linearisation technique in the first
stage, bit conditions are added in order to linearise the first n1 rounds, thus consuming
many degrees of freedom. As the input space of SHA-3-384 is too small for a sufficient level

246 Finding Collisions against 4-Round SHA-3-384 in Practical Time

of degrees of freedom, extra bit conditions may cause contradictions with restrictions on
the initial values in the capacity part, thus making the linearisation technique infeasible.

4 A new framework for a collision attack against 4-round
SHA-3-384

In this section we introduce a new framework for a collision attack that overcomes drawbacks
in the techniques of both Dinur et al. and Guo et al. There are three stages in our attack,
namely the 1st block generation stage, the 1-round SAT-based connector stage, and the
collision searching stage, as depicted in Figure 3. Before we overview the three stages, we
introduce some notations, definitions, and parameters.

f L

f L

3-round Differential

Characteristic with

High Probability

Collision

𝑀1

𝑀1
′

𝑀2

𝑀2
′

1st block generation stage 1-round SAT-based connector stage

𝛼1

Collision searching stage

𝛼0

Figure 3: Framework of our attack.

The first blocks M1 and M
′

1 in Figure 3 are called prefixes. A four-round Keccak
permutation, denoted as f , is operated on M1 and M

′

1, before absorbing the next blocks
M2 and M ′

2, respectively. The second blocks M2 and M ′

2 are called suffixes. In our attack,
we assume that message pairs (M1||M2) and (M ′

1||M
′

2) are actually messages after applying
the padding rule. Note that a block of SHA-3-384 is with size of 1600− 384× 2 = 832 bits.
The first blocks M1 and M ′

1 as well as the first 828 bits of the suffixes M2 and M
′

2 are
controlled by the adversary and the last four bits of the suffixes are 0111. The size of the
input space in this case is 832 + 828 = 1660 bits. The last (c+ 4) bits of the input state of
the second block are defined as chaining values, which are known given a fixed prefix pair.

The 3-round differential characteristic depicted in Figure 3 is given in Table 4. The
‘?’ in Table 4 means that the corresponding nibble is unknown. The probability of
the characteristic is 2−42. The method of constructing the characteristic is discussed in
Section 5.2. The differential transition of the i-th round in the characteristic is denoted by
αi−1

L−→ βi−1
χ−→ αi, where i ≥ 1. Let α0 be the input difference of the second block after

adding message blocks as shown in Figure 3. Next, we overview the three stages.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 247

Table 4: The 3-round differential characteristic.
Differential Characteristic Probability

α1(∆SI) 7c0bc4f5b4398002 2407de4bc9668001 ac02095d32eb8000 d402e98975068000 3c05706a07f58000 1
7c0bccf5b4398002 240fde4bc9e68001 ac02095d32ef8000 c40ae98975068000 3414706a05f58000
7c0bc4f5b4398000 240fda4bc9e68001 ac02095d32eb8000 c40ae9897d068000 3c15706a25f58000
7c0bc4f5bc398002 240fde4fc9668001 ac02095d32eb8000 c40ae98975068000 3c15706a05f48000
7c0bc4f1b4398002 240fde4bc9e68001 ac02095d3aeb8000 d40ae98975868000 3c15706a05f58000

β1 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2−26
0000000001008000 0000000000008010 0000000000000010 0000000000008010 0000000001000000
0010000001000000 0000000001000000 0010000000000000 0000000001000000 0010000000000000
0010000000008000 0000000000008000 0010000000000000 0000000000000000 0010000000008000
0000000000000000 0000000000000000 0000000000000010 0000000000000010 0000000000000000

β2 0000000000000000 8000000000000000 0000000000000000 0000000000000000 0000000000000000 2−15
0000000000000000 0000000000000000 0000000080000000 0000000000000001 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000001 0000000000000000
0000000000000000 0000000000000001 0000000000000000 0000000000000000 0000000000000001
0000000000000000 8000000000000000 0000000080000000 0000000000000000 0000000000000000

β3 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2−1
0000000000000000 0000000000000000 0000000000000000 0000200000000000 0000000010000000
0000000000000001 0000002000000000 0000000002000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000400 0000000000000000 0000000000000000
0000000000000000 0080000000000000 0000000000000000 0000000000000000 0000000000000002

α4(∆SO) 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 −
0000000000000000 0000000000000000 0000000000000000 0000200000000000 0000?00010000000
0000000000000001 000000200000000? 000000?00200000? 000000?000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000400 0000000000000?00 0000000000000?00
000000000000000? 008000000000000? 00?0000000000000 00?0000000000000 0000000000000002

4.1 1st block generation stage
In this stage the adversary generates prefix pairs fulfilling required conditions on corre-
sponding chaining values. The method of deriving these conditions is given in Section 5.1.

Instead of working on single-block messages like in the previous technique, we turn to
two-block messages, similar to the attacks proposed by Wang et al. against MD-like hash
functions [WLF+05, WY05, WYY05]. This helps to reduce the impact of the initial values
in the capacity part on the 1-round connector. The Keccak permutation on a prefix is
regarded as a pseudo random number generator (PRNG), which provides pseudo random
chaining values in our attack. Once a corresponding 1-round connector fails, the adversary
just generates another random prefix pair (M1,M

′

1) fulfilling the required conditions over
the chaining values. In comparison, Guo et al.’s adversary would have to search for a new
differential characteristic with a special form, which is a hard and time-consuming process.

4.2 1-round SAT-based connector stage
We develop a new 1-round SAT-based connector that replaces Guo et al.’s linearisation
technique, and removes the constraint on the size of the input space. In this stage,
for each prefix pair generated in the first stage, the adversary searches for a suffix pair
which connects the chaining values with a preset 1-round input difference α1. This is a
connectivity problem, defined as follows.

Definition 1. Given a prefix pair (M1,M
′

1), the connectivity problem is to determine if
there exists a suffix pair (M2,M

′

2) such that

R(f(M1||0)⊕ (M2||0))⊕R(f(M
′

1||0)⊕ (M
′

2||0)) = α1. (2)

The connectivity problem can be reduced to a satisfiability (SAT) problem and solved
by a SAT solver. However, solving the connectivity problem using a SAT solver for every
prefix pair generated in the first stage is still time consuming. Instead, we develop a
preliminary deduce-and-sieve algorithm that filters prefix pairs based on their differential
properties.

In the deduce-and-sieve algorithm, the adversary rejects a prefix pair (M1,M
′

1) if there
exists no differential transition from α0 to α1, where the last 1600− 828 = 772 bits of α0
are the sum of the chaining values. Thus, the adversary can efficiently dismiss most of
prefix pairs that have no solution for corresponding connectivity problems.

Then, the adversary applies the SAT solver to solve the connectivity problem for the
remaining pairs. For a prefix pair (M1,M

′

1), if there exists a suffix pair (M̂2, M̂
′

2) such

248 Finding Collisions against 4-Round SHA-3-384 in Practical Time

that Equation 2 holds, the SAT solver then returns the corresponding suffix pair, which is
called a suffix seed pair ; otherwise, the SAT solver rejects the prefix pair. The 1-round
SAT-based connector stage is described in more detail in Section 6.

4.3 Collision searching stage
The method in the collision searching stage follows Guo et al.’s work: once the adversary
obtains a prefix pair (M1,M

′

1) and a suffix seed pair (M̂2, M̂
′

2), the adversary aims to find
a suffix pair (M2,M

′

2) following the differential characteristic depicted in Figure 3.
All solutions for a corresponding connectivity problem form an affine subspace. Next,

we explain how to derive that subspace of suffixes M2, which also applies to deriving a
subspace of suffixes M ′

2. We will discuss later that searching the affine subspace of M2 for
the colliding pair is equivalent to searching the affine subspace of M ′

2.
Given a pair of prefix and suffix seeds (M̂2, M̂

′

2), the input difference of the operation χ,
denoted as β0, can be deduced by computing L(f(M1||0)⊕(M̂2||0))⊕L(f(M ′

1||0)⊕(M̂ ′

2||0)).
Let x be a vector of bit values before χ, i.e. x = L(f(M1||0)⊕ (M2||0)). By Property 2,
given β0 and α1, all the linear equations on the input affine subspaces of active S-boxes in
the first round can be derived and expressed as

A1 · x = b1, (3)

where A1 is a block-diagonal matrix in which each diagonal block together with corre-
sponding constants in b1 forms equations for one active S-box. Additional constraints that
x needs to fulfill are that given M1, the chaining values are prefixed:

A2 · x = b2, (4)

where A2 is a submatrix of L−1 and b2 is the vector of those prefixed chaining values
computed from f(M1||0). Thus, x is in an affine subspace, which is equivalent to M2 being
in an affine subspace.

The adversary combines and solves Equation 3 and Equation 4 and obtains all solutions
to the connectivity problem. The adversary then exhaustively searches for the colliding
pair that follows the 3-round differential characteristic depicted in Figure 3.

Searching the affine subspace of M2, denoted as W1, for the colliding pair is equivalent to
searching the affine subspace of M ′

2, denoted as W2. As discussed above, x′ = L(f(M ′
1||0)⊕

(M ′
2||0)) satisfies a system of linear equations combined with two parts. The first part is

in a similar form to Equation 3, which is

A1 · x′ = b1. (5)

The second part is writen as:
A2 · x′ = b′

2, (6)
where A2 is a submatrix of L−1 and b2 is the vector of those prefixed chaining values
computed from f(M ′

1||0).
For each x ∈ L(W1), x

⊕
β0 is in L(W2). We will show next that x

⊕
β0 fulfills

both Equation 5 and Equation 6. As x ∈ W1, (x, x
⊕
β0) should follow the differential

characteristic β0 → α1, which indicates that x
⊕
β0 fulfills Equation 5. As L is linear, the

following equation should work:

L−1(x
⊕

β0) = L−1(x)
⊕

L−1(β0) = L−1(x)
⊕

α0. (7)

As L−1(x) is the internal input state of the second block, the least significant bits of
L−1(x

⊕
β0) are indeed the prefixed chaining values computed from f(M ′

1||0). Therefore,
x

⊕
β0 fulfills both Equation 5 and Equation 6. It can be concluded that searching the

affine subspace of M2 for the colliding pair is equivalent to searching the affine subspace of
M ′

2.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 249

Algorithm 1 Deriving Linear Conditions
Input: α1
Output: Set of Linear Conditions SA

1: Compute the output difference for each S-box from α1.
2: Initialise the system of equations E.
3: S0 = ∅, S1=∅, SA = ∅.
4: for each S-box do
5: δout is the output difference of the S-Box.
6: if δout = 0 then
7: for each bit in the S-box do
8: Add the corresponding equation β0[i1] = 0 to both E and S0.
9: else if δout ∈ {0x1,0x2,0x4,0x8,0x10} then

10: Check Table 2 and add the corresponding equation β0[i1] = 1 to E and S1.
11: else if δout ∈ {0x3,0x6,0xc,0x11,0x18} then
12: Check Table 2 and add the corresponding equation β0[i1] + β0[i2] = 1 to E.
13: Substitute the variables β0[0, · · · , 1599] in E by α0[0, · · · , 1599] according to the

expression of θ.
14: Reduce E to its row echelon form.
15: for each equation in E do
16: if all the variables in the equation are from {α0[828], · · ·α0[1599]} then
17: Add this equation to SA

18: return SA

5 Constructing a 3-round differential characteristic
In this section, we first introduce the deduction of conditions on chaining values given
an input difference. Afterwards, we discuss two criteria when constructing a differential
characteristic. With the differential characteristic, we explain the method of generating
prefix pairs satisfying conditions on corresponding chaining values.

5.1 Requirements on the chaining values
For the connectivity problem to have at least one solution (at least one pair of compatible
suffixes), chaining values must follow certain linear conditions. We demonstrate how to
comply with these conditions in chaining values. With α1, the adversary obtains the
output difference of each S-box from α1. There are three types of output differences from
which the adversary can derive conditions on β0. The other output differences do not
derive conditions on β0. These cases are listed as follows:

• Type-I Output Difference: The output difference of an S-box is zero when it is
inactive.

• Type-II Output Difference: The output difference of an S-box is 0x1, 0x2, 0x4,
0x8, or 0x10.

• Type-III Output Difference: The output difference of an S-box is 0x3, 0x6, 0xc,
0x11 or 0x18.

The adversary can derive conditions from the three types of output differences by
applying linear algebra. The procedure is shown in Algorithm 1. From Line 6 to Line
12, the adversary obtains the three types of output differences from α1 and writes the
corresponding conditions on the input differences according to Property 3 and Property 4.
Then, the adversary transforms the system of equations E in the terms of α0 according

250 Finding Collisions against 4-Round SHA-3-384 in Practical Time

to θ operation and reduces E to its row echelon form. At last, the adversary checks each
equation in E and obtains linear conditions on chaining values.

5.2 How to construct a 3-round differential characteristic
The 3-round differential characteristic in our attack adapts the second characteristic in
[GLL+20, Table 9]. The last two rounds of their characteristic are used as the last two
rounds characteristic from the third round to the fourth round in our attack. We slightly
change the output difference of their characteristic to make the first 384 bits have a zero
difference. Thus, the probability of the last two rounds characteristic is 2−16 instead of
2−15 in the original one.

We extend the 2-round backward characteristic by one extra round. When β1 is fixed,
the 3-round differential characteristic is determined. We choose β1 according to two criteria
as follows:

• Criterion 1: The affine subspace in the collision searching stage should be sufficiently
large to find a collision pair.

• Criterion 2: The number of conditions on the chaining values should not be too
large.

If Criterion 1 is not fulfilled, the affine subspace defined by Equation 3 and Equation 4
is so small that the probability that a collision pair is obtained in the third stage becomes
negligible.

If the characteristic does not follow Criterion 2, the procedure of generating the first
message blocks will become infeasible to be realised in practice. To keep our attack
practical, the differential characteristic should satisfy Criterion 2.

The difference α2 has 8 active S-boxes in the second round. From the DDT of the S-box,
the probability of a nonzero differential transition is at least 2−4. Thus, the probability of
our 3-round differential characteristic is no less than (2−4)8 · 2−16 = 2−48. The dimension
of the affine subspace in the collision searching stage should be larger than 48. The
probability of the first round transition should not be smaller than 2−828+48 = 2−780. As
the average probability of a nonzero differential transition in DDT is 2−3, there should be
no more than 780/3 = 260 active S-boxes in the first round to satisfy Criterion 1.

As for Criterion 2, we set the threshold for the number of conditions as 50. We use
a hash table to generate prefix pairs, as discussed in Section 5.3. When the number of
conditions is too large, the memory consumption when generating the first message blocks
is infeasible.

To extend the 2-round characteristic, the adversary picks a β1 at random, which is
compatible with α2 from the second characteristic in [GLL+20, Table 9]. Then, the
adversary computes α1 as L−1(β1). Given α1, the adversary obtains the number of
active S-boxes in the first round. With Algorithm 1, the adversary deduces conditions
on the chaining values. If the two criteria are satisfied, the adversary outputs a 3-round
characteristic; otherwise, the adversary picks another compatible β1 and continues the
procedure.

In our differential characteristic presented in Table 4, there are 228 active S-boxes in the
first round. Applying Algorithm 1 on the differential characteristic, there are 39 conditions
on the chaining values. These conditions are listed in Appendix B. The probability of the
differential characteristic is 2−42.

We note that the differential characteristic searching process needs to be run only
once and its complexity is of polynomial time from our experiment. Furthermore, the
found differential characteristic may not be the most optimal one. Finding the optimal
differential characteristic is thus an open problem.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 251

Algorithm 2 Generating Prefix Pairs
1: procedure GPP(n)
2: Constant XOR Σ=0x7c00000000
3: SP = ∅
4: Initialise an array Counter of length 239 with zeros.
5: for each integer i ∈ [0, 2n) do
6: Randomly pick a message M of 832 bits and compute the value string c.
7: HashTable[c][Counter[c]]=M
8: Increase Counter[c] by 1.
9: for each integer i ∈ [0, 2n) do

10: if i < i⊕ Σ then
11: for each integer j ∈ [0,Counter[i]) do
12: for each integer k ∈ [0,Counter[i⊕ Σ]] do
13: SP = SP ∪ {(HashTable[i][j],HashTable[i⊕ Σ][k])}

return SP

5.3 Generating prefix pairs fulfilling the requirements
We explain the generation procedure of prefix pairs fulfilling the 39 conditions in Table 9.
In our approach, we use a hash table to trade off memory for time and data complexities.
The memory consumption in this procedure is mainly from a hash table indexed by 39
bits. Before we describe the procedure, we introduce some additional definitions.

We define a constant XOR as a binary string c38c37 · · · c1c0, where ci is the sum in
the i-th condition, 0 ≤ i ≤ 38. In our case, the constant XOR is 0x7c00000000 from the
conditions in Table 9. The conditions are the sums of differences in certain bit positions of
the input state of the second block. To check whether a given prefix pair (M1,M

′

1) satisfies
the conditions, the adversary first computes sums of binary values in these positions, which
we call by the value string and records with a 39-bit string. Then, the adversary sums up
value strings and checks whether the result equals the constant XOR value. If true, then
the adversary obtains a prefix pair fulfilling all conditions; otherwise discards it.

The procedure of generating prefix pairs satisfying the conditions is shown in Algo-
rithm 2. First, the adversary generates 2n first-block messages M of length 832 bits and
computes corresponding value strings c. The adversary places M into the cth row of the
hash table. Thereafter, the adversary searches through the hash table for prefix pairs that
satisfy the constraints (Lines 8 to 12).

Algorithm 2 generates around 2n · 2n−1 · 2−39 = 22n−40 pairs. The time and data
complexity is 2n. The memory consumption is mainly from the hash table, which is also
2n. The value of n is experimentally discussed in Section 7.

It should be noted that the prefixes generated in Algorithm 2 can be extended to
messages of length 832nb bits, where nb is the number of blocks and nb ≥ 1. The procedure
of generating multi-block prefix pairs is shown in Algorithm 16 of Appendix C. As shown
in Algorithm 16, the adversary starts from arbitrary chosen messages (P, P ′) as part
of the prefixes in the first (nb − 1) blocks. The remaining block is picked randomly to
fulfill the linear conditions on the chaining values. Thus, our attack can be extended to a
chosen-prefix collision attack like the works of [SLdW07, LP19].

6 1-round SAT-based connector
We develop a new 1-round SAT-based connector to solve the connectivity problem in
an efficient way. The connector includes two phases. First, we use a deduce-and-sieve
algorithm to filter prefix pairs generated by Algorithm 2. Then, for each remaining prefix

252 Finding Collisions against 4-Round SHA-3-384 in Practical Time

Algorithm 3 Initial Phase of the Deduce-and-sieve Algorithm
1: procedure Initial(M1, M ′

1)
2: A = f(M1||0), A′ = f(M ′

1||0)
3: for each integer i ∈ [0, 1600) do
4: if i ≥ 828 then
5: α0[i] = A[i]⊕A′[i], αS

0 [i] = 1, AS [i] = 1, A′
S [i] = 1

6: else
7: α0[i] = 0, αS

0 [i] = 0, A[i] = 0, A′[i] = 0, AS [i] = 0, A′
S [i] = 0 ▷ The

second block is controlled by the adversary.
8: if i ∈ S0 then
9: β0[i] = 0, βS

0 [i] = 1
10: else if i ∈ S1 then
11: β0[i] = 1, βS

0 [i] = 1
12: else
13: βS

0 [i] = 0
14: for each integer i ∈ [0, 320) do
15: Σ[i] = 0, ΣS [i] = 0
16: return A,A′, AS , A

′
S , α0, α

S
0 , β0, β

S
0

pair, the connectivity problem is solved by applying a SAT solver.

6.1 Deduce-and-sieve algorithm

In the deduce-and-sieve algorithm, we assume that for a prefix pair (M1,M
′

1) there exists a
suffix pair (M2,M

′

2) in the connectivity problem. It indicates that in some S-boxes, input
differences for Type-I and Type-II output differences should be of a special form. Thus,
some bit differences of β0 are supposed to be fixed, which are then recorded in the sets S0
and S1, see Algorithm 1.

There are two phases in the deduce-and-sieve algorithm. In the difference phase, given
a prefix pair (M1,M

′

1) the adversary deduces new bit differences and checks whether a
contradiction has been reached, in which case the prefix pair is discarded. The value phase
helps to sieve prefix pairs more efficiently, as the filtering rate of the difference phase is
low. In the value phase, more bit values can be deduced from the algebraic properties of
Keccak’s S-box. If new bit differences are obtained from new bit values, the adversary
returns to the difference phase to seek a contradiction and to discard the prefix pair.

In the initial phase of the deduce-and-sieve algorithm (Algorithm 3), the adversary
computes the chaining values for a prefix pair (M1,M

′

1) and stores the values in two vectors
A and A′ of length 1600, respectively. As the bit values in vectors A and A′ can be either
known or unknown, two extra vectors AS , A′

S , called indicator vectors, record whether the
bit value in a corresponding position is known. To be more specific, for 0 ≤ i < 1600, if
and only if the i-th bit in A is known then AS [i] = 1. The adversary then computes the
bit difference α0[i], where 828 ≤ i < 1600, and sets the corresponding bit differences of β0
as a constant vector. Two indicator vectors αS

0 and βS
0 record whether the bit difference

in a corresponding position is known.
In the deduce-and-sieve algorithm, we use the vector Σ of length 320 to record sums of

five bit differences in each column. In the beginning, each entry of the indicator vector ΣS

is initialised as 0 denoting an unknown state.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 253

6.1.1 The difference phase

In the difference phase of the deduce-and-sieve algorithm, for a given prefix pair (M1,M
′

1),
bit differences of α0 in the chaining value part can be obtained. As we assume that
there exists a solution in the connectivity problem for the prefix pair (M1,M

′

1), some bit
differences of β0 should be certain values from the sets S0 and S1, deduced by Algorithm 1.

With the CP-kernel equations and the expression of L, the adversary can deduce new
bit differences from α0 and β0. We investigate the differential transition of the Keccak
S-box and develop a tool called Truncated Difference Transform Table (TDTT), which is
inspired by truncated differential cryptanalysis, proposed by Knudsen in [Knu94]. With the
TDTT of the Keccak S-box, a contradiction may be reached for the prefix pair (M1,M

′

1)
as there is no compatible differential transition from the input difference of the first round
α0 to the output difference α1. Before we define the TDTT of an S-box, we first introduce
truncated difference in Definition 2. 3

Definition 2. An n-bit difference is called a truncated difference if only m bits of it are
known, where m < n.

We use a 2n-bit integer a||b, where a, b ∈ Fn
2 , to represent a truncated difference. Let

(an−1, · · · , a0) and (bn−1, · · · , b0) be the binary representations of a and b, respectively.
For each i where 0 ≤ i < n, if bi is known, ai = 1; otherwise, ai = 0. In regular truncated
differences, for each i where 0 ≤ i < n, ai ≥ bi. Otherwise, the truncated difference is
called irregular.

Differences covered by a regular truncated difference a||b, where a, b ∈ Fn
2 , are {d ∈

Fn
2 |di = bn+i if ai = 1, 0 ≤ i < n}. A difference d ∈ Fn

2 being covered by a truncated
difference ∆ ∈ F2n

2 is denoted by d ⪯ ∆.
We observe that with an output difference of the Keccak S-box and a corresponding

truncated input difference, more bits of the input difference can be fixed. For example,
suppose that the output difference of an S-box is 0x1 and the truncated input difference
is 0||0 where none of the input bit differences is known. Property 3 indicates that the
least significant input bit difference should be 1. Then, the truncated input difference
of the S-box can be updated as 00001||00001 in the binary representation. A complete
transforming behaviour of the differences of an S-box can be described by its TDTT:

Definition 3. Given a truncated input difference ∆T
in and an output difference ∆out, the

entry TDTT(∆T
in,∆out) of the S-box’s TDTT is:

TDTT (∆T
in,∆out) =

null, if ∆T

in does not deduce ∆out, or ∆T
in is irregular

∆T ′

in , if more bits of the input difference can be derived
∆T

in, if no more bits can be derived

where ∆T ′

in is the new truncated input difference, ∆T
in,∆T ′

in ∈ F2n
2 and ∆out ∈ Fn

2 .

In case of Property 3, it can be observed that TDTT(0||0, 1) is 0x1||0x1.
The TDTT of an S-box can be constructed from its DDT, which is shown in Algorithm 4.

For a regular truncated difference a ∈ F2n
2 and an output difference b ∈ Fn

2 , the adversary
finds all the covered differences ∆in by a such that the differential transition ∆in → b
is compatible, where ∆in ∈ Fn

2 (Line 4 in Algorithm 4). If there exists no such ∆in,
TDTT(a, b) =null. Otherwise, the adversary finds the new truncated difference T covering
all ∆in and TDTT(a, b) = T (Line 8 to 14 in Algorithm 4). For an irregular truncated
difference a ∈ F2n

2 , the adversary labels the entire row of the TDTT as null, shown in Line
16 of Algorithm 4.

3We alert the reader that the original definition in [Knu94] allowed for sets of differences. We use the
common interpretation that characterizes the set by bits set to 0.

254 Finding Collisions against 4-Round SHA-3-384 in Practical Time

Algorithm 4 Constructing the TDTT of an n-bit S-box from its DDT
Input: DDT of an n-bit S-box
Output: TDTT of the S-box

1: for each integer a ∈ [0, 22n) do
2: if a is a regular truncated difference then
3: for each integer b ∈ [0, 2n) do ▷ TDDT(a, b) is computed in the loop.
4: Find D = {∆in ∈ Fn

2 |DDT(∆in, b) ̸= 0} ∩ {∆in ∈ Fn
2 |∆in ⪯ a}

5: if D = ∅ then
6: TDTT(a,b)=null
7: else
8: T=0 ▷ T is a 2n-bit integer.
9: for each integer i ∈ [0, n) do

10: if the i-th bit of each entry in D is a constant as ci then
11: Ti = ci, Tn+i = 1 ▷ Ti is the i-th bit of T .
12: else
13: Ti = 0, Tn+i = 0
14: TDTT(a, b) = T

15: else
16: TDTT(a,*)=null
17: return TDTT

Next, we describe the method of deducing new bit differences from the CP-kernel
equations and the expression of L. Then, we explain the method of applying it for sieving
prefix pairs.

Deducing new differences from the CP-kernel equations. New differences of some bit
positions can be derived from the CP-kernel equations. For example, as shown in Figure 4,
the differences α[i3], α[i4] and β[σ(i3)] are known. The difference β[σ(i4)] can be deduced
from the CP-kernel equation as β[σ(i4)] = α[i3]⊕ α[i4]⊕ β[σ(i3)]. New differences can be

L

𝛼0 𝛽0

i0
i1
i2
i3
i4

σ(i0)
𝜎 i1
𝜎 i2
𝜎 i3
𝜎 i4

deduced bit

known bit

unknown bit

Figure 4: Deducing new differences from the CP-kernel equations.

derived in a column if there exists a position ij in the column such that both α[ij] and
β[σ(ij)] are known, and 0 ≤ j < 5. The procedure of deducing new differences in the i-th
column is shown in Algorithm 5.

L L

(a) (b)

known bits

unknown bits

don’t care bits

Figure 5: Representatives when the sum state is 1.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 255

Algorithm 5 Deducing New Differences in the i-th Column
1: procedure CPKernel(α0, β0, αS

0 , βS
0 , i)

2: Compute the indices of the five bits in the i-th column as i0, i1, · · · , i4.
3: flag = 0
4: for each integer j ∈ [0, 5) do
5: if αS

0 [ij] = 1 and βS
0 [σ(ij)] = 1 then

6: flag = 1, sum = α0[ij]⊕ β0[σ(ij)]
7: if flag then
8: for each integer j ∈ [0, 5) do
9: if αS

0 [ij] = 1 and βS
0 [σ(ij)] = 0 then

10: β0[σ(ij)] = sum⊕ α0[ij], βS
0 [σ(ij)] = 1.

11: else if αS
0 [ij] = 0 and βS

0 [σ(ij)] = 1 then
12: α0[ij] = sum⊕ β0[σ(ij)], αS

0 [σ(ij)] = 1

L L

(a) (b)

known bit

unknown bit

marked bit

don’t care bit

known bit

unknown bit

marked bit

don’t care bit

L

(c)

Figure 6: Representatives when the sum state is 2.

Deducing new differences from the expression of L. New bit differences can be derived
from the expression of L. Applying Equation 1, the bit difference β0[i] can be expressed
as:

β0[i] = α0[σ−1(i)]⊕ Σ[ϕ1(σ−1(i))]⊕ Σ[ϕ2(σ−1(i))], (8)

where Σ[ϕ1(σ−1(i))] and Σ[ϕ2(σ−1(i))] are the sums of the five bits in the ϕ1(σ−1(i))th and
ϕ2(σ−1(i))th columns, respectively, and 0 ≤ i < 1600. If only one variable in Equation 8
is unknown, its value can be deduced. Before we show the technique of deducing new
difference applying Equation 8, we introduce the method of computing the column sum.

We classify the situations of the column sum into three cases. The first case is that the
column sum is known. The second is that the column sum becomes known with one more
known bit. The third is that more than two bits of information are needed to derive the
column sum. In order to compute the column sum, we use another variable called sum
state that encodes the three states: 1 for the first case, 2 for the second case, and 0 for the
third case.

Representatives, when the sum state is 1, are shown in Figure 5.4 For example, as
shown in Figure 5 (b), α0[i2], α0[i3], α0[i4], β0[σ(i0)] and β0[σ(i1)] are known. Applying
the CP-kernel equation, the column sum can be computed as

α0[i2]⊕ α0[i3]⊕ α0[i4]⊕ β0[σ(i0)]⊕ β0[σ(i1)].

Representatives of the cases when the sum state is 2 are shown in Figure 6.5 In these
three representatives the sum of four bits of one column can be derived with the CP-kernel
equation. The index of the left bit in the column, defined as the marked bit, is recorded.
The difference of the marked bit may be deduced in a later step.

4We only show a representative in Figure 5 (b). The other cases can be obtained by permuting the bits
in the two columns simultaneously.

5We only show three representatives in Figure 6. The other cases can be obtained by permuting the
bits in the two columns of the subfigures simultaneously.

256 Finding Collisions against 4-Round SHA-3-384 in Practical Time

Algorithm 6 Computing the i-th Column Sum
1: procedure ColumnSum(α0, β0, αS

0 , βS
0 , i, Σ, ΣS , MarkedBit)

2: Compute the indices of the five bits in the i-th column as i0, i1, · · · , i4.
3: if the five bits match one of the representatives in Figure 5 then
4: Compute the sum and record it in Σ[i]
5: Set ΣS [i] = 1
6: else if the five bits match one of the representatives in Figure 6 then
7: Compute the sum of the four corresponding known bits and record it in Σ[i]
8: Set ΣS [i] = 2
9: Record the index of the corresponding marked bit in MarkedBit[i]

10: else
11: Set ΣS [i] = 0

The procedure for computing the i-th column sum is shown in Algorithm 6. The
adversary finds the states of the 10 related bits from α0 and β0. If the states of 10 related
bits match one of the representatives in Figure 5, the column sum is known. The adversary
computes the sum and updates the sum state ΣS [i] with 1. If the states of 10 related
bits match one of the representatives in Figure 6, where one bit difference is missing, the
adversary computes the sum of the corresponding blue bits. The adversary then records
the sum and the index of the marked bit and updates the sum state ΣS [i] with 2. If the
situation does not match any of the representatives in Figure 5 or Figure 6, the adversary
labels the corresponding sum state as 0.

Given the column sums, the adversary can obtain new bit differences from the expression
of θ. To be more specific, if there is only one variable is unknown in Equation 8, the value
of it can be easily deduced. The procedure is shown in Algorithm 7. There are 5 situations
in which new differences can be deduced. In the two situations shown in Figure 6, marked
bits are obtained and corresponding column sums are updated.

Sieving prefix pairs with TDTT. The sieving procedure applying the TDTT of the
Keccak S-box is shown in Algorithm 8. With β0 and βS

0 , the adversary can deduce the
truncated input difference for each S-box. Then, the adversary discards prefix pairs with
no solutions in the connectivity problem according to the TDTT. For pairs that cannot be
discarded, the adversary may obtain new bit differences of β0 from the TDTT. Once a bit
difference is obtained, the adversary checks the related CP-kernel equations to deduce new
bit differences in α0 and β0, as shown in Lines 13-15 in Algorithm 8.

Let us summarise the difference phase of the deduce-and-sieve algorithm in Algorithm 9.
The adversary first initialises the difference phase by deducing bit differences through
checking the CP-kernel equations. Then, she updates column sums and deduces new
bit differences from the expression of L. Finally, the adversary checks the TDTT of the
Keccak S-box and decides whether a certain prefix pair (M1,M

′

1) should be discarded. If
the pair should not be discarded, the adversary computes the number of new deduced
bit differences from Lines 8-13 in Algorithm 9. If new bit differences are deduced, the
adversary goes back to Line 8; otherwise, she accepts the prefix pair.

6.1.2 The value phase

In the value phase, the adversary uses another algebraic property of the Keccak round
function to deduce new input bit values of χ in the first round. New values can be deduced
using a new tool called Fixed Value Distribution Table (FVDT) and applying the CP-kernal
Equalities.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 257

Algorithm 7 Deducing New Differences from the Expression of L
1: procedure LinearTrans(α0, β0, αS

0 , βS
0 , Σ, ΣS , MarkedBit)

2: for each integer i ∈ [0, 1600) do
3: i0 = σ−1(i), i1 = ϕ1(i0), i2 = ϕ2(i0)
4: Deduce the expression of β0[i] = α0[i0]⊕ Σ[i1]⊕ Σ[i2]
5: if βS

0 [i] = 0 and αS
0 [i0] = 1 and ΣS [i1] = 1 and ΣS [i2] = 1 then

6: Set β0[i] = α0[i0]⊕ Σ[i1]⊕ Σ[i2], βS
0 [i] = 1

7: Call CPkernel(α0, β0, αS
0 , βS

0 , ϕ0(i0))
8: else if βS

0 [i] = 1 and αS
0 [i0] = 0 and ΣS [i1] = 1 and ΣS [i2] = 1 then

9: Set α0[i0] = β0[i]⊕ Σ[i1]⊕ Σ[i2], αS
0 [i0] = 1

10: Call CPkernel(α0, β0, αS
0 , βS

0 , ϕ0(i0))
11: else if βS

0 [i] = 1 and αS
0 [i0] = 1 and ΣS [i1] = 0 and ΣS [i2] = 1 then

12: Set Σ[i1] = β0[i]⊕ α0[i0]⊕ Σ[i2], ΣS [i1] = 1
13: else if βS

0 [i] = 1 and αS
0 [i0] = 1 and ΣS [i1] = 2 and ΣS [i2] = 1 then

14: Set α0[MarkedBit[i1]] = β0[i]⊕ α0[i0]⊕ Σ[i1]⊕ Σ[i2]
15: Set αS

0 [MarkedBit[i1]] = 1
16: Set Σ[i1] = α0[MarkedBit[i1]]⊕ Σ[i1], ΣS [i1] = 1
17: Call CPkernel(α0, β0, αS

0 , βS
0 , ϕ0(MarkedBit[i1]))

18: else if βS
0 [i] = 1 and αS

0 [i0] = 1 and ΣS [i1] = 1 and ΣS [i2] = 0 then
19: Set Σ[i2] = β0[i]⊕ α0[i0]⊕ Σ[i1], ΣS [i2] = 1
20: else if βS

0 [i] = 1 and αS
0 [i0] = 1 and ΣS [i1] = 1 and ΣS [i2] = 2 then

21: Set α0[MarkedBit[i2]] = β0[i]⊕ α0[i0]⊕ Σ[i1]⊕ Σ[i2]
22: Set αS

0 [MarkedBit[i2]] = 1
23: Set Σ[i2] = α0[MarkedBit[i2]]⊕ Σ[i2], ΣS [i2] = 1
24: Call CPkernel(α0, β0, αS

0 , βS
0 , ϕ0(MarkedBit[i2]))

The FVDT is developed from an observation that with a truncated input difference
and an output difference of the Keccak S-box, bit values in some positions are constants.
Applying the FVDT of the Keccak S-box, the adversary can obtain new input bit values
of χ. With these new values and the chaining values, the adversary applies the CP-kernal
equations to deduce additional input bits of χ. With the new values, the adversary can
derive new bit differences from the expression of χ. Then, she can continue with the
difference phase.

Fixed Value Distribution Table (FVDT). Before we delve into the details of the FVDT
of an n-bit S-box, we first define a solution set of a truncated input difference ∆T

in and an
output difference ∆out as follows:

Definition 4. The solution set of a truncated input difference ∆T
in and an output difference

∆out is

ST (∆T
in,∆out) =

⋃
∆in⪯∆T

in

{(a, a⊕∆in)|S(a)⊕ S(a⊕∆in) = ∆out},

where ∆T
in ∈ F2n

2 , ∆in ∈ Fn
2 and ∆out ∈ Fn

2 .

The solution set of the truncated input difference ∆T
in and the output difference ∆out

is a generalisation of the solution set of the input difference ∆in and the output difference
∆out of regular DDTs. From Definition 4, it is a union of solution sets of the input difference
∆in and the output difference ∆out, where ∆in ⪯ ∆T

in.
We observe that for the truncated input difference ∆T

in and the output difference ∆out,
some bits of the pairs in the solution set ST (∆T

in,∆out) may be constants. For example,

258 Finding Collisions against 4-Round SHA-3-384 in Practical Time

Algorithm 8 Discarding Prefix Pairs with TDTT
1: procedure Sieve(α0, β0, α1, αS

0 , βS
0 , TDTT)

2: for each S-box do
3: Deduce the output difference ∆out from α1.
4: Deduce the truncated input difference ∆T

in from β0 and βS
0 .

5: T ←TDTT(∆T
in,∆out)

6: if T=null then
7: return 0.
8: else if T=∆T

in then
9: continue

10: else if T ̸= ∆T
in then

11: Find the indices of the five bits in the S-box as i0, i1, · · · , i4.
12: for each integer j ∈ [0, 5) do
13: if the (j + 5)th bit of ∆in is 0 and Tj+5 = 1 then
14: Set β0[ij] = Tj , βS

0 [ij] = 1 ▷ Tj is the j-th bit of T .
15: Call CPkernel(α0, β0, αS

0 , βS
0 , ϕ0(σ−1(ij)))

when the truncated input difference ∆T
in is 0xc2, the covered differences are 0x2, 0x3, 0xa,

0xb, 0x12, 0x13, 0x1a, and 0x1b. If the output difference ∆out is 0x1, the compatible
differences are 0xb and 0x1b. The solution set is ST (0xc2,0x1) = {0x0, 0x3, 0x8, 0xb} ∪
{0x1, 0x1a}. It can be easily verified that the value of the third bit in the solution set is
fixed as 0.

Based on this observation, we develop a useful tool called Fixed Value Distribution
Table. If the adversary can obtain fixed values in some bit positions with ∆T

in and ∆out,
we use a 2n-bit integer a||b, called as fixed point, to record constant values and their
corresponding positions, where a, b ∈ Fn

2 . If the i-th bit in the S-box is a constant, ai = 1
and bi is assigned to be a fixed value; otherwise, ai = 0 and bi = 0, where 0 ≤ i < n and ai

and bi are the i-th bit of a and b, respectively. We define the FVDT of an S-box as follows:

Definition 5. Given a truncated input difference ∆T
in and an output difference ∆out, the

entry FVDT(∆T
in,∆out) of the S-box’s FVDT is:

FV DT (∆T
in,∆out) =

{
null, if ∆T

in does not deduce ∆out, or ∆T
in is irregular.

v, otherwise.

where ∆T
in, v ∈ F2n

2 , ∆out ∈ Fn
2 and v is the fixed point with respect to ∆T

in and ∆out.

The adversary uses the FVDT of the Keccak S-box to initialise the value phase. The
process is shown in Algorithm 10.

Deducing new values from CP-kernel equations. Similar to the difference phase, new
values can be deduced from the CP-kernel equations. For each column, the adversary just
calls CPKernel(A, B, AS , BS , i) and CPKernel(A′, B′, A′

S , B′
S , i) corresponding to

two prefixes M1 and M ′
1, where i is the index of the column and 0 ≤ i < 320.

It should be noted that more operations, including the column sum technique in the
differential phase (even on a fraction of columns), can be applied similarly to deduce more
bit values in the value phase. The technique might help to improve the filtering rate of the
deduce-and-sieve algorithm but increase its complexity. It is, however, an open problem
how to balance the complexity and filtering rate of the deduce-and-sieve algorithm.

Deducing new bit differences from bit values. New bit differences can be deduced from
bit values obtained in the value phase. For example, if the adversary finds that the input

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 259

Algorithm 9 Difference Phase of the Deduce-and-sieve Algorithm
1: procedure InitialiseDP(α0, β0, α1, αS

0 , βS
0)

2: for each integer i ∈ [0, 320) do
3: Call CPkernel(α0, β0, αS

0 , βS
0 , i)

4: return a =the number of new deduced differences bits in α0 and β0

5: procedure DP(α0, β0, α1, αS
0 , βS

0 , TDTT)
6: a =InitialiseDP(α0, β0, α1, αS

0 , βS
0)

7: while a ̸= 0 do
8: for each integer i ∈ [0, 320) do
9: if ΣS [i] = 0 then

10: Call ColumnSum(α0, β0, αS
0 , βS

0 , i, Σ, ΣS MarkedBit)
11: else if ΣS [i] = 2 and αS

0 [MarkedBit[i]] = 1 then
12: Set ΣS [i] = 1, Σ[i] = Σ[i]⊕ α0[MarkedBit[i]]
13: Call LinearTrans(α0, β0, αS

0 , βS
0 , Σ, ΣS , MarkedBit)

14: flag =Sieve(α0, β0, α1, αS
0 , βS

0 , TDTT)
15: if flag = 0 then
16: return 0 ▷ Discard the prefix pair
17: else
18: a =the number of new deduced differences bits in α0 and β0.
19: return 1 ▷ Accept the prefix pair

bits of an S-box are x1 = x′
1 = 0 then from Table 3, δin[4] = δout[4], where δout[4] can

be derived from α1. If δin[0] is known, δin[2] can be obtained by δin[2] = δin[0] + δout[0].
The procedure of deducing new bit differences is done by checking the cases in Table 3 as
shown in Algorithm 15 in Appendix A. The value phase of the deduce-and-sieve algorithm
is shown in Algorithm 11.

The deduce-and-sieve algorithm is shown in Algorithm 12. With a prefix pair, the
adversary first runs the difference phase. If there is a contradiction, then the adversary
discards the pair (Line 11); otherwise, the adversary starts the value phase (Line 7). If
new bit differences are deduced in the value phase, then the adversary runs the difference
phase again; otherwise, she accepts the prefix pair (Line 9). As the size of the Keccak
state is finite 1600 bits, the deduce-and-sieve algorithm will terminate after a finite number
of steps when no new bit differences can be obtained. In this way, the deduce-and-sieve
algorithm has a practical complexity, which is discussed further in Section 7.

6.2 SAT
Some of the generated prefix pairs have been filtered by applying the deduce-and-sieve
algorithm. The connectivity problems of the remaining prefix pairs are determined by
using a SAT-solver called CryptoMiniSAT [SNC09]. The recent version of CryptoMiniSAT
accepts XOR clauses as input arguments to describe a SAT problem. Hence, there is no
need to convert XORs in the Keccak round function into the conjunctive normal form
(CNF) as it was done in [MS13].

The procedure of converting the connectivity problem of a prefix pair (M1,M
′
1) into a

SAT problem is shown in Algorithm 17 in Appendix D. It can be seen from Algorithm 17
that in order to convert the connectivity problem into a SAT problem the adversary just
needs to assign chaining values as initial values and derive expressions of output differences
of the first round. For example, the non-linear term v0 = (v1 + 1)v2 in χ can be converted
into CNF clauses as (¬v0 ∨ ¬v1 ∨ v2) ∧ (v0 ∨ v1) ∧ (v0 ∨ ¬v2), where v0, v1 and v2 are
internal variables (see Lines 28-30, 33-35).

260 Finding Collisions against 4-Round SHA-3-384 in Practical Time

Algorithm 10 Initialising the Value Phase
1: procedure InitialVP(α0, β0, α1, αS

0 , βS
0 , B, B′, BS , B′

S , FVDT)
2: for each S-box do
3: Deduce the output difference ∆out from α1.
4: Deduce the truncated input difference ∆T

in from β0 and βS
0 .

5: v=FVDT(∆T
in,∆out)

6: if v=0 then
7: continue
8: else
9: Find the indices of the five bits in the S-box as i0, i1, · · · , i4.

10: for each integer j ∈ [0, 5) do
11: if vj+5 = 1 then ▷ vj is the j-th bit of v.
12: Set B[ij] = vj , B′[ij] = vj , BS [ij] = 1, B′

S [ij] = 1
13: else
14: Set B[ij] = 0, B′[ij] = 0, BS [ij] = 0, B′

S [ij] = 0

Algorithm 11 Value Phase of the Deduce-and-sieve Algorithm
1: procedure VP(α0, β0, α1, αS

0 , βS
0 , A, A′, AS , A′

S , B, B′, BS , B′
S , FVDT)

2: Call InitialVP(α0, β0, α1, αS
0 , βS

0 , B, B′, BS , B′
S , FVDT)

3: for each integer i ∈ [0, 320) do
4: Call CPkernel(A, B, AS , BS , i)
5: Call CPKernel(A′, B′, A′

S , B′
S , i)

6: a =Update(α0, β0, α1, αS
0 , βS

0 , B, B′, BS , B′
S) ▷ See Algorithm 15

7: if a = 0 then
8: return 0 ▷ No new bit differences are deduced.
9: else

10: return 1 ▷ New bit differences are deduced.

7 Experiments and complexity analysis

We verified our work by implementing the attack and analysing its complexity. We
generated 241.3 prefix pairs fulfilling the conditions in Table 9 for one iteration. Most of
these prefix pairs were filtered with the deduce-and-sieve algorithm. According to our
experiments, the filtering rate is 2−19.42. Thus, about 221.88 prefix pairs remained after
applying our deduce-and-sieve algorithm. If we run the deduce-and-sieve algorithm without
the value phase, the filtering rate is only 2−13.55. It can be seen that the value phase helps
to improve the efficiency of the deduce-and-sieve algorithm by a factor of 25.87.

It is also interesting to note that when the capacity increases, the filtering rate of the
deduce-and-sieve algorithm decreases sharply. For example, if the capacity is increased by
16 bits to 788 bits, the filtering rate of the deduce-and-sieve algorithm is 2−26.1. Thus, it
is difficult to investigate the property of the remaining pairs using a statistical manner
when the input space is even smaller. To build a collision attack against SHA-3-512, an
improved deduce-and-sieve algorithm is needed.

The average running time of the deduce-and-sieve algorithm is 1.22× 10−5s for a prefix
pair on a single core of Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz. If we apply the
SAT solver CryptoMiniSAT to determine the connectivity problem instead of using our
deduce-and-sieve algorithm, the average running time of the SAT solver for every prefix
pair is 0.31s on the same platform. In conclusion, our approach outperforms the SAT
solver by a factor of 2.54× 104 on this special type of SAT problems.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 261

Algorithm 12 Deduce-and-sieve Algorithm
1: procedure DeriveSieve(M1, M ′

1, TDTT, FVDT)
2: (A,A′, AS , A

′
S , B,B

′, BS , B
′
S , α0, α

S
0 , β0, β

S
0)=Initial(M1, M ′

1)
3: flag = 1
4: while flag do
5: flag =DP(M1, M ′

1, α0, β0, α1, αS
0 , βS

0 , TDTT)
6: if flag then
7: flag =VP(α0, β0, α1, αS

0 , βS
0 , A, A′, AS , A′

S , B, B′, BS , B′
S , FVDT)

8: if flag = 0 then
9: return 1 ▷ Accept the prefix pair

10: else
11: return 0 ▷ Discard the prefix pair

As from the software performance figure6, approximately 221 calls for 24-round Keccak
permutations can be implemented in 1 second on a single core of Intel(R) Sandy Bridge(R)
Core i5-2400 @ 3.10GHz. It indicates that one execution of 4-round SHA-3-384 takes
4/24 × 2−21 = 2−23.58s. Thus, our deduce-and-sieve algorithm on one prefix pair is
approximately equivalent to 1.22× 10−5/2−23.58 = 27.25 SHA-3-384 operations from our
experiments. The average running time of the SAT solver for each remaining prefix pair
after the deduce-and-sieve algorithm is 3.93s on the same platform, which is equivalent to
3.93/2−23.58 = 225.55 SHA-3-384 operations.

We use statistical methods to analyse the data complexity. Deriving the probability
that there exists a solution for a connectivity problem in a non-statistical manner is an
open problem. We define a semi-free n-bit internal collision attack in which situation the
adversary is assumed to have the capacity of modifying n-bit chaining values for each suffix
message, where n > 0. The corresponding connectivity problem is called semi-free n-bit
internal connectivity problem. From our experiments, there are 11.07 suffix seed pairs on
average for each iteration to construct semi-free 14-bit internal collision attacks.

To analyse the complexity of our attack, we show an important property of the
connectivity problems in Observation 1.

Observation 1. The probability that a semi-free internal n-bit connectivity problem is
still satisfiable as a semi-free (n− 1)-bit internal connectivity problem, denoted as pn, is
approximately 1

2 , where n ≥ 1.

Observation 1 is discovered through experiments. We estimate pn by computing the
ratio of suffix seed pairs, which are still compatible for constructing a semi-free (n− 1)-bit
internal collision attack, in the seed pairs for semi-free (n− 1)-bit internal collision attacks.
The ratio is denoted as p̂n. The procedure of estimating pn for each n ∈ [1, 14] is shown
in Algorithm 13. For each n ∈ [1, 14], we randomly generate 25600 internal state pairs
(m,m′) to the second block such that R(m)

⊕
R(m′) = α1. To be more specific, we

randomly pick z ∈ F1600
2 and obtain an internal state pair to the second block, which is

(m,m′) = (R−1(z), R−1(z
⊕
α1)). If we assume that the last 1600− (828 + n) = 772− n

bits of (m,m′) are the chaining values, (m,m′) is a suffix seed pair for constructing a
semi-free n-bit internal collision attack. From line 6 to 8 in Algorithm 13, we modify the
(827 + n)-th bits of m and m′ and denote the new pair as (m1,m

′
1). We call the SAT

solver to check whether (m1,m
′
1) is a suffix seed pair for a semi-free (n− 1)-bit internal

collision attack. Finally, Algorithm 13 returns the ratio p̂n. The experimental results are
shown in Table 5. It can be seen that each p̂n is close to 0.5, where n ∈ [1, 14].

It follows from Observation 1 that to build a real collision attack, we need to collect
214 suffix seed pairs for the semi-free 14-bit internal collision attack. Therefore, we need

6Software performance figures, https://keccak.team/sw_performance.html.

https://keccak.team/sw_performance.html

262 Finding Collisions against 4-Round SHA-3-384 in Practical Time

Table 5: Estimated pn, where n ∈ [1, 14].

n 14 13 12 11 10 9 8
p̂n 0.591 0.628 0.534 0.635 0.533 0.540 0.491
n 7 6 5 4 3 2 1
p̂n 0.578 0.534 0.524 0.500 0.497 0.516 0.543

Algorithm 13 Estimating pn

Input: n
Output: Estimated p̂n

1: ctr = 0
2: for each integer i ∈ [0, 25600) do
3: Randomly pick z ∈ F1600

2
4: Compute an internal input pair to the second block (m,m′) =

(R−1(z), R−1(z
⊕
α1))

5: for each integer j ∈ [0, 4) do
6: m1 = m, m′

1 = m′

7: Add the (827 + n)-th bit of m1 with the first bit of j
8: Add the (827 + n)-th bit of m′

1 with the second bit of j
9: Call CryptoMiniSAT to determine whether (m1,m

′
1) is a suffix seed pair for a

semi-free (n− 1)-bit internal collision attack
10: if (m1,m

′
1) is a seed pair then

11: ctr = ctr + 1
return p̂n = ctr/(4× 256000)

to generate 241.3 · 214/11.07 = 251.83 prefix pairs. To generate these pairs, the adversary
applies the hash table technique in Algorithm 2. As mentioned in Section 5.3, the time,
data and memory complexity of the 1st block generation stage should be 245.92. The whole
procedure of the attack is summarised in Algorithm 14.

In the 1-round SAT-based connector stage, the adversary applies the deduce-and-sieve
algorithm to filter the 251.83 prefix pairs. The time complexity is 27.25 · 251.83 = 259.1

and the memory complexity is negligible. Then, the adversary solves the connectivity
problems for the remaining 251.83 · 2−19.42 = 232.41 prefix pairs applying the SAT solver.
The time complexity is 232.41 · 225.55 = 257.96. The memory cost of applying the SAT
solver is also negligible from our experiments. Thus, the complexity of the second stage is
259.1 + 257.96 ≈ 259.64.

In the collision searching stage, the adversary solves the system of linear equations
combining Equation 3 and Equation 4 with a prefix pair and a suffix seed pair gained
from the previous stage, the time complexity of which is negligible. Then, the adversary
searches the solutions of the linear equations for a suffix pair following the last 3-round
differential characteristic of probability 2−42. From our experiments, the solution space of
the linear equations is typically with a dimension of 100, which is sufficiently large to find
a colliding pair. Thus, the complexity of this stage is 242.

The time complexity of our collision attack is determined by the complexity of the
second stage, which is 259.64. The memory and data complexity are both 245.92. Recall that
the second stage includes two phases, which are applying the deduce-and-sieve algorithm
to filter prefix pairs and solving the remaining connectivity problems with SAT solvers. It
is also an open problem to find the optimal filtering rate of the deduce-and-sieve algorithm
to balance the complexity of the two phases by choosing a proper α0.

As the size of available memory we have is insufficient to generate 251.83 prefix pairs in
one run utilising a large hash table, we have to generate data in several iterations instead.
Each iteration takes 43 hours on our platform, which is equal to 43 × 256 = 1.1 × 104

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 263

Algorithm 14 The procedure of the attack
Output: (M1||M2,M

′
1||M ′

2) such that the hash value of the two strings is the same.
1: SP = GPP(45.92) ▷ 1st block generation stage
2: for each pair (M1,M

′
1) in SP do ▷ 1-round SAT-based connector stage

3: if DeriveSieve(M1, M ′

1, TDTT, FVDT) then
4: SE = SAT(M1,M

′

1, α1) ▷ See Algorithm 17
5: Solve the SAT problem SE with the SAT solver CryptoMiniSAT
6: if SE is satisfiable then
7: Output the suffix seed (M̂2, M̂

′
2) from CryptoMiniSAT

8: Go to Step No.11
9: else

10: continue

11: Solve the system of linear equations E combining Equation 3 and Equation 4 with
(M1,M

′
1) and (M̂2, M̂

′
2). ▷ Collision searching stage

12: Search the solutions of E for a colliding pair (M2,M
′
2).

13: return (M1||M2,M
′
1||M ′

2)

core·hours. Recall that we can find 11.07 suffix seed pairs in each iteration for semi-free 14-
bit internal collision attacks. To find a collision pair of 4-round SHA-3-384, approximately
214/11.07 = 1480 iterations are needed, which are 1.63 × 107 core·hours. To be more
specific, the total running time is around 7.3 years on our platform.

Up till now, we have run 106 iterations on our platform. In these iterations, the best
result is a suffix seed pair for constructing a semi-free 4-bit internal collision attack, which
is consistent with our estimation. We show our message pairs for a semi-free 4-bit internal
collision in Table 6. We also show the suffix seed pairs in Table 7.

Table 6: Semi-free 4-bit Internal Collision Messages and Hash Value.

M1
5732121a0fbfccdd 3df4817046b87bb1 d00adfa01cf61d66 fbd8327932de6b42 1e0cd531ed3dbbe1
a6b588d6643b6fce 2e17f6154a55be62 7ed2eb58ca74dd3d 45e995d069e01873 8f1bfe1bcf516038
2539995219a2ce0b 29efb889f172624b 241d314913f32ec0

M2
73d2c43d15d68ac7 fa5d040dff851751 fdf1c8f504ddc895 a112154efd855b32 e5b66a03d74127aa
cf50106808412695 4551bf03cb0bbf25 f4544f840a2f65a7 bcce3ec44e560b73 e652b76f1af97123
911d77c7f077b8f d24e61e7e9bad037 f0ee7da479ccdb0d

M′
1

5b3f3de5af8b3513 d8943ff358e8dd8a 41335bb30c11643c 9e205a1a7a501109 80d3cbaa427aa316
b0837ea6d3a8333a eaa1ca4dff69a1cc 969790479bd934d2 9a55270d03777022 c51cfcceb2e668bb
91218525188f2fc1 8170fc1f64fbf10d 8d424172e8264f5c

M′
2

a0afd65757f0e1dd 6be5f0a54d323649 6cc4a8dcebd91fa9 102d4731eb8f9549 5f5b8d0749cafeb
dc42016f089ee317 2de8a8c03a5b75eb 9c6515d09e202385 7baa86549b09ca54 9eb057116c73aaca
3a67013dd90c8c1a 243c77f1f9dec1dd 34cd394488378778

H
ed3e58fde7229fec bc8fc643fc5d7fa3 6d6751e1f3dceaab 5d5192031990a2ef 6f7ab88b4137642c
4228cee97acc3204

Table 7: Suffix Seed Pair for Semi-free 4-bit Internal Collision Attack.

M̂2
e2f2d43c45e75e85 a7570403a2a21341 372cc5408698f034 a4be794c1b9c532b 551e5e97135027f4
4300381123594e8d 455abf407629c87d b4304681082fe524 ba8256c45f550d28 d1c281fa02c37867
591f70d7da3c0f7 cac360aa67aa37fa 72ab7517415f731a

M̂′
2

318fe65617c9359f 76ef70ab14353251 a619a169699c2708 15812b330d969d50 b55d8c54b0adbfa5
50022916238e8b0f 6de32803877902bb dc0118d59c20a306 7de6ee548a0acc0f a92061947469b39e
36f7014ccba83762 3cb1763c73ee2610 b68831f7b0a42f6f

8 Conclusions
In this paper we describe a practical collision attack on 4-round SHA-3-384. Our attack
outperforms the previous collision attack, of complexity 2147, proposed by Dinur et al. in
[DDS13]. Currently, our result includes a semi-free 4-bit internal collision, but an adversary
with slightly higher computing power can find a collision in practical time.

Although this work does not threaten the security of the full SHA-3 hash function,
our results may be applied to analyse other sponge-based hash functions. The two crypt-

264 Finding Collisions against 4-Round SHA-3-384 in Practical Time

analytic tools that we introduced in this work, namely, Truncated Difference Transform
Table and Fixed Value Distribution Table, can be helpful in detecting non-random be-
haviour of S-boxes. These tools may be useful in analyses of other primitives with the
sponge construction, for example, Keccak with smaller states [BDPA], Xoodyak [DHP+20],
Gimili [BKL+17] and etc. The tools may be also useful for future designs of new secure
non-linear layers in symmetric primitives.

With the deduce-and-sieve algorithm developed in this work, most of unsatisfiable cases
in a class of SAT problems can be determined in a more efficient way than calling a SAT
solver directly. The deduce-and-sieve algorithm may help to enhance the performance of a
SAT solver for certain class of SAT problems.

Acknowledgments
Some of the work of the first author was done while visiting Jian Guo’s group at Nanyang
Technological University. We also thank Jian Guo, Yi Tu, Itai Dinur, Thomas Johannson,
Jeff Yan and Matúš Nemec for their thoughtful insights.

The research is supported in part by the Center for Cyber, Law, and Policy in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office and by
the Israeli Science Foundation through grants No. 880/18 and 3380/19. The first author is
funded by an ELLIIT project. Part of the computations are enabled by resources provided
by LUNARC. We also thank Qian Guo for granting us the access of the resources through
his project.

References
[BCJ15] Eli Biham, Rafi Chen, and Antoine Joux. Cryptanalysis of SHA-0 and Reduced

SHA-1. J. Cryptol., 28(1):110–160, 2015.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions
for Message Authentication. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[BDPA] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
Sponge Function Family Main Document. http://Keccak.noekeon.org/
Keccak-main-2.1.pdf.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A Cross-Platform
Permutation. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture
Notes in Computer Science, pages 299–320. Springer, 2017.

[BNR21] Rachelle Heim Boissier, Camille Noûs, and Yann Rotella. Algebraic Collision
Attacks on Keccak. IACR Trans. Symmetric Cryptol., 2021(1):239–268, 2021.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[CJ98] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In
Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual

http://Keccak.noekeon.org/Keccak-main-2.1.pdf
http://Keccak.noekeon.org/Keccak-main-2.1.pdf

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 265

International Cryptology Conference, Santa Barbara, California, USA, August
23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer Science,
pages 56–71. Springer, 1998.

[Dae95] Joan Daemen. Cipher and Hash Function Design Strategies Based on Linear
and Differential Cryptanalysis, PhD thesis, Doctoral Dissertation, KU Leuven.
1995.

[Dam89] Ivan Damgård. A Design Principle for Hash Functions. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, 1989.

[DDS12] Itai Dinur, Orr Dunkelman, and Adi Shamir. New Attacks on Keccak-224
and Keccak-256. In Anne Canteaut, editor, Fast Software Encryption - 19th
International Workshop, FSE 2012, Washington, DC, USA, March 19-21,
2012. Revised Selected Papers, volume 7549 of Lecture Notes in Computer
Science, pages 442–461. Springer, 2012.

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision Attacks on Up to 5
Rounds of SHA-3 Using Generalized Internal Differentials. In Shiho Moriai,
editor, Fast Software Encryption - 20th International Workshop, FSE 2013,
Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture
Notes in Computer Science, pages 219–240. Springer, 2013.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

[DHP+20] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. Xoodyak, a Lightweight Cryptographic Scheme. IACR Trans. Symmetric
Cryptol., 2020(S1):60–87, 2020.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced Keccak Sponge Function. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture
Notes in Computer Science, pages 733–761. Springer, 2015.

[GLL+20] Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao, and Ling
Song. Practical Collision Attacks against Round-Reduced SHA-3. J. Cryptol.,
33(1):228–270, 2020.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional Cube Attack on Reduced-Round Keccak Sponge Function. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May
4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer
Science, pages 259–288, 2017.

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In Bart Preneel,
editor, Fast Software Encryption: Second International Workshop. Leuven,
Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in
Computer Science, pages 196–211. Springer, 1994.

266 Finding Collisions against 4-Round SHA-3-384 in Practical Time

[LP19] Gaëtan Leurent and Thomas Peyrin. From Collisions to Chosen-Prefix Colli-
sions Application to Full SHA-1. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darm-
stadt, Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 527–555. Springer, 2019.

[LS19] Ting Li and Yao Sun. Preimage Attacks on Round-Reduced Keccak-224/256 via
an Allocating Approach. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture
Notes in Computer Science, pages 556–584. Springer, 2019.

[Mer89] Ralph C. Merkle. A Certified Digital Signature. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer,
1989.

[MS13] Pawel Morawiecki and Marian Srebrny. A SAT-based Preimage Analysis of
Reduced Keccak Hash Functions. Inf. Process. Lett., 113(10-11):392–397, 2013.

[NIS93] NIST. FIPS: Secure Hash Standard. May 1993.

[NIS95] NIST. FIPS 180-1: Secure Hash Standard. April 1995.

[NIS02] NIST. FIPS 180-2: Secure Hash Standard. August 2002.

[NIS15] NIST. FIPS 202: SHA-3 Standard: Permutation-based Hash and Extendable-
output Functions. Auguest 2015.

[NRM11] María Naya-Plasencia, Andrea Röck, and Willi Meier. Practical Analysis of
Reduced-Round Keccak. In Daniel J. Bernstein and Sanjit Chatterjee, editors,
Progress in Cryptology - INDOCRYPT 2011 - 12th International Conference
on Cryptology in India, Chennai, India, December 11-14, 2011. Proceedings,
volume 7107 of Lecture Notes in Computer Science, pages 236–254. Springer,
2011.

[QSLG17] Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New Collision Attacks
on Round-Reduced Keccak. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III, volume 10212 of
Lecture Notes in Computer Science, pages 216–243, 2017.

[Riv92] Ronald L. Rivest. The MD5 Message-Digest Algorithm. RFC, 1321:1–21,
1992.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The First Collision for Full SHA-1. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 570–596. Springer, 2017.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 267

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Collisions
for MD5 and Colliding X.509 Certificates for Different Identities. In Moni
Naor, editor, Advances in Cryptology - EUROCRYPT 2007, 26th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings, volume 4515 of
Lecture Notes in Computer Science, pages 1–22. Springer, 2007.

[SLG17] Ling Song, Guohong Liao, and Jian Guo. Non-full Sbox Linearization: Appli-
cations to Collision Attacks on Round-Reduced Keccak. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part II, volume 10402 of Lecture Notes in Computer
Science, pages 428–451. Springer, 2017.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to
Cryptographic Problems. In Oliver Kullmann, editor, Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture
Notes in Computer Science, pages 244–257. Springer, 2009.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2005.

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer,
2005.

[WYY05] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search
Attacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes
in Computer Science, pages 1–16. Springer, 2005.

268 Finding Collisions against 4-Round SHA-3-384 in Practical Time

A Linear expressions of the output differences of χ with
different conditions

Table 8: Linear expressions of the output differences of χ with known input bits in different
positions.

Conditions Linear Expressions
x2 = x′

2 = 0 δout[1] = δin[1] + δin[3] δout[0] = δin[0]
x2 = x′

2 = 1 δout[1] = δin[1] δout[0] = δin[0] + δin[1]
x2 = 1, x′

2 = 0 δout[1] = δin[1] + x′
3 δout[0] = δin[0] + x1 + 1

x2 = 0, x′
2 = 1 δout[1] = δin[1] + x3 δout[0] = δin[0] + x′

1 + 1
x3 = x′

3 = 0 δout[2] = δin[2] + δin[4] δout[1] = δin[1]
x3 = x′

3 = 1 δout[2] = δin[2] δout[1] = δin[1] + δin[2]
x3 = 1, x′

3 = 0 δout[2] = δin[2] + x′
4 δout[1] = δin[1] + x2 + 1

x3 = 0, x′
3 = 1 δout[2] = δin[2] + x4 δout[1] = δin[1] + x′

2 + 1
x4 = x′

4 = 0 δout[3] = δin[3] + δin[0] δout[2] = δin[2]
x4 = x′

4 = 1 δout[3] = δin[3] δout[2] = δin[2] + δin[3]
x4 = 1, x′

4 = 0 δout[3] = δin[3] + x′
0 δout[2] = δin[2] + x3 + 1

x4 = 0, x′
4 = 1 δout[3] = δin[3] + x0 δout[2] = δin[2] + x′

3 + 1
x0 = x′

0 = 0 δout[4] = δin[4] + δin[1] δout[3] = δin[3]
x0 = x′

0 = 1 δout[4] = δin[4] δout[3] = δin[3] + δin[4]
x0 = 1, x′

0 = 0 δout[4] = δin[4] + x′
1 δout[3] = δin[3] + x4 + 1

x0 = 0, x′
0 = 1 δout[4] = δin[4] + x1 δout[3] = δin[3] + x′

4 + 1

Algorithm 15 Deducing New Bit Differences
1: procedure Update(α0, β0, α1, αS

0 , βS
0 , B, B′, BS , B′

S)
2: for each integer i ∈ [0, 1600) do
3: if βS

0 [i] = 0 and BS [i] = 1 and B′
S [i] = 1 then

4: Set βS
0 [i] = 1, β0[i] = B[i]⊕B′[i] .

5: for each integer i ∈ [0, 1600) do
6: if BS [i] = 1 and B′

S [i] = 1 then ▷ Property 5
7: if B[i] = 0 and B′[i] = 0 then
8: Update β0/β

S
0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/β

S
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 1st row in Table 3

9: else if B[i] = 1 and B′[i] = 1 then
10: Update β0/β

S
0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/β

S
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 2nd row in Table 3

11: else if B[i] = 1 and B′[i] = 0 then
12: Update β0/β

S
0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/β

S
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 3rd row in Table 3

13: else if B[i] = 0 and B′[i] = 1 then
14: Update β0/β

S
0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/β

S
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 4th row in Table 3

15: return a =the number of new deduced differences bits in β0.

Senyang Huang, Orna Agmon Ben-Yehuda, Orr Dunkelman, Alexander Maximov 269

B Conditions on chaining values

Table 9: Conditions on chain values.
α0[939] + α0[1579] = 0, α0[867] + α0[1187] = 0, α0[868] + α0[1188] = 0,
α0[881] + α0[1201] = 0, α0[882] + α0[1202] = 0, α0[883] + α0[1203] = 0,
α0[884] + α0[1204] = 0, α0[885] + α0[1205] = 0, α0[886] + α0[1206] = 0,
α0[887] + α0[1207] = 0, α0[888] + α0[1208] = 0, α0[889] + α0[1209] = 0,

α0[999] + α0[1319] = 0, α0[1000] + α0[1320] = 0, α0[1001] + α0[1321] = 0,
α0[1036] + α0[1356] = 0, α0[1037] + α0[1357] = 0, α0[1038] + α0[1358] = 0,
α0[1039] + α0[1359] = 0, α0[1040] + α0[1360] = 0, α0[1088] + α0[1408] = 0,
α0[1148] + α0[1468] = 0, α0[1149] + α0[1469] = 0, α0[1150] + α0[1470] = 0,
α0[1151] + α0[1471] = 0, α0[1216] + α0[1536] = 0, α0[1217] + α0[1537] = 0,
α0[1218] + α0[1538] = 0, α0[1219] + α0[1539] = 0, α0[1220] + α0[1540] = 0,
α0[1277] + α0[1597] = 0, α0[1278] + α0[1598] = 0, α0[1279] + α0[1599] = 0,

α0[938] + α0[1578] = 0, α0[959] + α0[1279] = 1, α0[998] + α0[1318] = 1,
α0[1147] + α0[1467] = 1, α0[836] + α0[1476] = 1

α0[952] + α0[1592] + α0[1373] + α0[1053] = 1

C Generating Multi-Block Prefix Pairs

Algorithm 16 Generating nb-Block Prefix Pairs
Input: Chosen (nb − 1)-Block Prefixes (P, P ′)
Output: Set of nb-Block Prefix Pairs SP

1: Constant XOR Σ=0x7e00000000
2: SP = ∅
3: Initialise two arrays, CntrA and CntrB of length 239 with zeros.
4: for each integer i ∈ [0, 2n) do
5: Randomly pick a 1-block message M of 832 bits and compute the value string c on

(P ||M).
6: Set HTA[c][CntrA[c]] = M and increase CntrA[c] by 1.
7: Compute the value string c′ on (P ′||M).
8: Set HTB [c′][CntrB [c′]] = M and increase CntrB [c′] by 1.
9: for each integer i ∈ [0, 2n) do

10: if i < i⊕ Σ then
11: for each integer j ∈ [0, CntrA[i]) do
12: for each integer k ∈ [0, CntrB [i⊕ Σ]] do
13: SP = SP ∪ {(P ||HTA[i][j], P ′||HTB [i⊕ Σ][k])}

270 Finding Collisions against 4-Round SHA-3-384 in Practical Time

D Converting the Connectivity Problem into a SAT prob-
lem

Algorithm 17 Converting a connectivity problem into a SAT problem
1: procedure SAT(M1, M ′

1, α1)
2: SE = ∅
3: A = f(M1||0), A′ = f(M ′

1||0)
4: A[828] = A[828]⊕ 1, A′[828] = A′[828]⊕ 1 ▷ Padding
5: A[829] = A[829]⊕ 1, A′[829] = A′[829]⊕ 1 ▷ Padding
6: A[830] = A[830]⊕ 1, A′[830] = A′[830]⊕ 1 ▷ Padding
7: for each integer i ∈ [0, 828) do
8: A[i] = v(i), A′[i] = v(i+ 828)
9: c = 1656

10: for each integer i ∈ [0, 320) do ▷ θ
11: Σ[i] = v(c),
12: Add an XOR clause v(c)+A[i]+A[i+320]+A[i+640]+A[i+960]+A[i+1280] = 0

to SE

13: c = c+ 1
14: Σ′[i] = v(c),
15: Add an XOR clause v(c)+A′[i]+A′[i+320]+A′[i+640]+A′[i+960]+A′[i+1280] =

0 to SE

16: c = c+ 1
17: for each integer i ∈ [0, 1600) do
18: Add an XOR clause v(c) +A[i]⊕ Σ[ϕ1(i)]⊕ Σ[ϕ2(i)] = 0 to SE

19: A[i] = v(c)
20: c = c+ 1
21: Add an XOR clause v(c) +A′[i]⊕ Σ′[ϕ1(i)]⊕ Σ′[ϕ2(i)] = 0 to SE

22: A′[i] = v(c)
23: c = c+ 1
24: ρ(A), π(A), ρ(A′), π(A′)
25: for each integer i ∈ [0, 5) do ▷ χ
26: for each integer j ∈ [0, 5) do
27: for each integer k ∈ [0, 64) do
28: B[i][j][k] = v(c) ▷ B[i][j][k] = (A[i][j + 1][k] + 1)A[i][j + 2][k]
29: Add a clause ¬v(c) ∨ ¬A[i][j + 1][k] ∨A[i][j + 1][k] to SE

30: Add a clause v(c) ∨A[i][j + 1][k] to SE

31: Add a clause v(c) ∨ ¬A[i][j + 2][k] to SE

32: c = c+ 1
33: B′[i][j][k] = v(c) ▷ B′[i][j][k] = (A′[i][j + 1][k] + 1)A′[i][j + 2][k]
34: Add a clause ¬v(c) ∨ ¬A′[i][j + 1][k] ∨A′[i][j + 1][k] to SE

35: Add a clause v(c) ∨A′[i][j + 1][k] to SE

36: Add a clause v(c) ∨ ¬A′[i][j + 2][k] to SE

37: c = c+ 1
38: for each integer i ∈ [0, 1600) do
39: Add an XOR clause A[i]⊕A′[i]⊕B[i]⊕B′[i] = α1[i] to SE

return SE

	Introduction
	Our Contributions
	Organisation of the paper

	Background
	SHA-3 hash function
	Properties of the Keccak round function

	Guo et al.'s collision attacks on SHA-3
	A new framework for a collision attack against 4-round SHA-3-384
	1st block generation stage
	1-round SAT-based connector stage
	Collision searching stage

	Constructing a 3-round differential characteristic
	Requirements on the chaining values
	How to construct a 3-round differential characteristic
	Generating prefix pairs fulfilling the requirements

	1-round SAT-based connector
	Deduce-and-sieve algorithm
	The difference phase
	Deducing new differences from the CP-kernel equations.
	Deducing new differences from the expression of L.
	Sieving prefix pairs with TDTT.

	The value phase
	Fixed Value Distribution Table (FVDT).
	Deducing new values from CP-kernel equations.
	Deducing new bit differences from bit values.

	SAT

	Experiments and complexity analysis
	Conclusions
	Linear expressions of the output differences of with different conditions
	Conditions on chaining values
	Generating Multi-Block Prefix Pairs
	Converting the Connectivity Problem into a SAT problem

