
1/53

Finding Collisions against 4-round SHA3-384 in Practical Time

Senyang Huang1,2, Orna Agmon Ben-Yehuda3, Orr Dunkelman1, Alexander
Maximov4

Dept. of Electrical and Information Technology, Lund University, Lund, Sweden

Dept. of Computer Science, University of Haifa, Haifa, Israel

CRI, University of Haifa, Haifa, Israel

Ericsson Research, Lund, Sweden

2023 . 3 . 21

2/53

Contents

1 Background

2 Framework of Our Attack

3 1st Block Generation Stage

4 1-round SAT-based connector stage

5 Collision Searching Stage

6 Experiment and Complexity Analysis

3/53

Background

Collision Attack on Hash Functions

Cryptographic hash functions are unkeyed primitives that accept an arbitrarily long
input message and produce a fixed length output hash value, or digest for short.

Hash functions are extremely useful in various cryptographic protocols
authentication, password protection, commitment schemes, key exchange
protocols, etc.

One of the security requirements for a secure hash function H is that it should be
computationally difficult to find a collision message pair
{(x , y)|x ̸= y , s.t.H(x) = H(y)}.

4/53

Background

Keccak Sponge Function

The Keccak sponge function family, designed by Bertoni, Daemen, Peeters, and
Giles in 2007, was selected by the U.S. National Institute of Standards and
Technology (NIST) in 2012 as the proposed SHA-3 cryptographic hash function.

5/53

Background

Keccak Sponge Function

Sponge Construction

b-bit permutation f , f contains 24 rounds.

Two parameters: bitrate r and capacity c , b = r + c. b = 1600 by default.

6/53

Background

Keccak Sponge Function

Sponge Construction

Four versions: Keccak-512, Keccak-384, Keccak-256, Keccak-224.

SHA3-n is different from Keccak-n only in the padding rules.

n = c/2.

7/53

Background

Keccak Sponge function

The Round Function of Keccak

Round function: R = ι ◦ χ ◦ π ◦ ρ ◦ θ
Linear layer: L ≜ π ◦ ρ ◦ θ
χ is a nonlinear layer.

8/53

Background

Proposition 1

(CP-kernel Equation) For every i-th and j-th bits in the same column of the state A
we have:

A[i]⊕ A[j] = B[σ(i)]⊕ B[σ(j)],

where A and B are the input and output states of L, respectively, and
0 ≤ i , j < 1600, i ̸= j . σ = π ◦ ρ is a combined permutation, which forms a mapping
on integers {0, 1, · · · , 1599} such that σ(i) is the new position of the i-th bit in the
state after applying π ◦ ρ.

9/53

Background

Variant[r , c , d] nr Complexity Reference

Keccak-512 3 Practical [DDS13]

Keccak-384 3 Practical [DDS13]
Keccak-384 4 2147 [DDS13]
SHA3-384 4 259.64 This work

Keccak-256 4 Practical [DDS12][DDS14]
Keccak-256 5 2115 [DDS13]
SHA3-256 5 Practical [GLL+20]

Keccak-224 4 Practical [DDS12][DDS14]
SHA3-224 5 Practical [GLL+20]

10/53

Background

Contents

1 Background

2 Framework of Our Attack

3 1st Block Generation Stage

4 1-round SAT-based connector stage

5 Collision Searching Stage

6 Experiment and Complexity Analysis

11/53

Framework of Our Attack

Framework of previous works

(nr1 + nr2)-round collision attacks:

nr1-round connector: produce a brunch of message pairs (M1,M
′
1), s.t.

Rnr1 (M1||0c)⊕ Rnr1 (M ′
1||0c) = ∆SI

Linearisation techniques: nr1 = 1[DDS12] → nr1 = 2[QSLG17] → nr1 = 3 [SLG17]
nr2-round high probability differential trail: ∆SI → ∆SO , with first d bits of ∆SO
being zero.

r

c

d

1r
n round connector

2r
n round differential trail

I
S

O
S

12/53

Framework of Our Attack

The main drawback of previous linearistion techniques is that bit conditions are
added in order to linearise the first rounds, thus consuming many degrees of
freedom.
As the input space of SHA-3-384 is too small for a sufficient level of degrees of
freedom, extra bit conditions may cause contradictions making the linearisation
technique infeasible.

13/53

Framework of Our Attack

Framework of Our Attack

f L 

f L 

3-round Differential

Characteristic with

High Probability

Collision

𝑀1

𝑀1
′

𝑀2

𝑀2
′

1st block generation stage 1-round SAT-based connector stage

𝛼1

Collision searching stage

𝛼0

The first block is used as a pseudo random number generater.

Our two-block collision attack can be extended to a multi-block attack, where the
first few blocks can be chosen prefixes with meaningful information.

14/53

Framework of Our Attack

Framework of Our Attack

f L 

f L 

3-round Differential

Characteristic with

High Probability

Collision

𝑀1

𝑀1
′

𝑀2

𝑀2
′

1st block generation stage 1-round SAT-based connector stage

𝛼1

Collision searching stage

𝛼0

We gain greater flexibility in choosing the differential characteristic as now we can
“connect” to a wider range of input differences.

Non-linear conditions which are useful in finding collisions (i.e., fixing intermediate
bits to some values) are much easier to be satisfied using this sort of tools.

15/53

Framework of Our Attack

Contents

1 Background

2 Framework of Our Attack

3 1st Block Generation Stage

4 1-round SAT-based connector stage

5 Collision Searching Stage

6 Experiment and Complexity Analysis

16/53

1st Block Generation Stage

The 3-round differential characteristic in our attack adapts the second characteristic in
[GLL+20, Table 9].

17/53

1st Block Generation Stage

Requirements on the chaining values

f L 

f L 

1


𝑀1
′

𝑀1

𝑀2

𝑀2
′

Chaining values

18/53

1st Block Generation Stage

Proposition 2

Suppose that the input difference is denoted as (δ4, δ3, δ2, δ1, δ0).

1 If the output difference of χ is (0, 0, 0, 0, 0), the input difference is (0, 0, 0, 0, 0).

2 If the output difference of χ is (0, 0, 0, 0, 1), δ0 = 1.

3 If the output difference of χ is (0, 0, 0, 1, 1), δ1 ⊕ δ3 = 1.

19/53

1st Block Generation Stage

Requirements on the chaining values

Output Difference Conditions Output Difference Conditions
0x1 δin[0] = 1 0x3 δin[1]⊕ δin[3] = 1
0x2 δin[1] = 1 0x6 δin[2]⊕ δin[4] = 1
0x4 δin[2] = 1 0xc δin[3]⊕ δin[0] = 1
0x8 δin[3] = 1 0x18 δin[4]⊕ δin[1] = 1
0x10 δin[4] = 1 0x11 δin[0]⊕ δin[2] = 1
0 δin = 0

Table: Summary of conditions for special output differences of χ.

20/53

1st Block Generation Stage

Requirements on the chaining values

f L 

f L 

1


𝑀1
′

𝑀1

𝑀2

𝑀2
′

Chaining values

CP-kernel Equation

21/53

1st Block Generation Stage

Requirements on the chaining values

α0[939] + α0[1579] = 0, α0[867] + α0[1187] = 0, α0[868] + α0[1188] = 0,
α0[881] + α0[1201] = 0, α0[882] + α0[1202] = 0, α0[883] + α0[1203] = 0,
α0[884] + α0[1204] = 0, α0[885] + α0[1205] = 0, α0[886] + α0[1206] = 0,
α0[887] + α0[1207] = 0, α0[888] + α0[1208] = 0, α0[889] + α0[1209] = 0,

α0[999] + α0[1319] = 0, α0[1000] + α0[1320] = 0, α0[1001] + α0[1321] = 0,
α0[1036] + α0[1356] = 0, α0[1037] + α0[1357] = 0, α0[1038] + α0[1358] = 0,
α0[1039] + α0[1359] = 0, α0[1040] + α0[1360] = 0, α0[1088] + α0[1408] = 0,
α0[1148] + α0[1468] = 0, α0[1149] + α0[1469] = 0, α0[1150] + α0[1470] = 0,
α0[1151] + α0[1471] = 0, α0[1216] + α0[1536] = 0, α0[1217] + α0[1537] = 0,
α0[1218] + α0[1538] = 0, α0[1219] + α0[1539] = 0, α0[1220] + α0[1540] = 0,
α0[1277] + α0[1597] = 0, α0[1278] + α0[1598] = 0, α0[1279] + α0[1599] = 0,
α0[938] + α0[1578] = 0, α0[959] + α0[1279] = 1, α0[998] + α0[1318] = 1,

α0[1147] + α0[1467] = 1, α0[836] + α0[1476] = 1
α0[952] + α0[1592] + α0[1373] + α0[1053] = 1

Table: Conditions on chaining values

22/53

1st Block Generation Stage

Algorithm Generating Prefix Pairs
1: Constant XOR Σ=0x7c00000000
2: SP = ∅
3: Initialise an array Counter of length 239 with zeros.
4: for each integer i ∈ [0, 2n) do
5: Randomly pick a message M of 832 bits and compute the value string c .
6: HashTable[c][Counter[c]]=M
7: Increase Counter[c] by 1.
8: end for
9: for each integer i ∈ [0, 2n) do

10: if i < i ⊕ Σ then
11: for each integer j ∈ [0,Counter[i]) do
12: for each integer k ∈ [0,Counter[i ⊕ Σ]] do
13: SP = SP ∪ {(HashTable[i][j],HashTable[i ⊕ Σ][k])}
14: end for
15: end for
16: end if
17: end for

23/53

1st Block Generation Stage

Contents

1 Background

2 Framework of Our Attack

3 1st Block Generation Stage

4 1-round SAT-based connector stage

5 Collision Searching Stage

6 Experiment and Complexity Analysis

24/53

1-round SAT-based connector stage

Definition 3 (Connectivity Problem)

Given M1 and M
′
1, find M2 and M

′
2 s.t.

R(f (M1||0)
⊕

(M1||0))
⊕

R(f (M
′
1||0)

⊕
(M

′
2||0)) = α1.

f L 

f L 

3-round Differential

Characteristic with

High Probability

Collision

𝑀1

𝑀1
′

𝑀2

𝑀2
′

1st block generation stage 1-round SAT-based connector stage

𝛼1

Collision searching stage

𝛼0

25/53

1-round SAT-based connector stage

Solve the connectivity problems with a SAT solver directly? Time-consuming!

26/53

1-round SAT-based connector stage

Solve the connectivity problems with a SAT solver directly.

Filter the prefix pairs generated in the first stage → Deduce-and-sieve Algorithm

27/53

1-round SAT-based connector stage

Two phases in deduce-and-sieve algorithm:

Difference phase

Value phase

28/53

1-round SAT-based connector stage

Difference Phase

Given a prefix pair (M1,M
′
1) and α1,

the chaining values are known ⇐⇒ part of α0 is known

the conditions on β0 should hold if the connectivity problem is solvable.

f L 

f L 

1


𝑀1
′

𝑀1

𝑀2

𝑀2
′

Chaining values

𝛼0 𝛽0

29/53

1-round SAT-based connector stage

Derive New Bit Differences of α0 and β0

30/53

1-round SAT-based connector stage

DEDUCE

Derive from CP-kernel equations:

α0[i]
⊕

α0[j] = β0[σ(i)]
⊕

β0[σ(j)]

Derive from bit relations:

α0[i]⊕ (
4⊕

k=0

α0[i0 + 320 · k])⊕ (
4⊕

k=0

α0[j0 + 320 · k]) = β0[σ(i)]

31/53

1-round SAT-based connector stage

SIEVE

Figure: Truncated Difference Transition Table (TDTT)

32/53

1-round SAT-based connector stage

Truncated Difference Transition Table (TDTT)

Definition 4

Given a truncated input difference ∆T
in and an output difference ∆out , the entry

TDTT(∆T
in ,∆out) of the S-box’s TDTT is:

TDTT (∆T
in ,∆out) =


null , if ∆T

in does not deduce ∆out , or ∆
T
in is irregular

∆T ′
in , if more bits of the input difference can be derived

∆T
in , if no more bits can be derived

where ∆T ′
in is the new truncated input difference, ∆T

in ,∆
T ′
in ∈ F2n

2 and ∆out ∈ Fn
2.

33/53

1-round SAT-based connector stage

E.g.

∆T
in =???0?, ∆out = 00011

The compatible input differences are 01001, 11001 and 11101.

In this case, the truncated input difference should be ∆T
in =?1?01

34/53

1-round SAT-based connector stage

DEDUCE

35/53

1-round SAT-based connector stage

Algorithm Discarding Prefix Pairs with TDTT

1: for each S-box do
2: Deduce the output difference ∆out from α1.

3: Deduce the truncated input difference ∆T
in from β0 and βS

0 .

4: T ←TDTT(∆T
in ,∆out)

5: if T=null then
6: return 0.
7: else if T=∆T

in then

8: continue
9: else if T ̸= ∆T

in then

10: Find the indices of the five bits in the S-box as i0, i1, · · · , i4.
11: for each integer j ∈ [0, 5) do

12: if the (j + 5)th bit of ∆in is 0 and Tj+5 = 1 then

13: Set β0[ij] = Tj , β
S
0 [ij] = 1

14: Call CPkernel(α0, β0, α
S
0 , β

S
0 , ϕ0(σ

−1(ij)))

15: end if
16: end for
17: end if
18: end for

36/53

1-round SAT-based connector stage

We can filter most of the prefix pairs applying the difference phase. But the filtering
rate is not satisfying.

37/53

1-round SAT-based connector stage

Two phases in deduce-and-sieve algorithm:

Difference phase

Value phase

38/53

1-round SAT-based connector stage

Value Phase – Fixed Value Distribution Table (FVDT)

Definition 5

Given a truncated input difference ∆T
in and an output difference ∆out , the entry

FVDT(∆T
in ,∆out) of the S-box’s FVDT is:

FVDT (∆T
in ,∆out) =

{
null , if ∆T

in does not deduce ∆out , or ∆
T
in is irregular.

v , otherwise.

where ∆T
in , v ∈ F2n

2 , ∆out ∈ Fn
2 and v is the fixed point with respect to ∆T

in and ∆out .

39/53

1-round SAT-based connector stage

E.g.

∆T
in =??01?, ∆out = 00001

The compatible differences are 01011 and 11011.

The solution set is
ST (??01?, 00001) = {00000, 00011, 01000, 01011} ∪ {00001, 11010}.

40/53

1-round SAT-based connector stage

What do we have now?

the chaining values (bit values of A0 and A′
0) are known.

bit values of B0 and B ′
0 are known from FVDT.

f L 

f L 

1


𝑀1
′

𝑀1

𝑀2

𝑀2
′

Chaining values

𝐴0 𝐵0

𝐴′0 𝐵′0

41/53

1-round SAT-based connector stage

Derive New Bit Values of A, A′, B and B ′

42/53

1-round SAT-based connector stage

Value Phase

x0, x1, x2, x3, x4

y0, y1, y2, y3, y4

x
′
0, x

′
1, x

′
2, x

′
3, x

′
4

y
′
0, y

′
1, y

′
2, y

′
3, y

′
4

y0 = x0 ⊕ (x1 ⊕ 1) · x2
y
′
0 = x

′
0 ⊕ (x

′
1 ⊕ 1) · x ′2

}
=⇒ ∆y0 = ∆x0 ⊕ (x1 ⊕ 1) · x2 ⊕ (x

′
1 ⊕ 1) · x ′2

Derive more input differences in some bit positions.

43/53

1-round SAT-based connector stage

Algorithm Value Phase of the Deduce-and-sieve Algorithm

1: Call InitialVP(α0, β0, α1, α
S
0 , β

S
0 , B, B′, BS , B

′
S , FVDT)

2: for each integer i ∈ [0, 320) do

3: Call CPkernel(A, B, AS , BS , i)

4: Call CPKernel(A′, B′, A′
S , B

′
S , i)

5: end for
6: a =Update(α0, β0, α1, α

S
0 , β

S
0 , B, B′, BS , B

′
S)

7: if a = 0 then
8: return 0 ▷ No new bit differences are deduced.
9: else
10: return 1 ▷ New bit differences are deduced.
11: end if

44/53

1-round SAT-based connector stage

Algorithm Deduce-and-sieve Algorithm

1: DeriveSieve(M1, M
′
1 , TDTT, FVDT)

2: (A, A′, AS , A
′
S , B, B′, BS , B

′
S , α0, α

S
0 , β0, β

S
0)=Initial(M1, M

′
1)

3: flag = 1

4: while flag do

5: flag =DP(M1, M
′
1 , α0, β0, α1, α

S
0 , β

S
0 , TDTT)

6: if flag then

7: flag =VP(α0, β0, α1, α
S
0 , β

S
0 , A, A

′, AS , A
′
S , B, B′, BS , B

′
S , FVDT)

8: if flag = 0 then

9: return 1 ▷Accept the prefix pair

10: end if
11: else
12: return 0 ▷Discard the prefix pair

13: end if
14: end while

45/53

1-round SAT-based connector stage

Some of the generated prefix pairs have been filtered by applying the deduce-and-sieve
algorithm. The connectivity problems of the remaining prefix pairs are determined by
using a SAT-solver called CryptoMiniSAT.

46/53

Collision Searching Stage

Contents

1 Background

2 Framework of Our Attack

3 1st Block Generation Stage

4 1-round SAT-based connector stage

5 Collision Searching Stage

6 Experiment and Complexity Analysis

47/53

Collision Searching Stage

The method in the collision searching stage follows Guo et al.’s work
[QSLG17, SLG17].

All solutions for a corresponding connectivity problem form an affine subspace.

Search the affine subspace exhaustively for the collision message pair.

48/53

Experiment and Complexity Analysis

Contents

1 Background

2 Framework of Our Attack

3 1st Block Generation Stage

4 1-round SAT-based connector stage

5 Collision Searching Stage

6 Experiment and Complexity Analysis

49/53

Experiment and Complexity Analysis

1 1st block generation stage: generate prefix message pairs
2 1-round SAT-based connector stage

filter the prefix message pairs with deduce-and-sieve algorithm
solve the connectivity problems over the remaining prefix message pairs with a SAT
solver

3 Collision searching stage: search for the collision suffix message pair

50/53

Experiment and Complexity Analysis

The filtering rate of deduce-and-sieve algorithm is 2−19.42.

The average running time of the deduce-and-sieve algorithm is 1.22× 10−5s for a
prefix pair.

The average running time of the SAT solver for every prefix pair is 0.31s

Deduce-and-sieve algorithm outperforms the SAT solver by a factor of 2.54× 104

on this special type of SAT problems.

51/53

Experiment and Complexity Analysis

We define a semi-free n-bit internal collision attack in which situation the
adversary is assumed to have the capacity of modifying n-bit chaining values for
each suffix message, where n > 0.

From our experiments, there are 11.07 suffix seed pairs on average in 241.3 prefix
message pairs to construct semi-free 14-bit internal collision attacks.

To build a real collision attack, we need to collect 214 suffix seed pairs for the
semi-free 14-bit internal collision attack.

The time complexity of our collision attack is determined by the complexity of the
second stage, which is 259.64. The memory and data complexity are both 245.92.

52/53

Experiment and Complexity Analysis

M1

5732121a0fbfccdd 3df4817046b87bb1 d00adfa01cf61d66 fbd8327932de6b42 1e0cd531ed3dbbe1
a6b588d6643b6fce 2e17f6154a55be62 7ed2eb58ca74dd3d 45e995d069e01873 8f1bfe1bcf516038
2539995219a2ce0b 29efb889f172624b 241d314913f32ec0

M2

73d2c43d15d68ac7 fa5d040dff851751 fdf1c8f504ddc895 a112154efd855b32 e5b66a03d74127aa
cf50106808412695 4551bf03cb0bbf25 f4544f840a2f65a7 bcce3ec44e560b73 e652b76f1af97123
911d77c7f077b8f d24e61e7e9bad037 f0ee7da479ccdb0d

M′
1

5b3f3de5af8b3513 d8943ff358e8dd8a 41335bb30c11643c 9e205a1a7a501109 80d3cbaa427aa316
b0837ea6d3a8333a eaa1ca4dff69a1cc 969790479bd934d2 9a55270d03777022 c51cfcceb2e668bb
91218525188f2fc1 8170fc1f64fbf10d 8d424172e8264f5c

M′
2

a0afd65757f0e1dd 6be5f0a54d323649 6cc4a8dcebd91fa9 102d4731eb8f9549 5f5b8d0749cafeb
dc42016f089ee317 2de8a8c03a5b75eb 9c6515d09e202385 7baa86549b09ca54 9eb057116c73aaca
3a67013dd90c8c1a 243c77f1f9dec1dd 34cd394488378778

H
ed3e58fde7229fec bc8fc643fc5d7fa3 6d6751e1f3dceaab 5d5192031990a2ef 6f7ab88b4137642c
4228cee97acc3204

Table: Semi-free 4-bit Internal Collision Messages and Hash Value

53/53

Experiment and Complexity Analysis

Thank you for your attention!

53/53

Experiment and Complexity Analysis

Itai Dinur, Orr Dunkelman, and Adi Shamir.

New attacks on keccak-224 and keccak-256.
In Fast Software Encryption - 19th International Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers,
pages 442–461, 2012.

Itai Dinur, Orr Dunkelman, and Adi Shamir.

Collision attacks on up to 5 rounds of SHA-3 using generalized internal differentials.
In Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, pages
219–240, 2013.

Itai Dinur, Orr Dunkelman, and Adi Shamir.

Improved practical attacks on round-reduced keccak.
J. Cryptology, 27(2):183–209, 2014.

Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao, and Ling Song.

Practical collision attacks against round-reduced SHA-3.
J. Cryptology, 33(1):228–270, 2020.

Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo.

New collision attacks on round-reduced keccak.
In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part III, pages 216–243, 2017.

Ling Song, Guohong Liao, and Jian Guo.

Non-full sbox linearization: Applications to collision attacks on round-reduced keccak.
In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part II, pages 428–451, 2017.

	Background
	Framework of Our Attack
	1st Block Generation Stage
	1-round SAT-based connector stage
	Collision Searching Stage
	Experiment and Complexity Analysis

