Finding Collisions against 4-round SHA3-384 in Practical Time

Senyang Huang^{1,2}, Orna Agmon Ben-Yehuda³, Orr Dunkelman¹, Alexander Maximov⁴

Dept. of Electrical and Information Technology, Lund University, Lund, Sweden

Dept. of Computer Science, University of Haifa, Haifa, Israel

CRI, University of Haifa, Haifa, Israel

Ericsson Research, Lund, Sweden

2023 . 3 . 21

<□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ > Ξ の Q @ 1/53

Contents

1 Background

- Pramework of Our Attack
- ③ 1st Block Generation Stage
- 4 1-round SAT-based connector stage
- **5** Collision Searching Stage
- 6 Experiment and Complexity Analysis

Collision Attack on Hash Functions

- Cryptographic hash functions are unkeyed primitives that accept an arbitrarily long input *message* and produce a fixed length output *hash value*, or *digest* for short.
- Hash functions are extremely useful in various cryptographic protocols authentication, password protection, commitment schemes, key exchange protocols, etc.
- One of the security requirements for a secure hash function H is that it should be computationally difficult to find a collision message pair
 {(x, y)|x ≠ y, s.t.H(x) = H(y)}.

Background

Keccak Sponge Function

• The Keccak sponge function family, designed by Bertoni, Daemen, Peeters, and Giles in 2007, was selected by the U.S. National Institute of Standards and Technology (NIST) in 2012 as the proposed SHA-3 cryptographic hash function.

Keccak Sponge Function

- *b*-bit permutation *f*, *f* contains 24 rounds.
- Two parameters: bitrate r and capacity c, b = r + c. b = 1600 by default.

Keccak Sponge Function

- Four versions: Keccak-512, Keccak-384, Keccak-256, Keccak-224.
- SHA3-*n* is different from Keccak-*n* only in the padding rules.
- n = c/2.

Background

Keccak Sponge function

The Round Function of Keccak

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ - つへで

- Round function: $R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$
- Linear layer: $L \triangleq \pi \circ \rho \circ \theta$
- χ is a nonlinear layer.

Proposition 1

(**CP-kernel Equation**) For every *i*-th and *j*-th bits in the same column of the state A we have:

$$A[i] \oplus A[j] = B[\sigma(i)] \oplus B[\sigma(j)],$$

where A and B are the input and output states of L, respectively, and $0 \le i, j < 1600, i \ne j. \sigma = \pi \circ \rho$ is a combined permutation, which forms a mapping on integers $\{0, 1, \dots, 1599\}$ such that $\sigma(i)$ is the new position of the *i*-th bit in the state after applying $\pi \circ \rho$.

Variant[r, c, d]	n _r	Complexity	Reference
Keccak-512	3	Practical	[DDS13]
Keccak-384	3	Practical	[DDS13]
Keccak-384	4	2 ¹⁴⁷	[DDS13]
SHA3-384	4	2 ^{59.64}	This work
Keccak-256	4	Practical	[DDS12][DDS14]
Keccak-256	5	2^{115}	[DDS13]
SHA3-256	5	Practical	[GLL ⁺ 20]
Keccak-224	4	Practical	[DDS12][DDS14]
SHA3-224	5	Practical	[GLL+20]

Contents

- Pramework of Our Attack
- Ist Block Generation Stage
- 4 1-round SAT-based connector stage
- **5** Collision Searching Stage
- 6 Experiment and Complexity Analysis

Framework of previous works

- $(n_{r_1} + n_{r_2})$ -round collision attacks:
 - n_{r_1} -round connector: produce a brunch of message pairs (M_1, M'_1) , s.t.

 $R^{n_{r_1}}(M_1||0^c) \oplus R^{n_{r_1}}(M_1'||0^c) = \Delta S_I$

- Linearisation techniques: $n_{r_1} = 1$ [DDS12] $\rightarrow n_{r_1} = 2$ [QSLG17] $\rightarrow n_{r_1} = 3$ [SLG17]
- n_{r_2} -round high probability differential trail: $\Delta S_I \rightarrow \Delta S_O$, with first *d* bits of ΔS_O being zero.

- The main drawback of previous linearistion techniques is that bit conditions are added in order to linearise the first rounds, thus consuming many degrees of **freedom**.
- As the input space of SHA-3-384 is too small for a sufficient level of degrees of **freedom**, extra bit conditions may cause contradictions making the linearisation technique infeasible.

Framework of Our Attack

- The first block is used as a pseudo random number generater.
- Our two-block collision attack can be extended to a multi-block attack, where the first few blocks can be chosen prefixes with meaningful information.

Framework of Our Attack

- We gain greater flexibility in choosing the differential characteristic as now we can "connect" to a wider range of input differences.
- Non-linear conditions which are useful in finding collisions (i.e., fixing intermediate bits to some values) are much easier to be satisfied using this sort of tools.

Contents

- Pramework of Our Attack
- ③ 1st Block Generation Stage
- 4 1-round SAT-based connector stage
- **5** Collision Searching Stage
- 6 Experiment and Complexity Analysis

Differential Characteristic					Probability	
$\alpha_1(\Delta S_I)$	7c0bc4f5b4398002	2407 de4 bc9668001	ac02095d32eb8000	d402e98975068000	3c05706a07f58000	1
	7c0bccf5b4398002	240fde4bc9e68001	ac02095d32ef8000	c40ae98975068000	3414706a05f58000	
	7c0bc4f5b4398000	240fda4bc9e68001	ac02095d32eb8000	c40ae9897d068000	3c15706a25f58000	
	7c0bc4f5bc398002	240fde4fc9668001	ac02095d32eb8000	c40ae98975068000	3c15706a05f48000	
	7c0bc4f1b4398002	240 fde4 bc9 e68001	ac02095d3aeb8000	d40ae98975868000	3c15706a05f58000	
β_1	00000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000	00000000000000000	2^{-26}
	0000000001008000	000000000008010	000000000000000000000000000000000000000	0000000000008010	000000001000000	
	0010000001000000	000000001000000	0010000000000000	000000001000000	0010000000000000	
	001000000008000	000000000008000	00100000000000000	000000000000000000000000000000000000000	001000000008000	
	00000000000000000	00000000000000000	00000000000000010	0000000000000010	00000000000000000	
β_2	000000000000000000000000000000000000000	80000000000000000	000000000000000000000000000000000000000	000000000000000000	00000000000000000	2^{-15}
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000080000000	00000000000000001	00000000000000000	
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000001	00000000000000000	
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000001	
	00000000000000000	80000000000000000	000000080000000	00000000000000000	00000000000000000	
β_3	00000000000000000	00000000000000000	000000000000000000000000000000000000000	00000000000000000	00000000000000000	2^{-1}
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00002000000000000	00000001000000	
	000000000000000000000000000000000000000	0000002000000000	000000002000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	00000000000000000	00000000000000000	0000000000000400	00000000000000000	00000000000000000	
	000000000000000000000000000000000000000	00800000000000000	000000000000000000000000000000000000000	000000000000000000	000000000000000002	
$\alpha_4(\Delta S_O)$	00000000000000000	00000000000000000	000000000000000000000000000000000000000	00000000000000000	00000000000000000	-
	00000000000000000	00000000000000000	000000000000000000000000000000000000000	0000200000000000	0000?00010000000	
	00000000000000001	000000200000000?	000000?00200000?	000000?000000000	00000000000000000	
	00000000000000000	00000000000000000	0000000000000400	0000000000000?00	0000000000000?00	
	00000000000000000007	0080000000000000?	00700000000000000	00?00000000000000	000000000000000002	

The 3-round differential characteristic in our attack adapts the second characteristic in $[GLL^+20, Table 9]$.

1st Block Generation Stage

Requirements on the chaining values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 - - の Q (2) - 17/53

Proposition 2

Suppose that the input difference is denoted as $(\delta_4, \delta_3, \delta_2, \delta_1, \delta_0)$.

- If the output difference of χ is (0,0,0,0,0), the input difference is (0,0,0,0,0).
- 2 If the output difference of χ is (0, 0, 0, 0, 1), $\delta_0 = 1$.
- So If the output difference of χ is (0,0,0,1,1), $\delta_1 \oplus \delta_3 = 1$.

1st Block Generation Stage

Requirements on the chaining values

Output Difference	Conditions	Output Difference	Conditions
0×1	$\delta_{in}[0] = 1$	0×3	$\delta_{in}[1] \oplus \delta_{in}[3] = 1$
0×2	$\delta_{in}[1] = 1$	0×6	$\delta_{in}[2] \oplus \delta_{in}[4] = 1$
0×4	$\delta_{in}[2] = 1$	0× <i>c</i>	$\delta_{in}[3] \oplus \delta_{in}[0] = 1$
0×8	$\delta_{in}[3] = 1$	0×18	$\delta_{in}[4] \oplus \delta_{in}[1] = 1$
0×10	$\delta_{in}[4] = 1$	0×11	$\delta_{in}[0] \oplus \delta_{in}[2] = 1$
0	$\delta_{in} = 0$		

Table: Summary of conditions for special output differences of χ .

<□ ▶ < @ ▶ < E ▶ < E ▶ E のへで 19/53

1st Block Generation Stage

Requirements on the chaining values

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 のへで 20/53

Requirements on the chaining values

 $\alpha_0[939] + \alpha_0[1579] = 0, \ \alpha_0[867] + \alpha_0[1187] = 0, \ \alpha_0[868] + \alpha_0[1188] = 0,$ $\alpha_0[881] + \alpha_0[1201] = 0, \ \alpha_0[882] + \alpha_0[1202] = 0, \ \alpha_0[883] + \alpha_0[1203] = 0,$ $\alpha_0[884] + \alpha_0[1204] = 0, \ \alpha_0[885] + \alpha_0[1205] = 0, \ \alpha_0[886] + \alpha_0[1206] = 0,$ $\alpha_0[887] + \alpha_0[1207] = 0, \ \alpha_0[888] + \alpha_0[1208] = 0, \ \alpha_0[889] + \alpha_0[1209] = 0,$ $\alpha_0[999] + \alpha_0[1319] = 0, \ \alpha_0[1000] + \alpha_0[1320] = 0, \ \alpha_0[1001] + \alpha_0[1321] = 0,$ $\alpha_0[1036] + \alpha_0[1356] = 0, \ \alpha_0[1037] + \alpha_0[1357] = 0, \ \alpha_0[1038] + \alpha_0[1358] = 0,$ $\alpha_0[1039] + \alpha_0[1359] = 0, \ \alpha_0[1040] + \alpha_0[1360] = 0, \ \alpha_0[1088] + \alpha_0[1408] = 0.$ $\alpha_0[1148] + \alpha_0[1468] = 0, \ \alpha_0[1149] + \alpha_0[1469] = 0, \ \alpha_0[1150] + \alpha_0[1470] = 0,$ $\alpha_0[1151] + \alpha_0[1471] = 0, \ \alpha_0[1216] + \alpha_0[1536] = 0, \ \alpha_0[1217] + \alpha_0[1537] = 0,$ $\alpha_0[1218] + \alpha_0[1538] = 0, \ \alpha_0[1219] + \alpha_0[1539] = 0, \ \alpha_0[1220] + \alpha_0[1540] = 0,$ $\alpha_0[1277] + \alpha_0[1597] = 0, \ \alpha_0[1278] + \alpha_0[1598] = 0, \ \alpha_0[1279] + \alpha_0[1599] = 0,$ $\alpha_0[938] + \alpha_0[1578] = 0, \ \alpha_0[959] + \alpha_0[1279] = 1, \ \alpha_0[998] + \alpha_0[1318] = 1,$ $\alpha_0[1147] + \alpha_0[1467] = 1, \ \alpha_0[836] + \alpha_0[1476] = 1$ $\alpha_0[952] + \alpha_0[1592] + \alpha_0[1373] + \alpha_0[1053] = 1$

Table: Conditions on chaining values

Algorithm Generating Prefix Pairs

1: Constant XOR $\Sigma=0x7c00000000$

2: $S_P = \emptyset$

- 3: Initialise an array Counter of length 2³⁹ with zeros.
- 4: for each integer $i \in [0, 2^n)$ do
- 5: Randomly pick a message M of 832 bits and compute the value string c.
- 6: HashTable[c][Counter[c]]=M
- 7: Increase Counter[c] by 1.
- 8: end for
- 9: for each integer $i \in [0, 2^n)$ do
- 10: **if** $i < i \oplus \Sigma$ **then**
- 11: **for** each integer $j \in [0, \text{Counter}[i])$ **do**
- 12: **for** each integer $k \in [0, \text{Counter}[i \oplus \Sigma]]$ **do**
- 13: $S_P = S_P \cup \{(\mathsf{HashTable}[i][j], \mathsf{HashTable}[i \oplus \Sigma][k])\}$
- 14: end for
- 15: end for
- 16: end if
- 17: end for

Contents

- Pramework of Our Attack
- Ist Block Generation Stage
- 4 1-round SAT-based connector stage
- **5** Collision Searching Stage
- 6 Experiment and Complexity Analysis

Definition 3 (Connectivity Problem)

Given M_1 and M'_1 , find M_2 and M'_2 s.t. $R(f(M_1||0) \bigoplus (M_1||0)) \bigoplus R(f(M'_1||0) \bigoplus (M'_2||0)) = \alpha_1.$

• Solve the connectivity problems with a SAT solver directly? Time-consuming!

- Solve the connectivity problems with a SAT solver directly.
- Filter the prefix pairs generated in the first stage \rightarrow Deduce-and-sieve Algorithm

Two phases in deduce-and-sieve algorithm:

- Difference phase
- Value phase

Difference Phase

Given a prefix pair (M_1, M_1') and α_1 ,

- the chaining values are known \iff part of α_0 is known
- the conditions on β_0 should hold if the connectivity problem is solvable.

1-round SAT-based connector stage

Derive New Bit Differences of α_0 and β_0

DEDUCE

• Derive from CP-kernel equations:

$$\alpha_0[i] \bigoplus \alpha_0[j] = \beta_0[\sigma(i)] \bigoplus \beta_0[\sigma(j)]$$

• Derive from bit relations:

$$\alpha_0[i] \oplus (\bigoplus_{k=0}^4 \alpha_0[i_0 + 320 \cdot k]) \oplus (\bigoplus_{k=0}^4 \alpha_0[j_0 + 320 \cdot k]) = \beta_0[\sigma(i)]$$

30/53

SIEVE

Figure: Truncated Difference Transition Table (TDTT)

1-round SAT-based connector stage

Truncated Difference Transition Table (TDTT)

Definition 4

Given a truncated input difference Δ_{in}^{T} and an output difference Δ_{out} , the entry TDTT($\Delta_{in}^{T}, \Delta_{out}$) of the S-box's TDTT is:

$$TDTT(\Delta_{in}^{T}, \Delta_{out}) = \begin{cases} null, & \text{if } \Delta_{in}^{T} \text{ does not deduce } \Delta_{out}, \text{ or } \Delta_{in}^{T} \text{ is irregular} \\ \Delta_{in}^{T'}, & \text{if more bits of the input difference can be derived} \\ \Delta_{in}^{T}, & \text{if no more bits can be derived} \end{cases}$$

where $\Delta_{in}^{T'}$ is the new truncated input difference, $\Delta_{in}^{T}, \Delta_{in}^{T'} \in \mathbb{F}_{2}^{2n}$ and $\Delta_{out} \in \mathbb{F}_{2}^{n}$.

- $\Delta_{in}^{T} = ???0?, \ \Delta_{out} = 00011$
- The compatible input differences are 01001, 11001 and 11101.
- In this case, the truncated input difference should be $\Delta_{in}^T = ?1?01$

DEDUCE

Algorithm Discarding Prefix Pairs with TDTT

```
1: for each S-box do
2: Deduce the out
           Deduce the output difference \Delta_{out} from \alpha_1.
3:
           Deduce the truncated input difference \Delta_{in}^T from \beta_0 and \beta_0^S.
4:
5:6:7:
89:
           T \leftarrow \mathsf{TDTT}(\Delta_{in}^T, \Delta_{out})
           if T=null then
                return 0.
           else if T = \Delta_{in}^T then
                continue
           else if T \neq \Delta_{in}^{T} then
10:
                   Find the indices of the five bits in the S-box as i_0, i_1, \cdots, i_4.
11:
                   for each integer i \in [0, 5) do
12:
                        if the (j + 5)th bit of \Delta_{in} is 0 and T_{i+5} = 1 then
13:
                             Set \beta_0[i_i] = T_i, \ \beta_0^S[i_j] = 1
14:
                             Call CPkernel(\alpha_0, \beta_0, \alpha_0^S, \beta_0^S, \phi_0(\sigma^{-1}(i_i)))
15:
16:
17:
                        end if
                   end for
             end if
18: end for
```

We can filter most of the prefix pairs applying the difference phase. But the filtering rate is not satisfying.

Two phases in deduce-and-sieve algorithm:

- Difference phase
- Value phase

1-round SAT-based connector stage

Value Phase – Fixed Value Distribution Table (FVDT)

Definition 5

Given a truncated input difference Δ_{in}^T and an output difference Δ_{out} , the entry FVDT($\Delta_{in}^T, \Delta_{out}$) of the S-box's FVDT is:

$$FVDT(\Delta_{in}^{T}, \Delta_{out}) = \begin{cases} null, & \text{if } \Delta_{in}^{T} \text{ does not deduce } \Delta_{out}, \text{ or } \Delta_{in}^{T} \text{ is irregular.} \\ v, & \text{ otherwise.} \end{cases}$$

where Δ_{in}^T , $v \in \mathbb{F}_2^{2n}$, $\Delta_{out} \in \mathbb{F}_2^n$ and v is the fixed point with respect to Δ_{in}^T and Δ_{out} .

38/53

- $\Delta_{in}^{T} = ??01?, \ \Delta_{out} = 00001$
- The compatible differences are 01011 and 11011.
- The solution set is $S_T(??01?,00001) = \{00000,00011,01000,01011\} \cup \{00001,11010\}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

39/53

What do we have now?

- the chaining values (bit values of A_0 and A'_0) are known.
- bit values of B_0 and B'_0 are known from FVDT.

 1-round SAT-based connector stage

Derive New Bit Values of A, A', B and B'

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ シ ■ のへで 41/53

Value Phase

Derive more input differences in some bit positions.

Algorithm Value Phase of the Deduce-and-sieve Algorithm

```
1: Call InitialVP(\alpha_0, \beta_0, \alpha_1, \alpha_0^S, \beta_0^S, B, B', B_S, B'_S, FVDT)

2: for each integer i \in [0, 320) do

3: Call CPkernel(A, B, A_S, B_S, i)

4: Call CPKernel(A', B', A'_S, B'_S, i)

5: end for

6: a = Update(\alpha_0, \beta_0, \alpha_1, \alpha_0^S, \beta_0^S, B, B', B_S, B'_S)

7: if a = 0 then

8: return 0 \triangleright No new bit differences are deduced.

9: else

10: return 1 \triangleright New bit differences are deduced.

11: end if
```

Algorithm Deduce-and-sieve Algorithm

```
1: DeriveSieve(M_1, M'_1, TDTT, FVDT)
2: (A, A', A_5, A'_5, B, B', B_5, B'_5, \alpha_0, \alpha_0^5, \beta_0, \beta_0^5) = \text{Initial}(M_1, M_1')
3: \mathit{flag} = 1
4: while flag do
5:
         flag = DP(M_1, M'_1, \alpha_0, \beta_0, \alpha_1, \alpha_0^S, \beta_0^S, TDTT)
6:
7:
8:
9:
10:
11:
12:
13:
          if flag then
               flag = VP(\alpha_0, \beta_0, \alpha_1, \alpha_0^S, \beta_0^S, A, A', A_S, A'_S, B, B', B_S, B'_S, FVDT)
               if flag = 0 then
                    return 1
                                                                          ⊳Accept the prefix pair
                 end if
            else
                                                                       ⊳Discard the prefix pair
                 return 0
            end if
14: end while
```

Some of the generated prefix pairs have been filtered by applying the deduce-and-sieve algorithm. The connectivity problems of the remaining prefix pairs are determined by using a SAT-solver called CryptoMiniSAT.

Contents

- Pramework of Our Attack
- Ist Block Generation Stage
- 4 1-round SAT-based connector stage
- **5** Collision Searching Stage
- 6 Experiment and Complexity Analysis

- The method in the collision searching stage follows Guo et al.'s work [QSLG17, SLG17].
- All solutions for a corresponding connectivity problem form an affine subspace.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

47/53

• Search the affine subspace exhaustively for the collision message pair.

Contents

- Pramework of Our Attack
- Ist Block Generation Stage
- 4 1-round SAT-based connector stage
- **5** Collision Searching Stage
- 6 Experiment and Complexity Analysis

- 1st block generation stage: generate prefix message pairs
- I-round SAT-based connector stage
 - filter the prefix message pairs with deduce-and-sieve algorithm
 - solve the connectivity problems over the remaining prefix message pairs with a SAT solver
- Sollision searching stage: search for the collision suffix message pair

- The filtering rate of deduce-and-sieve algorithm is $2^{-19.42}$.
- The average running time of the deduce-and-sieve algorithm is $1.22\times 10^{-5} s$ for a prefix pair.
- The average running time of the SAT solver for every prefix pair is 0.31s
- Deduce-and-sieve algorithm outperforms the SAT solver by a factor of 2.54×10^4 on this special type of SAT problems.

- We define a *semi-free n-bit internal collision attack* in which situation the adversary is assumed to have the capacity of modifying *n*-bit chaining values for each suffix message, where n > 0.
- From our experiments, there are 11.07 suffix seed pairs on average in 2^{41.3} prefix message pairs to construct semi-free 14-bit internal collision attacks.
- To build a real collision attack, we need to collect 2¹⁴ suffix seed pairs for the semi-free 14-bit internal collision attack.
- The time complexity of our collision attack is determined by the complexity of the second stage, which is 2^{59.64}. The memory and data complexity are both 2^{45.92}.

	5732121a0fbfccdd	3df4817046b87bb1	d00adfa01cf61d66	fbd8327932de6b42	1e0cd531ed3dbbe1
M_1	a6b588d6643b6fce	2e17f6154a55be62	7ed2eb58ca74dd3d	45e995d069e01873	8f1bfe1bcf516038
_	2539995219a2ce0b	29efb889f172624b	241d314913f32ec0		
	73d2c43d15d68ac7	fa5d040dff851751	fdf1c8f504ddc895	a112154efd855b32	e5b66a03d74127aa
M_2	cf50106808412695	4551bf03cb0bbf25	f4544f840a2f65a7	bcce3ec44e560b73	e652b76f1af97123
_	911d77c7f077b8f	d24e61e7e9bad037	f0ee7da479ccdb0d		
	5b3f3de5af8b3513	d8943ff358e8dd8a	41335bb30c11643c	9e205a1a7a501109	80d3cbaa427aa316
M'_1	b0837ea6d3a8333a	eaa1ca4dff69a1cc	969790479bd934d2	9a55270d03777022	c51cfcceb2e668bb
	91218525188f2fc1	8170fc1f64fbf10d	8d424172e8264f5c		
	a0afd65757f0e1dd	6be5f0a54d323649	6cc4a8dcebd91fa9	102d4731eb8f9549	5f5b8d0749cafeb
M_2'	dc42016f089ee317	2de8a8c03a5b75eb	9c6515d09e202385	7baa86549b09ca54	9eb057116c73aaca
-	3a67013dd90c8c1a	243c77f1f9dec1dd	34cd394488378778		
	ed3e58fde7229fec	bc8fc643fc5d7fa3	6d6751e1f3dceaab	5d5192031990a2ef	6f7ab88b4137642c
п	4228cee97acc3204				

Table: Semi-free 4-bit Internal Collision Messages and Hash Value

Thank you for your attention!

Itai Dinur, Orr Dunkelman, and Adi Shamir.

New attacks on keccak-224 and keccak-256.

In Fast Software Encryption - 19th International Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, pages 442–461, 2012.

Itai Dinur, Orr Dunkelman, and Adi Shamir.

Collision attacks on up to 5 rounds of SHA-3 using generalized internal differentials.

In Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, pages 219–240, 2013.

Itai Dinur, Orr Dunkelman, and Adi Shamir.

Improved practical attacks on round-reduced keccak. J. Cryptology, 27(2):183–209, 2014.

Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao, and Ling Song.

Practical collision attacks against round-reduced SHA-3. J. Cryptology, 33(1):228–270, 2020.

Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo.

New collision attacks on round-reduced keccak.

In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part III, pages 216–243, 2017.

Ling Song, Guohong Liao, and Jian Guo.

Non-full sbox linearization: Applications to collision attacks on round-reduced keccak.

In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, pages 428–451, 2017.