

Breaking HALFLOOP-24 Kobe, Japan, Thursday, March 23

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes

RUHR UNIVERSITÄT BOCHUM

RUB

What is HALFLOOP

« HALFLOOP is a parody of AES that can be summarized as "What if we take AES-128, add a tweak in the key and reduce the block size?". This paper focuses on HALFLOOP-24, which has a 24-bit block size. As one can expect it is completely broken. »

Reviewer B

Why HALFLOOP

Frequencies between 3MHz and 30MHz

- Skywave propagation: radio signals are reflected by upper atmosphere
- Enables communication across very large distances without any external infrastructure
- Users are the military, diplomatic services, disaster management agencies, etc.
- HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- Frequencies between 3MHz and 30MHz
- Skywave propagation: radio signals are reflected by upper atmosphere
- Enables communication across very large distances without any external infrastructure
- Users are the military, diplomatic services, disaster management agencies, etc.
- HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- Frequencies between 3MHz and 30MHz
- Skywave propagation: radio signals are reflected by upper atmosphere
- Enables communication across very large distances without any external infrastructure
- Users are the military, diplomatic services, disaster management agencies, etc.
- HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- Frequencies between 3MHz and 30MHz
- Skywave propagation: radio signals are reflected by upper atmosphere
- Enables communication across very large distances without any external infrastructure
- Users are the military, diplomatic services, disaster management agencies, etc.
- HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- Frequencies between 3MHz and 30MHz
- Skywave propagation: radio signals are reflected by upper atmosphere
- Enables communication across very large distances without any external infrastructure
- Users are the military, diplomatic services, disaster management agencies, etc.
- HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

Description of HALFLOOP-24

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- ► No public cryptanalysis before
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

HALFLOOP-24 is a tweakable block cipher E

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- ► No public cryptanalysis before

► HALFLOOP-24 is heavily inspired by AES

- Uses the same SBox
- Essentially the same key schedule
- State is represented as 3×1 matrix over \mathbb{F}_{2^8}
- ▶ 10 rounds

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- ► No public cryptanalysis before
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- ► No public cryptanalysis before
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- ► No public cryptanalysis before
- HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

HALFLOOP-24 is a tweakable block cipher E

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- No public cryptanalysis before

HALFLOOP-24 is heavily inspired by AES

- Uses the same SBox
- Essentially the same key schedule
- State is represented as 3×1 matrix over \mathbb{F}_{2^8}
- ▶ 10 rounds

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- No public cryptanalysis before
- HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- No public cryptanalysis before
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- No public cryptanalysis before
- HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- Tweak consists of current time, a word counter and the used frequency
- Supersedes SoDark cipher which used 56-bit keys
- Specified in MIL-STD-188-141 since 2017
- ► No public cryptanalysis before
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - 10 rounds

Description of HALFLOOP-24 - Round Function

Breaking HALFLOOP-24 | Kobe, Japan | Thursday, March 23

Our Attacks on HALFLOOP-24

Breaking HALFLOOP-24 | Kobe, Japan | Thursday, March 23

Breaking HALFLOOP-24 | Kobe, Japan | Thursday, March 23

Our Attacks on HALFLOOP-24 - Overview

Setting	Time	Data	Memory
Ciphertext only Known-plaintext Chosen-plaintext	2 ⁸⁷ 2 ⁵⁶ 2 ⁵⁶	2 ³⁸ 2 ³⁷ 2 ¹⁸	2 ⁶³ 2 ¹⁶ 2 ¹⁶
Chosen-ciphertext	2 ¹⁰	2 ¹⁰	1

Our Attacks on HALFLOOP-24 - Practicality

Breaking HALFLOOP-24 | Kobe, Japan | Thursday, March 23

Conclusion

- ▶ HALFLOOP-24 is far from providing 128 bits of security
- ▶ We advice against the usage of *any* HALFLOOP variant

- Study HALFLOOP-48 and HALFLOOP-96
- Reduce data complexity of our attacks

Conclusion

- ► HALFLOOP-24 is far from providing 128 bits of security
- ▶ We advice against the usage of *any* HALFLOOP variant

- Study HALFLOOP-48 and HALFLOOP-96
- Reduce data complexity of our attacks

Conclusion

- ► HALFLOOP-24 is far from providing 128 bits of security
- ▶ We advice against the usage of *any* HALFLOOP variant

- Study HALFLOOP-48 and HALFLOOP-96
- Reduce data complexity of our attacks

Conclusion

- ► HALFLOOP-24 is far from providing 128 bits of security
- ▶ We advice against the usage of *any* HALFLOOP variant

- Study HALFLOOP-48 and HALFLOOP-96
- Reduce data complexity of our attacks

Conclusion

- ► HALFLOOP-24 is far from providing 128 bits of security
- ▶ We advice against the usage of *any* HALFLOOP variant

- Study HALFLOOP-48 and HALFLOOP-96
- Reduce data complexity of our attacks

Conclusion

- ► HALFLOOP-24 is far from providing 128 bits of security
- ▶ We advice against the usage of *any* HALFLOOP variant

- Study HALFLOOP-48 and HALFLOOP-96
- Reduce data complexity of our attacks

Code

Paper

