
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 3, pp. 191–216. DOI:10.46586/tosc.v2022.i3.191-216

Attacks on the Firekite Cipher

Thomas Johansson1, Willi Meier2 and Vu Nguyen1

1 Lund University, Lund, Sweden
thomas.johansson@eit.lth.se, vu.nguyen@eit.lth.se

2 University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Windisch,
Switzerland

willi.meier@fhnw.ch

Abstract. Firekite is a synchronous stream cipher using a pseudo-random number
generator (PRNG) whose security is conjectured to rely on the hardness of the
Learning Parity with Noise (LPN) problem. It is one of a few LPN-based symmetric
encryption schemes, and it can be very efficiently implemented on a low-end SoC
FPGA. The designers, Bogos, Korolija, Locher and Vaudenay, demonstrated appealing
properties of Firekite, such as requiring only one source of cryptographically strong
bits, small key size, high attainable throughput, and an estimate for the bit level
security depending on the selected practical parameters.
We propose distinguishing and key-recovery attacks on Firekite by exploiting the
structural properties of its PRNG. We adopt several birthday-paradox techniques
to show that a particular sum of Firekite’s output has a low Hamming weight with
higher probability than the random case. We achieve the best distinguishing attacks
with complexities 266.75 and 2106.75 for Firekite’s parameters corresponding to 80-bit
and 128-bit security, respectively. By applying the distinguishing attacks and an
additional algorithm we describe, one can also recover the secret matrix used in the
Firekite PRNG, which is built from the secret key bits. This key recovery attack works
on most large instances of Firekite parameters and has slightly larger complexity, for
instance, 269.87 on the 80-bit security parameters n = 16, 384, m = 216, k = 216.
Keywords: PRNG · Firekite PRNG · Birthday paradox · k-list algorithm · LPN
· LPN-based symmetric encryption

1 Introduction
Since Shor [Sho99] in his seminal work introduced quantum algorithms that efficiently break
the discrete-log and factoring problems, researchers have set their sights to cryptographic
alternatives that promise to be quantum-resistant such as lattice-based or code-based cryp-
tography. In particular, cryptographic primitives whose security relies on learning problems,
such as Learning Parity with Noise (LPN), Learning with Errors (LWE), and the closely
related Ring-LPN, are receiving great attentions as they are built on supposedly hard
problems.1 Moreover, Impagliazzo and Levin showed that cryptography is only possible if
efficient learning is not [IL90]. Besides the absence of an efficient LPN-solving quantum
algorithm, LPN-based constructions are desired as they can be efficiently implemented
using mainly XOR (‘exclusive or’) operations, thus achieving popularity in lightweight
cryptography on constrained, low-powered devices. However, most LPN constructions are
inclined towards asymmetric cryptography and they have their own disadvantages. These
include the requirement to produce and extract randomness (cryptographically secure bits)

1LPN with adversarial errors is N P-hard.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-06-01 Accepted: 2022-08-01 Published: 2022-09-09

https://doi.org/10.46586/tosc.v2022.i3.191-216
mailto:thomas.johansson@eit.lth.se
mailto:vu.nguyen@eit.lth.se
mailto:willi.meier@fhnw.ch
http://creativecommons.org/licenses/by/4.0/

192 Attacks on the Firekite Cipher

from an entropy-limited source, causing a significant overhead cost [HDWH12, Sho99], and
that they also often require large public keys.

Bogos, Korolija, Locher and Vaudenay [BKLV21] proposed Firekite, a synchronous
symmetric cipher, using an LPN-based PRNG which requires only one cryptographically
strong bit vector to construct the secret matrix key. A small key size is attained by moving
from an LPN problem to a Ring-LPN problem [HKL+07]. Their study conjectures that the
corresponding Ring-LPN instance remains hard to solve when using said matrix instead of
a fully random matrix. They demonstrated that using the Firekite noise distribution for
an LPN instance is still secure and there is a ‘partial’ transformation to an LPN instance.
Using the best BKW-style algorithm proposed by Levieil and Fouque [LF06], Firekite’s
designers estimated the complexity to break the transformed LPN instances, thus derived
concrete complexity results for attacking their cipher. The cipher’s efficiency was tested in
terms of the throughput, which is the number of bytes encrypted or decrypted per second
using both desktop computers and FPGAs. They also showcased that, given dedicated
hardware, the Firekite PRNG can be parallelized, hence throughput improved substantially
for larger parameters.

One can draw many parallels between Firekite and the closely related LPN-C [GRS08b];
in particular, both involve computing a noisy product using a secret random matrix M
and a random error vector e. However, LPN-C further requires an error correcting code
C and the error vectors are drawn from a Bernoulli distribution, as opposed to being
bounded as in the Firekite PRNG. This could make the decrypting process fail once the
error weight exceeds the code’s error correcting capacity. This drawback could be amended
by truncating the binomial distribution to make sure not too many bits are set in the error
vectors. However, it is speculated that doing so may have a negative impact to the security
of LPN-C [BKLV21]. Furthermore, LPN-C inherently requires a large random secret
matrix and samples two uniformly random vectors for every invocation of the encryption
algorithm. Hence, it becomes infeasible to implement it efficiently when implemented in a
constrained environment. Firekite, besides avoiding such undesirable features, surpasses
LPN-C by not requiring fresh random bits for each output block.

Even more important than constructing schemes that are potentially quantum secure,
it is crucial to try to attack them with the most suitable approaches to better understand
their security.

1.1 Contributions

In this work, we propose both distinguishing and key-recovery attacks for Firekite. We
observe that the secret matrix is fixed throughout every round of encryption. Hence, if
the vector components in the internal states collide to the zero codeword, the outputs of
Firekite, when combined together appropriately, result in unusually low weight sums and
can be detected. In other words, finding such occurrences amounts to solving a birthday
paradox problem with a specific target weight.

We then consider the secret matrix as the generator for a code and by carefully
determining which positions in the above combinations are free of errors, we describe
a key-recovery attack with a slightly higher complexity than that of the distinguishing
attack.

As an example, we apply the distinguishing attacks on the Firekite cipher with specific
parameters that target 80-bit and 128-bit to understand better Firekite’s security. In
particular, we launch both a distinguishing attack and a key recovery attack on parameters
n = 16384, m = 216, k = 216 with complexity 268.87 and 269.97, respectively. As there are
many choices of parameter sets for each security level, the complexity numbers vary a bit
depending on selected parameter sets.

Thomas Johansson, Willi Meier and Vu Nguyen 193

1.2 Related work
Due to their difficulty, either proved or conjectured, LPN and Ring-LPN have made their
way into many cryptographic constructions such as human identification protocols which
were firstly introduced by Hopper and Blum [HB01], later modified and improved to HB+

and HB# [JW05, KS06, GRS08a]. Recent LPN-based encryption schemes that can be found
are Helen by Duc and Vaudenay [DV13], or LPN-C by Gilbert et al. [GRS08b]. Using the
Ring-LPN variant, Heyse et al. [HKL+12] proposed an efficient two-round identification
protocol in constrained environments, called Lapin. One can also find LPN useful in
other applications, e.g., message authentication codes (MACs) [KPV+17, DKPW12],
pseudo-random generators [ACPS09, BFKL93], or CCA-secure public-key encryption
schemes [YZ16].

Since its introduction, LPN has drawn a plethora of LPN-solving studies with different
approaches. It is natural to see LPN as a decoding problem; hence a generic decoding
technique applies. Attacks on LPN can be categorized as Information-set decoding (ISD) or
BKW-type algorithms and they prove advantageous in different scenarios, namely, low noise-
rate and constant noise. Information-set decoding was first introduced by Prange [Pra62],
and further improved by Leon [Leo88], Lee and Brickell [LB88] and Stern [Ste93]. Recently,
several methods have been proposed to achieve better attacks, to name a few, Ball-collision
technique by Bernstein et al. [BLP11], representation technique by Becker, Joux, May,
Meurer [BJMM12], or the state-of-the-art algorithm [BV15]. On the other hand, BKW
began with the foundation laid by Blum, Kalai, and Wasserman [BKW03]. Besides the
improvement by Levieil and Fouque who used Walsh-Hadamard transform to recover
several bits of the secret vector, using a limited number of queries, notable advancements
can be found such as the use of covering codes by Guo et al. [GJL14], or on the use of the
Generalized birthday attack (GBA) [Wag02] as in [Kir11].

Generalized birthday attack is one of the most pertinent generic attacks in cryptology,
in particular, analyzing the security of an LPN-based cryptographic scheme. There have
been many notable works related to the generalized birthday problem. Our study is
inspired by the seminal works of Wagner [Wag02] and May et al.’s approximate k-list
algorithm [BM17].

1.3 Organization
The paper is organized as follows. Section 2 presents preliminary and background knowledge
regarding the LPN problem and its variants such as Ring-LPN. A brief review of the
LPN-based Firekite PRNG, and how it gave rise to the Firekite synchronous stream cipher
follows. We then describe our idea, and formally analyze our attack for Firekite in Section 3.
In Section 4, we attack different parameters proposed for Firekite and verify our approach
by a simulation with smaller parameters. We describe our key-recovery attack in Section 5
and discussions on how to improve Firekite finally concludes our work.

2 Background
Whereas the LPN problem usually finds its cryptographic applications in the public-key
domain, we will be interested in its application in symmetric cryptography. In particular,
we have seen constructions of a few synchronous stream ciphers [GRS08b, BKLV21] based
on LPN.

A synchronous stream cipher is a symmetric cipher, in which a stream of pseudorandom
bits is generated independently of the plaintext and ciphertext messages, and then bitwise
XOR-ed to the plaintext, to encrypt, or to the ciphertext, in order to decrypt. Cryptanalytic
attacks either aim to distinguish the output of the pseudorandom bit generator from random
source, recover the state of the pseudorandom generator, or recover the key. As known

194 Attacks on the Firekite Cipher

plaintext for a segment of ciphertext implies knowledge of the keystream for the same
segment, a known plaintext attack of a synchronous stream cipher assumes that a large
part of the keystream is available to an attacker which is only limited by the maximum
number of keystream bits allowed to be output for a same key. Distinguishing attacks
[HJB09] on the (known) keystream are relevant to the security of stream ciphers as well:
depending on the nonranomness detected, some information on the plaintext may be
leaked. For some stream ciphers, a distinguishing feature can even be elaborated to a key
recovery attack, as is the case for the distinguishing property we shall derive for Firekite.

2.1 The LPN problem
LPN is an important problem in cryptography. It appears as one of main problems on which
we base post-quantum cryptography. Due to the existence of fast algorithms for quantum
computers that can solve the factorization and the discrete logarithm problems [Sho99], the
LPN problem (and the related LWE problem) including its different versions are of great
interest. No fast quantum algorithm that solves the LPN problem is known. Although
current omnipresent symmetric encryption schemes such as AES will likely not be rendered
obsolete in the near future, studies in post-quantum cryptography, namely aforementioned
works, are of absolute necessity. We need post-quantum cryptographic primitives to have
efficiency, confidence, and usability [Ber09].

Cryptographic constructions based on LPN are also appealing, since only simple
operations such as bit-wise addition (XOR) and scalar products are used. This can give
rise to efficient algorithms or protocols.

The LPN problem can informally be described as the problem of solving a noisy binary
system of equations. We formally define it below.

Let Berη be the Bernoulli distribution with parameter η ∈ (0, 1
2) and a bit e← Berη

be such that Pr[e = 1] = η, Pr[e = 0] = 1− η. Denote by x U←− {0, 1}m the event that a
vector x is drawn uniformly from {0, 1}m.

Definition 1. (LPN oracle). Let x U←− {0, 1}m and η ∈ (0, 1
2). An LPN oracle ΠLPN for

x and η returns pairs of the form(
g U←− {0, 1}m, ⟨x,g⟩ ⊕ e

)
,

where e← Berη, and ⟨x, g⟩ denotes the scalar product of vectors x and g.

Definition 2. (LPN problem). Given an LPN oracle ΠLPN with parameters m and η.
The (m, η)-LPN problem is finding the secret vector x and is said to be (T, N, δ)-solvable
if there exists an algorithm A asking for at most N oracle queries, using time at most T
and

Pr
[
A(ΠLPN) = x : x U←− {0, 1}m

]
≥ δ.

The definition above is known as the search version of the LPN problem. In the
decisional version of the LPN problem, the objective is to distinguish pairs from ΠLPN
from uniformly random samples. The search and decisional versions are proved to be
computationally equivalent [KS06].

We briefly look at a subclass of LPN problems called Ring-LPN which proves to be
useful in general and specifically used in the Firekite PRNG. Let f be a polynomial over
Z2 and R = Z2[x]/(f) denote the quotient ring. Hence R consists of all polynomials over
Z2 of degree less than that of f . We say r ← BerR

η if the coefficients of the ring element
r ∈ R are assigned independently following the distribution Berη. If r is drawn uniformly
from R, we write r

U←− R. The Ring-LPN problem can be defined similarly to the standard
LPN problem.

Thomas Johansson, Willi Meier and Vu Nguyen 195

Definition 3. (Ring-LPN oracle). Let s
U←− R and η ∈ (0, 1

2). A Ring-LPN oracle
ΠRing-LPN for s and η returns pairs of the form

(r U←− R, r · s + e),

where e← BerR
η .

Definition 4. (Ring-LPN problem). Given a Ring-LPN oracle ΠRing-LPN with parameters
η and a polynomial ring R. The Ring-LPN problem is finding the secret polynomial s ∈ R
and is said to be (T, N, δ)-solvable if there exists an algorithm A asking for at most N
oracle queries, using time at most T and

Pr [A(ΠRing-LPN) = s] ≥ δ.

It is worth pointing out the essential difference between LPN and Ring-LPN. If we
query the LPN oracle N times, then we can collect an m×N matrix G =

(
gT

1 . . . gT
N

)
and

each column is generated independently. In the case of Ring-LPN, only one polynomial r
is generated uniformly random in R. If we consider a polynomial as its coefficient vector,
only the first column r is drawn uniformly random . The other columns are obtained via
shifting r [HKL+12]. While the LPN problem has been shown to be NP-hard in the worst
case [BMvT78], the hardness of Ring-LPN is not known. However, there is a reduction
from Ring-LPN to LPN and the assumption is that Ring-LPN is also hard.

2.2 Firekite’s PRNG and Firekite construction
We recall that the decisional version of the LPN assumption can be interpreted as one
can not efficiently distinguish an LPN oracle from a source providing random bit vectors
of length m + 1. Naturally, it can be extended into stating that distinguishing a noisy
product of an m× n matrix M and a secret vector v, i.e., vM + e from a random n-bit
vector in Z2, where e is a n-bit noise vector is hard. As an example, LPN-C further used
a [k, n] error correcting code C with a generator matrix G to encode a plaintext x to a
ciphertext c through

c = xG + vM + e.

However, this construction inherently asks the source to produce random v and e for
encrypting a single plaintext. The Firekite PRNG circumvents this problem by extracting
both v and e from the noisy product and feeding them iteratively into the next encryption
invocations. Out of n bits, one can spare m + k · log n bits to initialize the next round of
Firekite.2 Let || denote the usual concatenation of vectors. We write

vM + e = (g||v′||ce). (1)

Assuming n≫ m, one can split the noisy product into three components as in (1), then m
bits are used for producing the next vector v′. Since e is only required to be a sparse n-bit
vector, we can have a compact representation of the next noise vector, called ce. Then,
the remaining bits, forming g, are the PRNG’s output. We are now in the position to
describe the Firekite PRNG formally.

Let m, n, and k be some integer parameters, where n≫ m and n is a power of 2. A
secret key M is a binary matrix of size m× n, and w is a vector of length m + k log n < n.
Together they form a pair (M, w), the state of the PRNG. We define w = v||ce, where
v and ce are of length m and k log n, respectively. As stated above, M is fixed and w is
updated for every iteration. It is straightforward to assign v = v′. To get the next error
vector e, we further parse ce = c1||c2|| . . . ||ck where ci is of length log n. Hence, each ci

2Throughout the paper, log(.) denotes logarithm to base 2.

196 Attacks on the Firekite Cipher

can be seen as the binary presentation of a non-negative integer less than n. Therefore, ce

encodes an n-bit error vector of weight at most k. In particular, let bcj
be the unit vector

of length n, where the bit at the position represented by cj is 1. Then the error vector
e is defined as e =

∨k
j=1 bcj

. Note that this construction implies e is not a Bernoulli
distributed error. The execution of the Firekite PRNG is described by Algorithm 1.

Algorithm 1: Firekite PRNG
Input: An m× n secret matrix M and a nonce w, r > 0 : randomization rounds.

1 while r ̸= 0 do
2 Parse: w = v||c1||c2|| . . . ||ck;
3 e←

∨k
j=1 bcj

;
4 g||w′ := vM + e; // Randomization
5 w← w′;
6 r ← r − 1;
7 while true do
8 Parse: w = v||c1||c2|| . . . ||ck;
9 e←

∨k
j=1 bcj

;
10 g||w′ := vM + e; // Generating keystream
11 w← w′;

Return: g

At each iteration, the PRNG’s input is its state (M, w), where the first m bits and
the remaining k log n bits of w are set to be v and ce respectively. Then the error vector
e is derived from its concise representation ce and the noisy n-bit product is computed
as vM + e. This vector is again parsed into g and w′ of length d = n−m− k log n and
m+k log n, respectively. The internal state is then updated to (M, w′) and g is the output
of the PRNG. The number r of randomization rounds is needed to guarantee that v is
free from significant biases when Firekite begins to output its keystream [BKLV21].

Firekite is a synchronous stream cipher that makes use of this PRNG to produce
the d-bit keystream g directly. Therefore, for each invocation, d-bit data of a plaintext
is encrypted, and the next output of Firekite depends on the updated internal state.
The designers pointed out that, for practicality, the parameters m, n, and k need to be
large which in turn makes the secret key M big. In order to solve this problem, they
proposed the following technique, which turns the LPN instance into a Ring-LPN instance.
Consider R = Z2[X]/(Xb − 1), i.e, the polynomial ring with binary coefficients reduced
modulo Xb − 1 such that (Xb − 1)/(X − 1) is irreducible. It is well known that every
polynomial in R can be represented by its coefficient vectors in Zb

2. Pick q1
U←− Zb

2 and
define qi := Xi−1q1, i = 1, ...b, meaning that we shift the entries in the coefficient vectors
q1 by i− 1 times. Hence, we can construct a b× b matrix Q by shifting the first row to
the left consecutively b − 1 times. The secret matrix M is obtained by generating the
first m rows, then dropping the last b − n columns of Q. Therefore, the secret key of
Firekite PRNG is, in fact, the random b-bit vector q1 rather than an m× n matrix M.
The designers conjectured that using such M does not substantially reduce the security
compared to a fully random matrix M.

Table 1 shows a few sets of suggested parameters for Firekite that correspond to 80
and 128 security bit levels. Other proposed parameter sets can be found in [BKLV21].

To derive an estimation of the concrete security of Firekite, one faces two problems:
first, the noise vectors from Firekite has weight at most k and the noise distribution is not

Thomas Johansson, Willi Meier and Vu Nguyen 197

Table 1: Firekite’s parameters for 80 and 128-bit security with the properties in terms of
key size b, and number of randomization rounds r.

Parameters Properties
m n k Key size (b) r Security level

216 1024 16 1061 18 82.76
216 2048 32 2053 18 82.76
216 16,384 216 16,421 21 80.68
352 2048 32 4099 18 129.07
352 8192 120 8219 18 128.99
352 16,384 228 16,421 18 128.93

binomial, as opposed to a standard LPN instance. Second, an adversary only sees a part of
the noisy product. Therefore, it is necessary to prove that using Firekite noise distribution
for an LPN variant is still hard, and the underlying problem of solving Firekite is as hard
as LPN.

The first problem is solved as follows. Let ∆(e) denote the Hamming weight of an n-bit
vector and ej the j-th bit of e. If e comes from Firekite and assume each ce is uniformly

distributed, then Pr[ej = 0] =
(

n− 1
n

)k

. Therefore, the expected Hamming weight of

the Firekite noise (denoted by ∆Firekite(e)) is

E[∆Firekite(e)] = n

(
1−

(
n− 1

n

)k
)

,

and one can show that

2
3k < E[∆Firekite(e)] < k.

In a standard LPN problem with parameters η and m, E[∆LPN(e)] = ηm and
Pr[∆LPN(e) = ⌊E[∆LPN(e)]⌋] ∈ Ω(1/n). Therefore, given such an LPN instance, we
set k such that ηm ≤ k, e.g., k := 3

2 ηm. Then the noise of this LPN instance could come
from the Firekite noise distribution with probability at least Ω(1/n). In other words, if the
LPN instance with the Firekite noise distribution can be broken efficiently, any standard
LPN instance can also be broken with O(n) more work.

As for the underlying problem of solving Firekite, Firekite’s designers were able to
show that it is at most as hard as the LPN problem, and they also conjectured that the
reverse is also true [BKLV21]. Using this transformation to attack Firekite with the most
efficient LPN-solving algorithm, namely the one by Levieil and Fouque [LF06], they were
able to derive the concrete proposed parameters for the different security levels.

2.3 The problem of observing noisy codewords from an unknown code
The task of recovering partially the secret matrix M (by observing vectors gi) can be seen
as identifying an unknown code by observing noisy codewords. The problem often arises
in different contexts [MGB12], especially in analyzing cryptosystems where encryption
involves error-correcting codes and the transmission is carried over a noisy channel (e.g., a
binary symmetric channel). General approaches consist of three steps: first, arranging noisy
codewords as rows of a matrix, then running the Gaussian elimination, and finally from the
non-echelon part finding sums of vectors that are candidates to construct dual codewords
(i.e, parity-check equations). Instead of looking at only columns that sum to 0, Sicot,
Houcke and Barbier argued that sparse sums of columns can also be candidates for being

198 Attacks on the Firekite Cipher

dual codewords [BSH06, SHB09]. Therefore, the last step can be reduced to an instance of
the well known close neighbors search problem. Beside the projection method proposed by
Cluzeau and Finiasz [CF09], which aimed to find sparse sums of p columns (with complexity
of order Ω(np/2) when p is even) that are equal in some positions using birthday paradox
and hashtables, there have been many improvements and extensive studies to the close
neighbors search problem recently. In particular, one being the Dubiner method which later
was applied by Carrier and Tillich in their generalized approach [CT19]. Their algorithm
only performed a partial Gaussian elimination for the second steps. The argument is
that the Gaussian elimination increases the noise by combining noisy codewords, hence it
is more likely to obtain sparse sums in the early stage of the Gaussian elimination and
minimizing the dual codewords that might have been undetected by Sicot-Houcke-Barbier
algorithm [CT19]. Moreover it also allowed them to find dual codewords of much larger
weight (compared to the full Gaussian elimination) with reasonable complexities.

In practice, the recovery of an unknown code by observing noisy codewords concerns
useful families of codes, such as cyclic codes, convolutional codes, turbo codes, or the
ubiquitous LDPC, which is important as finding low-weight dual codewords is essential in
determining communication components such as unknown interleaver [BSH06, Tix15] or
reconstructing other families of codes.

In the next section we introduce a new method, namely finding a small number of
noisy codewords summing to the zero codeword through a generalized birthday type of
algorithm.

3 The proposed distinguishing algorithm
In this section, we aim to give a brief description of the idea used in our distinguishing
attacks on Firekite. We firstly observe that the secret key matrix M is fixed throughout
the rounds of Firekite; hence, the keystream output by Firekite PRNG is subjected to
accumulating non-randomness. Let us look at the Firekite PRNG, fulfilling

vM + e = (g||v′||ce),

where v′ and ce are used in the next iteration by assigning v′ = v and e =
∨k

j=1 bcj
, and

g is the PRNG’s output. In the initial part of the attack, we concentrate on assuming the
knowledge of

g = vM′ + e′,

where g is a known d-bit vector, M′ is now considered as an m× d secret binary matrix
(obtained from the first d columns of the original M matrix) and e′ is a secret d-bit noise
vector, being the first d positions of e. It is known that ∆(e) ≤ k (which is small); hence,
the weight of e′ is also small. The expected weight of e′ denoted by k̂, where k̂ = k·d

n since
it is assumed that the ones in e are uniformly distributed among all d positions.

In a synchronous stream cipher attack, we assume that an adversary has access to
a long output stream, which means access to a large number of d-bit vectors g. The
set of these vectors is written as {gi, i = 1, . . . , S}, where now gi = viM′ + e′

i and for
some S to be addressed in the following subsections. We first sketch the ideas behind our
distinguishing attack, i.e., given an aforementioned set of vectors, decide whether they
originate from Firekite or if they are random vectors.

Our goal is to find a subset of gij
vectors, j = 1, . . . , ℓ, such that the corresponding∑ℓ

j=1 vij
= 0, i.e., we find a set of noisy codewords such that the underlying information

vectors sum to zero. If ℓ vectors vij
, j = 1, . . . , ℓ, sum to zero, then the sum of the

corresponding gij
is expected to be of weight cω = ⌈ℓ · k̂⌉ with nonzero contributions

Thomas Johansson, Willi Meier and Vu Nguyen 199

coming only from the errors e′
ij

. Indeed, we then have

ℓ∑
j=1

gij
=

ℓ∑
j=1

vij
M′ +

ℓ∑
j=1

e′
ij

=
ℓ∑

j=1
e′

ij
.

Therefore, when ℓ is not too large, e.g. ℓ = 4 or ℓ = 8, the expected weight in
∑ℓ

j=1 gij

will be low if
∑ℓ

j=1 vij
= 0. Since d is much larger than cω (with proposed parameters

for Firekite), such a weight is very unlikely if the vectors gij
are random vectors. In the

Firekite PRNG, such a collision of vectors of length m (i.e, with probability proportional
to 2−m) guarantees a low weight vector of length d. It is only intuitive to deduce that we
can detect such occurrences more frequently than what is expected in the random case.

3.1 A basic algorithm for finding noisy codewords summing to the zero
codeword

Recall that we want to find ℓ different gij
vectors, j = 1, . . . , ℓ, such that the associated

unknown vectors vij
sum to zero. Our approach is built from ideas from the generalized

birthday attack [Wag02] and the BKW algorithm [BKW03]. A different but related
approach is also May et al.’s Match-and-Filter algorithm [BM17].

In a simplified description following [Wag02], we set up ℓ (ℓ = 2t is a power of 2) lists
of size 2c filled by gi vectors. We then combine the lists pairwise, resulting in a new list
containing vectors created as a sum of two vectors, one from each initial list, such that
some c predetermined positions are all zero. The expected number of vectors in the new
list is 2c. After the first step we have ℓ/2 lists. We then perform the same procedure
again, reducing another c positions to zero until one single list remains, i.e, after t steps.
In the remaining list, we will finally examine whether there are vectors

∑ℓ
j=1 gij

that are
candidates to satisfy

∑ℓ
j=1 vij = 0. In fact, they are quite easily detected, since if this is

the case then
∑ℓ

j=1 gij
=
∑ℓ

j=1 e′
ij , which has very low weight.

As in the BKW algorithm framework, one may use the same list for gi vectors and we
increase the list size to roughly 3 · 2c. Starting with a list L(0), we can write up a sequence
of updated lists L(0) → L(1) → L(2) · · · → L(t), where in each step we reduce another c
positions. This means that L(i) have vectors where the first i · c positions are all zero. On
average, there are three vectors that collide in given c positions. Therefore, we can have
three combinations for such vectors and the size of L(i) can be kept (hence, the motivation
for the factor 3). We formally describe this approach in Algorithm 2.

Algorithm 2: t-step Distinguisher
Input: A list L(0), with gi ∈ Zn

2 , i = 1, . . . , 3 · 2c (|L(0)| = 3 · 2c), parameters
k, d, ℓ, t = log l, cω = ⌈ ℓ·k·d

n ⌉.
1 for i = 1, . . . , t do
2 L(i) = Combine(L(i−1)) ; // Combine list, cancelling c bits.

3 minweight = k · ℓ;
4 for g′ in L(t) do
5 if HammingWt(g′) ≤ minweight then
6 minweight = HammingWt(g′) ; // Filtering low weight sums.

7 if minweight ≤ cω then
Return: ‘Firekite’

8 else
Return: ‘Random’

200 Attacks on the Firekite Cipher

0 · · · 0

i · c

0 · · · 0, 1

· · ·

0 · · · x1 · · · xc

· · ·

0 · · · 1 · · · 1

(i− 1) · c

0 · · · 0 x1 · · · xc

i · c

0 · · · 0 0 · · · 0

XOR pairwise

A vector in L(i−1)

2c buckets

A vector in L(i)

Figure 1: Combine for L(i−1).

t · c

0 · · · 0

0 · · · 0

L(t)

Filter for low weight
| · | ≤ cω

Figure 2: Filter L(t) with cω.

Figure 1 and Figure 2 are visualizations of the Combine step for the (i − 1)-th list
L(i−1) and the filtering for the last list, respectively.3.

We need to consider complexity and memory of the algorithm. Let this computational
complexity measured in simple operations be denoted C and the used memory in bits
be denoted Mem. Its main parts are the L(i) = Combine(L(i−1)) steps in the loop. We
assume that the vectors in the list L(i−1) are organized in a hash table. We have that
the first (i− 1) · c positions are all zero in all vectors in L(i−1), and they are again sorted
in different buckets in the hash table according to the value of the next c positions, i.e.,
position (i− 1) · c to i · c− 1, for i = 1, . . . , t. The Combine step now creates new vectors
for the new list L(i) by adding together all possible pairs that are stored in the same
bucket. This will cancel out another c positions so that vectors in L(i) start with i · c zeros.
New vectors are created until the list L(i) has cardinality 3 · 2c and the sorting procedure
is repeated for the next iteration.4 The complexity of one Combine step is then 3 · 2c

bit-wise additions of vectors of length at most d and storing the result in memory. We
adopt Firekite’s designers’ notation by letting p be the word-length of a bit-wise addition
operation, i.e, the number of bits for which an XOR operation can be computed.5. We
write the cost of one d-bit XOR operation as (1 + ⌊d/p⌋) This procedure is repeated t
times in Algorithm 2. The final check for low weight vectors actually does not need to

3Inspired by Erik Mårtensson’s poster "Coded-BKW with Sieving"[Må18].
4The input could be not uniformly distributed and we might have more combinations than 3 · 2c. If

we obtain significantly fewer vectors after Combine (unlikely) due to input non-uniformity, the list size
gradually decreases and Algorithm 2 might fail.

5For example, the Advance Vector Extension AVX-512 allows XOR to have 512 bits computed per
cycle.

Thomas Johansson, Willi Meier and Vu Nguyen 201

go through all buckets, but only those with a low weight (for instance, one can sort the
vectors in L(t) by their next c positions). This cost is then much smaller than the previous
steps and can be disregarded. The complexity can thus be estimated as

C = t · (3 · 2c) · (1 + ⌊d/p⌋). (2)

The required memory M is the storage of two lists, altogether at most M = 2 · 3 · 2c · d in
bits. In the next subsection, we investigate the success probability of the distinguisher.

3.2 Parameter choices and the success probability of the proposed
algorithm

3.2.1 Algorithmic steps

Since the added noise in the
∑ℓ

j=1 gij
=
∑ℓ

j=1 vij
M′ +

∑ℓ
j=1 e′

ij
=
∑ℓ

j=1 e′
ij

expression
becomes significant as ℓ grows large, a low-weight sum from Firekite will become hard to
distinguish as ℓ grows (from the random case). We hence fix the number of algorithmic
steps t to 2 or 3, corresponding to ℓ = 4 and ℓ = 8 in the proposed algorithm, respectively.

3.2.2 The required Firekite output observations

A vector formed as
∑ℓ

j=1 gij
=
∑ℓ

j=1 vij M′ +
∑ℓ

j=1 e′
ij

=
∑ℓ

j=1 e′
ij

will be called a zero
sum vector. Furthermore, considering a sum of error vectors, e.g.,

∑ℓ
j=1 e′

ij
, we say that a

position is error free mod 2 if
∑ℓ

j=1 e′
ij

is zero in that position; we say that a position is
simply error free if all e′

ij
are zero in the position. It can happen that a double error event

occurs, i.e., two ones in the same position and 1 + 1 = 0. The required Firekite output
observations (i.e., |L(0)| = 3 · 2c) has to be chosen such that zero sum vectors can be found
after Algorithm 2. Moreover, they must be error free mod 2 in the first t · c positions. This
probability is denoted Pnf (noise-free), and we investigate this probability for both case
ℓ = 4 and ℓ = 8.

The case ℓ = 4 Starting with ℓ = 4, we are interested in knowing if a zero sum vector
can be found in the final list. The expected number of zero sum vectors in the final list is
denoted by N . We have

N =
(

3 · 2c

4

)
· 2−m · 3 · 2−c · Pnf (3)

such zero sum vectors, which can be roughly explained as follows: there are
(3·2c

4
)

possible
combinations from the initial list. Among all such 4-sums, only a fraction 2−m will
correspond to a zero sum in vij

, j = 1, . . . , 4. Then, there are 3 ways to choose 2 pairs as
in Algorithm 2. We consider two particular pairs {gi1 , gi2} and {gi3 , gi4} summing to a
zero sum, we further condition gi1and gi2 to cancel in the first c bits with probability 2−c

(the other pair automatically follows). Finally, we assume that e′
i1

+ e′
i2

+ e′
i3

+ e′
i4

is zero
in the first 2c positions, i.e, error free mod 2.

Pnf can be bounded by the probability that the first 2c positions are error free. For
each e′

i1
, there are at most k bits set, uniformly distributed among n positions,6 so

the probability of one error vector, being error free in the first 2c position, is roughly
((n− 2c)/n)k. Therefore, we have

Pnf ≥ ((n− 2c)/n)4k.

6The expected weight of e′ from Firekite is smaller than k, but we can compute probabilities from error
assignment in e.

202 Attacks on the Firekite Cipher

Lemma 1. When ℓ = 4, we expect to have

N >

(
3 · 2c

4

)
· 2−m−c · 3 ·

(
n− 2c

n

)4k

(4)

zero sum vectors in the final list in Algorithm 2.

The case ℓ = 8 Next, we investigate ℓ = 8. Similar to the case ℓ = 4, we have:

N =
(

3 · 2c

8

)
· 2−m · 105 · 2−4c · Pnf. (5)

The explanation is again as follows: the number of different sums of 8 vectors that can be
constructed is

(3·2c

8
)
. Among them, we expect a fraction of 2−m summing to the zero case.

There are 7 · 5 · 3 = 105 ways to form 4 pairs of 8 vectors. Consider the particular pairing
{gi1 , gi2}, {gi3 , gi4}, {gi5 , gi6}, and {gi7 , gi8}. A sum constructed from this pairing will
be in the final list of Algorithm 2 if gi1 +gi2 , gi3 +gi4 and gi5 +gi6 are all zero in the first c
positions. Then gi7 +gi8 has to be zero in the first c positions. The probability of this event
for each choice of fixed indices is 2−3c. Similarly to the 4-sum, now (gi1 + gi2) + (gi3 + gi4)
must sum to zero in the next c positions, with probability 2−c. Finally, we also need the
sum of error vectors to be error free mod 2 in 3c positions.

As before, Pnf can be bounded by the probability that no errors occur in the first 3c
positions. The probability of such a distribution for a single error vector is then roughly
((n− 3c)/n)k and for all eight of them we have

Pnf ≥ ((n− 3c)/n)8k.

Lemma 2. When ℓ = 8, we expect to have

N >

(
3 · 2c

8

)
· 2−m−4c · 105 ·

(
n− 3c

n

)8k

(6)

zero sum vectors in the final list in Algorithm 2.

For ℓ = 8 there are more errors in general, meaning that Pnf is much smaller compared
to ℓ = 4. This gives a stronger motivation for examining other error patterns such as the
double errors canceling out. In particular, the sums from our algorithm can have 1 + 1 = 0
in the first 3c bits. More specifically, if two error vectors have a one in the same position,
their combination still survives the Combine step in Algorithm 2. For some parameters
proposed by Firekite’s designers, certain double error events are even more likely than
having no error at all in the first 3c positions and thus should not be neglected. Since the
error vectors are sparse (e.g., k = 16≪ n = 1024), if a double error occurs at a position,
it most likely happens only once, i.e, coming from one pair of gij

(or equivalently, e′
ij

).
Having four ones in the same position is exceedingly rare for interested parameters (see
Appendix, Example 1). Therefore, we can have a lower bound of Pnf by considering only
non-repeating double errors. Let us look at the simple case where errors from Firekite
have exactly k bits set.7

Assume we have ϵ ≤ k double errors, and the probability is denoted by Pϵ. Then Pϵ

is equal the sum of all possible error patterns/combinations of gi vectors, provided they
result in ϵ collisions. One writes

ϵ =
∑
i,j>i

ϵij ,

7The expected weight of errors from Firekite can be smaller than k. Hence using binomial expressions,
while not entirely correct, gives a good approximation.

Thomas Johansson, Willi Meier and Vu Nguyen 203

where ϵij denotes the number of double errors between gi and gj . The total number of
errors in 3 · c positions of gi is ϵi =

∑
j ϵij . Hence

Pϵ =
∑

{(ϵij)}

Pϵ,{(ϵij)},

where {(ϵij)} is an eligible error colliding pattern of gi vectors with the corresponding
probability Pϵ,{(ϵij)}.
Lemma 3. Let gi, i = 1, . . . , 8 be binary vectors. Then, the noise-free probability of∑8

i=1 gi in the first 3 · c bits is

Pnf =
∑

ϵ=0,...,k

Pϵ =
∑

ϵ=0,...,k
{(ϵij)}

Pϵ,{(ϵij)}, (7)

where

Pϵ,{(ϵij)} ≈
8∏

i=1

(k

ϵi

)(3c

n

)ϵi
(

n − 3c

n

)k−ϵi

(
ϵ1
ϵ1i

)(
ϵ2−ϵ12

ϵ2i

)
. . .
(3c−ϵ1i−...−ϵi−1i

ϵi−ϵ1i−...ϵi−1i

)(
ϵi−1−ϵ1i−1−...ϵi−2i−1

ϵi−1i

)(3c
ϵi

) .

Proof. Assume ϵ double errors and a fixed error colliding pattern {(ϵij)}. Without loss of
generality, we further assume that ϵi ≥ ϵj for i < j, i.e., g1 has the most errors in the first
3c bits. The probability of gi having ϵi errors in the first 3c bits is(

k

ϵi

)(
3c

n

)ϵi
(

n− 3c

n

)k−ϵi

.

We also requires g2 to have ϵ12 colliding positions out of ϵ2. This probability is(
ϵ1
ϵ12

)(3c−ϵ12
ϵ2−ϵ12

)(3c
ϵ2

) .

Similarly, for vector g3, the colliding probability is(
ϵ1
ϵ13

)(
ϵ2−ϵ12

ϵ23

)(3c−ϵ13−ϵ23
ϵ3−ϵ13−ϵ23

)(3c
ϵ3

) .

Generalizing for gi and the lemma follows.

However, it is not practical to take into account all possible double error events. For
instance, if the expected numbers of 1’s in the first t · c positions for each error vector
is small, e.g., fewer than 2, multiple double error events occur with decreasingly small
probability (from a certain point). Moreover, they do not contribute substantially to
our estimate (Appendix, Example 2). Moreover, an improvement in estimating Pnf only
suggests that we need less input for Algorithm 2, i.e., the bigger Pnf is, the smaller c to
satisfy (5). A reasonable approximation suffices for us to deduce the necessary initial list
size |L(0)| so that the expected number of zero sums is N > 1.

To illustrate this argument, we consider the case where we have the relative Hamming
weight of the error vectors ei’s in the first 3 · c positions to be slightly larger than 2 (ℓ = 8).
Hence, we focus only on the scenarios of up to 2 double errors in Figure 3.

One can find the inspiration from Wagner ℓ-tree algorithm [Wag02] in Algorithm 2,
namely, by consecutively canceling out c bits. Wagner argued that one needs lists of size
O(2

m
1+log ℓ) to have a solution in the exact ℓ-list birthday problem. In our algorithm, we

need slightly more,8 i.e, O(2
m

1+log ℓ +a) where a depends on Pnf. Note that Pnf remains
relatively the same if c ≈ m

1+log ℓ . Therefore, we initially set c = ⌊ m
1+log ℓ⌋, then raising

until we get N > 1. Finally, we verify N > 1 again with Pnf estimated by said c.
8Wagner showed that one can find α1+log ℓ more solutions at the expense of α times more work, provided

α ≤ 2m/(log ℓ·(1+log ℓ)) [Wag02].

204 Attacks on the Firekite Cipher

(t · c)
· · · 1 · · ·

· · · 1 · · ·

(a) 1 double error

· · · 1 · · · 1 · · ·

· · · 1 · · · 1 · · ·

· · · 1 · · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

(b) 2 double errors

Figure 3: Illustration for the colliding patterns.

3.2.3 The success probability

Previously, we have seen that if we choose parameters suitably, we can detect zero sum
vectors in the final list. We now need to check whether low weight sums can stem from
random vectors. In other words, the zero sums must be easily distinguished from those
coming from the random case.

Assume Algorithm 2 outputs ‘Firekite’ for the random case. This means that it has
found a vector in the final list of weight at most cω. It is thus of interest to derive the
likelihood of such a vector in the random case. Recall ∆(g) as the Hamming weight of a
binary vector g, and let g[i] be the i-bit truncated g (first i positions). A vector in the
final list will have the first t · c positions all zero, but the remaining positions d − t · c
positions are just formed by XOR-ing ℓ random bit values; thus, they are independent and
uniformly distributed on {0, 1}. The probability of such a vector having Hamming weight
at most cω is

Pr
[
∆(g) ≤ cω : g ∈ Zd

2, g[t·c] = 0
]

=
∑cω

i=0
(

d−t·c
i

)
2d−t·c ,

and the expected number of vectors of weight at most cω, denoted by Nrandom, in the final
list is

Nrandom = 3 · 2c ·
∑cω

i=0
(

d−t·c
i

)
2d−t·c . (8)

Information theoretically, we have an approximation9 as

Nrandom = 3 · 2c ·
∑cω

i=0
(

d−t·c
i

)
2d−t·c ≈

cω∑
i=0

2−(1−H(i
d−t·c))(d−t·c)+c ≈ 2−(1−H(cω

d−t·c))(d−t·c)+c,

where H is the binary entropy function and H(p) = −p log(p) − (1 − p) log(1 − p) with
p ∈ (0, 1). Therefore, if there exists a low weight sum in the final list L(t) and Nrandom is
‘vanishingly small’ (i.e., Nrandom ≪ 1), we have shown that the Firekite’s output vectors
are indeed not random. Different values of Nrandom for various parameters can be found
in Table 2.

4 Results for the distinguisher
In this section we give the results for our distinguishing attack as described in Section 3
when it is applied on the suggested parameter sets for Firekite.

9We use 2n
(

n
i

)
≈ 2(1+H(i/n))n. The final approximation is due to overwhelming contribution of

2−(1−H(cω/(d−t·c)))(d−t·c)+c.

Thomas Johansson, Willi Meier and Vu Nguyen 205

4.1 Theoretical complexity estimation for the proposed parameters of
Firekite

We investigate the results for Firekite’s proposed parameters. As an example, we explain
our distinguishing attack for the case n = 1024, m = 216, d = 648, k = 16, where the
claimed security level is 82.

1. For ℓ = 4 we derive the following: we pick c = 76, cw = ⌈4 · k̂⌉ = 41, where k̂ = k·d
n .

Let P0 denote the probability of the first 2 · c position being error free. By simply

setting Pnf ≈ P0 =
(

n− 2 · c
n

)4k

≈ 2−14.83, we get N > 1.42 and

Nrandom ≈ 2−215.76.

2. For ℓ = 8 we derive the following: picking c = 62 and similarly, cω = ⌈ℓ · k · d
n⌉ = 81,

we have Nrandom very close to zero.
As an example, we approximate Pnf by the sum of probabilities of no double errors
P0, one double errors P1, and two double errors P2 (ϵ = 0, 1, 2). As discussed, many
double errors are improbable and we focus on the most likely cases.

• If there is no double error, P0 =
(

n− 3c

n

)8k

≈ 2−37.02.

• Assume there is one double error occurring. For the colliding pair of vectors, the
probability of having exactly one 1 in the same position k2

3c

(3c
n

)2 (n−3c
n

)2(k−1),
and there are

(8
2
)

ways to select a pair/colliding pattern {(ϵij)}, hence

P1 ≈
(

8
2

)
k2

3c

(
3c

n

)2(
n− 3c

n

)2(k−1)(
n− 3c

n

)6k

≈ 2−36.09.

• If there are two double errors, then there are two cases: the double errors
happen in one pair or two pairs (note that a vector in the first pair can appear
in the second pair). Let P21 and P22 denoted such events, respectively, then

P2 ≈ P21 + P22.

where

P21 ≈
(

8
2

)(k
2
)2(3c

2
) (3c

n

)4(
n− 3c

n

)2(k−2)(
n− 3c

n

)6k

and

P22 ≈
(

8
3

)(
k

2

)(
3c

n

)2(
n− 3c

n

)k−2
· 2 ·

[
k

3c

(
3c

n

)(
n− 3c

n

)(k−1)
]2(

n− 3c

n

)5k

+
(

8
2

)(
6
2

)(
k2

3c

)2(3c

n

)4(
n− 3c

n

)4(k−1)(
n− 3c

n

)4k

.

Therefore, P2 ≈ 2−35.86, and Pnf > P0 + P1 + P2 ≈ 2−34.65 ≈ 4P0 which gives
N > 2.7. The failure probability for this attack when cω = 81 can be indicated
by

Nrandom ≈ 2−90.23.

206 Attacks on the Firekite Cipher

Table 2 shows our attack’s complexity and the corresponding Nrandom for a few sets of
parameters suggested by the Firekite’s designers. The number of required Firekite output
observations is indicated by the parameter c. Recall that the theoretical complexity is

C = t · (3 · 2c) · (1 + ⌊d/p⌋).

In their implementation, beside several optimization flags, they also use a compilation
flag -mavx2 that allows XOR operations to apply on 256 bits per cycle. Therefore, in our
complexity estimates, we set p = 256.

Table 2: Our distinguishing attack complexity corresponding to a few selected sets of
parameters for 80-bit and 128-bit security of Firekite’s stream cipher.

Parameters c Attacks(log) Nrandom(log)
m n k Security 4-sum 8-sum 4-sum 8-sum 4-sum 8-sum

216 1024 16 82.76 76 62 80.17 66.75 -215.76 -90.23
216 2048 32 82.76 76 62 81.17 67.75 -765.79 -465.74
216 16,384 216 80.68 75 60 83.28 68.87 -9011.62 -6541.71
352 2048 32 129.07 125 101 130.16 106.75 -541.40 -275.94
352 4096 58 128.95 124 99 130.17 105.75 -1739.41 -1150.69
352 16,384 228 128.93 123 99 131.26 107.84 -8510.19 -6023.39

With 4-sum attacks and for small parameters of 80-bit secured Firekite, we can only
refine Firekite’s designer estimates marginally. However, our 8-sum distinguisher manages
to break Firekite for all parameters, except for the smallest 128-bit secure instance, which is
n = 1024, m = 352, and k = 16. In particular, we can find a zero sum with the cost 2107.75

but log(Nrandom) ≈ 83. Therefore, we were unable to claim that the Firekite’s output is
not randomly distributed as the low weight sums found could easily come from random
vectors. The explanation is that d = n−m−k log n is not so large compared to 8 · k̂ in this
case; hence, it is impossible to distinguish from the case of random vectors gi. In general,
8-sum attack performs slightly better when the parameters n and k grows (with the same
factor, as suggested by Firekite’s designers). This is owing to the fact that d grows bigger
while m remains relatively unchanged; hence we have even smaller failure probability and
bigger error free probability Pnf. In fact, we need a smaller initial list (3 · 260 compared to
3 · 262) when attacking Firekite instance with n = 16384, m = 216, k = 216.

These theoretical results above can be improved; larger Firekite parameters make the
double error events more probable. For instance, attacking the parameters n = 16384, m =
352, k = 228 with 8-sum distinguisher, we find that two double errors (P2) are twice as
likely as no error (P0). Therefore, Pnf should be better approximated by taking, e.g., P3
and P4 into consideration.

4.2 Simulation results for smaller parameters
We verify our approach and formulas by performing simulations.10 As a toy example,
we set up a mini version of Firekite with small parameters (where the ratios n

k are kept
constant as in Table 1 and m is also reduced by a similar factor) and run Algorithm 2.
Our parameters are m = 52, n = 256, k = 4, b = 269 and r = 15. Recall that b is the
secret key’s length used to generate the first row of Firekite’s secret matrix M such that
(Xb − 1)/(X − 1) is irreducible in Z2[x] and r is the number of randomization rounds
before Firekite generates its actual output.

10Our simple implementation can be found at https://anonymous.4open.science/r/FirekiteDistinguisher-
553B/README.md

 https://anonymous.4open.science/r/FirekiteDistinguisher-553B/README.md
 https://anonymous.4open.science/r/FirekiteDistinguisher-553B/README.md

Thomas Johansson, Willi Meier and Vu Nguyen 207

• For the 4-sum distinguisher, the filter weight is cω = 11. The parameter c is chosen
so that

N =
(

3 · 2c

4

)
· 2−m · 3 · 2−c · Pnf > 1.

One has P0 =
(

n− 2c

n

)4k

≈ 2−3.5. If we choose c = 18, i.e |L(0)| = 3 · 218, there
are, on average, less than 1 bit set of the error vectors in the first 2c bits. One can
safely assume Pnf ≈ P0, and it gives N ≈ 3.6. The simulation returns, on average,
1.65 low weight vectors after 102 tests. The discrepancy can be explained as follows:
the assumption that we can keep the list’s size |L(i)| = 3 · 2c is often violated as
there are more vectors after every Combine step owing to vectors being not evenly
distributed among buckets. Therefore, ‘good’ combinations that are present in zero
sums might be discarded by chance. Keeping all combinations from Combine, we
obtain more low weight sums after filtering with cω (at the cost of higher complexity)
and the simulation is more consistent with the theoretical estimate. We now look at
the probability of 4 random vectors summing to such sums:

Pr
[
∆(g) ≤ cω = 11 : g ∈ L(2), g[2·18] = 0

]
=
∑cω

i=0
(

d−2·c
i

)
2d−2·c ≈ 2−83.76,

therefore,
Nrandom ≈ 2−64.18.

• For the 8-sum distinguisher, the filter weight is chosen to be cω = 21. Again, c must
fulfill

N =
(

3 · 2c

8

)
· 2−m−4c · 105 · Pnf > 1,

where Pnf ≈ P0 + P1 + P2 ≈ 2−7.67. Setting c = 14, meaning |L(0)| = 3 · 214, suffices
and gives N > 1.35. It needs to be clarified that in the 8-sum attack’s implementation,
the effect of keeping |L(i)| = 3 · 214 is more visible. In particular, we might discard
all ‘good combinations’ when N is very close to 1. We adapt by allowing |L(1)| and
|L(2)| to be at most 2 · |L(0)|, then directly filter combinations from |L(2)| with cω.
Therefore, the complexity is slightly higher than the theoretical estimate provided in
the previous section. We suppose said negative impact can be mitigated when c is
large as the vectors in |L(i)| might be more evenly distributed among buckets. The
simulation returns 1.52 low weight vector on average after 102 tests.
In the random case, the probability of having a vector having Hamming weight up
to cω is:

Pr
[
∆(g) ≤ cω = 21 : g ∈ L(3), g[3·14] = 0

]
=
∑cω

i=0
(

d−3·c
i

)
2d−3·c ≈ 2−50.16,

which yields
Nrandom ≈ 2−34.58.

5 A key-recovery attack on Firekite
In this section we show a possible way to turn the distinguishing attack into a key-recovery
attack with slightly higher complexity. We focus on the recovery of the secret m×d matrix
M′. First, we recall that the secret matrix M in Firekite is constructed by choosing a part
of the bigger b × b matrix Q as described in Section 2. We pick q1

U←− Zb
2 and defined

rows in the matrix Q as qi = Xi−1q1, i = 1, . . . , b, i.e., by shifting the first row to the

208 Attacks on the Firekite Cipher

left consecutively b − 1 times. The secret matrix M is obtained by dropping the last
b− n columns of Q and keeping only the first m rows. The secret key is only the random
b-bit vector q1 rather than a m× n matrix M. Let the unknown bits in q1 be written as
q1 = (k1, k2, . . . , kb).

More specifically, we can now see that if M = [mij]m×n then every entry in the matrix
M corresponds to an unknown key bit. As M′ is the first part of M, the same holds for
M′.

We can view M′ as a generator matrix that spans a code C. But there are many generator
matrices spanning the same code. One particular case is when M′ is transformed to the
systematic form, that is M′′ = [I J], where I is the m×m identity matrix and M′′ = SM′

for some m×m unknown matrix S. We assume C = {vM′, v ∈ Zm
2 } = {v[I J], v ∈ Zm

2 }.
In this case, entries in J are linear combinations of the secret key bits. Therefore, we
consider all entries in J as unknown. There is an assumption here that the fist m columns
of M′ are linearly independent, which is adopted.

The key-recovery attack consists of running the aforementioned distinguisher, finding
several zero sum vectors, and then deducing M′. We first show how to derive the secret
key from such zero sum vectors if we assume that the first m positions are all error free
(no double error). Again, a zero sum vector fulfills

ℓ∑
j=1

gij
=

ℓ∑
j=1

vij
M′ +

ℓ∑
j=1

eij
=

ℓ∑
j=1

eij
.

Therefore, finding a zero sum amounts to knowing the corresponding
∑ℓ

j=1 eij . We now
consider a single gij

vector. Its positions can be split in two parts, namely those for which
we know that they are (most likely) error free mod 2 (since the error vector is zero in this
position) and those for which we do not have knowledge of, since one of the ℓ involved
vectors has an error. Note that the first t · c positions are error free, but there are, on
average, cω positions where at least one of the eight vectors will have an error.

If the first m positions are all of the error free type, one can write

gij
= vij [I J] + eij . (9)

We further have roughly d− t · c− cω additional positions to be error free. For each such
position, we can form a linear equation. Denote by Jq the q-th column of J. Assume a
position q > m is error free. Then

gij
(q) =

m∑
i′=1

vij (i′)Jq(i′). (10)

Here gij
(q) denotes position q in vector gij

, etc. Since gij
(q) and vij

are known, it gives a
linear equation in the unknowns of vector Jq. Collecting many such equations will enable
us to derive Jq and eventually, the full J matrix. However, such approach is not adequate
as we have seen in Section 4 that, for interested parameters, double error probability can
not be disregarded. Hence, we need to consider a more complicated approach where we
try to detect columns with double errors.

Assume we have found N zero sum vectors with the 8-sum distinguisher. Let the first
seven vectors in the first zero sum vector

∑ℓ
j=1 gij

be denoted g1, g2, . . . , g7, the first
seven vectors in the next zero sum vector be denoted g8, g9, . . . , g14, and so forth. We
construct a matrix

G = (gi)i=1,...,7N

where gi are row vectors.
Now we will examine the columns and the related known error vector for the corre-

sponding zero sum vector. Recall that the first t · c columns are error free mod 2, by virtue

Thomas Johansson, Willi Meier and Vu Nguyen 209

of Algorithm 2. For the remaining columns, if
∑ℓ

j=1 gij
is zero in the q-th position for

all detected zero sum vectors, the corresponding column Gq is free of ‘direct errors’ and
is kept. If it is not true, then we discard the column. After this process, we have a new
matrix G′ of length t · c + U , where U is the number of columns kept in the previous
step. If t · c + U > 7N > m there will be low-weight codewords in the code spanned by
G′. Namely, if 7N > m then there are linear combinations of rows that correspond to
a zero codeword plus error terms. As we have removed all ‘direct errors’, the only error
contribution in the code must come from double errors.

Each double error will give either a 0 or a 1 as contribution in that position. Assume
there are D double errors in the columns in G′, then we expect to find codewords in the
code spanned by G′ that have weight around D/2. More, because we can form 2P −m

different combinations of rows that sum to zero in the underlying code, we have 2P −m

low weight codewords of weight around D/2. Finally, every column in G′ can be found
to contain a double error or not as follows. If this position is zero in all (or almost all)
low-weight codewords, there is no double error. Otherwise, we detected a double error in
that position. From this information, it is possible to do a full recovery through additional
steps. A description of this key recovery attack is given in Appendix, Algorithm 3.

There arises a problem of finding enough columns free of direct errors. When the length
n is small, there will be very few columns free of direct errors and the length of G′ is not
enough to have low-weight codewords. Therefore, in the following example, we choose a
large n instance of Firekite to illustrate our attack.

5.1 Example of the key recovery attack on Firekite with n = 16384
Consider the Firekite parameters choice m = 216, n = 16384 and k = 216. The attack
works as follows. First we run the 8-sum distinguisher to obtain zero sum vectors. In this
case, we need to have slight more than m/7, e.g., 32 zero sum vectors. Applying (5), we
choose c = 60 generating N ≈ 3.5 zero sum vectors using the 8-sum distinguisher. Instead
of repeating the distinguishing attacks 32 times or, equivalently 25 more work, we can
instead increase the initial list size to 3 · 261 to obtain sufficient low-weight sum (N ≈ 41),
with an affordable complexity of 269.87. We denote this cost by Cdistinguishing.

We now consider a matrix G of dimension P = 32 · 7 = 224 consisting of the gi

vectors as its rows and we then remove columns with direct associated errors. In a zero
sum vector, there are 216 · 8 errors inserted, so a positon is error free with probability
(1− 1/(16384− 61 · 3))216·8 ≈ 0.899. In our case, we want the position to be error free in
all 32 zero sum vectors, which brings the probability to about 0.033. Since d = 13144, we
can have about 432 columns error free. We then form the matrix G′ which is of dimension
P = 224 and length 61 · 3 + 432 = 615. There will be 2224−216 = 28 codewords in the code
spanned by G′ with support corresponding to the double errors.

By computing the likelihood of double errors, we find that a column in G′ is error free
with probability at most 0.99532 = 0.85. For instance, consider a simple case where there
is no non-repeating double error at position j-th of a zero sum. Then the probability is

1−
(

8
2

)
·

(
1−

(
16383
16384

)216
)2

·
(

16383
16384

)216·6
≈ 0.995

One can expect 615 · 0.15 ≈ 93 columns to have double errors. In conclusion, the
code spanned by G′ will contain 28 codewords where the weight is distributed around 47.
Finding low-weight codewords in a random binary linear code is a well-known problem that
has been studied extensively. One can use ISD algorithms to complete the task. For our
example, an improved Stern’s ISD algorithm11 yields the bit-complexity estimate, denoted
CISD, to be 244.6, which is small compared to the distinguishing step.

11The estimate is obtained in a recent work by Andre Esser and Emanuele Bellini [EB22], where they

210 Attacks on the Firekite Cipher

A random linear code with dimension 224 and length 615 will have an expected
minimum distance of about 100 according to the Varshamov-Gilbert bound, so the low
weight codewords would come from the observation above. Finally, generating say 16 such
low weight codewords, we look for the positions where all the 16 of these codewords are
zero. This would be the case for more than 500 positions and in this way we have identified
500 columns that are completely error free. Using a selection of them as the information
set of the code we can recover remaining parts of the code M′. The total complexity is
therefore

C = Cdistinguishing + CISD ≈ 269.87 + 16 · 244.6 ≈ 269.87.

6 Discussion and Conclusions

Having seen how Firekite is vulnerable to our distinguisher, especially the 8-sum distin-
guishing attack, it is natural to ask how we can make Firekite and other similar ciphers
resilient to a generic birthday problem solving algorithm. From the result and performance
of our attacks, there are certain approaches one can consider. First, we observed that
Nrandom, or in other words, the failure probability inflates when the filtering weight cω

grows. That is to say, unless cω is very small compared to d, it is difficult to distinguish
Firekite’s zero sum vectors from those that could stem from random vectors gi. Therefore,
instantiating Firekite with larger k can be beneficial. Second, we have discussed that the
attack complexity depends on the parameter c which is solely determined by m (if we fix
ℓ), the number of rows in M. Therefore, if the security level is close to m/(1 + log ℓ), our
attack becomes infeasible. As a contribution to Firekite’s design criteria, we propose a few
modifications as follows.

For small Firekite’s parameters, one can increase k slightly, which yields an LPN
instance with a higher noise rate; therefore more difficult to solve in general. In our
estimate, larger k suggests a drastic decrease in Pnf and an increase in Nrandom. It is
now exceedingly unlikely to have no error in the first t · c bits and d becomes smaller,
which makes it more difficult to distinguish the zero sum found by Algorithm 2 from
those stemming from the random case. As an example, by setting k = 24 for the instance
n = 1024, m = 216, our attack was rendered useless as Nrandom is always larger than 1.
This comes at the cost of decreasing the number of bits encrypted per invocation; hence
more instructions need to be executed per bit. However, larger parameter instances of
Firekite are less affected by this ‘fix’ as d becomes large relatively to k. For instance, our
8-sum attack still succeeds with n = 16384, m = 216 despite raising k from its original
k = 216 to k = 400. We only need to slightly increase |L(0)| = 3 · 267 and we still obtain
a good failure probability as Nrandom ≈ 2−2835. An extreme adjustment such as k = 600
gives Firekite resistance to our attack. We apply this idea to our simulation with toy
parameters to verify the countermeasure (see Appendix, Example 3).

Finally, we may discuss possible future improvements to the proposed attack. We
believe that there can be a possibility to gain some small amount in terms of decreased
complexity by smaller changes in the distinguishing algorithm. One idea could be to not
only allow sums of vectors that sum to zero in c positions, but also those that have weight
1 in these c positions. Still, it would not change the complexity significantly and with
modified parameters as suggested above the Firekite should meet the intended security
level. Moreover, since our approach relies heavily on GBA, it would be amenable in
principle to quantum search approach, e.g., using result in [NPS20].

unify ISD-algorithm variants (Prange,Stern,MMT,BJMM) in a Nearest-Neighbor framework. They also
provided a complexity estimator for independent parameters.

Thomas Johansson, Willi Meier and Vu Nguyen 211

Acknowledgments
The authors are grateful to anonymous reviewers from ToSC 2022 and CRYPTO 2022 for
their helpful comments which improves greatly both editorial and technical quality of this
work.

The work presented in this paper has been partly funded by the Swedish Research
Council (Grant No. 2019-04166) and the Swedish Foundation for Strategic Research (Grant
No. RIT17-0005).

References
[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-

tographic primitives and circular-secure encryption based on hard learning
problems. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer
Science, pages 595–618. Springer, 2009.

[Ber09] Daniel J Bernstein. Introduction to post-quantum cryptography. In Post-
quantum cryptography, pages 1–14. Springer, 2009.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton.
Cryptographic primitives based on hard learning problems. In Douglas R.
Stinson, editor, Advances in Cryptology - CRYPTO ’93, 13th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 22-26,
1993, Proceedings, volume 773 of Lecture Notes in Computer Science, pages
278–291. Springer, 1993.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2 n/20: How 1 + 1 = 0 improves information
set decoding. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer
Science, pages 520–536. Springer, 2012.

[BKLV21] Sonia Bogos, Dario Korolija, Thomas Locher, and Serge Vaudenay. Towards
efficient lpn-based symmetric encryption. In Kazue Sako and Nils Ole Tippen-
hauer, editors, Applied Cryptography and Network Security - 19th International
Conference, ACNS 2021, Kamakura, Japan, June 21-24, 2021, Proceedings,
Part II, volume 12727 of Lecture Notes in Computer Science, pages 208–230.
Springer, 2021.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding
exponents: Ball-collision decoding. In Phillip Rogaway, editor, Advances
in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 743–760. Springer, 2011.

[BM17] Leif Both and Alexander May. The approximate k-list problem. IACR Trans.
Symmetric Cryptol., 2017(1):380–397, 2017.

212 Attacks on the Firekite Cipher

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On
the inherent intractability of certain coding problems (corresp.). IEEE Trans.
Inf. Theory, 24(3):384–386, 1978.

[BSH06] Johann Barbier, Guillaume Sicot, and Sébastien Houcke. Algebraic approach
for the reconstruction of linear and convolutional error correcting codes. Inter-
national Journal of Applied Mathematics and Computer Science, 2(3):113–118,
2006.

[BV15] Sonia Bogos and Serge Vaudenay. How to sequentialize independent parallel
attacks? - biased distributions have a phase transition. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science,
pages 704–731. Springer, 2015.

[CF09] Mathieu Cluzeau and Matthieu Finiasz. Recovering a code’s length and
synchronization from a noisy intercepted bitstream. In IEEE International
Symposium on Information Theory, ISIT 2009, June 28 - July 3, 2009, Seoul,
Korea, Proceedings, pages 2737–2741. IEEE, 2009.

[CT19] Kevin Carrier and Jean-Pierre Tillich. Identifying an unknown code by partial
gaussian elimination. Des. Codes Cryptogr., 87(2-3):685–713, 2019.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message
authentication, revisited. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cam-
bridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in
Computer Science, pages 355–374. Springer, 2012.

[DV13] Alexandre Duc and Serge Vaudenay. HELEN: A public-key cryptosystem based
on the LPN and the decisional minimal distance problems. In Amr M. Youssef,
Abderrahmane Nitaj, and Aboul Ella Hassanien, editors, Progress in Cryptology
- AFRICACRYPT 2013, 6th International Conference on Cryptology in Africa,
Cairo, Egypt, June 22-24, 2013. Proceedings, volume 7918 of Lecture Notes in
Computer Science, pages 107–126. Springer, 2013.

[EB22] Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key Cryp-
tography – PKC 2022, pages 112–141, Cham, 2022. Springer International
Publishing.

[GJL14] Qian Guo, Thomas Johansson, and Carl Löndahl. Solving LPN using covering
codes. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2014.

[GRS08a] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. Hb#: Increasing
the security and efficiency of hb+. In Nigel P. Smart, editor, Advances in
Cryptology - EUROCRYPT 2008, 27th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 361–378. Springer, 2008.

Thomas Johansson, Willi Meier and Vu Nguyen 213

[GRS08b] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. How to en-
crypt with the LPN problem. In Luca Aceto, Ivan Damgård, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II
- Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations, volume 5126 of Lecture Notes in Computer
Science, pages 679–690. Springer, 2008.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols.
In Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th
International Conference on the Theory and Application of Cryptology and
Information Security, Gold Coast, Australia, December 9-13, 2001, Proceedings,
volume 2248 of Lecture Notes in Computer Science, pages 52–66. Springer,
2001.

[HDWH12] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halderman.
Mining your ps and qs: Detection of widespread weak keys in network devices.
In 21st {USENIX} Security Symposium ({USENIX} Security 12), pages 205–
220, 2012.

[HJB09] Martin Hell, Thomas Johansson, and Lennart Brynielsson. An overview of
distinguishing attacks on stream ciphers. Cryptogr. Commun., 1(1):71–94,
2009.

[HKL+07] Stefan Heyse, Eike Kiltz, Vadim Lyubashesvky, Christof Paar, and Krzysztof
Pietrzak. An efficient authentication protocol based on ring-lpn. In ECRYPT
Workshop on Lightweight Cryptography, volume 2011. Citeseer, 2007.

[HKL+12] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof
Pietrzak. Lapin: An efficient authentication protocol based on ring-lpn.
In Anne Canteaut, editor, Fast Software Encryption - 19th International
Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised
Selected Papers, volume 7549 of Lecture Notes in Computer Science, pages
346–365. Springer, 2012.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP
instances than picking uniformly at random. In 31st Annual Symposium on
Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24,
1990, Volume II, pages 812–821. IEEE Computer Society, 1990.

[JW05] Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human
protocols. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in
Computer Science, pages 293–308. Springer, 2005.

[Kir11] Paul Kirchner. Improved generalized birthday attack. IACR Cryptol. ePrint
Arch., page 377, 2011.

[KPV+17] Eike Kiltz, Krzysztof Pietrzak, Daniele Venturi, David Cash, and Abhishek
Jain. Efficient authentication from hard learning problems. J. Cryptol.,
30(4):1238–1275, 2017.

[KS06] Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the HB
and hb+ protocols. In Serge Vaudenay, editor, Advances in Cryptology -

214 Attacks on the Firekite Cipher

EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 73–87. Springer, 2006.

[LB88] Pil Joong Lee and Ernest F. Brickell. An observation on the security of
mceliece’s public-key cryptosystem. In Christoph G. Günther, editor, Ad-
vances in Cryptology - EUROCRYPT ’88, Workshop on the Theory and
Application of of Cryptographic Techniques, Davos, Switzerland, May 25-27,
1988, Proceedings, volume 330 of Lecture Notes in Computer Science, pages
275–280. Springer, 1988.

[Leo88] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of
large error-correcting codes. IEEE Trans. Inf. Theory, 34(5):1354–1359, 1988.

[LF06] Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In
Roberto De Prisco and Moti Yung, editors, Security and Cryptography for
Networks, 5th International Conference, SCN 2006, Maiori, Italy, September
6-8, 2006, Proceedings, volume 4116 of Lecture Notes in Computer Science,
pages 348–359. Springer, 2006.

[MGB12] Mélanie Marazin, Roland Gautier, and Gilles Burel. Algebraic method for blind
recovery of punctured convolutional encoders from an erroneous bitstream.
IET Signal Process., 6(2):122–131, 2012.

[Må18] Erik Mårtensson. Poster: Coded-bkw with sieving. In Training School
on Cryptanalysis of Ubiquitous Computing Systems, Ponta Delgada, Azores,
Portugal, April 2018.

[NPS20] María Naya-Plasencia and André Schrottenloher. Optimal merging in quantum
k-xor and k-sum algorithms. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, pages 311–340, Cham, 2020.
Springer International Publishing.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Trans. Inf. Theory, 8(5):5–9, 1962.

[SHB09] Guillaume Sicot, Sébastien Houcke, and Johann Barbier. Blind detection of
interleaver parameters. Signal Process., 89(4):450–462, 2009.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Rev., 41(2):303–332, 1999.

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO ’93, 13th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer
Science, pages 13–21. Springer, 1993.

[Tix15] Audrey Tixier. Blind identification of an unknown interleaved convolutional
code. In IEEE International Symposium on Information Theory, ISIT 2015,
Hong Kong, China, June 14-19, 2015, pages 71–75. IEEE, 2015.

[Wag02] David A. Wagner. A generalized birthday problem. In Moti Yung, editor, Ad-
vances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings,
volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer,
2002.

Thomas Johansson, Willi Meier and Vu Nguyen 215

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor
from constant-noise LPN. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part I, volume 9814 of Lecture Notes in Computer Science, pages 214–243.
Springer, 2016.

A Appendix

Algorithm 3: Firekite key recovery algorithm
Input: A list L(0), with gi ∈ Zn

2 , parameters k, m, d,
cω = ⌈ 8·k·d

n ⌉, D/2, G = ∅, E = ∅.
1 for i = 1, . . . , 3 do
2 L(i) = Combine(L(i−1));
3 for si =

∑8
j=1 gij

in L(3) do
4 if HammingWt(si) ≤ cω then
5 G← G ∪ {gi1 , . . . , gi7};

6 G = (gj)j=1...|G| ; // constructing G
7 for i = 1, . . . , d do
8 if ∃s ∈ L(3), si = 1 then
9 G← G \Gi; // removing columns with direct error

10 Finding all vectors ei spanned by G that are of Hamming weight less than D/2;
11 Keep columns of G if ei are all 0 in that position;
12 Recover M′ from G;
13 return M′;

Example 1. (Probability of repeating double error.)
To convince readers that Pnf can be reasonably approximated by taking into account

only non-repeating double error, we give an example where there is 1 double-error. We
consider the probabilities of this event in both cases: the double error comes from only 2
or 4 vectors out of 8. Our parameters are n = 1024, k = 16, c = 62 (see Section 4 for the
choice of c).

The probability of 4 error vectors having a one in the same position in the first 3 · c
bits is:

P1 ≈
(

8
4

)
k4

(3c)3

(
3c

n

)4(
n− 3c

n

)4(k−1)(
n− 3c

n

)4k

≈ 2−46.19.

The probability of 2 error vectors having a one in the same position in the first 3 · c
bits is:

P ′
1 ≈

(
8
2

)
k2

3c

(
3c

n

)2(
n− 3c

n

)2(k−1)(
n− 3c

n

)6k

≈ 2−36.09 ≫ P.

Example 2. (Multiple double errors)
Let us compare the probabilities of multiple double errors in the first t · c bits to justify

our assumption that Pnf can be ‘practically’ approximated. We continue with Firekite
parameters in Example 1, with c = 76 (4-sum distinguisher).

216 Attacks on the Firekite Cipher

Table 3: Repeating (P1) and non-repeating double errors (P ′
1) probabilities for some

parameters of Firekite.
Parameters Probabilities

m n k log(P1) log(P ′
1)

216 1024 16 -46.19 -36.09
216 2048 32 -44.95 -34.54
216 16,384 216 -33.37 -27.70

The probability of no double error in the first 2 · 76 bits is:

P0 =
(

n− 2 · c
n

)4k

≈ 2−14.83.

The probability of one double error in the first 2 · 76 bits is:

P1 ≈
(

4
2

)
k2

(2c)

(
2c

n

)2(
n− 2c

n

)2(k−1)(
n− 2c

n

)2k

≈ 2−17.13.

Therefore, P0 + P1 ≈ 2−14.57, and more importantly, this ‘better approximation’ of Pnf
does not affect our algorithm significantly.

Another example being Pnf in our simulation (Section 4) where n = 256, m = 52, k = 4.
For the 8-sum distinguisher, the double error probabilities are:

P0 ≈ 2−8.27,

P1 ≈ 2−9.55,

P2 ≈ 2−11.58.

Example 3. (Improve Firekite by increasing noise level)
Recall in our simulation, the parameters are n = 256, m = 52, k = 4. We increase k to

k = 7 and apply the 8-sum distinguisher again with c = 14. One can verify, with the new
parameters, that

Nrandom ≈ 3.15.

N ≈ 0.03.

As discussed in Section 4, due to non-uniformity of the input, we exhaust all combinations
in the last Combine step. On average, there are 218 vectors in L(3) which raises Nrandom

(in our simulation) to 218

3 · 214 · 3.15 ≈ 18.9. After 102 tests, we observe on average, 18.8 low
weight vectors. Therefore our distinguishing attack does not work.

	Introduction
	Contributions
	Related work
	Organization

	Background
	The LPN problem
	Firekite's PRNG and Firekite construction
	The problem of observing noisy codewords from an unknown code

	The proposed distinguishing algorithm
	A basic algorithm for finding noisy codewords summing to the zero codeword
	Parameter choices and the success probability of the proposed algorithm

	Results for the distinguisher
	Theoretical complexity estimation for the proposed parameters of Firekite
	Simulation results for smaller parameters

	A key-recovery attack on Firekite
	Example of the key recovery attack on Firekite with n=16384

	Discussion and Conclusions
	Appendix

