LUND

UNIVERSITY

Attacks on the Firekite Cipher

THOMAS JOHANSSON, WILLI MEIER, VU NGUYEN
DEPT. OF EIT, LUND UNIVERSITY, FHNW

Motivation of the Firekite cipher

® Post-quantum cryptography is an active and relevant area.

Johansson T., Meier W., Nguyen V. 1

Motivation of the Firekite cipher

® Post-quantum cryptography is an active and relevant area.

® Hard problems in post-quantum cryptography such as: code-based, lattice-based,
multivariate-based...

Johansson T., Meier W., Nguyen V. 1 uLN%va

Motivation of the Firekite cipher

® Post-quantum cryptography is an active and relevant area.

® Hard problems in post-quantum cryptography such as: code-based, lattice-based,
multivariate-based...
— Alternatively, learning assumptions such as LPN, LWE.

Johansson T., Meier W., Nguyen V. 1 uLNwav

Motivation of the Firekite cipher

® Post-quantum cryptography is an active and relevant area.
® Hard problems in post-quantum cryptography such as: code-based, lattice-based,

multivariate-based...
— Alternatively, learning assumptions such as LPN, LWE.

® |earning Parity with noise is appealing in many applications for its simplicity.

Johansson T., Meier W., Nguyen V. 1 uLNmsR

Overview of LPN-based constructions

Common drawback:

® Often require fresh randomness (cryptographically secure bits) [Sho99, HDWH12].

Johansson T., Meier W., Nguyen V. 2

Overview of LPN-based constructions

Common drawback:

® Often require fresh randomness (cryptographically secure bits) [Sho99, HDWH12].
® Not suitable for low-weight, restrained devices.

Johansson T., Meier W., Nguyen V. 2 UvaEksllT)v

The Firekite cipher (Bogos et al.)

Design [BKLV21]

Assume n > m, and K are integers.

m mxn n g
v-M+e=]|V
Ce

error vector of weight k

Figure: Overview of Firekite’s design.

LUND

UNIVERSITY

Design [BKLV21]

Assume n > m, and K are integers.

noisy product of length n

\

m mxn n g
v-M+e=]|V
Ce

error vector of weight k

Figure: Overview of Firekite’s design.

LUND

UNIVERSITY

Design [BKLV21]

Assume n > m, and K are integers.

noisy product of length n

\

m mxn n g
v-M+e=|V next v
Ce

error vector of weight k

Figure: Overview of Firekite’s design.

LUND

UNIVERSITY

Design [BKLV21]

Assume n > m, and k are integers.

noisy product of length n

\

m mxn n g
v-M+e=|V next v

Ce/— concise presentation of next e

error vector of weight k

Figure: Overview of Firekite’s design.

LUND

UNIVERSITY

Design [BKLV21]

Assume n > m, and k are integers.

noisy product of length n

\

m mxn n g\ — output
v-M+e=|V next v

Ce/— concise presentation of next e

error vector of weight k

Figure: Overview of Firekite’s design.

Johansson T., Meier W., Nguyen V.

LUND

UNIVERSITY

Design [BKLV21]

Assume n > m, and k are integers.

noisy product of length n

\

m mxn n g\ — output
v-M+e=|V next v

Ce/— concise presentation of next e

error vector of weight k

Figure: Overview of Firekite’s design.

® Each error position requires log n bits, hence length of ¢, is k - log n.

Johansson T., Meier W., Nguyen V. 3 uLN%EIin

Design [BKLV21]

Assume n > m, and K are integers.

noisy product of length n

\

m mxn n g\ — output
v-M+e=|V next v

Ce/— concise presentation of next e

error vector of weight k

Figure: Overview of Firekite’s design.

® Each error position requires log n bits, hence length of ¢, is k - log n.

® Keystreamlengthisd=n—m—k-logn.

Johansson T., Meier W., Nguyen V.

LUND

UNIVERSITY

Design [BKLV21]

Assume n > m, and K are integers.

noisy product of length n

\

m mxn n g\ — output
v-M+e=|V next v

Ce/— concise presentation of next e

error vector of weight k

Figure: Overview of Firekite’s design.

® Each error position requires log n bits, hence length of ¢, is k - log n.

® Keystreamlengthisd=n—m—k-logn.
® For efficiency, the authors proposed using a ‘cyclic’ M.

Johansson T., Meier W., Nguyen V.

3

LUND

UNIVERSITY

The Learning Parity with Noise Problem

LPN oracle.

$
Letx < {0,1}"and 7 € (0O, %). An LPN oracle Il py for x and 7 returns pairs of the form

(9 01" xg) @),

where e « Ber;, and (x, g) denotes the scalar product of vectors x and g.

Johansson T., Meier W., Nguyen V. 4 UvaEksllT)v

The Learning Parity with Noise Problem

LPN oracle.

$
Letx < {0,1}"and 7 € (0O, %). An LPN oracle Il py for x and 7 returns pairs of the form
u m
(9 0.1 xg) @),
where e « Ber;, and (x, g) denotes the scalar product of vectors x and g.

LPN problem, Search version, informal.

Given an LPN oracle Il pn With parameters m and 7. The (m, n)-LPN problem is finding
the secret vector x from observing N samples from (m, n)-IT pn oracle.

Johansson T., Meier W., Nguyen V. 4 UvaEksllT)v

ctd.

polynomial

® Search version Decision version [KS06].

Johansson T., Meier W., Nguyen V. 5 uLNEJEIiR

ctd.

polynomia

® Search version / Decision version [KS06].

® We can rewrite g+, ..., gn as a matrix G, and the LPN problem becomes finding x
given its noisy product with G.
xG + e

Johansson T., Meier W., Nguyen V. 5 JTNEER

ctd.

polynomial

® Search version Decision version [KS06].

® We can rewrite g1, . . ., gn as a matrix G, and the LPN problem becomes finding x
given its noisy product with G.
xG +e

REINEE

It is closely related to the Syndrome Decoding Problem.

Johansson T., Meier W., Nguyen V. 5 uLNEJEin

Firekite vs LPN

® The error in Firekite is of weight at most k vs. Bernoulli distribution.

Johansson T., Meier W., Nguyen V. 6 uLNl(leIiR

Firekite vs LPN

® The error in Firekite is of weight at most k vs. Bernoulli distribution.
® Less information with Firekite.
® Cyclic M (Ring-LPN variant) vs. uniformly random G.

Security:

Johansson T., Meier W., Nguyen V. 6 uLN%EIin

Firekite vs LPN

® The error in Firekite is of weight at most k vs. Bernoulli distribution.
® Less information with Firekite.
® Cyclic M (Ring-LPN variant) vs. uniformly random G.
Security:
® Reduction to LPN.

Johansson T., Meier W., Nguyen V. 6 uLNmst

Firekite vs LPN

® The error in Firekite is of weight at most k vs. Bernoulli distribution.
® | ess information with Firekite.
® Cyclic M (Ring-LPN variant) vs. uniformly random G.
Security:
® Reduction to LPN.
® Apply cryptanalysis methods to the (corresponding) LPN-instance.
Assumption:

Johansson T., Meier W., Nguyen V. 6 JTNWSR

Firekite vs LPN

® The error in Firekite is of weight at most k vs. Bernoulli distribution.

® | ess information with Firekite.

® Cyclic M (Ring-LPN variant) vs. uniformly random G.
Security:

® Reduction to LPN.

® Apply cryptanalysis methods to the (corresponding) LPN-instance.
Assumption:

® Ring-LPN is secure.

Johansson T., Meier W., Nguyen V. 6 JTNWSR

Firekite vs LPN

® The error in Firekite is of weight at most k vs. Bernoulli distribution.

® | ess information with Firekite.

® Cyclic M (Ring-LPN variant) vs. uniformly random G.
Security:

® Reduction to LPN.

® Apply cryptanalysis methods to the (corresponding) LPN-instance.
Assumption:

® Ring-LPN is secure.

® A Firekite instance is as hard as its (corresponding) LPN-instance.

Johansson T., Meier W., Nguyen V. 6 JTNWSR

Distinguishing Attacks

Key Observations

V- M[d] +e;=4Jd;.

Observation 1

The first d columns M| is fixed.

Johansson T., Meier W., Nguyen V. 7 uLNHERSR

Key Observations

V- M[d] +e;=4Jd;.

Observation 1
The first d columns M| is fixed.

Observation 2

Johansson T., Meier W., Nguyen V. 7 uLNHERSR

Key Observations

V- M[d] +e;=4Jd;.

Observation 1

The first d columns M| is fixed.

Observation 2

e |If Zf=1 v; =0, then Zf=1 gi = Zf=1 e;. Moreover, e, is sparse (k < n).

Johansson T., Meier W., Nguyen V. 7 uLNHERSR

Key Observations

V- M[d] +e;=4Jd;.

Observation 1

The first d columns M| is fixed.

Observation 2

o |f Zf=1 v; =0, then Zf=1 gi= Zf=1 e;. Moreover, e; is sparse (k < n).
® Since m < d, we expect to see low Hamming-weight combinations more frequently

than the random case.

Johansson T., Meier W., Nguyen V. 7 uLNHEmI?V

How to exploit the observations?

We only see this!

\/ M[d] + €

Figure: Applying our ideas with observing the keystream.

Johansson T., Meier W., Nguyen V. 8 uLNl(vlmlT)v

How to exploit the observations?

We only see this!

A\ M[d] + €

Figure: Applying our ideas with observing the keystream.

If we can detect a low-weight sum of g;, and it is statistically implausible to have such a
sum in random case, then it must have come from a collision in v;.

Johansson T., Meier W., Nguyen V. 8 uLNmev

How to efficiently detect low-weight sums?

P e Figure: Match-and-Filter [BM17]

L

A pictorial representation of our algorithm for the 4-sum problem.

Figure: Wagner algorithm [Wag02]

Johansson T., Meier W., Nguyen V.

9

UNIVERSITY

How to efficiently detect low-weight sums?

{(wr, w2, w5, 2a) ¢

f T @ Bag =0}
>

|Li| = 2¢ Ly Lo 1 Ls [Ly]

Eliminate ¢ bits

Lavae L Eliminate ¢ bits

¢
A T

Lypag Ly

Find low weight

Match-and-Filter algorithm for k =4

Figure: Match-and-Filter [BM17]

Ly Lo Ls Ly

A pictorial representation of our algorithm for the 4-sum problem.

Figure: Wagner algorithm [Wag02]
LUND

9 UNIVERSITY

Johansson T., Meier W., Nguyen V.

Our algorithm

We apply essential ideas and arguments from the two above algorithms, with some
flavor from BKW-algorithm to detect low-weight ¢-sums.

Modifications for our algorithm

* Instead of ¢ lists, we use only 1 initial list L©), with an increased size. In particular,
to cancel ¢ bits and maintain the list size, L©) ~ 3 - 2¢.

Johansson T., Meier W., Nguyen V. 10 uLNl(leIiR

Our algorithm

We apply essential ideas and arguments from the two above algorithms, with some
flavor from BKW-algorithm to detect low-weight ¢-sums.

Modifications for our algorithm

* Instead of ¢ lists, we use only 1 initial list L©), with an increased size. In particular,
to cancel ¢ bits and maintain the list size, L©) ~ 3 - 2¢.

® We call COMBINE the routine to find vectors that collide in ¢ bits. Let t = log £, we
need to apply COMBINE t times, resulting in L© — L) ... — [®.

Johansson T., Meier W., Nguyen V. 10 uLNwav

Our algorithm

We apply essential ideas and arguments from the two above algorithms, with some
flavor from BKW-algorithm to detect low-weight ¢-sums.

Modifications for our algorithm

* Instead of ¢ lists, we use only 1 initial list L©), with an increased size. In particular,
to cancel ¢ bits and maintain the list size, L© ~ 3 - 2¢.

® We call COMBINE the routine to find vectors that collide in ¢ bits. Let t = log £, we
need to apply COMBINE t times, resulting in L© — L) ... — [®.

® The parameter c in our algorithms needs to be bigger than in Wagner’s algorithm.
The reason is, we also need the observed g; to be at least error-free modulo 2 in
t - ¢ positions.

Johansson T., Meier W., Nguyen V. 10 uLNwav

Our algorithm, Combine.

- We can use c tuples as indices/keys in a hash table and detect collisions in each
iteration.

(i—1)-c

A vector in L1 | “O‘xl“x”l |

2 buckets u U U U

00

XOR pairwise \ %

A vector in L(® |0“0‘0‘|0| |

i-c

Figure 1: CoMBINE for LG—1

Johansson T., Meier W., Nguyen V. 11 uLN%EIin

Our algorithm, Filter

L® [0[-]0] |

Filter for low weight

Figure: Filter L) with c,,.

Johansson T., Meier W., Nguyen V. 12 uLNlﬂEﬁE

Remaining questions

® Q: How do we set the target weight c,,?

Johansson T., Meier W., Nguyen V. 13 s ND

Remaining questions

® Q: How do we set the target weight c,,?
* A:Heuristically, ¢, ~ ££9. Recall k = wy(e/) and d is the length of each g;.

Johansson T., Meier W., Nguyen V. 13 uLleewR

Remaining questions

® Q: How do we set the target weight ¢, ?
® A: Heuristically, ¢, ~ “Td Recall k = wy(ej) and d is the length of each g;.

® Q: How large is ¢, i.e., algorithmic steps t = log { ?

Johansson T., Meier W., Nguyen V. 13 uLN%va

Remaining questions

® Q: How do we set the target weight ¢, ?
A: Heuristically, ¢, ~ “Td Recall k = wy(ej) and d is the length of each g;.

® Q: How large is ¢, i.e., algorithmic steps t = log { ?

A: { = 4,8 is reasonable (for most Firekite parameters).

Johansson T., Meier W., Nguyen V. 13 uLN%va

Remaining questions

® Q: How do we set the target weight ¢, ?

A: Heuristically, ¢, ~ “Td Recall k = wy(ej) and d is the length of each g;.

® Q: How large is ¢, i.e., algorithmic steps t = log { ?

A: { = 4,8 is reasonable (for most Firekite parameters).

* Q: How many vectors, i.e., L© = 3. 2° do we need?

Johansson T., Meier W., Nguyen V. 13 uLN%H{sR

Remaining questions

® Q: How do we set the target weight ¢, ?

A: Heuristically, ¢, ~ % Recall k = wy(ej) and d is the length of each g;.

® Q: How large is ¢, i.e., algorithmic steps t = log { ?

A: { = 4,8 is reasonable (for most Firekite parameters).

* Q: How many vectors, i.e., L© = 3. 2° do we need?

® A: Assume Py is defined as the probability a low-weight sum is error-free modulo 2
in the first tc bits. If Wagner algorithm requires ¢, we need an overhead a(Ppy), so
C + a(Pnf).

Johansson T., Meier W., Nguyen V. 13 JTNEMR

Analysis

Memory (the exponent c).

Recall:
Vi Mg = g;.

Johansson T., Meier W., Nguyen V. 14

Memory (the exponent c).

Recall:
Vi- Mg = g;.
Parameters: {,t = log{, m,d, c,.

Johansson T., Meier W., Nguyen V. 14 UvaEksllT)v

Memory (the exponent c).

Recall:
Vi - Mg = g;.
Parameters: {,t = log{, m,d, c,.

A collision of ¢ length-m vectors v;, according to Wagner, requires 21+'°gf S0 we need
2 1+|ogl+a(P”f)

Johansson T., Meier W., Nguyen V. 14 uLNwav

Memory (the exponent c).

Recall:

Vi Mig) = gi.
Parameters: ¢,t = log{, m, d, c,. i
A collision of ¢ length-m vectors v;, according to Wagner, requires 27¢? so we need
2#"’“(’%0.
For Pn¢, we can rely on a lower bound. In particular, P,s > the probability that all errors e
are zeros at the first t - ¢ positions.

Johansson T., Meier W., Nguyen V. 14 uLN%bﬁR

Memory (the exponent c).

Recall:
Vi- Mg = g;.
Parameters: {,t = log{, m,d, c,.

m
A collision of ¢ length-m vectors v;, according to Wagner, requires 27¢? so we need
o 7riogr t(Pnr)

For Pn¢, we can rely on a lower bound. In particular, P,s > the probability that all errors e
are zeros at the first t - ¢ positions.

Remark

® The better we ‘estimate’ Py, the smaller a(Pyy) is.
® For { = 8, we consider more complicated error patterns in the first t - ¢ bits.

Johansson T., Meier W., Nguyen V. 14 uLNmev

Some examples of the error colliding patterns in
canceled bits.

Ty

9 []

]] 2 1
(a) 1 double error (b) 2 double errors

Figure: lllustration for the colliding patterns

Johansson T., Meier W., Nguyen V. 15

Summary of how to choose c:

Let N be the number of low-weight sums we ‘expect’ to find by our algorithm. Then

Johansson T., Meier W., Nguyen V. 16 uLNl(vlmlT)v

Summary of how to choose c:

Let N be the number of low-weight sums we ‘expect’ to find by our algorithm. Then
For { = 4, we have

3.2¢
N:(4)'2_m‘3‘2_c'Pnf>1

Johansson T., Meier W., Nguyen V. 16 uLleewR

Summary of how to choose c:

Let N be the number of low-weight sums we ‘expect’ to find by our algorithm. Then
For { = 4, we have

3.2¢
N:(4)-2_"1-3-2_C-Pnf>1

For ¢ = 8, we have

3.2¢
N:(o)-2—m-105-2—4°-Pm>1

Johansson T., Meier W., Nguyen V. 16 uLN%va

Complexity

C=t-(3-2°-(1+d/p)).

On average, we have to do 3 - 2° XOR operations in each iteration of Combine. Each
XOR cost 1 + | d/p], where p is the number of bits that can be XOR-ed in each
operation.

Of course, there are other algorithmic costs but this is the dominating part.

Johansson T., Meier W., Nguyen V. 17 uLNHERMPV

Success Probability

How to ‘interpret’ the low-weight sums that have been found?

The low-weight sums must be easily distinguished from those that can happen by sheer
chances. In other words, it must be statistically improbable for such a low-weight sum to
appear.

55 1))
Nrandom = 3 - 2° - % ~ o-(1-H(gks))(d-terte o o-(1-H(gs))(d-tc)+c.
i=0

Johansson T., Meier W., Nguyen V. 18 uLNHERMPV

Results

Attacks on Firekite with different parameters.

Table: Our distinguishing attack complexity for 80-bit and 128-bit security of Firekite.

Parameters Memory (c) Time(log) Nrandom(log)

m n k Security | 4-sum 8-sum | 4-sum 8-sum 4-sum 8-sum
216 1024 16 82.76 76 62 | 80.17 66.75 | -215.76 -90.23
216 2048 32 82.76 76 62 | 81.17 67.75 | -765.79 -465.74
216 16,384 216 80.68 75 60 | 83.28 68.87 | -9011.62 -6541.71
352 2048 32 129.07 125 101 | 130.16 106.75 | -541.40 -275.94
352 4096 58 128.95 124 99 | 130.17 105.75 | -1739.41 -1150.69
352 16,384 228 128.93 123 99 | 131.26 107.84 | -8510.19 -6023.39

Johansson T., Meier W., Nguyen V.

19 UNIVERSITY

Key Recovery (in prose)

How does ISD algorithm work?

Problem:

Let C be a random binary code generated by a matrix G € F’Z‘X”. Lety = ¢ +e be a noisy
codeword where ¢ € C, and wy(e) = w < minimum distance of C. Recovery, or e.

Johansson T., Meier W., Nguyen V. 20 s ND

How does ISD algorithm work?

Problem:

Let C be a random binary code generated by a matrix G € F’Z‘X”. Lety = ¢ +e be a noisy
codeword where ¢ € C, and wy(e) = w < minimum distance of C. Recovery, or e.

C'=C+y-= <($)>.

Johansson T., Meier W., Nguyen V. 20 s ND

How does ISD algorithm work?

Problem:

Let C be a random binary code generated by a matrix G € F’z‘x”. Lety = ¢ +e be a noisy
codeword where ¢ € C, and wy(e) = w < minimum distance of C. Recovery, or e.

C'=C+y-= <($)>.

Equivalently, we find a codeword of weight w of this new code.

Johansson T., Meier W., Nguyen V. 20 s ND

How does ISD algorithm work?

Problem:

Let C be a random binary code generated by a matrix G € F’z‘x”. Lety = ¢ +e be a noisy
codeword where ¢ € C, and wy(e) = w < minimum distance of C. Recovery, or e.

C'=C+y-= <($)>.

Equivalently, we find a codeword of weight w of this new code.

(G) SR (1 3)

y

Johansson T., Meier W., Nguyen V. 20 s ND

How does ISD algorithm work?

Problem:

Let C be a random binary code generated by a matrix G € F’z‘x”. Lety = ¢ +e be a noisy
codeword where ¢ € C, and wy(e) = w < minimum distance of C. Recovery, or e.

G
C'=C+y= .
y <(y)>
Equivalently, we find a codeword of weight w of this new code.
(?) Gaussor (l J)

Assume the first part is of dimension k, we run through weight p vectors u of length k
and check for wy(ud) = w — p.

Johansson T., Meier W., Nguyen V. 20 uLNl(vlmlT)v

Applying our distinguishing attack.

® First, use our distinguisher to collect N low-weight 8-sums.

Johansson T., Meier W., Nguyen V. 21

Applying our distinguishing attack.

® First, use our distinguisher to collect N low-weight 8-sums.
® For each sum, we get 7 independent vectors = 7N > m.
g1
G=/|---
g7n

Johansson T., Meier W., Nguyen V. 21 uLleewR

Applying our distinguishing attack.

® First, use our distinguisher to collect N low-weight 8-sums.
® For each sum, we get 7 independent vectors = 7N > m.
g1
G=/|---
g7n

® | ooking at each sum, we can remove all ‘direct error contributions’, and we only
keep columns where all low-weight sums are zero (at that corresponding bit).

Johansson T., Meier W., Nguyen V. 21 uLNmst

Applying our distinguishing attack.

® First, use our distinguisher to collect N low-weight 8-sums.
® For each sum, we get 7 independent vectors = 7N > m.
g1
G=/|---
g7n

® | ooking at each sum, we can remove all ‘direct error contributions’, and we only
keep columns where all low-weight sums are zero (at that corresponding bit).

® Whatever left is a much smaller matrix where double errors are still present.

Johansson T., Meier W., Nguyen V. 21 uLNmsR

Applying our distinguishing attack.

® First, use our distinguisher to collect N low-weight 8-sums.
® For each sum, we get 7 independent vectors = 7N > m.
g1
G=/|---
g7n

Looking at each sum, we can remove all ‘direct error contributions’, and we only
keep columns where all low-weight sums are zero (at that corresponding bit).

Whatever left is a much smaller matrix where double errors are still present.
® When recombined, these double errors yield a small weight codeword.

Johansson T., Meier W., Nguyen V. 21 JTNWSR

Applying our distinguishing attack.

® First, use our distinguisher to collect N low-weight 8-sums.
® For each sum, we get 7 independent vectors = 7N > m.
g1
G=/|---
g7n

Looking at each sum, we can remove all ‘direct error contributions’, and we only
keep columns where all low-weight sums are zero (at that corresponding bit).

Whatever left is a much smaller matrix where double errors are still present.
® When recombined, these double errors yield a small weight codeword.

Estimate the double errors, then apply ISD algorithms.

Johansson T., Meier W., Nguyen V. 21 JTNWSR

Conclusions

® Better security measures of Firekite.

Johansson T., Meier W., Nguyen V. 22 uLNlﬂEﬁB

Conclusions

® Better security measures of Firekite.
® | PN-based constructions are interesting (provable security, efficient).

Johansson T., Meier W., Nguyen V. 22 uLN%EIin

Conclusions

® Better security measures of Firekite.
® | PN-based constructions are interesting (provable security, efficient).
® Fixes.

Johansson T., Meier W., Nguyen V. 22 uLN%EIin

Conclusions

Better security measures of Firekite.

LPN-based constructions are interesting (provable security, efficient).
® Fixes.

Further works.

Johansson T., Meier W., Nguyen V. 22 uLN%EIin

References

@ Sonia Bogos, Dario Korolija, Thomas Locher, and Serge Vaudenay.
[BKLV21] Towards efficient Ipn-based symmetric encryption.

Leif Both and Alexander May.
[BM17] The approximate k-list problem.

Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halderman.
[HDWH12] Mining your ps and gs: Detection of widespread weak keys in network devices.
Jonathan Katz and Ji Sun Shin.

[KS06] Parallel and concurrent security of the HB and hb* protocols.

Peter W. Shor.

[Sho99] Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer.

)) & &

@ David A. Wagner.
[Wag02] A generalized birthday problem.

Johansson T., Meier W., Nguyen V. 23 LUND

UNIVERSITY

UNIVERSITY

	The Firekite cipher (Bogos et al.)
	Distinguishing Attacks
	Analysis
	Results
	Key Recovery (in prose)

