

Attacks on the Firekite Cipher

THOMAS JOHANSSON, WILLI MEIER, VU NGUYEN DEPT. OF EIT, LUND UNIVERSITY, FHNW

• Post-quantum cryptography is an active and relevant area.

- Post-quantum cryptography is an active and relevant area.
- Hard problems in post-quantum cryptography such as: code-based, lattice-based, multivariate-based...

- Post-quantum cryptography is an active and relevant area.
- Hard problems in post-quantum cryptography such as: code-based, lattice-based, multivariate-based...
 - Alternatively, learning assumptions such as LPN, LWE.

- Post-quantum cryptography is an active and relevant area.
- Hard problems in post-quantum cryptography such as: code-based, lattice-based, multivariate-based...
 - Alternatively, learning assumptions such as LPN, LWE.
- Learning Parity with noise is appealing in many applications for its simplicity.

Overview of LPN-based constructions

Common drawback:

• Often require fresh randomness (cryptographically secure bits) [Sho99, HDWH12].

Overview of LPN-based constructions

Common drawback:

- Often require fresh randomness (cryptographically secure bits) [Sho99, HDWH12].
- Not suitable for low-weight, restrained devices.

The Firekite cipher (Bogos et al.)

Assume $n \gg m$, and k are integers.

$$\mathbf{v} \cdot \mathbf{M} + \mathbf{e} = \begin{pmatrix} \mathbf{g} \\ \mathbf{v}' \\ \mathbf{c}_e \end{pmatrix}$$

error vector of weight *k*

Assume $n \gg m$, and *k* are integers.

noisy product of length *n*

$$m \quad m \times n \quad n$$

 $\mathbf{v} \cdot \mathbf{M} + \mathbf{e} = \begin{pmatrix} \mathbf{g} \\ \mathbf{v'} \\ \mathbf{c}_{e} \end{pmatrix}$
error vector of weight *k*

Assume $n \gg m$, and *k* are integers.

$$\mathbf{v} \cdot \mathbf{M} + \mathbf{e} = \begin{pmatrix} \mathbf{g} \\ \mathbf{v}' \\ \mathbf{c}_{e} \end{pmatrix} \longrightarrow \operatorname{next} \mathbf{v}$$

Assume $n \gg m$, and k are integers.

Assume $n \gg m$, and k are integers.

Figure: Overview of Firekite's design.

Assume $n \gg m$, and k are integers.

Figure: Overview of Firekite's design.

• Each error position requires $\log n$ bits, hence length of \mathbf{c}_e is $k \cdot \log n$.

Assume $n \gg m$, and k are integers.

Figure: Overview of Firekite's design.

- Each error position requires log n bits, hence length of c_e is k · log n.
- Keystream length is $d = n m k \cdot \log n$.

Assume $n \gg m$, and k are integers.

Figure: Overview of Firekite's design.

- Each error position requires log n bits, hence length of c_e is k · log n.
- Keystream length is $d = n m k \cdot \log n$.
- For efficiency, the authors proposed using a 'cyclic' M.

3

The Learning Parity with Noise Problem

LPN oracle.

Let $\mathbf{x} \leftarrow \{0, 1\}^m$ and $\eta \in (0, \frac{1}{2})$. An LPN *oracle* \prod_{LPN} for \mathbf{x} and η returns pairs of the form

$$\left(\mathbf{g} \stackrel{U}{\leftarrow} \{\mathbf{0},\mathbf{1}\}^m, \langle \mathbf{x},\mathbf{g}
angle \oplus e
ight),$$

where $e \leftarrow \text{Ber}_{\eta}$, and $\langle \mathbf{x}, \mathbf{g} \rangle$ denotes the scalar product of vectors \mathbf{x} and \mathbf{g} .

The Learning Parity with Noise Problem

LPN oracle.

Let $\mathbf{x} \leftarrow \{0, 1\}^m$ and $\eta \in (0, \frac{1}{2})$. An LPN *oracle* \prod_{LPN} for \mathbf{x} and η returns pairs of the form

$$\left(\mathbf{g} \stackrel{U}{\leftarrow} \{\mathbf{0},\mathbf{1}\}^m, \langle \mathbf{x}, \mathbf{g}
angle \oplus e
ight),$$

where $e \leftarrow \text{Ber}_{\eta}$, and $\langle \mathbf{x}, \mathbf{g} \rangle$ denotes the scalar product of vectors \mathbf{x} and \mathbf{g} .

LPN problem, Search version, informal.

Given an LPN oracle Π_{LPN} with parameters *m* and η . The (m, η) -LPN problem is finding the secret vector **x** from observing *N* samples from (m, η) - Π_{LPN} oracle.

• Search version $\overset{\textit{polynomial}}{\sim}$ Decision version [KS06].

- Search version $\overset{\textit{polynomial}}{\sim}$ Decision version [KS06].
- We can rewrite $\mathbf{g}_1, \ldots, \mathbf{g}_N$ as a matrix \mathbf{G} , and the LPN problem becomes finding \mathbf{x} given its noisy product with \mathbf{G} .

 $\mathbf{xG} + \mathbf{e}$

- Search version $\overset{\text{polynomial}}{\sim}$ Decision version [KS06].
- We can rewrite **g**₁,..., **g**_N as a matrix **G**, and the LPN problem becomes finding **x** given its noisy product with **G**.

 $\mathbf{xG} + \mathbf{e}$

Remark:

It is closely related to the Syndrome Decoding Problem.

5

• The error in Firekite is of weight at most *k* vs. Bernoulli distribution.

- The error in Firekite is of weight at most *k* vs. Bernoulli distribution.
- Less information with Firekite.
- Cyclic **M** (Ring-LPN variant) vs. uniformly random **G**.

- The error in Firekite is of weight at most *k* vs. Bernoulli distribution.
- Less information with Firekite.
- Cyclic **M** (Ring-LPN variant) vs. uniformly random **G**.

Security:

Reduction to LPN.

- The error in Firekite is of weight at most *k* vs. Bernoulli distribution.
- Less information with Firekite.
- Cyclic **M** (Ring-LPN variant) vs. uniformly random **G**.

- Reduction to LPN.
- Apply cryptanalysis methods to the (corresponding) LPN-instance. Assumption:

- The error in Firekite is of weight at most *k* vs. Bernoulli distribution.
- Less information with Firekite.
- Cyclic **M** (Ring-LPN variant) vs. uniformly random **G**.

- Reduction to LPN.
- Apply cryptanalysis methods to the (corresponding) LPN-instance. Assumption:
 - Ring-LPN is secure.

- The error in Firekite is of weight at most *k* vs. Bernoulli distribution.
- Less information with Firekite.
- Cyclic **M** (Ring-LPN variant) vs. uniformly random **G**.

- Reduction to LPN.
- Apply cryptanalysis methods to the (corresponding) LPN-instance. Assumption:
 - Ring-LPN is secure.
 - A Firekite instance is as hard as its (corresponding) LPN-instance.

Distinguishing Attacks

 $\mathbf{v}_i \cdot \mathbf{M}_{[d]} + \mathbf{e}_i = \mathbf{g}_i.$

Observation 1

The first *d* columns $\mathbf{M}_{[d]}$ is fixed.

 $\mathbf{v}_i \cdot \mathbf{M}_{[d]} + \mathbf{e}_i = \mathbf{g}_i.$

Observation 1

The first *d* columns $\mathbf{M}_{[d]}$ is fixed.

Observation 2

 $\mathbf{v}_i \cdot \mathbf{M}_{[d]} + \mathbf{e}_i = \mathbf{g}_i.$

Observation 1

The first *d* columns $\mathbf{M}_{[d]}$ is fixed.

Observation 2

• If
$$\sum_{i=1}^{\ell} \mathbf{v}_i = \mathbf{0}$$
, then $\sum_{i=1}^{\ell} \mathbf{g}_i = \sum_{i=1}^{\ell} \mathbf{e}_i$. Moreover, \mathbf{e}_i is sparse ($k \ll n$).

 $\mathbf{v}_i \cdot \mathbf{M}_{[d]} + \mathbf{e}_i = \mathbf{g}_i.$

Observation 1

The first *d* columns $\mathbf{M}_{[d]}$ is fixed.

Observation 2

- If $\sum_{i=1}^{\ell} \mathbf{v}_i = \mathbf{0}$, then $\sum_{i=1}^{\ell} \mathbf{g}_i = \sum_{i=1}^{\ell} \mathbf{e}_i$. Moreover, \mathbf{e}_i is sparse ($k \ll n$).
- Since *m* < *d*, we expect to see low Hamming-weight combinations more frequently than the random case.

How to exploit the observations?

Figure: Applying our ideas with observing the keystream.

How to exploit the observations?

We only see this!
$$\mathbf{v}_i \cdot \mathbf{M}_{[d]} + \mathbf{e}_i = \mathbf{g}_i$$
.

Figure: Applying our ideas with observing the keystream.

Idea:

If we can detect a low-weight sum of \mathbf{g}_i , and it is statistically implausible to have such a sum in random case, then it must have come from a collision in \mathbf{v}_i .

How to efficiently detect low-weight sums?

Figure: Match-and-Filter [BM17]

A pictorial representation of our algorithm for the 4-sum problem.

Figure: Wagner algorithm [Wag02]

9

How to efficiently detect low-weight sums?

A pictorial representation of our algorithm for the 4-sum problem.

Figure: Wagner algorithm [Wag02]

9

We apply essential ideas and arguments from the two above algorithms, with some flavor from BKW-algorithm to detect low-weight ℓ -sums.

Modifications for our algorithm

• Instead of ℓ lists, we use only 1 initial list $L^{(0)}$, with an increased size. In particular, to cancel *c* bits and maintain the list size, $L^{(0)} \approx 3 \cdot 2^{c}$.

We apply essential ideas and arguments from the two above algorithms, with some flavor from BKW-algorithm to detect low-weight ℓ -sums.

Modifications for our algorithm

- Instead of ℓ lists, we use only 1 initial list $L^{(0)}$, with an increased size. In particular, to cancel *c* bits and maintain the list size, $L^{(0)} \approx 3 \cdot 2^{c}$.
- We call COMBINE the routine to find vectors that collide in *c* bits. Let $t = \log \ell$, we need to apply COMBINE *t* times, resulting in $L^{(0)} \rightarrow L^{(1)} \cdots \rightarrow L^{(t)}$.

We apply essential ideas and arguments from the two above algorithms, with some flavor from BKW-algorithm to detect low-weight ℓ -sums.

Modifications for our algorithm

- Instead of ℓ lists, we use only 1 initial list $L^{(0)}$, with an increased size. In particular, to cancel *c* bits and maintain the list size, $L^{(0)} \approx 3 \cdot 2^{c}$.
- We call COMBINE the routine to find vectors that collide in *c* bits. Let $t = \log \ell$, we need to apply COMBINE *t* times, resulting in $L^{(0)} \rightarrow L^{(1)} \cdots \rightarrow L^{(t)}$.
- The parameter *c* in our algorithms needs to be bigger than in Wagner's algorithm. The reason is, we also need the observed *g_i* to be at least *error-free* modulo 2 in *t* · *c* positions.

Our algorithm, Combine.

- We can use *c* tuples as indices/keys in a hash table and detect collisions in each iteration.

Figure 1: COMBINE for $L^{(i-1)}$.

Our algorithm, Filter

Figure: Filter $L^{(t)}$ with c_{ω} .

12

Johansson T., Meier W., Nguyen V.

• Q: How do we set the target weight *c*_ω?

- Q: How do we set the target weight c_{ω} ?
- A: Heuristically, $c_{\omega} \approx \frac{\ell \cdot k \cdot d}{n}$. Recall $k = \omega_H(\mathbf{e}_i)$ and d is the length of each \mathbf{g}_i .

- Q: How do we set the target weight c_{ω} ?
- A: Heuristically, $c_{\omega} \approx \frac{\ell \cdot k \cdot d}{n}$. Recall $k = \omega_H(\mathbf{e}_i)$ and d is the length of each \mathbf{g}_i .
- Q: How large is ℓ , i.e., algorithmic steps $t = \log \ell$?

- Q: How do we set the target weight c_{ω} ?
- A: Heuristically, $c_{\omega} \approx \frac{\ell \cdot k \cdot d}{n}$. Recall $k = \omega_H(\mathbf{e}_i)$ and d is the length of each \mathbf{g}_i .
- Q: How large is ℓ , i.e., algorithmic steps $t = \log \ell$?
- A: $\ell = 4, 8$ is reasonable (for most Firekite parameters).

- Q: How do we set the target weight c_{ω} ?
- A: Heuristically, $c_{\omega} \approx \frac{\ell \cdot k \cdot d}{n}$. Recall $k = \omega_H(\mathbf{e}_i)$ and d is the length of each \mathbf{g}_i .
- Q: How large is ℓ , i.e., algorithmic steps $t = \log \ell$?
- A: $\ell = 4, 8$ is reasonable (for most Firekite parameters).
- Q: How many vectors, i.e., $L^{(0)} = 3 \cdot 2^c$, do we need?

- Q: How do we set the target weight c_{ω} ?
- A: Heuristically, $c_{\omega} \approx \frac{\ell \cdot k \cdot d}{n}$. Recall $k = \omega_H(\mathbf{e}_i)$ and d is the length of each \mathbf{g}_i .
- Q: How large is ℓ , i.e., algorithmic steps $t = \log \ell$?
- A: $\ell = 4, 8$ is reasonable (for most Firekite parameters).
- Q: How many vectors, i.e., $L^{(0)} = 3 \cdot 2^c$, do we need?
- A: Assume P_{nf} is defined as the probability a low-weight sum is error-free modulo 2 in the first *tc* bits. If Wagner algorithm requires *c*, we need an overhead $\alpha(P_{nf})$, so $c + \alpha(P_{nf})$.

Analysis

Recall:

$$\mathbf{v}_{\mathbf{i}} \cdot \mathbf{M}_{[d]} = \mathbf{g}_{i}.$$

Johansson T., Meier W., Nguyen V.

Recall:

$$\mathbf{v}_{\mathbf{i}}\cdot\mathbf{M}_{[d]}=\mathbf{g}_{i}.$$

Parameters: ℓ , $t = \log \ell$, m, d, c_{ω} .

Recall:

$$\mathbf{v}_{\mathbf{i}}\cdot\mathbf{M}_{[d]}=\mathbf{g}_{i}.$$

Parameters: ℓ , $t = \log \ell$, m, d, c_{ω} .

A collision of ℓ length-*m* vectors \mathbf{v}_i , according to Wagner, requires $2^{\frac{m}{1+\log \ell}}$, so we need $2^{\frac{m}{1+\log \ell}+\alpha(P_{nf})}$.

Recall:

$$\mathbf{v}_{\mathbf{i}}\cdot\mathbf{M}_{[d]}=\mathbf{g}_{i}.$$

Parameters: ℓ , $t = \log \ell$, m, d, c_{ω} .

A collision of ℓ length-*m* vectors \mathbf{v}_i , according to Wagner, requires $2^{\frac{m}{1+\log \ell}}$, so we need $2^{\frac{m}{1+\log \ell}+\alpha(P_{nf})}$.

For P_{nf} , we can rely on a lower bound. In particular, $P_{nf} \ge$ the probability that all errors **e** are zeros at the first $t \cdot c$ positions.

Recall:

$$\mathbf{v}_{\mathbf{i}}\cdot\mathbf{M}_{[d]}=\mathbf{g}_{i}.$$

Parameters: ℓ , $t = \log \ell$, m, d, c_{ω} .

A collision of ℓ length-*m* vectors \mathbf{v}_i , according to Wagner, requires $2^{\frac{m}{1+\log \ell}}$, so we need $2^{\frac{m}{1+\log \ell}+\alpha(P_{nf})}$.

For P_{nf} , we can rely on a lower bound. In particular, $P_{nf} \ge$ the probability that all errors **e** are zeros at the first $t \cdot c$ positions.

Remark

- The better we 'estimate' P_{nf} , the smaller $\alpha(P_{nf})$ is.
- For $\ell = 8$, we consider more complicated error patterns in the first $t \cdot c$ bits.

Some examples of the error colliding patterns in canceled bits.

Figure: Illustration for the colliding patterns

15

Johansson T., Meier W., Nguyen V.

Summary of how to choose *c*:

Let N be the number of low-weight sums we 'expect' to find by our algorithm. Then

Summary of how to choose *c*:

Let *N* be the number of low-weight sums we 'expect' to find by our algorithm. Then For $\ell = 4$, we have

$$N = \begin{pmatrix} 3 \cdot 2^c \\ 4 \end{pmatrix} \cdot 2^{-m} \cdot 3 \cdot 2^{-c} \cdot P_{\rm nf} > 1$$

Summary of how to choose *c*:

Let *N* be the number of low-weight sums we 'expect' to find by our algorithm. Then For $\ell = 4$, we have

$$N = \begin{pmatrix} 3 \cdot 2^c \\ 4 \end{pmatrix} \cdot 2^{-m} \cdot 3 \cdot 2^{-c} \cdot P_{\text{nf}} > 1$$

For $\ell = 8$, we have

$$N = \begin{pmatrix} 3 \cdot 2^c \\ 8 \end{pmatrix} \cdot 2^{-m} \cdot 105 \cdot 2^{-4c} \cdot P_{\text{nf}} > 1$$

Complexity

$C = t \cdot (3 \cdot 2^c) \cdot (1 + \lfloor d/p \rfloor).$

On average, we have to do $3 \cdot 2^c$ XOR operations in each iteration of Combine. Each XOR cost $1 + \lfloor d/p \rfloor$, where *p* is the number of bits that can be XOR-ed in each operation.

Note

Of course, there are other algorithmic costs but this is the dominating part.

Success Probability

How to 'interpret' the low-weight sums that have been found?

The low-weight sums must be easily distinguished from those that can happen by sheer chances. In other words, it must be statistically improbable for such a low-weight sum to appear.

$$N_{\text{random}} = 3 \cdot 2^{c} \cdot \frac{\sum_{i=0}^{c_{\omega}} {d-t \cdot c}}{2^{d-t \cdot c}} \approx \sum_{i=0}^{c_{\omega}} 2^{-\left(1 - H\left(\frac{i}{d-t \cdot c}\right)\right)(d-t \cdot c) + c} \approx 2^{-\left(1 - H\left(\frac{c_{\omega}}{d-t \cdot c}\right)\right)(d-t \cdot c) + c}$$

18

Johansson T., Meier W., Nguyen V.

Results

Attacks on Firekite with different parameters.

Table: Our distinguishing attack complexity for 80-bit and 128-bit security of Firekite.

Parameters				Memory (c)		Time(log)		<i>N</i> _{random} (log)	
т	п	k	Security	4-sum	8-sum	4-sum	8-sum	4-sum	8-sum
216	1024	16	82.76	76	62	80.17	66.75	-215.76	-90.23
216	2048	32	82.76	76	62	81.17	67.75	-765.79	-465.74
216	16,384	216	80.68	75	60	83.28	68.87	-9011.62	-6541.71
352	2048	32	129.07	125	101	130.16	106.75	-541.40	-275.94
352	4096	58	128.95	124	99	130.17	105.75	-1739.41	-1150.69
352	16,384	228	128.93	123	99	131.26	107.84	-8510.19	-6023.39

Key Recovery (in prose)

Problem:

Let *C* be a random binary code generated by a matrix $\mathbf{G} \in \mathbb{F}_2^{k \times n}$. Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$ be a noisy codeword where $\mathbf{c} \in C$, and $\omega_H(\mathbf{e}) = \omega < \min$ minimum distance of *C*. Recover \mathbf{y} , or \mathbf{e} .

Problem:

Let *C* be a random binary code generated by a matrix $\mathbf{G} \in \mathbb{F}_2^{k \times n}$. Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$ be a noisy codeword where $\mathbf{c} \in C$, and $\omega_H(\mathbf{e}) = \omega < \min$ minimum distance of *C*. Recover \mathbf{y} , or \mathbf{e} .

$$C' = C + \mathbf{y} = \langle \begin{pmatrix} \mathbf{G} \\ \mathbf{y} \end{pmatrix} \rangle$$

Problem:

Let *C* be a random binary code generated by a matrix $\mathbf{G} \in \mathbb{F}_2^{k \times n}$. Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$ be a noisy codeword where $\mathbf{c} \in C$, and $\omega_H(\mathbf{e}) = \omega < \min$ minimum distance of *C*. Recover \mathbf{y} , or \mathbf{e} .

$$C' = C + \mathbf{y} = \langle \begin{pmatrix} \mathbf{G} \\ \mathbf{y} \end{pmatrix} \rangle.$$

Equivalently, we find a codeword of weight ω of this new code.

Problem:

Let *C* be a random binary code generated by a matrix $\mathbf{G} \in \mathbb{F}_2^{k \times n}$. Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$ be a noisy codeword where $\mathbf{c} \in C$, and $\omega_H(\mathbf{e}) = \omega < \min$ minimum distance of *C*. Recover \mathbf{y} , or \mathbf{e} .

$$C' = C + \mathbf{y} = \langle \begin{pmatrix} \mathbf{G} \\ \mathbf{y} \end{pmatrix} \rangle.$$

Equivalently, we find a codeword of weight ω of this new code.

$$\begin{pmatrix} \mathsf{G} \\ \mathsf{y} \end{pmatrix} \xrightarrow{\operatorname{Gausso} \pi} \begin{pmatrix} \mathsf{I} & \mathsf{J} \end{pmatrix}$$

Problem:

Let *C* be a random binary code generated by a matrix $\mathbf{G} \in \mathbb{F}_2^{k \times n}$. Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$ be a noisy codeword where $\mathbf{c} \in C$, and $\omega_H(\mathbf{e}) = \omega < \min$ minimum distance of *C*. Recover \mathbf{y} , or \mathbf{e} .

$$C' = C + \mathbf{y} = \langle \begin{pmatrix} \mathbf{G} \\ \mathbf{y} \end{pmatrix} \rangle.$$

Equivalently, we find a codeword of weight ω of this new code.

$$\begin{pmatrix} \mathbf{G} \\ \mathbf{y} \end{pmatrix} \xrightarrow{\operatorname{Gausso} \pi} \begin{pmatrix} \mathbf{I} & \mathbf{J} \end{pmatrix}$$

Assume the first part is of dimension *k*, we run through weight *p* vectors **u** of length *k* and check for $\omega_H(\mathbf{uJ}) = \omega - p$.

• First, use our distinguisher to collect *N* low-weight 8-sums.

- First, use our distinguisher to collect *N* low-weight 8-sums.
- For each sum, we get 7 independent vectors \Rightarrow 7*N* > *m*.

$$\mathbf{G} = \begin{pmatrix} \mathbf{g}_1 \\ \cdots \\ \mathbf{g}_{7N} \end{pmatrix}$$

- First, use our distinguisher to collect *N* low-weight 8-sums.
- For each sum, we get 7 independent vectors \Rightarrow 7*N* > *m*.

$$\mathbf{G} = \begin{pmatrix} \mathbf{g}_1 \\ \cdots \\ \mathbf{g}_{7N} \end{pmatrix}$$

• Looking at each sum, we can remove all 'direct error contributions', and we only keep columns where all low-weight sums are zero (at that corresponding bit).

- First, use our distinguisher to collect *N* low-weight 8-sums.
- For each sum, we get 7 independent vectors \Rightarrow 7*N* > *m*.

$$\mathbf{G} = \begin{pmatrix} \mathbf{g}_1 \\ \cdots \\ \mathbf{g}_{7N} \end{pmatrix}$$

- Looking at each sum, we can remove all 'direct error contributions', and we only keep columns where all low-weight sums are zero (at that corresponding bit).
- Whatever left is a much smaller matrix where double errors are still present.

- First, use our distinguisher to collect *N* low-weight 8-sums.
- For each sum, we get 7 independent vectors \Rightarrow 7*N* > *m*.

$$\mathbf{G} = \begin{pmatrix} \mathbf{g}_1 \\ \cdots \\ \mathbf{g}_{7N} \end{pmatrix}$$

- Looking at each sum, we can remove all 'direct error contributions', and we only keep columns where all low-weight sums are zero (at that corresponding bit).
- Whatever left is a much smaller matrix where double errors are still present.
- When recombined, these double errors yield a small weight codeword.

Applying our distinguishing attack.

- First, use our distinguisher to collect *N* low-weight 8-sums.
- For each sum, we get 7 independent vectors \Rightarrow 7*N* > *m*.

$$\mathbf{G} = \begin{pmatrix} \mathbf{g}_1 \\ \cdots \\ \mathbf{g}_{7N} \end{pmatrix}$$

- Looking at each sum, we can remove all 'direct error contributions', and we only keep columns where all low-weight sums are zero (at that corresponding bit).
- Whatever left is a much smaller matrix where double errors are still present.
- When recombined, these double errors yield a small weight codeword.
- Estimate the double errors, then apply ISD algorithms.

Conclusions

• Better security measures of Firekite.

- Better security measures of Firekite.
- LPN-based constructions are interesting (provable security, efficient).

Conclusions

- Better security measures of Firekite.
- LPN-based constructions are interesting (provable security, efficient).
- Fixes.

Conclusions

- Better security measures of Firekite.
- LPN-based constructions are interesting (provable security, efficient).
- Fixes.
- Further works.

References

- Sonia Bogos, Dario Korolija, Thomas Locher, and Serge Vaudenay. [BKLV21] Towards efficient lpn-based symmetric encryption.
- Leif Both and Alexander May.

[BM17] The approximate k-list problem.

Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halderman. [HDWH12] Mining your ps and qs: Detection of widespread weak keys in network devices.

Jonathan Katz and Ji Sun Shin.

[KS06] Parallel and concurrent security of the HB and hb⁺ protocols.

Peter W. Shor.

[Sho99] Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

David A. Wagner.

[Wag02] A generalized birthday problem.

23

Johansson T., Meier W., Nguyen V.

