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Motivation of the Firekite cipher

• Post-quantum cryptography is an active and relevant area.

• Hard problems in post-quantum cryptography such as: code-based, lattice-based,
multivariate-based...

– Alternatively, learning assumptions such as LPN, LWE.

• Learning Parity with noise is appealing in many applications for its simplicity.
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Overview of LPN-based constructions

Common drawback:

• Often require fresh randomness (cryptographically secure bits) [Sho99, HDWH12].

• Not suitable for low-weight, restrained devices.
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The Firekite cipher (Bogos et al.)



Design [BKLV21]
Assume n � m, and k are integers.

v ·M + e =
©­«

g
v′

ce

ª®¬
m m × n n

error vector of weight k

noisy product of length n

next v

concise presentation of next e

output

Figure: Overview of Firekite’s design.

• Each error position requires log n bits, hence length of ce is k · log n.
• Keystream length is d = n −m − k · log n.
• For efficiency, the authors proposed using a ‘cyclic’ M.
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The Learning Parity with Noise Problem

LPN oracle.

Let x
$←− {0, 1}m and � ∈ (0, 1

2 ). An LPN oracle ΠLPN for x and � returns pairs of the form(
g

U←− {0, 1}m , 〈x,g〉 ⊕ e
)
,

where e← Ber�, and 〈x, g〉 denotes the scalar product of vectors x and g.

LPN problem, Search version, informal.

Given an LPN oracle ΠLPN with parameters m and �. The (m, �)-LPN problem is finding
the secret vector x from observing N samples from (m, �)-ΠLPN oracle.
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ctd.

• Search version
polynomial∼ Decision version [KS06].

• We can rewrite g1 , . . . , gN as a matrix G, and the LPN problem becomes finding x
given its noisy product with G.

xG + e

Remark:

It is closely related to the Syndrome Decoding Problem.
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Firekite vs LPN

• The error in Firekite is of weight at most k vs. Bernoulli distribution.

• Less information with Firekite.
• Cyclic M (Ring-LPN variant) vs. uniformly random G.

Security:

• Reduction to LPN.
• Apply cryptanalysis methods to the (corresponding) LPN-instance.

Assumption:

• Ring-LPN is secure.
• A Firekite instance is as hard as its (corresponding) LPN-instance.
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DistinguishingAttacks



Key Observations

vi ·M[d] + ei = gi .

Observation 1

The first d columns M[d] is fixed.

Observation 2

• If
∑ℓ

i=1 vi = 0, then
∑ℓ

i=1 gi =
∑ℓ

i=1 ei . Moreover, ei is sparse (k � n).
• Since m < d , we expect to see low Hamming-weight combinations more frequently

than the random case.
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How to exploit the observations?

Idea:

If we can detect a low-weight sum of gi , and it is statistically implausible to have such a
sum in random case, then it must have come from a collision in vi .
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How to efficiently detect low-weight sums?

Figure: Wagner algorithm [Wag02]

Figure: Match-and-Filter [BM17]
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Our algorithm

We apply essential ideas and arguments from the two above algorithms, with some
flavor from BKW-algorithm to detect low-weight ℓ -sums.

Modifications for our algorithm

• Instead of ℓ lists, we use only 1 initial list L(0), with an increased size. In particular,
to cancel c bits and maintain the list size, L(0) ≈ 3 · 2c .

• We call COMBINE the routine to find vectors that collide in c bits. Let t = log ℓ , we
need to apply COMBINE t times, resulting in L(0) → L(1) · · · → L(t).
• The parameter c in our algorithms needs to be bigger than in Wagner’s algorithm.

The reason is, we also need the observed gi to be at least error-free modulo 2 in
t · c positions.
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Our algorithm, Combine.
- We can use c tuples as indices/keys in a hash table and detect collisions in each
iteration.
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Our algorithm, Filter

t · c

0 · · · 0

0 · · · 0

L(t)

Filter for low weight
| · | ≤ c$

Figure: Filter L(t) with c$.
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Remaining questions

• Q: How do we set the target weight c$?

• A: Heuristically, c$ ≈ ℓ ·k ·d
n . Recall k = $H(ei) and d is the length of each gi .

• Q: How large is ℓ , i.e., algorithmic steps t = log ℓ ?
• A: ℓ = 4, 8 is reasonable (for most Firekite parameters).

• Q: How many vectors, i.e., L(0) = 3 · 2c , do we need?
• A: Assume Pnf is defined as the probability a low-weight sum is error-free modulo 2

in the first tc bits. If Wagner algorithm requires c, we need an overhead 
(Pnf ), so
c + 
(Pnf ).
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Analysis



Memory (the exponent c).

Recall:
vi ·M[d] = gi .

Parameters: ℓ , t = log ℓ ,m, d , c$.
A collision of ℓ length-m vectors vi, according to Wagner, requires 2

m
1+log ℓ , so we need

2
m

1+log ℓ +
(Pnf ).
For Pnf , we can rely on a lower bound. In particular, Pnf ≥ the probability that all errors e
are zeros at the first t · c positions.

Remark

• The better we ‘estimate’ Pnf , the smaller 
(Pnf ) is.

• For ℓ = 8, we consider more complicated error patterns in the first t · c bits.
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Some examples of the error colliding patterns in
canceled bits.

(t · c)
· · · 1 · · ·

· · · 1 · · ·

(a) 1 double error

· · · 1 · · · 1 · · ·

· · · 1 · · · 1 · · ·

· · · 1 · · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

(b) 2 double errors

Figure: Illustration for the colliding patterns
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Summary of how to choose c:

Let N be the number of low-weight sums we ‘expect’ to find by our algorithm. Then

For ℓ = 4, we have

N =

(
3 · 2c

4

)
· 2−m · 3 · 2−c · Pnf > 1

For ℓ = 8, we have

N =

(
3 · 2c

8

)
· 2−m · 105 · 2−4c · Pnf > 1

Johansson T., Meier W., Nguyen V. 16
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Complexity

C = t · (3 · 2c) · (1 + bd/pc).
On average, we have to do 3 · 2c XOR operations in each iteration of Combine. Each
XOR cost 1 + bd/pc, where p is the number of bits that can be XOR-ed in each
operation.

Note

Of course, there are other algorithmic costs but this is the dominating part.

Johansson T., Meier W., Nguyen V. 17



Success Probability

How to ‘interpret’ the low-weight sums that have been found?

The low-weight sums must be easily distinguished from those that can happen by sheer
chances. In other words, it must be statistically improbable for such a low-weight sum to
appear.

Nrandom = 3 · 2c ·
∑c$

i=0

(d−t ·c
i

)
2d−t ·c ≈

c$∑
i=0

2−(1−H( i
d−t ·c ))(d−t ·c)+c ≈ 2−(1−H( c$

d−t ·c ))(d−t ·c)+c .
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Results



Attacks on Firekite with different parameters.

Table: Our distinguishing attack complexity for 80-bit and 128-bit security of Firekite.

Parameters Memory (c) Time(log) Nrandom(log)
m n k Security 4-sum 8-sum 4-sum 8-sum 4-sum 8-sum

216 1024 16 82.76 76 62 80.17 66.75 -215.76 -90.23
216 2048 32 82.76 76 62 81.17 67.75 -765.79 -465.74
216 16,384 216 80.68 75 60 83.28 68.87 -9011.62 -6541.71
352 2048 32 129.07 125 101 130.16 106.75 -541.40 -275.94
352 4096 58 128.95 124 99 130.17 105.75 -1739.41 -1150.69
352 16,384 228 128.93 123 99 131.26 107.84 -8510.19 -6023.39
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KeyRecovery (in prose)



How does ISD algorithm work?
Problem:

Let C be a random binary code generated by a matrix G ∈ Fk×n
2 . Let y = c+ e be a noisy

codeword where c ∈ C, and $H(e) = $ < minimum distance of C. Recover y, or e.

C′ = C + y = 〈
(
G
y

)
〉.

Equivalently, we find a codeword of weight $ of this new code.(
G
y

)
Gauss◦�−−−−−−→

(
I J

)
Assume the first part is of dimension k , we run through weight p vectors u of length k
and check for $H(uJ) = $ − p.
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Applying our distinguishing attack.

• First, use our distinguisher to collect N low-weight 8-sums.

• For each sum, we get 7 independent vectors⇒ 7N > m.

G =
©­«

g1

· · ·
g7N

ª®¬

• Looking at each sum, we can remove all ‘direct error contributions’, and we only
keep columns where all low-weight sums are zero (at that corresponding bit).
• Whatever left is a much smaller matrix where double errors are still present.
• When recombined, these double errors yield a small weight codeword.
• Estimate the double errors, then apply ISD algorithms.
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Conclusions

• Better security measures of Firekite.

• LPN-based constructions are interesting (provable security, efficient).
• Fixes.
• Further works.
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