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Abstract. Rocca is an authenticated encryption with associated data scheme for
beyond 5G/6G systems. It was proposed at FSE 2022/ToSC 2021(2), and the
designers make a security claim of achieving 256-bit security against key-recovery
and distinguishing attacks, and 128-bit security against forgery attacks (the security
claim regarding distinguishing attacks was subsequently weakened in the full version
in ePrint 2022/116). A notable aspect of the claim is the gap between the privacy
and authenticity security. In particular, the security claim regarding key-recovery
attacks allows an attacker to obtain multiple forgeries through the decryption oracle.
In this paper, we first present a full key-recovery attack on Rocca. The data complexity
of our attack is 2128 and the time complexity is about 2128, where the attack makes
use of the encryption and decryption oracles, and the success probability is almost 1.
The attack recovers the entire 256-bit key in a single-key and nonce-respecting setting,
breaking the 256-bit security claim against key-recovery attacks. We then extend
the attack to various security models and discuss several countermeasures to see the
feasibility of the security claim. Finally, we consider a theoretical question of whether
achieving the security claim of Rocca is possible in the provable security paradigm.
We present both negative and positive results to the question.
Keywords: AEAD · Rocca · Differential cryptanalysis · Releasing unverified
plaintexts · Decryption oracle · IND-CCA

1 Introduction
Background. An authenticated encryption with associated data (AEAD) scheme is a
symmetric key primitive to authenticate associated data (AD), and authenticate and
encrypt messages. Various AEAD schemes have been proposed, and we focus on one
of them called Rocca [SLN+21, SLN+22] that was proposed at FSE 2022/ToSC 2021(2).
Rocca is an AES-based design that follows the design approach of AEGIS [WP13], Tiaoxin-
346 [Nik14], and that of Jean and Nikolić [JN16]. In these designs, a round function is
designed based on one AES round (aesenc) and a 128-bit XOR operation to fully take
advantage of the AES-NI and SIMD (single instruction, multiple data) instructions.

Rocca was designed with the goal to meet the performance and security requirements
in beyond 5G/6G systems. Concretely, it was designed to achieve 100 Gbps encryp-
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tion/decryption speed, 256-bit security against key-recovery attacks, and 128-bit security
against forgery attacks. Indeed, [SLN+21] reports that Rocca achieves the speed of 138.22
Gbps on an Intel Ice-lake CPU, and the result shows that Rocca outperforms AEGIS and
Tiaoxin-346, and other relevant schemes AES-256-GCM [MV04], ChaCha20-Poly1305 [NL05],
and SNOW-V-GCM [EJMY19].

As for the security, the designers make the following claim in [SLN+21]:

Claim 1 ([SLN+21]). Rocca provides 256-bit security against key-recovery and distinguish-
ing attacks and 128-bit security against forgery attacks in the nonce-respecting setting.
We do not claim its security in the related-key and known-key settings.

We note that Rocca is a nonce-based AEAD scheme, meaning that its security relies
on the uniqueness of the nonce, and we also note that the tag length of Rocca is 128 bits.

A notable aspect of Claim 1 is the gap between the privacy security and the authenticity
security. In particular, the security claim regarding key-recovery attacks allows an attacker
to obtain multiple forgeries through the decryption oracle. These observations bring
us a natural question of feasibility and infeasibility of achieving the claim as we detail
below. We remark that the security claim was weakened in [SLN+22] after the publication
of [SLN+21]. Specifically, in [SLN+22], the indistinguishability security claim is weakened
to 128-bit security, and various limitations on the input lengths are added1. To quote:

Claim 2 ([SLN+22]). Rocca provides 256-bit security against key-recovery and 128-bit
security against distinguishing and forgery attacks in the nonce-respecting setting. We do
not claim its security in the related-key and known-key settings.

The message length for a fixed key is limited to at most 2128 and we also limit the
number of different messages that are produced for a fixed key to be at most 2128. The
length of associated data of a fixed key is up to 264.

In this paper, we present our security analysis of Rocca. We also present a theoretical
analysis of the security claim focusing on Claim 1.

Key-Recovery Attacks on Rocca. We first present a key-recovery attack on Rocca. Our
attack makes one encryption query and 2128 decryption queries, and recovers the entire
256-bit key with probability almost 1, where the time complexity is about 2128. This
attack is in a single-key setting and follows the nonce-respecting scenario, breaking the
256-bit security claim against key-recovery attacks made in both Claims 1 and 2.

As mentioned in the background, in Claims 1 and 2, 256-bit security regarding key-
recovery attacks is claimed. However, the tag length is only 128 bits. These claims cannot
invalidate any key-recovery attack exploiting multiple forgeries through a decryption oracle.
It can be interpreted as, at the cost of 2128 decryption queries, an attacker is in the
releasing unverified plaintext (RUP) setting [ABL+14], in which case the attacker has an
oracle that returns a message of any ciphertext without verifying the correctness, and is
free to repeat nonces.

In [SLN+21], the designers already observed the feasibility of a state-recovery attack
under a nonce-misuse setting, however, the detailed attack procedure is not presented. In
particular, it is interesting to see how many nonce-repeated plaintext-ciphertext pairs are
required for the state-recovery attack. We show a detailed attack procedure exploiting
the property of the AES S-box and recovering the entire 1024-bit state from only one
nonce-repeated input-output pair. Moreover, we show a meet-in-the-middle technique that
reduces the attack time complexity to practical. As a result, the time complexity is about
220, and the success probability is sufficiently high. Note that in Rocca, the state-recovery
attack immediately leads to the key-recovery attack. Since the attack complexity is

1According to [SLN+22], the security claim was weakened for Grover’s algorithm in the quantum
setting.



A. Hosoyamada, A. Inoue, R. Ito, T. Iwata, K. Mimematsu, F. Sibleyras, Y. Todo 125

practical (under the nonce-misuse/RUP setting), we implemented our key-recovery attack
and verified the correctness2.

Our attack is a chosen-ciphertext attack (CCA), and it is one of the critical attack
scenarios for AEAD schemes as discussed, e.g., in [Mèg19, Kha22]. If the secret key of the
AEAD is efficiently recovered under the RUP scenario as in Rocca, it is unlikely to enhance
the security level beyond the tag length. Such an AEAD scheme is extremely vulnerable
when the tag is truncated. For example, our attack implies that if the tag length of Rocca
is reduced to 32 bits, it only ensures 32-bit security against all kinds of attacks. It is
instructive to consider the impact of CCAs to understand the risk of truncating the tag.

We next discuss extensions of the above attack to various other security models. In
the above attack, the attacker has the encryption and decryption oracles. We point out
that limiting the number of decryption queries still gives a key-recovery attack that is
faster than the exhaustive key search. We also consider the case where the attacker has
the decryption oracle only, and the case where the nonce-respecting condition is applied to
the decryption oracle as well. The latter case is highly impractical, while a key-recovery
attack is still possible for both cases.

Then, we consider several approaches of countermeasures. This includes increasing
the number of rounds in the initialization and/or finalization, increasing the nonce length,
and increasing the tag length, and we conclude that none of them works. The most
promising idea (with negligible impact on the cost) to reduce the impact of our attack is
to use the secret key after the initialization and before the finalization as is done, e.g., in
ASCON [DEMS21].

Theoretical Analysis of the Security Claim. We next turn our attention to a theoretical
analysis of Claim 1 of Rocca. Specifically, our attention is on the gap in the bit security
between the distinguishing and forgery attacks. We present theoretical analyses that are
valid not only for Rocca but also for any AEAD with different bit security for distinguishing
and forgery attacks.

We observe that our key-recovery attack above also invalidates the 256-bit security
claim against distinguishing attacks in Claim 1, depending on the interpretation of the
security model3. As mentioned, Rocca is a nonce-based AEAD scheme and its security
relies on the uniqueness of the nonce. However, since the tag length of Rocca is 128 bits,
it is always possible to obtain a nonce-repeated input-output pair after 2128 decryption
queries, and whether the attacker has the decryption oracle (in a distinguishing attack)
depends on the security model considered. It is often the case that the security against
distinguishing attacks is modelled as the indistinguishability against chosen-plaintext
attacks (IND-CPA), and the security against forgery attacks is modelled as the integrity
of ciphertexts (INT-CTXT), as these two notions imply the indistinguishability against
CCAs (IND-CCA) and also imply the unified AEAD security notion, which are regarded
as the right security notions for AEAD schemes to achieve [BN08, NRS14, RS06, NRS13].
Indeed, a significant number of AEAD schemes with a proof of security aim at proving the
IND-CPA security and INT-CTXT security. See, e.g., [Rog04a, KR11, IOM12].

Now the entire security as AEAD in the IND-CCA notion or in the unified AEAD notion
is given as the lower bound of the two notions, i.e., if an AEAD scheme has k1-bit IND-CPA
security and k2-bit INT-CTXT security, then it ensures min{k1, k2}-bit IND-CCA security
and min{k1, k2}-bit AEAD security (in the unified notion). See [Mèg19, Kha22] for a
related discussion. In many cases, the security suggested by the IND-CPA bound and

2The source code of our attack is available at the following URL: https://github.com/Sibleyras/
KeyRecoveryNonceMisusedRocca

3This does not break the 128-bit security claim against distinguishing attacks in Claim 2. The claim
was weakened for Grover’s algorithm in the quantum setting, which is irrelevant to the analysis of this
paper and we focus on Claim 1.

https://github.com/Sibleyras/KeyRecoveryNonceMisusedRocca
https://github.com/Sibleyras/KeyRecoveryNonceMisusedRocca
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INT-CTXT bound are comparable, and this approach does not impose visible impact on
the security of the AEAD scheme as a whole. However, this is not the case in Claim 1.

Claim 1 can be interpreted at least in two ways. One is to achieve 256-bit IND-CPA
security and 128-bit INT-CTXT security. This is motivated by the approach taken by
many AEAD schemes, where the difference is that Rocca has a gap between the two, and if
we follow the discussion above, it ensures only 128-bit IND-CCA security. As the limitation
of having a stronger IND-CPA security claim, this does not cause an issue if real world
attackers are isolated from a decryption oracle, in which case users can benefit from the
strong IND-CPA security bound. However, in this case, it is not clear whether using an
AEAD scheme is needed in the first place, as the functionality of authenticity is redundant
if the adversary does not have the decryption oracle. In contrast to this, in many use cases
of AEAD schemes, real world attackers do have access to the decryption oracle and users
expect that the security is maintained in this situation, which is one of the primal reasons
to use an AEAD scheme.

In order to capture this, another way to interpret Claim 1 is to achieve 256-bit IND-CCA
security and 128-bit INT-CTXT security, and the question we ask is the feasibility and
infeasibility of achieving this type of security, together with the 256-bit security against
key-recovery attacks, in the provable security paradigm, where we consider schemes with
128-bit tags as in Rocca.

Feasibility and Infeasibility of the Security Claim. In order to give the answer to the
question, we start by pointing out that achieving 256-bit IND-CPA security and 128-bit
INT-CTXT security is possible with known approaches. Concretely, we point out that
a variant of GCM [MV04], OCB [KR11], OPP [GJMN16], and duplex sponge [BDPA11]
can achieve the security. However, as stated above, this does not necessarily imply that
256-bit privacy is guaranteed in an environment where attackers have a decryption oracle.

We next show that a class of AEAD schemes called an online AEAD scheme [BBKN12]
cannot achieve 256-bit IND-CCA security, by presenting a distinguishing attack with
2128 query complexity. In an online AEAD scheme, the i-th output block depends only
on the first i blocks of input, and this class includes all the schemes stated above and
Rocca. We remark that an online AEAD scheme here is different from those studied
in [FFL12, HRRV15] in that the goal is to have the best possible security under nonce
repeating scenario.

This result rules out efficient solutions, and we present our feasibility result to answer
the question above with an offline construction. We show that the Encode-then-Encipher
approach [BR00] with an appropriate assumption on the interface can simultaneously
achieve 256-bit IND-CCA security and 128-bit INT-CTXT security. The efficiency is limited,
while this result does show that achieving Claim 1 in a provable security paradigm is
feasible. We remark that works on AEAD schemes with variable stretches [RVV16, GRV21]
consider a problem of varying the tag length during the lifetime of the key, which is a
different problem from the focus of this paper.

Organization. In Sect. 2, we review the specification of Rocca. In Sect. 3, we present
our key-recovery attack and discuss extensions of the attack to several security models. In
Sect. 4, we consider countermeasures to mitigate the impact of our attack. In Sect. 5, we
present our theoretical treatment of achieving Claim 1. We conclude the paper in Sect. 6.

2 Specification of Rocca
Rocca is an authenticated encryption with associated data (AEAD) scheme. Rocca has a
128× 8 = 1024-bit internal state, and the state is updated by the round update function
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Figure 1: The update function of Rocca.

R while absorbing associated data and a message, and squeezing output to encrypt the
message.

2.1 Notation

We use the following notations in the paper.

• S: The state of Rocca, which is composed of 8 blocks, i.e., S = (S[0], S[1], . . . , S[7]),
where for 0 ≤ i ≤ 7, S[i] is a 128-bit string, and S[0] is the first block. When we
focus on the state at time t, we use St = (St[0], St[1], . . . , St[7]).

• Z0: A 128-bit constant block defined as Z0 = 428a2f98d728ae227137449123ef65cd
(in hex).

• Z1: A 128-bit constant block defined as Z1 = b5c0fbcfec4d3b2fe9b5dba58189dbbc
(in hex).

• A(X): The AES round function without AddRoundKey, as defined below:

A(X) = MixColumns ◦ ShiftRows ◦ SubBytes(X) ,

where MixColumns, ShiftRows and SubBytes are the same operations as defined in
AES.

• R(St, X0, X1): The round function used to update the state St.

For a bit string X, |X| denotes the the length of X in bits. We write 0l for a zero string
of length l bits. For bit strings X and Y , X ∥ Y denotes their concatenation.
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2.2 The Round Update Function
The input of the round function R(St, X0, X1) of Rocca consists of the state St and two
blocks (X0, X1). The output St+1 ← R(St, X0, X1) is computed as follows:

St+1[0] = St[7]⊕X0 ,

St+1[1] = A(St[0])⊕ St[7] ,

St+1[2] = St[1]⊕ St[6] ,

St+1[3] = A(St[2])⊕ St[1] ,

St+1[4] = St[3]⊕X1 ,

St+1[5] = A(St[4])⊕ St[3] ,

St+1[6] = A(St[5])⊕ St[4] ,

St+1[7] = St[0]⊕ St[6] .

Figure 1 shows the update function, where X0 = M0
t and X1 = M1

t .

2.3 The Mode of Operation of Rocca
The processing of Rocca consists of four phases: initialization, processing associated data,
encryption, and finalization. Rocca accepts a 256-bit key K0 ∥K1 ∈ F128

2 × F128
2 , a 128-bit

nonce N , associated data AD, and a message M as input. The output is the corresponding
ciphertext C and a 128-bit tag T . For a string X of any bit length, define X = X ∥ 0l,
where l is the minimal non-negative integer such that |X| is a multiple of 256. In addition,
for a string X of |X| being a multiple of 256, we write X as X = X0 ∥X1 ∥ . . . ∥X |X|

256 −1
with |Xi| = 256. Further, Xi is written as Xi = X0

i ∥X1
i with |X0

i | = |X1
i | = 128.

Initialization. A 128-bit nonce N and 256-bit key K0 ∥K1 are loaded into the state S in
the following way:

(S[0], . . . , S[7]) = (K1, N, Z0, Z1, N ⊕K1, 0, K0, 0) .

Then, 20 iterations of the round update function R(S, Z0, Z1) is applied to the state.

Processing the Associated Data. Associated data AD is padded to AD and the state is
updated as follows:

St+1 = R(St, AD
0
t , AD

1
t )

until t = |AD|
256 . Note that this phase is skipped if AD is empty.

Processing Message. On encryption, we process a message as follows: A message M is
first padded to M . Then, M is absorbed with the round function, and the corresponding
ciphertext C is generated. If the length of the last block of M is b bits for some 0 < b < 256,
the last block of C is truncated to the first b bits. A detailed procedure is shown as follows:

C0
t = A(St[1])⊕ St[5]⊕M

0
t ,

C1
t = A(St[0]⊕ St[4])⊕ St[2]⊕M

1
t ,

St+1 = R(St, M
0
t , M

1
t ) .

Note that this phase is skipped if M is empty.
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Processing Ciphertext. On decryption, we process a ciphertext as follows: A ciphertext
C is first padded to C. Then, C is absorbed with the round function, and the corresponding
message M is generated. If the length of the last block of C is b bits for some 0 < b < 256,
the last block of M is truncated to the first b bits. A detailed procedure is shown as
follows:

M0
t = A(St[1])⊕ St[5]⊕ C

0
t ,

M1
t = A(St[0]⊕ St[4])⊕ St[2]⊕ C

1
t ,

St+1 = R(St, M
0
t , M

1
t ) .

Note that this phase is skipped if C is empty.

Finalization. After processing the message/ciphertext, the state S passes through 20
iterations of the round function R(S, |AD|, |M |) and then the tag is computed in the
following way:

T =
7∑

i=0
S[i] .

On decryption, the computed tag is compared with the tag given as input. Figure 2 shows
the encryption procedure of Rocca.

3 Key-Recovery Attacks on Rocca
3.1 Attack Concept
We first review the security claims of Rocca from Claims 1 and 2. Rocca outputs a
128-bit tag and claims 128-bit security against forgery attacks and 256-bit security against
key-recovery attacks. Rocca is a nonce-based AEAD scheme. Namely, attackers cannot
ask for different messages with the same nonce to the encryption oracle.

These security claims are sound at first glance. However, when a decryption oracle is
available to an attacker, the decryption oracle returns a valid plaintext-ciphertext pair
when the 128-bit tag is consistent. Therefore, “nonce-repeated” pairs can be collected even
if the attacker follows the nonce-respecting scenario with respect to the encryption oracle.
This observation leads to the following attack procedure.
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1. The attacker makes an encryption query (N, M) to obtain (C, T ), where N is any
nonce and M is any message whose length is properly chosen (specifically, at least
eight blocks for our key-recovery attacks).

2. The attacker injects a proper difference ∆ to the ciphertext and makes a decryption
query (N, C⊕∆, T ′) while trying out qd possible values of T ′. The procedure returns
a “nonce-repeated” plaintext (N, M ′) with a probability of qd

2128 .

3. The attacker recovers the internal state by exploiting the collected “nonce-repeated”
pair. The attacker recovers the secret key from the recovered internal state by
applying the inverse of the round update function.

The procedure above shows that attackers can collect nonce-repeated pairs even in the
nonce-respecting scenario. In [SLN+21], the designers noted that the state-recovery attack
seems trivial if the nonce is misused. That is, when nonce-repeated pairs are given, the
state-recovery attack would be possible.

It remains to determine the number of “nonce-repeated” pairs needed to recover the
state. In the concrete attack against Rocca (shown in the following subsection), we show
the attack procedure to recover the internal state by using only one “nonce-repeated” pair
with a practical time complexity. We combine the state-recovery attack using a “nonce-
repeated” pair with the attack exploiting the decryption oracle. With a sufficiently large
number of decryption queries, qd, we obtain a key-recovery attack with data complexity qd

that recovers the 256-bit secret key with a probability of qd

2128 under the nonce-respecting
scenario. When qd = 2128, it recovers the 256-bit secret key with a probability of 1 and a
time complexity of about 2128.

Although each attack is not surprising, the combined attack breaks the claimed security.
In practice, there is a demand to truncate the tag length on a real security system. Users
may expect that the tag truncation does not affect the claimed security except for the
security against forgery attacks. However, our attack implies that, in Rocca, the tag
truncation directly degrades all the security claims, e.g., Rocca with a 32-bit tag ensures
only 32-bit security.

3.2 Key-Recovery Attack using A Nonce-Repeated Pair
As noted by the designers in [SLN+21], the state-recovery attack would be trivial when a
nonce is misused. However, it is still challenging if we can recover the secret key when
only one nonce-repeated pair is available. We tackle this problem, and surprisingly, we
show only one nonce-repeated pair is enough to recover the whole 1024-bit internal state
with the practical time complexity, i.e., about 220. Note that the state recovery of Rocca
directly leads to the secret key recovery.

We describe our attack under the releasing unverified plaintext (RUP) setting because
of a straightforward conversion to the attack exploiting the decryption oracle in the nonce-
respecting scenario. Note that the same attack works when the nonce is misused in the
encryption oracle.

3.2.1 State-Recovery Attack

We first introduce a well-known property regarding input-output differences through the
AES S-box, which is another view of Observation 1 in [BDD+12].

Lemma 1. Let x be an unknown random input of the AES S-box. Given the knowledge of a
non-zero input difference ∆in, there are 128 distinct pairs of input differences, (x, x⊕∆in).
We split these pairs into subsets such that any pair in the same subset implies the same
S(x)⊕ S(x⊕∆in) = ∆out. Then, independently of ∆in, we have 63 subsets: one subset
contains four pairs, and 62 subsets contain two pairs. Thus, the observed output difference
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∆out implies two candidates of x with a probability of 124/128 = 31/32 and four candidates
with a probability of 1/32.

Given an input-output difference of the AES S-box, we can reduce the number of
candidates of corresponding input-output values to two in many cases. With a probability
of 1/32, the number of candidates is four. They correspond to every entry of the differential
distribution table of the AES S-box.

We next show a concrete attack procedure to recover the internal state. Figure 3
shows the differential transition on the decryption process when non-zero byte differences
are injected to 16 bytes of C1

0 , where SB, SR, and MC denote SubBytes, ShiftRows,
and MixColumns, respectively. We call this a proper difference. The message needs to
contain at least eight blocks to mount our state-recovery attack. White-colored bytes
are constant, yellow-colored bytes have known differences, and gray-colored bytes have
unknown differences. The green-colored number shows the order of the 128-bit state
whose candidates are narrowed down following the step number. Moreover, for the sake
of simplicity of the attack procedure, we assume the case that each yellow-colored byte
has a non-zero difference. With a low probability, a few yellow-colored bytes do not have
differences due to a collision. Then, a complicated procedure is required, and we discuss
such a case later.

Step 1. We focus on the round function labeled with A. The input difference is equal to
∆C1

0 . The output difference is equal to ∆M1
1 . Due to Lemma 1, the number of candidates

of the input, S1[4] ⊕ S1[0], is reduced to 216+i1 with a probability of
(16

i1

)
× (1/32)i1 ×

(31/32)16−i1 . These probabilities are about 0.6, 0.31, 0.075, and 0.011 for i1 = 0, i1 = 1,
i1 = 2, and i1 = 3, respectively. Thus, the probability that the number of candidates is
narrowed down to 216 is the highest, and the probability is higher than 99% for i1 ≤ 3.
Note that S1[2] is computed as A(S1[4]⊕ S1[0])⊕ (M1

1 ⊕ C1
1 ).

Step 2. We focus on the round function labeled with B. The input difference is equal to
∆C1

0 . The output difference is equal to ∆M0
2 . Due to Lemma 1 and similarly to Step 1,

the number of candidates of the input, S1[4], is reduced to 216+i2 with a high probability
for small i2. In Step 1, each byte of S1[4]⊕ S1[0] has two candidates and let a and a⊕ δ
be the candidates. In Step 2, each byte of S1[4] also has two candidates and let b and b⊕ δ
be the candidates. Remark that the common difference δ appears in Step 1 and Step 2.
Thus, each byte of S1[0] has two candidate, a⊕ b or a⊕ b⊕ δ. Therefore, the number of
candidates of S1[0] is reduced to 216+i1+i2 .

Step 3. We focus on the round function labeled with C. Similarly to Step 1, the number
of candidates of the input, S2[4] ⊕ S2[0], is reduced to 216+i3 for small i3, and S2[2] is
computed.

Step 4. We focus on the round function labeled with D. Similarly to Step 2, the number of
candidates of the input, S2[4], is reduced to 216+i4 for small i4. The number of candidates
of S2[0] is also reduced to 216+i3+i4 .

Step 5. On each guess, we recover the following state blocks:

• S1[3] = S2[4]⊕M1
1

• S2[5] = A(S1[4])⊕ S1[3]

• S2[1] = A−1(M0
2 ⊕ C0

2 ⊕ S2[5])

• S1[7] = A(S1[0])⊕ S2[1]
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Figure 3: State recovery using one “nonce-repeated” pair.
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Then, we check if
M0

1 = S1[7]⊕ S2[0] (1)
holds. The total number of candidates is 216+i4 × 216+i2 × 216+i1+i2 × 216+i3+i4 =
264+i1+2i2+i3+2i4 . Note that i1 + 2i2 + i3 + 2i4 is small and Eq.(1) holds with a probability
of 2−128. Therefore, we can identify the correct one from the 264+i1+2i2+i3+2i4 candidates4.

Step 6. We focus on the round function labeled with E. The number of candidates of
the input, S3[4]⊕ S3[0], is reduced to 216+i6 for small i6, and S3[2] is computed.

Step 7. On each guess, we recover the following state blocks:
• S2[6] = S2[1]⊕ S3[2]

• S1[5] = A−1(S1[4]⊕ S2[6])

• S1[1] = A−1(M0
1 ⊕ C0

1 ⊕ S1[5])

• S1[6] = S2[2]⊕ S1[1]
Then, the number of candidates of the whole state of S1 is 216+i6 , and the unique one is
easily recovered by observing recovered plaintext blocks or the tag. Once the whole state
is recovered, we immediately recover the secret key.

3.2.2 Reducing Complexity Using Meet-in-the-Middle Technique

The attack described in Sect. 3.2.1 requires only one “nonce-repeated” pair and at least 264

time complexity. Since the required complexity is significantly lower than 2256, the attack
already breaks the claimed security by combining the attack exploiting the decryption
oracle. However, it is not a practical attack.

The dominant step is Step 5. We can reduce the attack complexity significantly to
be practical thanks to the meet-in-the-middle technique. For the sake of simplicity, we
describe the case where i1 = i2 = i3 = i4 = 0. The complexity is slightly larger but never
significantly larger when they are not zero. We discuss this case in detail in Sect. 3.2.4.

Figure 4 shows the meet-in-the-middle relation, where red line and blue line can be
computed independently. Two lines collide in each column of S2[5]. In the red line, S2[5]
is computed as

S2[5] = A(A(S1[0])⊕M0
1 ⊕ S2[0])⊕ C0

2 ⊕M0
2 .

When each column of S2[5] is computed, the whole state of S1[0] is involved but only one
diagonal of S2[0] is involved. Therefore, there are 216× 24 = 220 candidates of each column
of S2[5]. On the other hand, in the blue line, S2[5] is computed as

S2[5] = A(S1[4])⊕ S2[4]⊕M1
1 .

When each column of S2[5] is computed, one diagonal of S1[4] and one column of S2[4] are
involved. Therefore, there are 24 × 24 = 28 candidates of each column of S2[5]. On the
meet-in-the-middle process, there are 220 × 28 = 228 candidates, and they are filtered by a
32-bit collision that happens with a probability of 2−32 at random. Therefore, by changing
target columns, we recover the unique solution from 264 candidates with the complexity of
220 only.

4In practice, about 10% time we get a few additional solutions that only slightly differ from the correct
one. Specifically, let S̃2[1] and S̃1[4] be incorrect guesses that only differ from the real value on a single
byte at the same position. This always exists as each input byte of C and B are guessed independently.
Therefore S(S2[1]) ⊕ S(S̃2[1]) ⊕ S(S1[4]) ⊕ S(S̃1[4]) = 0 is actually an 8-bit condition that passes with
probability 1/256. Hence with about (16 + i3)/256 probability there are at least 1 byte that pass the
condition and we have multiple solutions. It is unlikely that we have many solutions. Thus, we go to
Step 6 for each guess and get the unique one eventually.
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Figure 4: Meet-in-the-middle technique.

3.2.3 Case of Collisions in Some Bytes with Known Difference

The procedure above assumes the case that all yellow-colored bytes have a non-zero
difference. Recall Lemma 1. If the corresponding byte difference is zero by chance, we
cannot narrow down the number of candidates.

See Figure 3. Lemma 1 is applied to five AES round functions labeled with A, B, C,
D, and E. Input differences in AES round functions labeled with A and B coincide with
∆C1

0 , which is chosen by an attacker. Therefore, we can avoid collisions happening here
by injecting a proper difference. Unfortunately, input differences in AES round functions
labeled with C, D, and E are uncontrollable. Since C and D take the same input difference,
the probability that we do not observe any collision is (255/256)32 ≈ 88.2%.

We now discuss the case that there are some colliding bytes by chance. Then, 28

candidates remain in the corresponding bytes instead of 2 or 4 candidates.
We recall the meet-in-the-middle procedure, where 16 bytes of S1[0] and 4 bytes of

S2[0] are used in the red line, and 4 bytes of S1[4] and 4 bytes of S2[4] are used in the
blue line. Note that all bytes in S1[0] and S1[4] are narrowed down thanks to the proper
choice of ∆C1

0 . We can choose the order of target colliding columns in S2[5] such that
the increase of the time complexity is as low as possible. Namely, assuming that the first
byte of S2[0] has 28 candidates and the others have at most 4 candidates, we first target a
non-first column in S2[5], determine S1[0] first, and then target the first column. Then,
we can save the increase of the attack complexity.

We observe some colliding bytes in E too. When there are at most x colliding bytes
out of 16 bytes, the probability is

∑x
i=0

(16
i

)
(1/256)i(255/256)16−i, and the probability

is almost 1 when x ≤ 2. Even if we have 2 such bytes, the complexity of Step 6 is
216+i6−2+16 = 230+i6 , which is still practical.

Note that this unfortunate case only happens in the RUP setting. On the nonce-misuse
setting, we can avoid it by choosing message differences such that yellow-colored bytes
have non-zero differences.
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Table 1: Relationship between the time complexity and success probability for the proposed
attack, where “time” denotes the number of candidates in our state-recovery attack. This
result was obtained by conducting experiments with 220 trials.

Time 220 221 222 223 224 225 226 227 228 229 230 231

Success prob. 0.565 0.854 0.924 0.968 0.989 0.996 0.997 0.997 0.997 0.998 0.999 0.999

3.2.4 Experimental Verification

We conducted experiments to verify the validity of the proposed attack. The following
is our experimental environment: a Linux machine with 28-core Intel(R) Xeon(R) Gold
6258R CPU (2.70 GHz), 256.0 GB of main memory, a gcc 9.4.0 compiler, and the C
programming language. We used the Mersenne Twister5, which is a pseudorandom number
generator proposed by Matsumoto and Nishimura [MN98], to generate the secret keys,
nonces, associated data, and messages used in all our experiments, and thus did not reuse
them in any of the experiments. Our experimental verification procedure is as follows:

Step 1. We generate a secret key K (= K0 ∥K1), a nonce N , associated data AD, and a
message M at random, and then simulate the encryption oracle to get the ciphertext
C from a tuple (K, N, AD, M).

Step 2. We inject a proper difference ∆ to the ciphertext C, and then simulate the
decryption oracle to get the message M ′ from a tuple (K, N, AD, C ⊕∆). We used
∆C1

0 = 0x01010101010101010101010101010101 in our experiments. Note that we
use the decryption oracle that releases unverified plaintexts to make the experiment
practical.

Step 3. We use the “nonce-repeated” pair (M, C) and (M ′, C ⊕∆) to recover the whole
internal state of S1 based on the proposed attack procedure described in Sects. 3.2.1
and 3.2.2.

We provide a test case for the proposed attack in Appendix A. After completing multiple
trials with the above steps, we estimate the time complexity and success probability for the
proposed attack while taking the specific case explained in Sect. 3.2.3 into consideration.
To this end, we conducted experiments with 220 trials, i.e., we used 220 different tuples
(K, N, AD, M) to verify the proposed attack.

Table 1 summarizes the results of estimating the time complexity and success probability
for the proposed attack. As described in the beginning of Sect. 3.2.1, given an input-output
difference of the AES S-box, we can reduce the number of candidates of corresponding
input-output values to two with a probability of 31/32, whereas the number of candidates
is four with a probability of 1/32. This suggests that the proposed attack can be optimized
(i.e., the proposed attack can be performed with a time complexity of 220) only when all
of our guesses can be narrowed down to two candidates. However, it is not always possible
to optimize. Indeed, Table 1 indicates that the proposed attack can be performed with an
optimized time complexity of 220, but its success probability is about 0.565.

There are three cases in which the attack complexity increases from 220: The number
of candidates for given input-output differences is four, an input difference of the target
S-boxes becomes zero by chance, and an incorrect guess passes through a 128-bit filter.
Taking all these cases into consideration, we summarize the success probability of our
attack with time complexity 220 × α for α ≤ 211 by 220 experiments in Table 1. We
observe that the success probability is sufficiently high for all the values of α we considered.
Therefore, our experimental verification demonstrates that the proposed attack is practical.

5The source code is available at https://github.com/omitakahiro/omitakahiro.github.io/blob/
master/random/code/MT.h

https://github.com/omitakahiro/omitakahiro.github.io/blob/master/random/code/MT.h
https://github.com/omitakahiro/omitakahiro.github.io/blob/master/random/code/MT.h
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Table 2: Summary of attacks under various security models. qenc denotes the type and
the number of encryption queries, where KPA denotes a known-plaintext query and CPA
denotes a chosen-plaintext query. qdec denotes the type and the number of decryption
queries. α denotes a small constant when the attack complexity increases slightly.

Model qenc qdec Time Success prob. Nonce respect
nonce misuse 1 KPA + 1 CPA - α · 220 ≈ 1 ✗
enc and dec 1 KPA 2128 CCA 2128 + α · 220 ≈ 1 ✓

dec query limit 1 KPA qd CCA qd + α · 220 qd/2128 ✓
no enc - 2129 CCA 2129 + α · 220 ≈ 1 ✓

dec w/o nonce repeat q KPA q CCA 2q + α · 220 q/2128 ✓

3.2.5 Summary of Attacks

Once an attacker obtains one “nonce-repeated” pair (with a proper difference), it is possible
to recover the secret key with the complexity of about 220. The attack implies a risk of
immediate recovery of the secret key if a nonce is misused even only once. Besides, we can
convert the nonce-misusing attack with the attack exploiting the decryption oracle. That
is, an attacker makes a known-plaintext query to the encryption oracle, injects a proper
difference to the ciphertext, and queries the modified ciphertexts to the decryption oracle
while trying out all the 2128 possible tags. Since 2128 trials always return the corresponding
plaintexts, the attacker can recover the secret key with a success probability of 1 and the
time complexity of 2128 + 220. This attack is more efficient than an exhaustive search of
the 256-bit key.

3.3 Extension to Various Security Models
In addition to the attack with one encryption query and 2128 decryption queries, in this
section, we discuss the feasibility of the attack in three specific security models: 1) The
case where the number of decryption queries that an attacker can make is limited. 2)
The case where the encryption oracle is unavailable to the attacker. 3) The case where
the decryption oracle is stateful and does not allow nonce-repeated decryption queries.
Interestingly, in all these security models, Rocca is insecure. Table 2 shows the summary
of attacks against Rocca in these security models.

Query Limitation. Our attack shown in Sect. 3.1 requires 2128 decryption queries to
collect a nonce-repeated pair. When the number of decryption queries qd is limited, e.g.,
qd ≪ 2128, the attacker cannot query over 2128 tags to the decryption oracle. In this case,
the success probability of our attack decreases from 1 to qd/2128, and the time complexity
of the attack is qd + 220. Although the success probability never reaches 1, the attack
is still more efficient than the exhaustive search with the same success probability. For
example, when qd = 264, the time complexity is about 264 with the success probability
of 2−64. The corresponding exhaustive search with the same success probability would
require the time complexity of 2256−64 = 2192.

No Encryption Oracle. Interestingly, there is a variant of the attack that no longer
requires an encryption oracle. An attacker makes decryption queries with a random
ciphertext while trying out 2128 possible tags and obtains the corresponding message.
Then, the attacker injects a proper difference to the ciphertext and runs the same attack.
This variant requires 2129 decryption queries, and the time complexity is 2129 + 220. This
variant no longer requires the encryption oracle.
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Decryption with Nonce-Repeat Detection. Let us assume a decryption oracle with a
state to reject ciphertexts whose nonce is already used in a previous decryption query.
Such a decryption oracle is not common because it is hard to implement. Besides, when
a nonce is rejected although an already-queried ciphertext with the same nonce was not
valid on the decryption, attackers can easily exhaust nonces, and the DoS attack works.
Even such an impractical and complicated decryption oracle cannot invalidate our attack.
Our attack can recover the secret key with only one nonce-repeated pair. Now an attacker
makes an encryption query and obtains a plaintext-ciphertext pair. Then, the attacker
injects a difference to the ciphertext and makes a decryption with the same nonce used in
the encryption query. If it is rejected, we no longer use this nonce for both encryption
and decryption queries. Instead, the attacker next makes an encryption query with a
fresh nonce and repeats this until the decryption oracle returns a valid message. With q
encryption and decryption queries, the time complexity of this attack is 2q + 220 with the
success probability of q/2128.

4 Countermeasures
In this section, we consider several approaches to tweak Rocca to mitigate the impact of
our attack.

4.1 Parameter Change
We first discuss if using different parameters, the number of rounds in the initialization
and finalization, the nonce length, and the tag length, can invalidate the attack.

Our attack does not exploit the concrete structure of the initialization and finalization.
Even if the initialization and finalization have more rounds, such a tweak never invalidates
our attack.

Our attack works in the nonce-respecting setting and requires only one encryption
query. Therefore, increasing the nonce length does not invalidate our attack.

While increasing the tag length is relatively promising, we need to evaluate whether
Rocca ensures the higher security corresponding to the tag length against forgery attacks.
Let us consider the case that we increase the tag length from 128 bits to 256 bits. The
designers guarantee at least 24 active S-boxes in differential trails available in the forgery
attack. It is insufficient to ensure 256-bit security against the forgery attack. We evaluated
the tight maximum differential characteristic probability to confirm the insufficiency. As
a result, we found a differential trail available in the forgery attack with a probability
of 2−6×25 = 2−150. The existence of this differential trail implies that increasing the tag
length is not a promising direction to invalidate the attack using the decryption oracle.
We refer to Appendix B for details.

4.2 Key-Dependent Initialization and Finalization
To invalidate our attack, the most promising idea (with negligible impact on the cost) is
involving the secret key to the initialization and finalization. Such an idea was already
introduced in ASCON to enhance the security under the nonce-misuse scenario. Specifically,
we XOR the secret key K0 and K1 to two branches after the initialization, e.g., we let

S[5] = S[5]⊕K0 ,

S[6] = S[6]⊕K1 .

Remind that this countermeasure never invalidates our state-recovery attack. It makes
attackers non-trivial to recover the secret key even if they recover the internal state.
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Our attack reveals the whole state of one output of the initialization at the cost of 2128

decryption queries. The designers of Rocca did not analyze the initialization in such a
setting. Therefore, whether 20 rounds are sufficient or not has to be re-evaluated to see
the feasibility of the key-recovery attack under such a scenario. Although we do not claim,
we expect that 20 rounds are sufficient.

We additionally recommend XORing the secret key K0 and K1 to two branches before
the finalization, e.g., we let

S[1] = S[1]⊕K0 ,

S[2] = S[2]⊕K1 .

This replacement makes attackers non-trivial to mount a universal forgery attack even if
they recover the internal state. Note that the number of required decryption queries for
our attack already exceeds the claimed 128-bit security against forgery attacks. Therefore,
this tweak is not necessary to sound the security claims of Rocca. However, considering
practical risks under nonce-misuse scenario, we recommend that the finalization also
involves the secret key.

We stress that this countermeasure is for the 256-bit security against our key-recovery
attack. This countermeasure is not helpful to achieve 256-bit security against distinguishing
attacks in Claim 1. Besides, note that message-recovery attacks or universal forgery attacks
are still possible at the cost of about 2128 even if this countermeasure is adopted, since the
internal state can be recovered.

The indistinguishability security is strong and demanding, and we focus on the theoret-
ical (in)feasibility of such strong security in the next section.

5 (In)feasibility of Achieving the Security Claim
In this section, we consider the feasibility and infeasibility of achieving Claim 1 in the
provable security paradigm. We distinguish IND-CPA and IND-CCA for the security
notion of distinguishing attacks, and we consider INT-CTXT as the security notion of
forgery attacks.

We first define the relevant notions following [Rog02, Rog04b, BN08, ABL+14]. Let A
be an adversary6 and Π = (Enc, Dec) be an AEAD scheme. The encryption algorithm EncK

takes a tuple (K, N, AD, M) of a key, nonce, AD, and a message as input, and returns
(C, T ) = EncK(N, AD, M), a ciphertext and a tag. The decryption algorithm DecK takes
(K, N, AD, C, T ) as input, and returns M = DecK(N, AD, C, T ) or ⊥, where the latter
indicates rejection. We consider the following advantage functions on an adversary A:

Advind-cpa
Π (A) = Pr[AEncK ,⊥ ⇒ 1]− Pr[A$,⊥ ⇒ 1]

Advind-cca
Π (A) = Pr[AEncK ,DecK ⇒ 1]− Pr[A$,DecK ⇒ 1]

Advint-ctxt
Π (A) = Pr[AEncK ,DecK ⇒ 1]− Pr[AEncK ,⊥ ⇒ 1]

Advaead
Π (A) = Pr[AEncK ,DecK ⇒ 1]− Pr[A$,⊥ ⇒ 1]

Here, $ denotes an oracle that returns a uniform random bits with the same length as
EncK , and ⊥ denotes an oracle that always returns the reject symbol ⊥. We only consider
nonce-respecting adversaries. Following [ABL+14], we assume that if A receives (C, T ) for
an encryption query (N, AD, M), then A does not make a decryption query (N, AD, C, T ),
and in the IND-CCA notion, if A receives M ̸= ⊥ for a decryption query (N, AD, C, T ),
then A does not make an encryption query (N, AD, M).

6Throughout this section, we use “adversary” for an attacker.
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Note the implications

Advind-cca
Π (A) ≤ Advind-cpa

Π (A) + 2Advint-ctxt
Π (A) ,

Advaead
Π (A) ≤ Advind-cpa

Π (A) + Advint-ctxt
Π (A) ,

showing the soundness of considering IND-CPA and INT-CTXT, which are the basis of
wide adoption of this combination. See [BN08] for the first one. However, as discussed in
Sect. 1, when interpreted as the bit security, they only ensure min{k1, k2}-bit IND-CCA
or AEAD security when an AEAD scheme has k1-bit IND-CPA and k2-bit INT-CTXT
security.

Recall that we denote the concatenation of bit strings X and Y by X ∥ Y , and |X|
denotes the bit length of X.

Feasibility of 256-bit IND-CPA and 128-bit INT-CTXT Security. We first point out
that achieving 256-bit IND-CPA security and 128-bit INT-CTXT security is possible with
known approaches, where the tag length is 128 bits.

Proposition 1. There exists an AEAD scheme Π with 256-bit IND-CPA security and
128-bit INT-CTXT security.

This proposition can be confirmed by various known AEAD modes of operations that
use a 4n-bit block cipher or a 5n-bit cryptographic permutation (with an n-bit rate) and
ensure up-to-birthday-bound security, when they have n-bit tags. For example, we can
extend GCM so that it works with a 4n = 512-bit block cipher together with an extended
GHASH defined by multiplications over F24n . We use (say) 2n-bit nonces and a 2n-bit
block counter where their concatenation forms the initial counter-mode block input, just
as in the original GCM using 96-bit nonces and a 32-bit block counter. The tag length is
τ = 128 bits. Such an extended version of GCM has the following security bounds:

Advind-cpa
GCM[E](Apriv) ≤ Advprp

E (A′) + 0.5(σe + qe + 1)2

24n
,

Advint-ctxt
GCM[E](Aauth) ≤ Advprp

E (A′′) + 0.5(σe + qe + 1)2

24n
+ qd(ℓA + 1)

2τ
,

where Apriv denotes the privacy adversary using σe total encrypted blocks and qe encryption
queries, and Aauth denotes the authenticity adversary using σe total encrypted and
decrypted blocks and qe encryption and qd decryption queries, with the maximum of ℓA

blocks of AD in any query, for 4n-bit blocks. The first terms of the bounds show the
indistinguishability of the underlying block cipher E from a 4n-bit random permutation
(i.e., pseudorandom permutation advantage) and are assumed to be negligible. The proofs
are mostly immediate from the original proofs [IOM12, Corollaries 3 and 4].

Similar results can be obtained for OCB [KR11], if the underlying (small) constant
multiplications over F24n (so-called doubling and tripling etc.) fulfill certain distinctness
conditions7. Rogaway [Rog04a] presented concrete instances for the case of F264 and F2128 ,
and Granger et al. [GJMN16] extended the analysis to F2512 to F21024 , which can be useful
for our case. In fact, [GJMN16] defined OPP, which is a permutation-based variant of
(large-block) OCB. It gives an AEAD scheme based on a 4n = 512-bit permutation having
256-bit IND-CPA and 128-bit INT-CTXT security if tags are truncated to τ = 128 bits. To
confirm this claim, we refer to the bound shown in the full version of the paper [GJMN15,
Theorem 5]. It fixed a simple error in the proof of the original paper and presented a
security bound for the unified AEAD security notion (Advaead

OPP (A)) for OPP. When a
512-bit permutation is used and the key length is k = 256, one can confirm the above

7We also need to consider the extended form of the component called stretch-then-shift universal hash
function that processes a nonce.
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256-bit IND-CPA claim by making the number of decryption queries being zero in the
unified bound. The 128-bit INT-CTXT bound is clear since the unified bound contains
qd/2τ and a unified bound is essentially the sum of IND-CPA and INT-CTXT bounds.

Sponge-based AEAD, such as duplex sponge [BDPA11], would also allow similar security
bounds by using a permutation of an appropriate size. That is, a permutation of size 5n
bits with an n-bit rate and a tag length of n bits is enough to achieve the bound.

Therefore, there are schemes with 256-bit IND-CPA security and 128-bit INT-CTXT
security. However, as discussed in Sect. 1, the high indistinguishably security is guaranteed
only when the decryption oracle is not available to the adversary. If the adversary has the
decryption oracle, the security guarantee (in indistinguishability or in the unified notion)
degrades to 128 bits. In general, this does not necessarily imply the existence of an attack
with 2128 complexity. However, we next show that distinguishing attacks are possible in
the IND-CCA security notion.

Infeasibility of 256-bit IND-CCA and 128-bit INT-CTXT Security. We consider a class
of AEAD schemes called an online AEAD scheme [BBKN12, ABL+14]. Intuitively, in
these schemes, the i-th output block depends only on the first i blocks of the input. This
class includes all the schemes stated above, Rocca, and its variant in Sect. 4.2, and we
show that they cannot achieve 256-bit IND-CCA security.

Let m be a positive integer. Following [BBKN12, ABL+14], we call an AEAD scheme
Π = (Enc, Dec) m-online if it satisfies the following condition: For any tuple (K, N, AD),
there exist functions f1, f2, . . . of which codomain is Fm

2 and another function g such that

EncK(N, AD, M) = f1(M1) ∥ f2(M1, M2) ∥ · · · ∥ fℓ(M1, . . . , Mℓ) ∥ g(M) (2)

holds for any M , where M = M1 ∥ · · · ∥ Mℓ ∥ M ′, M1, . . . , Mℓ ∈ Fm
2 , and M ′ ∈ Fm′

2
(0 ≤ m′ < m).

The following proposition roughly shows that a τ -bit tag online AEAD scheme cannot
achieve more than τ -bit IND-CCA security. In particular, 128-bit tag AEAD schemes
based on the sponge(-like) construction, including Rocca (and its variant mentioned in
Sect. 4.2), cannot achieve 256-bit IND-CCA security.

Proposition 2. Let Π be an m-online AEAD satisfying |EncK(N, AD, M)| = |M |+ τ for
a fixed constant τ > 0. Let Enc′

K be a truncated version of EncK discarding outputs of g
(see Eq. (2)), and assume the restriction of Enc′

K(N, AD, ·) to F2m
2 is a permutation for

any choice of N and AD. Then there exists an adversary A making at most 2τ decryption
queries and a single encryption query such that Advind-cca

Π (A) = 1− 1/2m holds.

Proof. In what follows we assume no AD is involved in encryption queries nor decryption
queries.

Let A be an adversary running as follows: (1) Choose a nonce N and C0, C1 ∈ Fm
2

arbitrarily. (2) For each T ∈ Fτ
2 , query (N, C0 ∥ C1 ∥ T ) to the decryption oracle. If a

2m-bit message M = M0 ∥M1 ̸= ⊥ is returned (M0, M1 ∈ Fm
2 ), proceed to the next step.

(3) Take an m-bit string M ′
1 ≠ M1 and query (N, M0 ∥M ′

1) to an encryption oracle. If the
first block (the first m bits) of the response matches C0, output 1. Otherwise output 0.

Suppose we run the real or ideal world for the definition of IND-CCA security of
Π with the above A. Since the restriction of Enc′

K(N, ·) to F2m
2 is a permutation by

assumption, for arbitrary choice of N, C0, and C1 in the first step of A, there exists a
unique M ∈ F2m

2 such that Enc′
K(N, M) = C0 ∥ C1. This implies the existence of T ∈ Fτ

2
satisfying EncK(N, M) = C0 ∥ C1 ∥ T . In particular, A receives M at some point of the
second step and proceed to the third step. These arguments hold in both of the real and
ideal worlds.

Let C ′
0 be the first block of the response that A receives from an encryption oracle in

its third step. In the real world, C ′
0 = C0 always holds since Π is m-online and A outputs 1
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with probability 1. However, in the ideal world, we have Pr [C ′
0 = C0] = 2−m because the

ideal encryption oracle returns a random output. Hence Advind-cca
Π (A) = 1− 1/2m.

Proposition 2 shows that distinguishing attacks are possible against Rocca and its
variant in Sect. 4.2, while for these schemes, message-recovery attacks are also possible as
the internal state can be recovered.

Now Proposition 2 rules out efficient solutions, and we next consider an offline con-
struction to see the feasibility.

Feasibility of 256-bit IND-CCA and 128-bit INT-CTXT Security. We show that, with
the Encode-then-Encipher approach [BR00], we can simultaneously achieve 256-bit IND-
CCA security and 128-bit INT-CTXT security.

Before presenting our theorem and the proof, let us fix some notations. Let n be
a positive integer and X be an n-bit string. For a positive integer x ≤ n, msbx(X)
(resp. lsbx(X)) denotes the truncation of X to its x most (resp. least) significant bits.
A tweakable block cipher (TBC) [LRW11] is a keyed function Ẽ : K × T W ×M →M,
where K is a key space, T W is a tweak space, and M is a message space. A tweak is a
public parameter and Ẽ(K, TW, ·) is a permutation on M for ∀(K, TW ) ∈ K × T W. We
also write ẼK to mean Ẽ(K, ·, ·). Let Perm(n) denote the set of all permutations on Fn

2 .
An n-bit tweakable permutation with a tw-bit tweak is a function π : Ftw

2 × Fn
2 → Fn

2 such
that π(TW, ·) ∈ Perm(n) for ∀TW ∈ Ftw

2 . The set of all n-bit tweakable permutations
with a tw-bit tweak is denoted by TPerm(tw, n). Let P̃ such that P̃ $←− TPerm(tw, n) be a
tweakable uniform random permutation (TURP). The (strong) security of a TBC Ẽ is
defined as the advantage function Advtsprp

Ẽ
(A) = Pr[AẼK ,Ẽ−1

K ⇒ 1]− Pr[AP̃,̃P
−1

⇒ 1].
The following theorem shows that achieving 256-bit IND-CCA security and 128-bit

INT-CTXT security is possible.
Theorem 1. Let A be an adversary that makes qe encryption queries and qd decryp-
tion queries. There exists an AEAD scheme Π such that Advind-cca

Π (A) ≤ qd/2256 and
Advint-ctxt

Π (A) ≤ qd/2128, where qe ≤ 2256 in both bounds, qd ≤ 2255 in the IND-CCA
bound, and qd ≤ 2127 in the INT-CTXT bound.
Proof. Let ẼK(·, ·) be a TBC with a 256-bit input/output and a 256-bit tweak. We prove
the Encode-then-Encipher (EtE) scheme based on Ẽ fulfills the bounds in Theorem 1. For
the sake of ease, we assume that EtE only accepts a fixed message length of m := 128 bits
and there is no AD. We later cover the general case. For a 256-bit nonce N , a 128-bit
message M , and a 256-bit ciphertext C, we define EtE.EncK(N, M) := ẼK(N, 0128 ∥M),
and EtE.DecK(N, C) = lsbm(Ẽ−1

K (N, C)) if msb128(Ẽ−1
K (N, C)) = 0128 holds, otherwise,

EtE.DecK(N, C) = ⊥.
For IND-CCA security, we firstly convert Ẽ to the TURP P̃ having the same tweak

and message spaces. This step adds Advtsprp
Ẽ

(A′) to the bound, which we assume to be
small. Let (N1, M1, C1), . . . , (Nqe

, Mqe
, Cqe

) be the sequence of encryption queries, and
(N ′

1, C ′
1, M ′

1), . . . , (N ′
qd

, C ′
qd

, M ′
qd

) be the sequence of decryption queries. Note that all Ni

for 1 ≤ i ≤ qe are distinct since the adversary follows the nonce-respecting setting, and
M ′

i for 1 ≤ i ≤ qd could be ⊥. The adversary can distinguish the ideal world from the real
world if and only if any one of the following cases occurs:
Case-1 The adversary obtains (N ′, C ′, M ′) from the decryption oracle and subsequently

queries (N ′, M) such that M ≠ M ′ to the encryption oracle and obtains ciphertext
C such that C = C ′.

Case-2 The adversary obtains (N, M, C) from the encryption oracle and subsequently
queries (N, C ′) such that C ′ ̸= C to the decryption oracle and obtains message M ′

such that M = M ′.
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There is no bad event between encryption queries because the adversary follows the nonce-
respecting setting and P̃ takes a nonce as tweak input. Also, there is no bad event between
decryption queries because both worlds have the same (real decryption) scheme. In the
real world, Case-1 and Case-2 do not appear since P̃ is a random permutation under the
fixed nonce. We evaluate Pr[Case-1 ∪ Case-2] in the ideal world.

Let qi denote the number of decryption queries whose nonce equals the nonce of the
i-th encryption query Ni, thus

∑qe

i=1 qi ≤ qd. We then split qi into two variables, qi,b and
qi,a. The former is the number of the decryption queries with the nonce Ni before the
adversary obtains (Ni, Mi, Ci), and the latter is the one after that, thus qi = qi,b + qi,a.
For the i-th encryption query, the probability of Case-1 is qi,b/2256. Note that M ′ in the
decryption queries can be ⊥, i.e., there is no need for the adversary to first succeed in
forgery. For Case-2, we renumber the decryption query, whose nonce is the same as Ni,
as (Ni, C ′i,b

1 , M ′i,b
1 ), . . . , (Ni, C ′i,b

qi,b
, M ′i,b

qi,b
) and (Ni, C ′i,a

1 , M ′i,a
1 ), . . . , (Ni, C ′i,a

qi,a
, M ′i,a

qi,a
). For

j ∈ {1, . . . , qi,a}, suppose that M ′i,a
1 ≠ Mi, . . . , M ′i,a

j−1 ̸= Mi. At the decryption query
(Ni, C ′i,a

j , M ′i,a
j ), the probability of M ′i,a

j = Mi is at most 1/(2256 − qi,b − j) since the
adversary has to query 256-bit ciphertext C ′i,a

j , such that P̃
−1

(Ni, C ′i,a
j ) = 0128 ∥Mi and

C ′i,a
j ̸∈ {Ci, C ′i,b

1 , . . . , C ′i,b
qi,b

, C ′i,a
1 , . . . , C ′i,a

j−1}, to the decryption oracle. Thus, assuming
qi,b + qi,a ≤ qd ≤ 2255, the probability of Case-2 is at most

∑qe

i=1
∑qi,a

j=1 1/(2256− qi,b− j) ≤∑qe

i=1 2qi,a/2256. Therefore, Pr[Case-1 ∪ Case-2] ≤
∑qe

i=1 qi,b/2256 +
∑qe

i=1 2qi,a/2256 =∑qe

i=1(qi/2256 + qi,a/2256) ≤ 2qd/2256.
For INT-CTXT security, we use P̃ for Ẽ. This adds a term Advtsprp

Ẽ
(A′′), which is

assumed to be small. Now it is easy to see Advint-ctxt
EtE (A) ≤

∑qd

j=1 2128/(2256 − j) ≤
2qd/2128, by following a similar argument to Case-2 of the IND-CCA analysis. Note that
the constant 2 in the IND-CCA and INT-CTXT bounds are reduced to 1 by increasing m
by 1, and assuming a perfectly secure TBC, we obtain the bounds of the theorem.

For the general case, where there is variable-length associated data AD and a variable-
length message M , the proof is easily extended. We assume that Ẽ accepts a variable-
length tweak and a variable-length message block, and use (N ∥ AD) as a tweak and
use (0128 ∥ pad(M)) as an input block with a certain injective padding pad that ensures
|pad(M)| > 128 for any M .

We do not specify the choice of Ẽ, which could be built from a scratch or could be
a mode of operation such as [HR04, WFW05] (instantiated with a block cipher with an
appropriate block length). If Ẽ has 256-bit security against key-recovery attacks, we see
that the claim against key-recovery attacks in Claim 1 can also be achieved.

Finally, we remark that Theorem 1 can be extended to handle a general case. For any
positive integer k1, k2 such that k1 > k2, we can simultaneously achieve k1-bit IND-CCA
security and k2-bit INT-CTXT security. Let n := k1, τ := k2, m := n− τ . Let Ẽ be a TBC
with an n-bit input/output and an n-bit tweak. We define a generalized EtE, which we call
gEtE, as gEtE.EncK(N, M) := ẼK(N, 0τ ∥M), and gEtE.DecK(N, C) = lsbm(Ẽ−1

K (N, C))
if msbτ (Ẽ−1

K (N, C)) = 0τ holds, otherwise, EtE.DecK(N, C) = ⊥. We can prove that gEtE
has k1-bit IND-CCA security and k2-bit INT-CTXT in the same manner as the proof of
Theorem 1.

6 Conclusions
In this paper, we first presented a key-recovery attack on Rocca, where the time complexity
is about 2128 and the success probability is almost 1. This shows that, in terms of key-
recovery, Rocca has 128-bit security. We then considered extensions of the attack to various
security models and discussed countermeasures. We also studied a theoretical question of
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achieving the security claim of Rocca, and showed that the Encode-then-Encipher approach
gives a feasible result at the cost of efficiency.

In Rocca, only one nonce-repeated pair is enough to recover the internal state and the
secret key with the practical time complexity, which is the main reason of the success of
the attack. Even if the nonce-misuse security is optional, this casts the importance of
maintaining a level of security under the nonce-misuse scenario. Involving the secret key
in the initialization and finalization is an effective way, as the security against key-recovery
attacks improves and the cost is negligible, while message-recovery attacks or universal
forgery attacks are still possible at the cost of about 2128 complexity. Related to this,
Rocca defines a raw encryption mode, which is obtained by removing the process of AD
and the finalization, and our attack implies that if an attacker has a decryption oracle for
this raw encryption mode, this immediately allows a key-recovery attack with 2 decryption
queries.

As we discussed in Sect. 3.1, having a strong privacy security bound and a weaker
authenticity bound is relevant in practical contexts. For instance, given some AEAD
scheme, possibly used in IoT applications, one may want to truncate the tag to reduce the
bandwidth to save energy for data transmission, hoping that the impact on the privacy
security bound is limited. Rocca is not suitable for this purpose, as its tag length directly
degrades the security. The Encode-then-Encipher scheme has an efficiency issue, and
designing an efficient scheme retaining a level of CCA security even with tag truncation is
an interesting question.

Acknowledgments
The authors would like to thank the designers of Rocca for feedback on the early draft of
the paper. Akinori Hosoyamada, Tetsu Iwata, Kazuhiko Mimematsu, and Yosuke Todo
would like to thank the organizers of Dagstuhl Seminar 22141, Symmetric Cryptography,
for inviting them to the seminar. Although they had to cancel the attendance and none of
them could attend the seminar due to the COVID-19 pandemic, the invitation initiated
the collaboration among them, leading to the results of this paper.

References
[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,

and Kan Yasuda. How to securely release unverified plaintext in authenticated
encryption. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in
Computer Science, pages 105–125. Springer, 2014.

[BBKN12] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Nam-
prempre. On-line ciphers and the hash-cbc constructions. J. Cryptol., 25(4):640–
679, 2012.

[BDD+12] Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Pierre-Alain Fouque,
Nathan Keller, and Vincent Rijmen. Low-data complexity attacks on AES.
IEEE Trans. Inf. Theory, 58(11):7002–7017, 2012.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography - 18th
International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011,



144 Cryptanalysis of Rocca and Feasibility of Its Security Claim

Revised Selected Papers, volume 7118 of Lecture Notes in Computer Science,
pages 320–337. Springer, 2011.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. J.
Cryptol., 21(4):469–491, 2008.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How
to exploit nonces or redundancy in plaintexts for efficient cryptography. In
Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of Lecture Notes in Computer Science, pages 317–330. Springer, 2000.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[EJMY19] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A
new SNOW stream cipher called SNOW-V. IACR Trans. Symmetric Cryptol.,
2019(3):1–42, 2019.

[FFL12] Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of
almost foolproof on-line authenticated encryption schemes. In Anne Canteaut,
editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume
7549 of Lecture Notes in Computer Science, pages 196–215. Springer, 2012.

[GJMN15] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-
proved masking for tweakable blockciphers with applications to authenticated
encryption. IACR Cryptol. ePrint Arch., page 999, 2015.

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-
proved masking for tweakable blockciphers with applications to authenticated
encryption. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Computer
Science, pages 263–293. Springer, 2016.

[GRV21] Emiljano Gjiriti, Reza Reyhanitabar, and Damian Vizár. Power yoga: Variable-
stretch security of CCM for energy-efficient lightweight iot. IACR Trans.
Symmetric Cryptol., 2021(2):446–468, 2021.

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, Topics in Cryptology - CT-RSA 2004, The Cryptographers’
Track at the RSA Conference 2004, San Francisco, CA, USA, February 23-27,
2004, Proceedings, volume 2964 of Lecture Notes in Computer Science, pages
292–304. Springer, 2004.

[HRRV15] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár.
Online authenticated-encryption and its nonce-reuse misuse-resistance. In
Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in
Computer Science, pages 493–517. Springer, 2015.



A. Hosoyamada, A. Inoue, R. Ito, T. Iwata, K. Mimematsu, F. Sibleyras, Y. Todo 145

[IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing
GCM security proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of
Lecture Notes in Computer Science, pages 31–49. Springer, 2012.

[JN16] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES
round function. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 334–353. Springer, 2016.

[Kha22] Mustafa Khairallah. Security of COFB against chosen ciphertext attacks. IACR
Trans. Symmetric Cryptol., 2022(1):138–157, 2022.

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, Fast Software Encryption - 18th
International Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011,
Revised Selected Papers, volume 6733 of Lecture Notes in Computer Science,
pages 306–327. Springer, 2011.

[LRW11] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. J. Cryptol., 24(3):588–613, 2011.

[Mèg19] Alexandre Mège. [lwc-forum] tag length impact on confidentiality security.
Comment to NIST mailing list, November 2019. https://groups.google.
com/a/list.nist.gov/g/lwc-forum/c/2a0H-HQHgqU/m/EtjdRFSmBQAJ.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Generator.
ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.

[MV04] David A. McGrew and John Viega. The security and performance of the
galois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Inter-
national Conference on Cryptology in India, Chennai, India, December 20-22,
2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages
343–355. Springer, 2004.

[Nik14] Ivica Nikolić. Tiaoxin-346. CAESAR submission, 2014.

[NL05] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols.
RFC 7539, May 2005.

[NRS13] Chanathip Namprempre, Phillip Rogaway, and Tom Shrimpton. AE5 security
notions: Definitions implicit in the CAESAR call. IACR Cryptol. ePrint Arch.,
page 242, 2013.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Recon-
sidering generic composition. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture
Notes in Computer Science, pages 257–274. Springer, 2014.

https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/2a0H-HQHgqU/m/EtjdRFSmBQAJ
https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/2a0H-HQHgqU/m/EtjdRFSmBQAJ


146 Cryptanalysis of Rocca and Feasibility of Its Security Claim

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, Washington, DC, USA, November 18-22,
2002, pages 98–107. ACM, 2002.

[Rog04a] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and re-
finements to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in
Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory
and Application of Cryptology and Information Security, Jeju Island, Korea,
December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer
Science, pages 16–31. Springer, 2004.

[Rog04b] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and
Willi Meier, editors, Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of
Lecture Notes in Computer Science, pages 348–359. Springer, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of
the key-wrap problem. In Serge Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science,
pages 373–390. Springer, 2006.

[RVV16] Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. Authenticated encryp-
tion with variable stretch. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 396–425, 2016.

[SLN+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5G. IACR
Trans. Symmetric Cryptol., 2021(2):1–30, 2021.

[SLN+22] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5G (full
version). IACR Cryptol. ePrint Arch., page 116, 2022.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors,
Information Security and Cryptology, First SKLOIS Conference, CISC 2005,
Beijing, China, December 15-17, 2005, Proceedings, volume 3822 of Lecture
Notes in Computer Science, pages 175–188. Springer, 2005.

[WP13] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors,
Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.



A. Hosoyamada, A. Inoue, R. Ito, T. Iwata, K. Mimematsu, F. Sibleyras, Y. Todo 147

A Test Case: State-Recovery Attack against Rocca Using
Meet-in-the-Middle Technique

We provide a test case for the state-recovery attack against Rocca using meet-in-the-middle
technique. First, we generate a secret key K (= K0 ∥K1), a nonce N , associated data AD,
and a message M at random, and then simulate the encryption oracle to get the ciphertext
C from a tuple (K, N, AD, M):

secret key K:
FA 1A 5A 8C 12 B6 07 FD F7 B1 16 CC 87 A1 F0 22
35 5A 90 01 57 81 93 74 19 8E 35 B7 47 C9 0C 2E

nonce N:
38 75 A1 88 7A EF EE 04 0E F5 B9 43 2E 62 8F 2E

associated data AD:
02 33 B6 B4 72 C8 1A C6 D9 1C C8 86 B1 77 E6 72
EF B9 F8 BD D4 F2 98 93 28 05 6F 91 B2 F2 CF 1A
51 73 D4 C6 55 FD 98 A9 41 05 16 2C 73 44 5B 6E
66 F9 99 49 EE CE 66 1D F4 25 F9 83 B2 78 49 A6

message M:
C9 53 0D 7D 35 6C F7 52 E8 8E F6 F4 95 27 0F 62
1B 1B B5 C8 ED D7 E0 C7 9C 13 B2 02 23 4C 87 3D
09 21 C9 52 F8 FC E0 F3 18 58 FB 59 59 A3 91 0E
25 7F D2 D1 D8 AE B9 09 28 DF 2C B2 D6 5F 2C 2F
2A C4 A7 CB 7A 1C 53 9E 58 AB 5D 15 96 05 EE F7
C4 F0 08 F9 66 05 66 18 54 C8 3C FC 74 7F 90 5A
0C 66 8B B7 32 75 AA D8 5F 97 16 2C 5D 77 03 42
5E 71 DC 74 FA 7D 21 BA A4 D2 FA 5F 9B A9 B4 ED

ciphertext C:
7A 70 F8 0A 10 D1 86 7B 0E 6B 5C 53 8D 87 27 BC
1B A7 16 DA 26 F5 B8 BB 70 D9 27 A9 77 9A F0 4D
DD A6 9B 2C DC 2E E6 AE 6B 28 A8 25 61 D7 EE 26
04 13 EC C6 36 55 82 A3 B2 40 30 84 FE 96 C2 37
45 F8 B8 A3 27 E5 0A 96 9A EB E8 74 E2 C2 7C 1E
3D 6D 5B 99 9D CA C1 EC 12 18 37 28 3C 4F 03 64
35 BD 31 5F F2 E2 BB 32 6F 65 C2 36 30 7F F9 9A
C0 38 60 62 2E C1 64 98 32 AA FF 6B AD D0 DA 83

Next, we inject a proper difference ∆ to the ciphertext C, and then simulate the decryption
oracle to get the message M ′ from a tuple (K, N, AD, C ⊕∆):

difference ∆ to the ciphertext C:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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ciphertext C ⊕∆:
7A 70 F8 0A 10 D1 86 7B 0E 6B 5C 53 8D 87 27 BC
1A A6 17 DB 27 F4 B9 BA 71 D8 26 A8 76 9B F1 4C
DD A6 9B 2C DC 2E E6 AE 6B 28 A8 25 61 D7 EE 26
04 13 EC C6 36 55 82 A3 B2 40 30 84 FE 96 C2 37
45 F8 B8 A3 27 E5 0A 96 9A EB E8 74 E2 C2 7C 1E
3D 6D 5B 99 9D CA C1 EC 12 18 37 28 3C 4F 03 64
35 BD 31 5F F2 E2 BB 32 6F 65 C2 36 30 7F F9 9A
C0 38 60 62 2E C1 64 98 32 AA FF 6B AD D0 DA 83

message M ′:
C9 53 0D 7D 35 6C F7 52 E8 8E F6 F4 95 27 0F 62
1A 1A B4 C9 EC D6 E1 C6 9D 12 B3 03 22 4D 86 3C
09 21 C9 52 F8 FC E0 F3 18 58 FB 59 59 A3 91 0E
24 4B 1C 7D E5 6E 7A 6D 70 E7 D3 BD B8 6E E3 12
4B 27 20 A0 8B 25 07 AA 0C E8 AE 9B 1D F4 1F 8D
F5 7F 69 EB F9 49 4E CA C0 B1 DD F3 B4 20 B9 FC
B9 01 88 64 6D 9E FB 8A 49 18 C6 A4 85 B4 73 7D
34 7F FA 02 5B 9B 1C F9 C4 36 E2 48 DC 88 25 1A

Finally, we use the “nonce-repeated” pair (M, C) and (M ′, C ⊕∆) to recover the whole
internal state of S1:

S1[0]: C3 0B B2 58 FF BC CC 7F EF 45 00 B8 8C 59 AF 88
S′

1[0]: C3 0B B2 58 FF BC CC 7F EF 45 00 B8 8C 59 AF 88

S1[1]: EA DC C6 2C 25 D6 67 C9 09 E9 C7 5A F8 C1 D4 EE
S′

1[1]: EA DC C6 2C 25 D6 67 C9 09 E9 C7 5A F8 C1 D4 EE

S1[2]: 95 5C CE 00 07 83 FE 5A 3E 6D 2C 3B 5F B6 E3 B5
S′

1[2]: 95 5C CE 00 07 83 FE 5A 3E 6D 2C 3B 5F B6 E3 B5

S1[3]: E8 F7 D1 98 DD 92 70 15 A1 89 9F BA 9A 85 D7 E8
S′

1[3]: E8 F7 D1 98 DD 92 70 15 A1 89 9F BA 9A 85 D7 E8

S1[4]: D7 D3 13 65 DD 64 6E B1 3F 10 C1 59 12 43 2C B2
S′

1[4]: D6 D2 12 64 DC 65 6F B0 3E 11 C0 58 13 42 2D B3

S1[5]: 2E 8E CC 8C 41 78 24 A8 90 9B 25 12 10 08 70 8F
S′

1[5]: 2E 8E CC 8C 41 78 24 A8 90 9B 25 12 10 08 70 8F

S1[6]: EB 40 C0 B4 72 1E D7 34 3C 44 43 0F FE EA FA E4
S′

1[6]: EB 40 C0 B4 72 1E D7 34 3C 44 43 0F FE EA FA E4

S1[7]: B4 9C 7C B8 8D DA 4F 9E AF 31 B5 12 15 FD 82 B7
S′

1[7]: B4 9C 7C B8 8D DA 4F 9E AF 31 B5 12 15 FD 82 B7

In this case, we can recover the whole internal state of S1 with a time complexity of 220.
That is, all of our guesses can be narrowed down to two candidates.

B Forgery Attack against Rocca Using Longer Tag Length
Increasing the tag length is one of the most simple countermeasures against our attack.
However, the designers of Rocca do not guarantee strong security that is implied by the
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increased tag length against forgery attacks. Therefore, we evaluated differential trails
that are available in forgery attacks: differential trail whose input and output differences
are zero but a non-zero message difference is absorbed. Figures 5 and 6 show such a
differential trail. There are 25 active S-boxes and all of them transit with the probability
of 2−6. Therefore, the probability is 2−6×25 = 2−150.
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Figure 6: Bottom 3 rounds in the differential trail available for the forgery attack.
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