New Low-Memory Algebraic Attacks on LowMC in the Picnic Setting

Fukang Liu 1 , Willi Meier 4 , Santanu Sarkar 5 , Takanori Isobe 1,2,3

¹University of Hyogo, Japan

²NICT, Japan,

³PRESTO, Japan

⁴FHNW, Switzerland

5 Indian Institute of Technology Madras, India

liufukangs@gmail.com

FSE 2023

The LowMC Primitive

- Proposed at Eurocrypt 2015
- Designed to be MPC/FHE/ZK-friendly
- Flexible parameters (affine layers, KSF, #S-boxes per round)

Figure: The round function of LowMC

The Picnic Setting

Problem

Given 1 known plaintext-ciphertext pair denoted by (p, c) , how to recover the secret key k such that

 $c =$ LowMC (p, k)

■ Extreme case

- 1 S-box per round
- Picnic2
	- 10 S-boxes per round
- Picnic3
	- full S-box layer
- $\blacksquare > 3$ chosen plaintext-ciphertext pairs
	- Higher-order differential attack (ICISC 2015)
	- Interpolation attack (Asiacrypt 2015)
- $\blacksquare = 3$ chosen plaintext-ciphertext pairs
	- Difference enumeration attack (ToSC 2018)
- $\blacksquare = 2$ chosen plaintext-ciphertext pairs (Security proof of Picnic)
	- Difference enumeration $+$ algebraic method (CRYPTO 2021)
	- Algebraic MITM method (Asiacrypt 2022)
- $\blacksquare = 1$ known plaintext-ciphertext pair (Security of Picnic)
	- Guess-and-determine (GnD) attack (ToSC 2020, Asiacrypt 2021)
	- Polynomial method (EUROCRYPT 2021)
	- Polynomial method $+$ GnD (ToSC 2022)

 Ω

On Möbius Transform

Recovering the ANF

Given the truth table for a function $f(x): \mathbb{F}_2^u \mapsto \mathbb{F}_2$, we can recover the Algebraic Norm Form (ANF) of

$$
f(x)=\bigoplus_{b=(b_1,b_2,...,b_u)\in\mathbb{F}_2^u}g(b)\prod_{i=1}^u x_i^{b_i},
$$

i.e, recovering the truth table of $(b, g(b))$.

 Ω

Evaluating $f(x)$ over all $x \in \mathbb{F}_2^u$

Given the ANF of $f(x): \mathbb{F}_2^u \mapsto \mathbb{F}_2$ of algebraic degree d , i.e. the truth table of $(b, g(b))$ is known, we can recover the truth table $(x, f(x))$ with the Möbius transform.

Figure: Evaluating a polynomial

standard Möbius transform:

- \bullet time: $u \cdot 2^u$ bit operations.
- memory: 2^u bits

■ optimized Möbius transform (credit to Dinur):

- \bullet time: $u \cdot 2^u$ bit operations
- memory: $u \cdot \begin{pmatrix} u \\ h \end{pmatrix}$ $\binom{u}{\le d}$ bits (EUROCRYPT 2021)

■ Evaluating a quadratic $(d = 2)$ polynomial $f(x)$ with Gray code:

- \bullet time: $u \cdot 2^u$ bit operations
- memory: $\begin{pmatrix} u \\ v \end{pmatrix}$ $\binom{u}{\leq 2}$ bits

Core idea 1

Given a Boolean polynomial $f(x)$, we aim to split $x = (x_1, \ldots, x_u)$ into two parts y, z of length $u - u_1$ and u_1 , respectively, i.e.

$$
\{y_1, \ldots y_{u-u_1}, z_1, \ldots, z_{u_1}\} = \{x_1, \ldots, x_u\}
$$

such that $f(x)$ can be rewritten as

$$
f(x) = \sum q_i(y) \ell_i(z)
$$

where ℓ_i is a linear function in $z.$ In this case, we simply say $f(x)$ is linear in z.

 Ω

Core idea 2

Given m Boolean polynomial equations

$$
f_1(x) = 0, f_2(x) = 0, \ldots, f_m(x) = 0
$$

we aim to find a possible way to divide x into (y, z) such that m' polynomials $f_i(x)$ are linear in z.

In this way, we can exhaust all possible values of $y\in \mathbb{F}_2^{u-u_1}$ and solve the corresponding m' linear equations in $z.$

つへへ

The original crossbred algorithm

Let

$$
f_1(x) = 0, f_2(x) = 0, \ldots, f_m(x) = 0
$$

be m quadratic Boolean equations in u variables.

For each f_i , we can generate some degree-3 and degree-4 equations:

$$
x_jf_i(x)=0, x_jx_kf_i(x)=0.
$$

Then, we obtain a much overdefined system of high-degree equations and expect to find as many linear equations in z from these equations by splitting x into γ and z.

On Crossbred Algorithm for Quadratic Equation Systems

The simplified crossbred algorithm

Let

$$
f_1(x) = 0, f_2(x) = 0, \ldots, f_m(x) = 0
$$

be *m* quadratic Boolean equations in *u* variables where $m > u$. Randomly choose u_1 variables such that

$$
m\geq u_1+\binom{u_1}{2}
$$

and set them as z. Then, we can always expect to obtain

$$
m-\binom{u_1}{2}
$$

linear equations in *z* by eliminating all quadratic terms $z_i z_j$.

 \leftarrow \Box

The simplified crossbred algorithm

In this way, we obtain the following equation system:

$$
A\cdot (z_1, z_2, \ldots, z_{u_1})^T = B,
$$

where each element in A and B is linear and quadratic in γ , resp.

Finally, with the polynomial evaluation, traverse y over $\mathbb{F}_2^{u-u_1}$ and compute the corresponding matrices \vec{A} and \vec{B} . Solve the linear equation system in z and recover z.

On Crossbred Algorithm for Quadratic Equation Systems

Let

$$
\epsilon + u_1 = m - u_1(u_1 - 1)/2, \epsilon > 0.
$$

The total time complexity is

$$
m^2\cdot \binom{u}{\leq 2}+2^{u-u_1}\cdot (u_1+\epsilon)\cdot (u_1^2+u_1\cdot \epsilon+u)
$$

bit operations.

 \leftarrow \Box

∍

Let

$$
E(x): P_1(x) = P_2(x) = 0 = \ldots = P_m(x) = 0
$$

be m Boolean equations in u variables and the degree is d .

The core idea:

- **1** Split x into $y \in \mathbb{F}_2^{u-u_1}$ and $z \in \mathbb{F}_2^{u_1}$.
- 2 Randomly pick $\ell = u_1 + 1$ equations from the m equations and denote them by

$$
E_1(y, z) : R_1(y, z) = R_2(y, z) = \cdots = R_{\ell}(y, z) = 0
$$

3 Each solution to $E(x)$ must be a solution to $E_1(y, z)$, but the inverse does not hold. The goal is efficiently enumerate the solutions to $E_1(y, z)$ and check their correctness against $E(x)$.

Assumption

We assume that when the value of y is specified, there is at most 1 solution of z satisfying $E_1(y, z)$, and the corresponding (y, z) is called the isolated solution to $E_1(y, z)$.

[Reason: after y is specified, we have $\ell = u_1 + 1$ equations in u_1 variables.]

How to efficiently solve $E_1(x)$?

Fukang Liu et al. **[Low-Memory Algebraic Attacks on LowMC](#page-0-0)** FSE 2023 16/31

3. 드라

 \leftarrow \Box

э

Polynomial method

Let

$$
\mathcal{F}_1(y,z)=(\mathcal{R}_1(y,z)\oplus 1)(\mathcal{R}_2(y,z)\oplus 1)\dots(\mathcal{R}_\ell(y,z)\oplus 1).
$$

Then, $E_1(y, z)$ is equivalent to the following equation

$$
\mathcal{F}_1(y,z)=1.
$$

Hence, the problem becomes how to enumerate all possible (y, z) such that $F_1(y, z) = 1$.

 Ω

On Dinur's Algorithm

New representations of $F_1(y, z)$ (similar to cube attack):

$$
F_1(y, z) = z_1 z_2 ... z_{u_1} U_0(y) \oplus Q_0(y, z),
$$

\n
$$
F_1(y, z) = z_1 z_2 ... z_{i-1} z_{i+1} ... z_{u_1} U_i(y) \oplus Q_i(y, z) \text{ where } z_i = 0.
$$

Then, we have

$$
U_0(y) = \bigoplus_{z \in \mathbb{F}_2^{u_1}} F_1(y, z),
$$

\n
$$
U_i(y) = \bigoplus_{(z_1, z_2, ..., z_{i-1}, z_{i+1}, ..., z_{u_1}) \in \mathbb{F}_2^{u_1 - 1}, z_i = 0} F_1(y, z) \text{ where } 1 \le i \le u_1,
$$

\n
$$
d_{U_0} = \text{Deg}(U_0) \le d_{F_1} - u_1,
$$

\n
$$
d_{U_i} = \text{Deg}(U_i) \le d_{F_1} - u_1 + 1 \text{ where } 1 \le i \le u_1.
$$

4 0 F

ЭX. 重 Properties under the previous assumption

$$
U_0(y)=0,\\
$$

there will be no solution to z.

If

If

$$
U_0(y)=1,
$$

there is a solution to z and it can be computed as follows:

$$
z_i=U_i(y)\oplus 1, i\in [1,u_1].
$$

The overall procedure:

- Find the ANFs of $U_i(y)$ where $i \in [0, u_1]$.
- 2 Evaluate $U_i(y)$ over all $y\in \mathbb{F}_2^{u-u_1}$ with the optimized Möbius transform.
- **3** For each obtained value of $U_i(y)$, use the above property to recover z and hence $x = (y, z)$ is known.
- **4** Check the correctness of $x = (y, z)$ against $E(x)$.

 QQ

On Dinur's Algorithm

Costs:

- Costs in Step 1 to recover $U_i(y)$.
- Costs in Step 2 to evaluate the polynomials over all $y \in \mathbb{F}_2^{u-u_1}$.
- Amortize the costs to check the correctness by considering 4 such smaller systems: $E_1(y, z)$, $E_2(y, z)$, $E_3(y, z)$, $E_4(y, z)$.

Time complexity:

$$
4 \cdot (2d \cdot \log_2 u \cdot 2^{u_1} \cdot \binom{u - u_1}{\leq d_{F_1} - u_1 + 1}) + 4 \cdot (u_1 + 1) \cdot (u - u_1) \cdot 2^{u - u_1}
$$

Memory complexity:

$$
4\cdot (u_1+1)\cdot \binom{u-u_1}{\leq d_{F_1}-u_1+1}
$$

Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on 3-round LowMC:

• GnD + crossbred algorithm (*m* variables; 3*m* quadratic equations)

 \blacksquare

 \triangleright \rightarrow \exists \rightarrow

重

Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on 4-round LowMC:

• GnD + polynomial method (*m* variables; 14*m* degree-4 equations)

 \leftarrow \Box

Þ

Results for 4-Round LowMC

Trivial time-memory trade offs for Dinur's algorithm:

Time: not higher than ours;

Memory: $> 2^{84.6}$, $> 2^{108.2}$ and $> 2^{134.2}$ for $k = 129, 192, 255$, resp.

4 **E F**

不重 的人 目

Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on LowMC with partial nonlinear layers:

 Ω

Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on LowMC with partial nonlinear layers:

- GnD + crossbred algorithm (*h* variables; αh quadratic equations)
- Guess 1 quadratic equation \rightarrow 3 quadratic equations

• intermediate variables \rightarrow 14 quadratic equations per S-box Linearization:

$$
z_0 = x_0 \oplus x_1x_2 = a^*,
$$

\n
$$
z_1 = (x_1x_2 \oplus a^*) \oplus x_1 \oplus (x_1x_2 \oplus a^*)x_2 = a^* \oplus x_1 \oplus a^*x_2,
$$

\n
$$
z_2 = (x_1x_2 \oplus a^*) \oplus x_1 \oplus x_2 \oplus (x_1x_2 \oplus a^*)x_1 = a^* \oplus x_1 \oplus x_2 \oplus a^*x_1.
$$

3 additional quadratic equations:

$$
z_0 = x_0 \oplus x_1x_2 = a^*,
$$

\n
$$
x_0x_1 \oplus x_1x_2 = x_1a^*,
$$

\n
$$
x_0x_2 \oplus x_1x_2 = x_2a^*.
$$

Fukang Liu et al. **[Low-Memory Algebraic Attacks on LowMC](#page-0-0)** FSE 2023 27/31

 \rightarrow \equiv \rightarrow

4 0 8

4 伺 ▶ \prec É

 \rightarrow \equiv \rightarrow

4 0 8

4 伺 ▶ K. э É

- **1** Efficient attacks on LowMC when memory is costly.
- ² New guess strategies combined with advanced techniques to solve nonlinear equations
- **3** Can we improve the polynomial method for overdefined systems?

Thank you

D.

4日下 \leftarrow \leftarrow \leftarrow É

 \rightarrow \equiv \rightarrow