

Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \mathbb{F}_p^n p

Application to Poseidon

Lorenzo Grassi, Silvia Onofri, Marco Pedicini, Luca Sozzi

Radboud University, Nijmegen, the Netherlands Scuola Normale Superiore di Pisa, Pisa, Italy Universit`a Roma Tre, Roma, Italy Università degli Studi di Milano, Milano, Italy

[Motivation](#page-1-0)

New applications including

- \triangleright secure multi-party computation (MPC),
- \blacktriangleright fully homomorphic encryption (FHE),
- \triangleright zero-knowledge proofs (ZK),

require symmetric-key primitives that

- (1) are naturally defined over $(\mathbb{F}_p)^n$ for a large prime integer p (usually, $p \approx 2^{128}$ or 2^{256});
- (2) minimize their multiplicative complexity, that is, the number of multiplications ($=$ non-linear operations) required to compute and/or verify them.

Invertible Non-Linear Operations over \mathbb{F}_p^n

Due to the size of p , the non-linear operations

- \triangleright cannot be pre-computed and stored (no look-up tables);
- \triangleright they must admit a simple algebraic expression.

Current known invertible non-linear operations:

- ▶ power map $x \mapsto x^d$ over \mathbb{F}_p where $\gcd(d, p 1) = 1$;
- \triangleright Dickson polynomial
	- $x \mapsto D_{d,\alpha}(x) = \sum_{i=0}^{\lfloor d/2 \rfloor} \frac{d}{d-i} \binom{d-i}{i}$ $\bar{f}_i^{(-i)}\cdot(-\alpha)^i\cdot x^{d-2i}$ over \mathbb{F}_p where $\gcd(d, p^2 - 1) = 1;$
- non-linear functions over \mathbb{F}_p via Legendre function $x \mapsto L_p(x) = x^{\frac{p-1}{2}} \in \{-1, 0, 1\}$ or/and $x \mapsto (-1)^x$ operator;
- non-linear layers over \mathbb{F}_p^n instantiated via Feistel and/or Lai-Massey schemes, e.g., $(x_0, x_1) \mapsto (x_1, x_1^2 + x_0)$.

Invertible Non-Linear Operations over \mathbb{F}_p^n

Due to the size of p , the non-linear operations

- \triangleright cannot be pre-computed and stored (no look-up tables);
- \triangleright they must admit a simple algebraic expression.

Current known invertible non-linear operations:

- ▶ power map $x \mapsto x^d$ over \mathbb{F}_p where $\gcd(d, p 1) = 1;$
- \triangleright Dickson polynomial $x \mapsto D_{d,\alpha}(x) = \sum_{i=0}^{\lfloor d/2 \rfloor} \frac{d}{d-i} {d-i \choose i}$ $\bar{\mathbf{f}}_i^{(i)} \cdot (-\alpha)^i \cdot \mathsf{x}^{d-2i}$ over \mathbb{F}_p where $\gcd(d,p^2-1)=1;$
- non-linear functions over \mathbb{F}_p via Legendre function $x\mapsto L_{\rho}(x)=x^{\frac{\rho-1}{2}}\in\{-1,0,1\}$ or/and $x\mapsto(-1)^{x}$ operator;
- non-linear layers over \mathbb{F}_p^n instantiated via Feistel and/or Lai-Massey schemes, e.g., $(x_0, x_1) \mapsto (x_1, x_1^2 + x_0)$.

Goals

- \triangleright Changing d in base of p (e.g., gcd(d, p 1) = 1) is not desirable:
	- potentially harder (algebraic) security analysis which must be adapted depending on p and so on d (e.g., density of the polynomial representation);
	- efficiency could depend on the choice of d.
- \blacktriangleright Feistel and/or Lai-Massey schemes are "partially linear" (do not provide "full non-linearity").

Goal: construct new invertible "full" non-linear layers over \mathbb{F}_p^n

 \triangleright cost *n* multiplications (e.g., of degree 2);

 \triangleright have (potentially) high-degree inverse.

Goals

- \triangleright Changing d in base of p (e.g., gcd(d, p 1) = 1) is not desirable:
	- potentially harder (algebraic) security analysis which must be adapted depending on p and so on d (e.g., density of the polynomial representation);
	- efficiency could depend on the choice of d.
- \blacktriangleright Feistel and/or Lai-Massey schemes are "partially linear" (do not provide "full non-linearity").
- **Goal**: construct new invertible "full" non-linear layers over \mathbb{F}_p^n that
	- \triangleright cost *n* multiplications (e.g., of degree 2);
	- \triangleright have (potentially) high-degree inverse.

[Shift Invariant Lifting Functions](#page-7-0) S_F over \mathbb{F}^n_p $_p^n$ [Induced by a Local Map](#page-7-0) $F: \mathbb{F}_p^m \to \mathbb{F}_p$

Let $\mathcal{S}:\mathbb{F}_p^n\to\mathbb{F}_p^n$ be a generic non-linear function:

 $S(x_0, x_1, \ldots, x_{n-1}) = y_0 ||y_1|| \ldots ||y_{n-1}$ where $\forall i \in \{0, 1, \ldots, n-1\} : y_i := F_i(x_0, x_1, \ldots, x_{n-1})$

for certain $F_i: \mathbb{F}_p^n \to \mathbb{F}_p$.

 \implies Too many possible cases to analyze!

Idea: define S as a Cellular Automata (CA), that is, a shift-invariant transformation over a \mathbb{F}_ρ^n –array of cells defined by a single local update rule $F: \mathbb{F}_p^m \to \mathbb{F}_p$ for $1 \leq m \leq n$.

Let $\mathcal{S}:\mathbb{F}_p^n\to\mathbb{F}_p^n$ be a generic non-linear function:

 $S(x_0, x_1, \ldots, x_{n-1}) = v_0 ||v_1|| \ldots ||v_{n-1}$ where $\forall i \in \{0, 1, \ldots, n-1\} : y_i := F_i(x_0, x_1, \ldots, x_{n-1})$

for certain $F_i: \mathbb{F}_p^n \to \mathbb{F}_p$.

 \implies Too many possible cases to analyze!

Idea: define S as a Cellular Automata (CA), that is, a shift-invariant transformation over a \mathbb{F}_p^n –array of cells defined by a single local update rule $F: \mathbb{F}_p^m \to \mathbb{F}_p$ for $1 \leq m \leq n$.

SI-Lifting Functions S_F (2/2)

The Shift Invariant (SI) lifting function $\mathcal{S}_F: \mathbb{F}_p^n \to \mathbb{F}_p^n$ induced by $F: \mathbb{F}_p^m \to \mathbb{F}_p$ is defined as

$$
S_F(x_0, x_1, \ldots, x_{n-1}) = y_0 ||y_1|| \ldots ||y_{n-1} \quad \text{where}
$$

$$
\forall i \in \{0, 1, \ldots, n-1\} : y_i := F(x_i, x_{i+1}, \ldots, x_{i+m-1}).
$$

"Shift Invariant" property due to the fact that:

$$
\Pi_i\circ\mathcal{S}_F=\mathcal{S}_F\circ\Pi_i
$$

for each shift function Π_i over \mathbb{F}_p^n defined as

 $\Pi_i(x_0, x_1, \ldots, x_{n-1}) = x_i ||x_{i+1}|| \ldots ||x_{i+n-1}$

for $i \in \{0, 1, \ldots, n-1\}$.

SI-Lifting Functions S_F (2/2)

The Shift Invariant (SI) lifting function $\mathcal{S}_F: \mathbb{F}_p^n \to \mathbb{F}_p^n$ induced by $F: \mathbb{F}_p^m \to \mathbb{F}_p$ is defined as

$$
S_F(x_0, x_1, \ldots, x_{n-1}) = y_0 ||y_1|| \ldots ||y_{n-1} \quad \text{where}
$$

$$
\forall i \in \{0, 1, \ldots, n-1\} : y_i := F(x_i, x_{i+1}, \ldots, x_{i+m-1}).
$$

"Shift Invariant" property due to the fact that:

$$
\Pi_i\circ\mathcal{S}_F=\mathcal{S}_F\circ\Pi_i
$$

for each shift function Π_i over \mathbb{F}_p^n defined as

$$
\Pi_i(x_0, x_1, \ldots, x_{n-1}) = x_i ||x_{i+1}|| \ldots ||x_{i+n-1}
$$

for $i \in \{0, 1, \ldots, n-1\}$.

Example of SI-Lifting Functions over \mathbb{F}_2^n

See Joan Daemen's PhD Thesis ("Cipher and Hash Function Design Strategies based on linear and differential cryptanalysis"):

► given the chi function
$$
\chi : \mathbb{F}_2^3 \to \mathbb{F}_2
$$
:

$$
\chi(x_0,x_1,x_2)=x_0\oplus (x_1\oplus 1)\cdot x_2\,,
$$

then S_χ over \mathbb{F}_2^n is invertible if and only if $\gcd(n, 2) = 1$; \triangleright given the function

 $F(x_0, x_1, x_2, x_3) = x_0 \oplus (x_1 \oplus 1) \cdot x_2 \cdot x_3,$

then $\mathcal{S}_{\mathcal{F}}$ over \mathbb{F}_2^n is invertible if and only if $\gcd(n,3)=1;$ \triangleright given the function

 $F(x_0, x_1, \ldots, x_5) = x_1 \oplus (x_0 \oplus 1) \cdot (x_2 \oplus 1) \cdot x_3 \cdot (x_5 \oplus 1)$ then \mathcal{S}_F over \mathbb{F}_2^n is invertible for each $n\geq 6$.

Example of SI-Lifting Functions over \mathbb{F}_2^n

See Joan Daemen's PhD Thesis ("Cipher and Hash Function Design Strategies based on linear and differential cryptanalysis"):

► given the chi function
$$
\chi : \mathbb{F}_2^3 \to \mathbb{F}_2
$$
:

$$
\chi(x_0,x_1,x_2)=x_0\oplus (x_1\oplus 1)\cdot x_2\,,
$$

then S_χ over \mathbb{F}_2^n is invertible if and only if $\gcd(n, 2) = 1$; \blacktriangleright given the function

$$
F(x_0, x_1, x_2, x_3) = x_0 \oplus (x_1 \oplus 1) \cdot x_2 \cdot x_3,
$$

then S_F over \mathbb{F}_2^n is invertible if and only if $gcd(n, 3) = 1$; \blacktriangleright given the function

$$
F(x_0,x_1,\ldots,x_5)=x_1\oplus (x_0\oplus 1)\cdot (x_2\oplus 1)\cdot x_3\cdot (x_5\oplus 1),
$$

then S_F over \mathbb{F}_2^n is invertible for each $n \geq 6$.

Our Goal

Let

 \blacktriangleright p \geq 3; \blacktriangleright $F: \mathbb{F}_p^m \to \mathbb{F}_p$ quadratic.

Given $\mathcal{S}_\mathcal{F} : \mathbb{F}_\mathcal{P}^n \to \mathbb{F}_\mathcal{P}^n$ defined as before, that is,

$$
S_F(x_0, x_1, \ldots, x_{n-1}) = y_0 ||y_1|| \ldots ||y_{n-1} \quad \text{where}
$$

$$
\forall i \in \{0, 1, \ldots, n-1\} : y_i := F(x_i, x_{i+1}, \ldots, x_{i+m-1}),
$$

then

- is it possible to find F for which S_F is invertible?
- In if yes, for any value of n and/or m ?

[SI-Lifting Functions](#page-15-0) $\mathcal{S}_{\mathcal{F}}$ over \mathbb{F}_p^n via Quadratic $F: \mathbb{F}_p^m \to \mathbb{F}_p$ [: Results for](#page-15-0) $m \in \{2, 3\}$

Necessary Conditions for Inveritibility

Let $F: \mathbb{F}_p^m \to \mathbb{F}_p$ be a quadratic function: $F(x_0, x_1, \ldots, x_{m-1}) := \sum \alpha_{i_0, i_1, \ldots, i_{m-1}} \cdot x_0^{i_0} \cdot x_1^{i_1} \cdot \ldots \cdot x_{m-1}^{i_{m-1}}.$ $0 \leq i_0 + i_1 + \ldots + i_{m-1} \leq 2$ Let $\alpha^{(d)}$ be the sum of the coefficients of the degree-d monomials: $\alpha^{(d)} := \sum$ $i_0+i_1+...+i_{m-1}=d$ $\alpha_{i_0,i_1,...,i_{m-1}}$. Necessary requirements for invertibility of S_F : $\alpha^{(2)}=0$ and $\alpha^{(1)}\neq 0$. If $\alpha^{(2)} = \alpha^{(1)} = 0$: $F(x, x, \dots, x) = F(0, 0, \dots, 0)$; If $\alpha^{(2)} \neq 0$: $F(x, x, ..., x) = \alpha^{(2)} \cdot x^2 + \alpha^{(1)} \cdot x + \alpha_{0,0,...,0}$ hence collisions $S_F(x', x', \ldots, x') = S_F(\hat{x}, \hat{x}, \ldots, \hat{x}).$

Necessary Conditions for Inveritibility

Let $F: \mathbb{F}_p^m \to \mathbb{F}_p$ be a quadratic function:

$$
F(x_0,x_1,\ldots,x_{m-1}):=\sum_{0\leq i_0+i_1+\ldots+i_{m-1}\leq 2}\alpha_{i_0,i_1,\ldots,i_{m-1}}\cdot x_0^{i_0}\cdot x_1^{i_1}\cdot\ldots\cdot x_{m-1}^{i_{m-1}}.
$$

Let $\alpha^{(d)}$ be the sum of the coefficients of the degree-d monomials:

$$
\alpha^{(d)} := \sum_{i_0+i_1+\ldots+i_{m-1} = d} \alpha_{i_0,i_1,\ldots,i_{m-1}} \, .
$$

Necessary requirements for invertibility of S_F :

$$
\alpha^{(2)}=0 \quad \text{ and } \quad \alpha^{(1)}\neq 0\,.
$$

- If $\alpha^{(2)} = \alpha^{(1)} = 0$: $F(x, x, \dots, x) = F(0, 0, \dots, 0)$;
- If $\alpha^{(2)} \neq 0$: $F(x, x, ..., x) = \alpha^{(2)} \cdot x^2 + \alpha^{(1)} \cdot x + \alpha_{0,0,...,0}$ hence collisions $S_F(x', x', \ldots, x') = S_F(\hat{x}, \hat{x}, \ldots, \hat{x}).$

Theorem

Let $p\geq 3$ be a prime, let $m=2$, and let $n\geq 2$. Let $F:\mathbb{F}_p^2\rightarrow \mathbb{F}_p$ be a quadratic function:

$$
F(x_0, x_1) = \alpha_{2,0} \cdot x_0^2 + \alpha_{1,1} \cdot x_0 \cdot x_1 + \alpha_{0,2} \cdot x_1^2 + \alpha_{1,0} \cdot x_0 + \alpha_{0,1} \cdot x_1.
$$

\nGiven S_F over \mathbb{F}_p^n :
\n
$$
\Rightarrow
$$
 if $n = 2$, then S_F is invertible if and only if
\n
$$
F(x_0, x_1) = \gamma_0 \cdot x_0 + \gamma_1 \cdot x_1 + \gamma_2 \cdot (x_0 - x_1)^2
$$

\nfor $\gamma_0 \neq \pm \gamma_1$;
\n
$$
\Rightarrow
$$
 if $n \geq 3$, then S_F is **never** invertible.

Collisions over \mathbb{F}_p^3 of the form

$$
\mathcal{S}_\mathcal{F}(0,x_0,x_1)=\mathcal{S}_\mathcal{F}(0,x_0',x_1')\,,
$$

imply collisions over \mathbb{F}_p^n for each $n\geq 3$ of the form

$$
\mathcal{S}_F(0,x_0,x_1,0,0,\ldots,0)=\mathcal{S}_F(0,x_0',x_1',0,0,\ldots,0)\,.
$$

Indeed, both are satisfied by

 $F(0, x_0) = F(0, x'_0), \quad F(x_0, x_1) = F(x'_0, x'_1), \quad F(x_1, 0) = F(x'_1, 0).$

⇒ We limit ourselves to $n = 3$ and $\mathcal{S}_F(0, x_0, x_1) = \mathcal{S}_F(0, x_0, x_1)$.

Collisions over \mathbb{F}_p^3 of the form

$$
\mathcal{S}_\mathcal{F}(0,x_0,x_1)=\mathcal{S}_\mathcal{F}(0,x_0',x_1')\,,
$$

imply collisions over \mathbb{F}_p^n for each $n\geq 3$ of the form

$$
\mathcal{S}_F(0,x_0,x_1,0,0,\ldots,0)=\mathcal{S}_F(0,x_0',x_1',0,0,\ldots,0)\,.
$$

Indeed, both are satisfied by

 $F(0, x_0) = F(0, x'_0), \quad F(x_0, x_1) = F(x'_0, x'_1), \quad F(x_1, 0) = F(x'_1, 0).$

⇒ We limit ourselves to $n = 3$ and $S_F(0, x_0, x_1) = S_F(0, x'_0, x'_1)$.

Necessary requirements for invertibility of S_F :

$$
\triangleright \ \alpha_{2,0} + \alpha_{1,1} + \alpha_{0,2} = 0;
$$

$$
\blacktriangleright \alpha_{1,0} + \alpha_{0,1} \neq 0.
$$

In the paper, collisions are proposed in order to cover all the cases just given. E.g., if $\alpha_{2,0}, \alpha_{1,1} \neq 0$ with $\alpha_{2,0} + \alpha_{1,1} + \alpha_{0,2} = 0$:

$$
\mathcal{S}_{F}\left(0, \frac{\alpha_{0,2} \cdot \alpha_{1,0}}{\alpha_{1,1} \cdot \alpha_{2,0}} - \frac{\alpha_{0,1}}{\alpha_{1,1}}, x\right) = \mathcal{S}_{F}\left(0, \frac{\alpha_{0,2} \cdot \alpha_{1,0}}{\alpha_{1,1} \cdot \alpha_{2,0}} - \frac{\alpha_{0,1}}{\alpha_{1,1}}, -x - \frac{\alpha_{1,0}}{\alpha_{2,0}}\right)
$$
\nfor each $x \in \mathbb{F}_p$.

Examples of Invertible SI-Lifting Functions S_F for $m = 3$ and $n \in \{3, 4\}$

\n- \n
$$
\mathsf{Case}\ n = m = 3
$$
: given\n $\mathsf{F}(x_0, x_1, x_2) = \sum_{i=0}^{2} \mu_i \cdot x_i + (x_0 - x_1)^2 + (x_1 - x_2)^2 + (x_0 - x_2)^2$,\n
\n- \n such that $\text{circ}(\mu_0, \mu_1, \mu_2) \in \mathbb{F}_p^{3 \times 3}$ is invertible, then \mathcal{S}_F over \mathbb{F}_p^3 is invertible.\n
\n- \n Case $n = 3$ and $m = 4$: given\n $\mathsf{F}(x_0, x_1, x_2) = \alpha \cdot (x_0 + x_2) + \beta \cdot x_1 + (x_0 - x_2)^2$,\n such that $\alpha \neq \pm \beta/2$, then \mathcal{S}_F over \mathbb{F}_p^4 is invertible.\n
\n

 \triangleright Other examples given in the paper.

 \sim и π

Theorem

Let $p\geq 3$ be a prime, let $m=3$, and let $n\geq 5$. Let $F:\mathbb{F}_p^3\to \mathbb{F}_p$ be any quadratic function. The SI-lifting function \mathcal{S}_{F} over \mathbb{F}_p^n induced by F is never invertible.

- \triangleright Strategy of the proof similar to the one just proposed for $m = 2$ and $n > 3$.
- \blacktriangleright Different from the binary case, for which \mathcal{S}_F over \mathbb{F}_2^n can be invertible depending on $F:\mathbb{F}_2^3\to\mathbb{F}_2$ and on n (e.g., χ).

[The Sponge Hash Function Neptune](#page-24-0)

Poseidon Permutation over \mathbb{F}_p^t

. .

- $S(x) = x^d$ where $d \geq 3$ s.t. $gcd(d, p - 1) = 1$;
- Linear layer: multiplication with a MDS matrix in $\mathbb{F}_p^{t\times t}$ (that prevents infinitely long subspace trails);
- Random constants addition in \mathbb{F}_p^t .
- Number of rounds $(\kappa \approx \mathsf{log}_2(\rho))$:

$$
R_F = 2 \cdot R_f = 8,
$$

$$
R_P \approx \log_d(p)
$$

From Poseidon to Neptune

 \triangleright Internal partial rounds are crucial for increasing the degree of the permutation, and so preventing algebraic attacks. Cost of

$$
\underbrace{(\text{Hw}(d) + \lfloor \log_2(d) \rfloor - 1)}_{\geq 2} \cdot \underbrace{R_P}_{\approx \log_d(p)}
$$

multiplications, which is independent of t ;

 \triangleright External full rounds guarantee security against statistical attacks, including differential, linear, and so on. Cost of

$$
\underbrace{(\mathsf{Hw}(d) + \lfloor \log_2(d) \rfloor - 1) \cdot R_F}_{\geq 16} \cdot \mathbf{t}
$$

multiplications, which depends on t;

 \triangleright Goal: modify the external rounds for reducing the total number of multiplications (= factor that multiplies t) with decreasing the security.

From Poseidon to Neptune

 \triangleright Internal partial rounds are crucial for increasing the degree of the permutation, and so preventing algebraic attacks. Cost of

$$
\underbrace{(\text{Hw}(d) + \lfloor \log_2(d) \rfloor - 1)}_{\geq 2} \cdot \underbrace{R_P}_{\approx \log_d(p)}
$$

multiplications, which is independent of t ;

 \triangleright External full rounds guarantee security against statistical attacks, including differential, linear, and so on. Cost of

$$
\underbrace{(\mathsf{Hw}(d) + \lfloor \log_2(d) \rfloor - 1) \cdot R_F}_{\geq 16} \cdot \mathbf{t}
$$

multiplications, which *depends on t*;

 \triangleright Goal: modify the external rounds for reducing the total number of multiplications (= factor that multiplies t) without decreasing the security.

Neptune's External Rounds: Non-Linear Layer

 \blacktriangleright Given any quadratic $F: \mathbb{F}_{\overline{\rho}}^{\leq 3} \to \mathbb{F}_\rho,$ then \mathcal{S}_F over $\mathbb{F}_{\overline{\rho}}^{\geq 5}$ is not invertible.

Let $t = 2 \cdot t'$ even. Non-linear layer of NEPTUNE's external rounds via concatenation of S-Boxes $\mathcal S$ over $\mathbb F _{ \rho} ^2$, defined as

$$
\mathcal{S}(x_0,x_1)=\mathcal{S}'\circ\mathcal{A}\circ\mathcal{S}'(x_0,x_1)
$$

$$
S'(x_0, x_1) = x_0 + (x_0 - x_1)^2 ||x_1 + (x_0 - x_1)||
$$

$$
A(x_0, x_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \end{bmatrix};
$$

Differential property of S: $DP_{max} = p^{-1}$;

 \triangleright Cost of t multiplications for computing S (versus ≥ 2 power maps).

Neptune's External Rounds: Non-Linear Layer

- \blacktriangleright Given any quadratic $F: \mathbb{F}_{\overline{\rho}}^{\leq 3} \to \mathbb{F}_\rho,$ then \mathcal{S}_F over $\mathbb{F}_{\overline{\rho}}^{\geq 5}$ is not invertible.
- Let $t = 2 \cdot t'$ even. Non-linear layer of NEPTUNE's external rounds via concatenation of S-Boxes $\mathcal S$ over $\mathbb F _p ^2$, defined as

$$
\mathcal{S}(x_0,x_1)=\mathcal{S}'\circ\mathcal{A}\circ\mathcal{S}'(x_0,x_1)
$$

where (for $\gamma \neq 0$):

$$
S'(x_0, x_1) = x_0 + (x_0 - x_1)^2 ||x_1 + (x_0 - x_1) A(x_0, x_1) = \begin{bmatrix} \gamma \\ 0 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \end{bmatrix};
$$

- ▶ Differential property of S: $DP_{max} = p^{-1}$;
- ► Cost of t multiplications for computing S (versus $\geq 2 \cdot t$ for power maps).

2 , Table: Comparison of POSEIDON and NEPTUNE - both instantiated with $d=5$ – for the case $p\approx 2^{128}$ (or bigger), $\kappa=128$, and several values of $t \in \{4, 8, 12, 16\}$.

(See the paper for more details about NEPTUNE' specification.)

[Summary and Open Problems](#page-31-0)

Summary and Open Problems

- ► Let $p \ge 3$. Given any quadratic function $F: \mathbb{F}_{p}^{m} \to \mathbb{F}_{p}$, then the SI-lifting function $\mathcal{S}_{\mathcal{F}}$ over \mathbb{F}_p^n is **not** invertible if
	- $m = 1, n \ge 1$;
	- $m = 2, n > 3;$
	- $m = 3$, $n > 5$.
- **Den Conjecture:** Given F as before, S_F is never invert if $n > 2 \cdot m - 1$:
- \triangleright Open Problem: Construct invertible non-linear functions over \mathbb{F}_p^n with minimal multiplicative complexity;
- \triangleright Exploit them when designing future MPC-/ZK-/FHE-friendly symmetric schemes!

Summary and Open Problems

- ► Let $p \ge 3$. Given any quadratic function $F: \mathbb{F}_{p}^{m} \to \mathbb{F}_{p}$, then the SI-lifting function $\mathcal{S}_{\mathcal{F}}$ over \mathbb{F}_p^n is **not** invertible if
	- $m = 1, n \ge 1$;
	- $m = 2, n > 3$;
	- $m = 3, n > 5$.
- **Den Conjecture:** Given F as before, S_F is never invertible if $n > 2 \cdot m - 1$:
- ▶ Open Problem: Construct invertible non-linear functions over \mathbb{F}_p^n with minimal multiplicative complexity;
- \triangleright Exploit them when designing future MPC-/ZK-/FHE-friendly symmetric schemes!

Thanks for your attention!

Questions?

Comments?

Lai-Massey Schemes: Example of SI-Lifting Functions for $m = n$

Let circ $(\mu_0, \mu_1, \ldots, \mu_{n-1}) \in \mathbb{F}_p^{n \times n}$ be an invertible circulant matrix. Given an invertible even function $H : \mathbb{F}_p \to \mathbb{F}_p$ (i.e., $H(z) = H(-z)$, let

$$
F(x_0, x_1, \ldots, x_{n-1}) = \sum_{i=0}^{n-1} \mu_i \cdot x_i + H\left(\sum_{i=0}^{n-1} (-1)^i \cdot x_i\right)
$$

.

If $n = 2n'$ is even, then S_F over \mathbb{F}_p^n is invertible.

Proof. Given
$$
S_F(x_0, x_1, ..., x_{n-1}) = y_0 ||y_1|| ... ||y_{n-1}
$$
:

- \triangleright if circ($\mu_0, \mu_1, \ldots, \mu_{n-1}$) = circ(1,0,...,0), then $\sum_{i=0}^{n-1}(-1)^{i}\cdot x_{i}=\sum_{i=0}^{n-1}(-1)^{i}\cdot y_{i};$
- ighthroportion that the $z \in \mathbb{F}_p^n$ defined as $z = \text{circ}^{-1}(\mu_0, \mu_1, \dots, \mu_{n-1}) \times y.$

(Other examples in the paper.)

Definition. A function $F: \mathbb{F}_{p}^{m} \to \mathbb{F}_{p}$ is balanced if and only if

$$
\forall y \in \mathbb{F}_p: \qquad |\{x \in \mathbb{F}_p^m \mid F(x) = y\}| = p^{m-1}.
$$

Lemma. If F is not balanced, then S_F is not invertible.

Example. Let $p \geq 2$ be a prime, and let $F: \mathbb{F}_p^2 \to \mathbb{F}_p$ be

 $F(x_0, x_1) = \alpha_{2,0} \cdot x_0^2 + \alpha_{1,1} \cdot x_0 \cdot x_1 + \alpha_{0,2} \cdot x_1^2 + \alpha_{1,0} \cdot x_0 + \alpha_{0,1} \cdot x_1$.

If $\alpha_{2,0} = \alpha_{0,2} = 0$, then F is **not** a balanced function.

Neptune's External Rounds: Linear Layer

Given $M',M''\in \mathbb{F}_p^{t'\times t'}$ two MDS matrices, linear layer $M\in \mathbb{F}_p^{t\times t}$ of NEPTUNE's external rounds defined as

$$
M_{i,j} = \begin{cases} M'_{i',j'} & \text{if } (i,j) = (2i', 2j') \\ M''_{i'',j''} & \text{if } (i,j) = (2i'' + 1, 2j'' + 1) \\ 0 & \text{otherwise} \end{cases}
$$

ŀ L T \mathbb{I} $\overline{}$ \parallel \mathbf{I} \mathbb{R} $\frac{1}{2}$ $\overline{1}$ \perp \mathbf{I} \perp

.

that is,

$$
M = \begin{bmatrix} M'_{0,0} & 0 & M'_{0,1} & 0 & \dots & M'_{0,t'-1} & 0 \\ 0 & M''_{0,0} & 0 & M''_{0,1} & \dots & 0 & M''_{0,t'-1} \\ M'_{1,0} & 0 & M'_{1,1} & 0 & \dots & M'_{1,t'-1} & 0 \\ 0 & M''_{1,0} & 0 & M''_{1,1} & \dots & 0 & M''_{1,t'-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ M'_{t'-1,0} & 0 & M'_{t'-1,1} & 0 & \dots & M'_{t'-1,t'-1} & 0 \\ 0 & M''_{t'-1,0} & 0 & M''_{t'-1,1} & \dots & 0 & M''_{t'-1,t'-1} \end{bmatrix}
$$

References i

- 靠 G. Bertoni, J. Daemen, M. Peeters, G. Van Assche On the Indifferentiability of the Sponge Construction. EUROCRYPT 2008
- **J.** Daemen and V. Rijmen The Wide Trail Design Strategy. IMACC 2001
- J. Daemen F

Cipher and hash function design, strategies based on linear and differential cryptanalysis. PhD Thesis (1995)

畐 L. Grassi

Bounded Surjective Quadratic Functions over \mathbb{F}_p^n for MPC-/ZK-/FHE-Friendly Symmetric Primitives. IACR ePrint 2022

F. L. Grassi, D. Khovratovich, S. Rønjom, M. Schofnegger The Legendre Symbol and the Modulo-2 Operator in Symmetric Schemes over \mathbb{F}_p^n Preimage Attack on Full Grendel. FSE/ToSC 2021/2022

量 L. Grassi, D. Khovratovich, A. Roy, C. Rechberger, M. Schofnegger Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. USENIX 2021

E L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, M. Schofnegger

On a Generalization of Substitution-Permutation Networks: The HADES Design Strategy. EUROCRYPT 2020

F

- L. Grassi, S. Onofri, M. Pedicini, L. Sozzi Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \mathbb{F}_p^n . FSE/ToSC 2022/2023
	- L. Grassi, C. Rechberger, M. Schofnegger Proving Resistance Against Infinitely Long Subspace Trails: How to Choose the Linear Layer. FSE/ToSC 2021/2022