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Motivation



Symmetric Primitives for MPC/FHE/ZK Applications

New applications including

I secure multi-party computation (MPC),

I fully homomorphic encryption (FHE),

I zero-knowledge proofs (ZK),

require symmetric-key primitives that

(1) are naturally defined over (Fp)n for a large prime integer p

(usually, p ≈ 2128 or 2256);

(2) minimize their multiplicative complexity, that is, the number

of multiplications (= non-linear operations) required to

compute and/or verify them.

1 / 18



Invertible Non-Linear Operations over Fn
p

Due to the size of p, the non-linear operations

I cannot be pre-computed and stored (no look-up tables);

I they must admit a simple algebraic expression.

Current known invertible non-linear operations:

I power map x 7→ xd over Fp where gcd(d , p − 1) = 1;

I Dickson polynomial

x 7→ Dd ,α(x) =
∑bd/2c

i=0
d

d−i
(d−i

i

)
· (−α)i · xd−2i over Fp where

gcd(d , p2 − 1) = 1;

I non-linear functions over Fp via Legendre function

x 7→ Lp(x) = x
p−1

2 ∈ {−1, 0, 1} or/and x 7→ (−1)x operator;

I non-linear layers over Fn
p instantiated via Feistel and/or

Lai-Massey schemes, e.g., (x0, x1) 7→ (x1, x
2
1 + x0).
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Goals

I Changing d in base of p (e.g., gcd(d , p − 1) = 1) is not

desirable:

• potentially harder (algebraic) security analysis which

must be adapted depending on p and so on d (e.g.,

density of the polynomial representation);

• efficiency could depend on the choice of d .

I Feistel and/or Lai-Massey schemes are “partially linear” (do

not provide “full non-linearity”).

Goal: construct new invertible “full” non-linear layers over Fn
p that

I cost n multiplications (e.g., of degree 2);

I have (potentially) high-degree inverse.
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Shift Invariant Lifting Functions SF
over Fn

p Induced by a Local Map

F : Fm
p → Fp



SI-Lifting Functions SF (1/2)

Let S : Fn
p → Fn

p be a generic non-linear function:

S(x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n − 1} : yi := Fi (x0, x1, . . . , xn−1)

for certain Fi : Fn
p → Fp.

=⇒ Too many possible cases to analyze!

Idea: define S as a Cellular Automata (CA), that is, a

shift-invariant transformation over a Fn
p–array of cells defined by a

single local update rule F : Fm
p → Fp for 1 ≤ m ≤ n.
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SI-Lifting Functions SF (2/2)

The Shift Invariant (SI) lifting function SF : Fn
p → Fn

p induced by

F : Fm
p → Fp is defined as

SF (x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n − 1} : yi := F (xi , xi+1, . . . , xi+m−1) .

“Shift Invariant” property due to the fact that:

Πi ◦ SF = SF ◦ Πi

for each shift function Πi over Fn
p defined as

Πi (x0, x1, . . . , xn−1) = xi‖xi+1‖ . . . ‖xi+n−1

for i ∈ {0, 1, . . . , n − 1}.
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Example of SI-Lifting Functions over Fn
2

See Joan Daemen’s PhD Thesis (“Cipher and Hash Function

Design Strategies based on linear and differential cryptanalysis”):

I given the chi function χ : F3
2 → F2:

χ(x0, x1, x2) = x0 ⊕ (x1 ⊕ 1) · x2 ,

then Sχ over Fn
2 is invertible if and only if gcd(n, 2) = 1;

I given the function

F (x0, x1, x2, x3) = x0 ⊕ (x1 ⊕ 1) · x2 · x3 ,

then SF over Fn
2 is invertible if and only if gcd(n, 3) = 1;

I given the function

F (x0, x1, . . . , x5) = x1 ⊕ (x0 ⊕ 1) · (x2 ⊕ 1) · x3 · (x5 ⊕ 1) ,

then SF over Fn
2 is invertible for each n ≥ 6.
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Our Goal

Let

I p ≥ 3;

I F : Fm
p

→ Fp quadratic.

Given SF : Fn
p → Fn

p defined as before, that is,

SF (x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n − 1} : yi := F (xi , xi+1, . . . , xi+m−1) ,

then

I is it possible to find F for which SF is invertible?

I if yes, for any value of n and/or m?
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SI-Lifting Functions SF over Fn
p via

Quadratic F : Fm
p → Fp: Results for

m ∈ {2, 3}



Necessary Conditions for Inveritibility

Let F : Fm
p → Fp be a quadratic function:

F (x0, x1, . . . , xm−1) :=
∑

0≤i0+i1+...+im−1≤2

αi0,i1,...,im−1 · x
i0
0 · x

i1
1 · . . . · x

im−1

m−1 .

Let α(d) be the sum of the coefficients of the degree-d monomials:

α(d) :=
∑

i0+i1+...+im−1=d

αi0,i1,...,im−1 .

Necessary requirements for invertibility of SF :

α(2) = 0 and α(1) 6= 0 .

I If α(2) = α(1) = 0: F (x , x , . . . , x) = F (0, 0, . . . , 0);

I If α(2) 6= 0: F (x , x , . . . , x) = α(2) · x2 + α(1) · x + α0,0,...,0,

hence collisions SF (x ′, x ′, . . . , x ′) = SF (x̂ , x̂ , . . . , x̂).
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Main Result for m = 2

Theorem
Let p ≥ 3 be a prime, let m = 2, and let n ≥ 2. Let F : F2

p → Fp

be a quadratic function:

F (x0, x1) = α2,0 · x2
0 + α1,1 · x0 · x1 + α0,2 · x2

1 + α1,0 · x0 + α0,1 · x1 .

Given SF over Fn
p:

I if n = 2, then SF is invertible if and only if

F (x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2

for γ0 6= ±γ1;

I if n ≥ 3, then SF is never invertible.
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Sketch of the Proof – Case: m = 2 and n ≥ 3 (1/2)

Collisions over F3
p of the form

SF (0, x0, x1) = SF (0, x ′0, x
′
1) ,

imply collisions over Fn
p for each n ≥ 3 of the form

SF (0, x0, x1, 0, 0, . . . , 0) = SF (0, x ′0, x
′
1, 0, 0, . . . , 0) .

Indeed, both are satisfied by

F (0, x0) = F (0, x ′0) , F (x0, x1) = F (x ′0, x
′
1) , F (x1, 0) = F (x ′1, 0) .

=⇒ We limit ourselves to n = 3 and SF (0, x0, x1) = SF (0, x ′0, x
′
1).
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Sketch of the Proof – Case: m = 2 and n ≥ 3 (2/2)

Necessary requirements for invertibility of SF :

I α2,0 + α1,1 + α0,2 = 0;

I α1,0 + α0,1 6= 0.

In the paper, collisions are proposed in order to cover all the cases
just given. E.g., if α2,0, α1,1 6= 0 with α2,0 + α1,1 + α0,2 = 0:

SF
(

0,
α0,2 · α1,0

α1,1 · α2,0
− α0,1

α1,1
, x

)
= SF

(
0,
α0,2 · α1,0

α1,1 · α2,0
− α0,1

α1,1
,−x − α1,0

α2,0

)
for each x ∈ Fp.
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Examples of Invertible SI-Lifting Functions SF for m = 3 and

n ∈ {3, 4}

I Case n = m = 3: given

F (x0, x1, x2) =
2∑

i=0

µi · xi + (x0− x1)2 + (x1− x2)2 + (x0− x2)2 ,

such that circ(µ0, µ1, µ2) ∈ F3×3
p is invertible, then SF over

F3
p is invertible.

I Case n = 3 and m = 4: given

F (x0, x1, x2) = α · (x0 + x2) + β · x1 + (x0 − x2)2 ,

such that α 6= ±β/2, then SF over F4
p is invertible.

I Other examples given in the paper.
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Main Result for m = 3 and n ≥ 5

Theorem
Let p ≥ 3 be a prime, let m = 3, and let n ≥ 5. Let F : F3

p → Fp

be any quadratic function. The SI-lifting function SF over Fn
p

induced by F is never invertible.

I Strategy of the proof similar to the one just proposed for

m = 2 and n ≥ 3.

I Different from the binary case, for which SF over Fn
2 can be

invertible depending on F : F3
2 → F2 and on n (e.g., χ).
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The Sponge Hash Function Neptune



Poseidon Permutation over Ft
p

ARC (·)

S S S S S S . . . S

M(·)

ARC (·)

. . . S

M(·)

ARC (·)

S S S S S S . . . S

M(·)

...

ARC (·)

RFull

RPartial

RFull

I S(x) = xd where d ≥ 3

s.t. gcd(d , p − 1) = 1;

I Linear layer: multiplication

with a MDS matrix in Ft×t
p

(that prevents infinitely

long subspace trails);

I Random constants

addition in Ft
p.

I Number of rounds

(κ ≈ log2(p)):

RF = 2 · Rf = 8 ,

RP ≈ logd(p)
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From Poseidon to Neptune

I Internal partial rounds are crucial for increasing the degree of

the permutation, and so preventing algebraic attacks. Cost of

(Hw(d) + blog2(d)c − 1)︸ ︷︷ ︸
≥2

· RP︸︷︷︸
≈logd (p)

multiplications, which is independent of t;

I External full rounds guarantee security against statistical

attacks, including differential, linear, and so on. Cost of

(Hw(d) + blog2(d)c − 1) · RF︸ ︷︷ ︸
≥16

·t

multiplications, which depends on t;

I Goal: modify the external rounds for reducing the total

number of multiplications (= factor that multiplies t) without

decreasing the security.
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Neptune’s External Rounds: Non-Linear Layer

I Given any quadratic F : F≤3
p → Fp, then SF over F≥5

p is not

invertible.

I Let t = 2 · t ′ even. Non-linear layer of Neptune’s external

rounds via concatenation of S-Boxes S over F2
p, defined as

S(x0, x1) = S ′ ◦ A ◦ S ′(x0, x1)

where (for γ 6= 0):

S ′(x0, x1) = x0 + (x0 − x1)2‖x1 + (x0 − x1)2 ,

A(x0, x1) =

[
γ

0

]
+

[
2 1

1 3

]
×

[
x0

x1

]
;

I Differential property of S: DPmax = p−1;

I Cost of t multiplications for computing S (versus ≥ 2 · t for

power maps).
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Neptune versus Poseidon – S(x) = x5

Table: Comparison of Poseidon and Neptune – both instantiated

with d = 5 – for the case p ≈ 2128 (or bigger), κ = 128, and several

values of t ∈ {4, 8, 12, 16}.

t RF RP & RI Multiplicative Complexity

Poseidon (d = 5) 4 8 60 276 (+ 21.0 %)

Neptune (d = 5) 4 6 68 228

Poseidon (d = 5) 8 8 60 372 (+ 40.1 %)

Neptune (d = 5) 8 6 72 264

Poseidon (d = 5) 12 8 61 471 (+ 53.9 %)

Neptune (d = 5) 12 6 78 306

Poseidon (d = 5) 16 8 61 567 (+ 64.3 %)

Neptune (d = 5) 16 6 83 345

(See the paper for more details about Neptune’ specification.)
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Summary and Open Problems



Summary and Open Problems

I Let p ≥ 3. Given any quadratic function F : Fm
p → Fp, then

the SI-lifting function SF over Fn
p is not invertible if

• m = 1, n ≥ 1;

• m = 2, n ≥ 3;

• m = 3, n ≥ 5.

I Open Conjecture: Given F as before, SF is never invertible

if n ≥ 2 ·m − 1;

I Open Problem: Construct invertible non-linear functions

over Fn
p with minimal multiplicative complexity;

I Exploit them when designing future MPC-/ZK-/FHE-friendly

symmetric schemes!
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Thanks for your attention!

Questions?

Comments?



Lai-Massey Schemes: Example of SI-Lifting Functions for m = n

Let circ(µ0, µ1, . . . , µn−1) ∈ Fn×n
p be an invertible circulant matrix.

Given an invertible even function H : Fp → Fp (i.e.,

H(z) = H(−z)), let

F (x0, x1, . . . , xn−1) =
n−1∑
i=0

µi · xi + H

(
n−1∑
i=0

(−1)i · xi

)
.

If n = 2n′ is even, then SF over Fn
p is invertible.

Proof. Given SF (x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1:

I if circ(µ0, µ1, . . . , µn−1) = circ(1, 0, . . . , 0), then∑n−1
i=0 (−1)i · xi =

∑n−1
i=0 (−1)i · yi ;

I otherwise, work with z ∈ Fn
p defined as

z = circ−1(µ0, µ1, . . . , µn−1)× y .

(Other examples in the paper.)



Another Necessary Conditions for Inveritibility

Definition. A function F : Fm
p → Fp is balanced if and only if

∀y ∈ Fp : |{x ∈ Fm
p | F (x) = y}| = pm−1 .

Lemma. If F is not balanced, then SF is not invertible.

Example. Let p ≥ 2 be a prime, and let F : F2
p → Fp be

F (x0, x1) = α2,0 · x2
0 + α1,1 · x0 · x1 + α0,2 · x2

1 + α1,0 · x0 + α0,1 · x1 .

If α2,0 = α0,2 = 0, then F is not a balanced function.



Neptune’s External Rounds: Linear Layer

Given M ′,M ′′ ∈ Ft′×t′
p two MDS matrices, linear layer M ∈ Ft×t

p of
Neptune’s external rounds defined as

Mi,j =


M ′i ′,j′ if (i , j) = (2i ′, 2j ′)

M ′′i ′′,j′′ if (i , j) = (2i ′′ + 1, 2j ′′ + 1)

0 otherwise

,

that is,

M =



M ′0,0 0 M ′0,1 0 . . . M ′0,t′−1 0

0 M ′′0,0 0 M ′′0,1 . . . 0 M ′′0,t′−1

M ′1,0 0 M ′1,1 0 . . . M ′1,t′−1 0

0 M ′′1,0 0 M ′′1,1 . . . 0 M ′′1,t′−1

...
. . .

...

M ′t′−1,0 0 M ′t′−1,1 0 . . . M ′t′−1,t′−1 0

0 M ′′t′−1,0 0 M ′′t′−1,1 . . . 0 M ′′t′−1,t′−1


.
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