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Introduction

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the

integer to be factored.
[FOCS'94]
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NIST Kicks Off Effort to Defend Encrypted Data from Quantum

Computer Threat
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What will happen to computer security if quantum
computers are built? A new NIST publication looks to the
road ahead.

If an exotic guantum computer is invented that could
break the codes we depend on to protect confidential
electronic information, what will we do to maintain our
security and privacy? That's the overarching question
posed by a new report from the National Institute of
Standards and Technology (NIST), whose cryptography
specialists are beginning the long journey toward
effective answers.

NIST Internal Report (NISTIR) 8105: Report on Post-
Quantum Cryptography details the status of research into
quantum computers, which would exploit the often
counterintuitive world of quantum physics to solve
problems that are intractable for conventional

computers. If such devices are ever built, they will be
able to defeat many of our modern cryptographic
systems, such as the computer algorithms used to
protect online bank transactions. NISTIR 8105 outlines a
long-term approach for avoiding this vulnerability before
it arises.
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"It will be a long process involving public vetting of quantum-resistant algorithms,” Moody said. "And we're not
expecting to have just one winner. There are several systems in use that could be broken by a quantum computer

(IR TEET T D T G T E ISP ENITES, to take two examples—and we will need different solutions for each

of those systems."
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A fast quantum mechanical algorithm for database search
Lov K. Grover
3C-404A, Bell Labs
600 Mountain Avenue
Murray Hill NJ 07974
lkgrover@bell-labs.com

Summary

Imagine a phone directory containing N names
arranged in completely random order. In order to find

someone's phone number with a probability of %, any
classical algorithm (whether deterministic or probabilis-
tic) will need to look at a minimum of g names. Quan-

tum mechanical systems can be in a superposition of
states and simultaneously examine multiple names. By
properly adjusting the phases of various operations, suc-
cessful computations reinforce each other while others
interfere randomly. As a result, the desired phone num-

ber can be obtained in only @(«/N) steps. The algo-
rithm is within a small constant factor of the fastest
possible quantum mechanical algorithm.

This paper applies quantum computing to a
mundane problem in information processing and pre-
sents an algorithm that is significantly faster than any
classical algorithm can be. The problem is this: there is
an unsorted database containing N items out of which
just one item satisfies a given condition - that one item
has to be retrieved. Once an item is examined, it is pos-
sible to tell whether or not it satisfies the condition in
one step. However, there does not exist any sorting on
the database that would aid its selection. The most effi-
cient classical algorithm for this is to examine the items
in the database one by one. If an item satisfies the
required condition stop; if it does not, keep track of this
item so that it is not examined again. It is easily seen

that this algorithm will need to look at an average of %]

items before finding the desired item.

[STOC’96]
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ON THE POWER OF QUANTUM COMPUTATION
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Abstract. The quantum model of computation is a model, analogous to the probabilistic Turing
Machine, in which the normal laws of chance are replaced by those obeyed by particles on a quantum
mechanical scale, rather than the rules familiar to us from the macroscopic world. We present here a
problem of distinguishing between two fairly natural classes of function, which can provably be solved
exponentially faster in the quantum model than in the classical probabilistic one, when the function
is given as an oracle drawn equiprobably from the uniform distribution on either elass. We thus offer
compelling evidence that the quantum model may have significantly more complexity theoretic power
than the probabilistic Turing Machine. In fact, drawing on this work, Shor has recently developed
remarkable new quantum polynomial-time algorithms for the discrete logarithm and integer factoring

problems. [SlAM JOC'97]
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We obtain attacks with very strong implications. First, we show that
the most widely used modes of operation for authentication and authen-
ticated encryption (e.g. CBC-MAC, PMAC, GMAC, GCM, and OCB)

are completely broken in this security model. Our attacks are also appli-
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» Requires [ block-cipher calls to process an l-block message; is parallelizable.

* Has three versions:
« OCBT[Rogaway et. al., CCS'01] is listed in IEEE 802.11 standard as an
option for protecting wireless networks.
« OCBZ2 [Rogaway, ASIACRYPT'04] was in the ISO/IEC 19772:2009 standard.

* |t was later shown to be insecure by Inoue et. al. [CRYPTO"19].
« OCB3 [Krovetz and Rogaway, FSE'11] is specified in RFC 7253 as an IETF
Internet standard; is in the final portfolio of CAESAR competition.



OCB Encryption Algorithm

1) Initialization: The initialization stage completes two tasks, partition of the
message M into blocks My --- M,,, where all but the last block are full, and
calculation of the initial offset Ay.

— In OCB1: Ay = Eg(N @ L), where L = Ex(0'%®).
— In OCB2: AO = EK(N)
— In OCB3: Ay = Hy(N), where H is a universal hash function.

2) Ciphertext Generation: During this stage, the plaintext blocks are en-
crypted to get ciphertext blocks along with offsets updated.

Czé—EK(Ml@A.L)GBA“ i=1,---,m—1.
The offset A; can be easily updated from previous A;_;.

—InOCB1, A; = Ag® ;- L = Aj_q & 27*() . L where «; is the ith element
of the Gray code, L = Ex(0™) and Ay = Ex(N & L).

— In OCBZ, Ai = 27: . Ag =2 Ai—l-

—InOCB3, A;=Ag @ 4- vi-L=A4;_16 92+ntz(i) . T,

3) Tag Generation: In this stage, Checksum is calculated, and then encrypted
into Tag:

Checksum « M & --- & M,,_1 ® g (M),
Tag < Ex (Checksum@®A,) & hi(A).
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AY @ AY = 4(y, © v2)E(0™).
e Can apply Simon’s algorithm w.rt. fy to recover AY @ AY.

« Existential forgery: Under a random nonce N, if OCBy (N, m|lm, A) = (cy, ¢3, T), then
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» We extended the previous attacks to show OCB1and OCB3 are insecure in the

"IND-gCPA" sense — even when the nonces are hidden and random.
* (In a similar spirit to the “classical” break of OCB2.)

« IND-gCPA [Boneh and Zhandry, CRYPTO"3]: Extension of IND-CPA notion in a
quantum setting.
* Attacker can ask for encryption of messages in superposition.
» However, in challenge phase, attacker should forward two classical messages.

« QOur attacks exploit the fact that the last block of messages are encrypted
differently, compared to other blocks, in OCB.



IND-gCPA Insecurity of OCBT
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L +— Eg (On)
Ao+~ Ex(Na L)
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for =1 to i do
A; —vi- L& A
for :=1 to m—1 do
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X —len(M,)®L-271® A
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Checksum < Checksum PC,.0" ® Y
Tag = Ex (Checksum BA,,)

IND-gCPA attack:
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and arbitrary My # Mj.

Upon receiving (C,Tag), return b = 0 iff C @ Tag = M.
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IND-gCPA attack:

Partition M into M;---M,,

L+ Eg(0") - Quantum phase: Use Simon’s algorithm to recover

Ay Ex(N @ L) L = E,(0™), as seen w.rt. existential forgery of OCB1.

Checksum < 0"

for 1=1 to m do
A+ vi-Ld Ao

e Classical phase: Pick 1-block messages My =n @ L - 271
and arbitrary My # Mj.

for i=1 to m—1 do » Upon receiving (C,Tag), return b = 0 iff C @ Tag = Mj.
C; + Ex(M; ® A;) ® A;
Checksum < Checksum P M,; « Note that if My was encrypted, X,, = My @ A,,=

Xm —len(Mn)® L - B D A, Checksum & A,,,. Hence, Y,,, = Tag.

Copn <Y &M,
Checksum < Checksum ®C,,0" & Y.,
Tag = Ex (Checksum BA,,)
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L+ Ex(0™) » Quantum phase: Use Simon’s algorithm to recover
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and arbitrary My # Mj.
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IND-gCPA Insecurity of OCBT

IND-gCPA attack:

Partition M into M;---M,,

L+ Ex(0™) » Quantum phase: Use Simon’s algorithm to recover

Ay Ex(N @ L) L = E,(0™), as seen w.rt. existential forgery of OCB1.

Checksum < 0"

for 1=1 to m do
A+ vi-Ld Ao

e Classical phase: Pick 1-block messages My =n @ L - 271
and arbitrary My # Mj.

for :=1 to m—1 do » Upon receiving (C,Tag), return b = 0 iff C @ Tag = Mj.
Ci < Ex(M; ® A;) ® A;
Checksum < Checksum P M, « Note that if My was encrypted, X,, = My @ A,,=

Xom < len(Mm) @ L-2"10 A, Checksum @ A,,. Hence, Y, = Tag.

Ym <« Ex(X

C’:, . Yi(@ T/I)m » Also, attacker doesn't need to know the nonces.

Checksum < Checksum ®C,,0" & Y.,
Tag = Ex (Checksum BA,,)

» Attack can be extended to OCB3 (with some additional
steps).




IND-gCPA Insecurity of OCB2

Algorithm SEK(N, A, M)

L+ E(N)
(M[1],...,M[m]) & M
fori<1tom—1

Cli] + 2'L @ E(2'L & M[i))
Pad < E(2™L © len(M[m]))
Clm] <= M[m] @ msb|rm) (Pad)
Y+ C[m] || 0* & Pad
S MIl@---oMm—-16X
T + E(2"3L & %)
10. if A# e then T < T & PMACEg(A)
11. T < msb,(7T) )
12. return (C,T)
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IND-gCPA Insecurity of OCB2

Algorithm SEK(N, A, M)

L+ E(N)
(M[1],...,M[m]) + M
fori+— 1tom—1

Cli] + 2'L ® E(2'L ® M[i])
Pad < E(2™L @ len(M[m]))
Cm] < M[m] & msb|rr[m) (Pad)
X « C[m] || 0* @ Pad
T+ Mill®e---dMm-1eX

R S OF bR IR

e

T+ E(2™3L & X)
10. if A # e then T < T ®PMACg(A)

11. T < msb,(7T)
12. return (C,T)

Algorithm PMACEK(A)

S+ 0"
V + 3%E(0")
(A[1],...,Ala]) & A
for i<~ 1toa—1

S+ S E(2'V @ Ali])
S+ S®Ala]| 107
if |Ala]| =n

Q<+ E(2*3V @ S)
else Q + E(2°3°V & 5)
return ()

=EeHNpPERER EE
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IND-gCPA Insecurity of OCB2

Algorithm £x(N, A, M) IND-qCPA attack:

« Quantum phase: Use Simon’s algorithm to recover
L + E(N) E,(0™), as done by Kaplan et. al. [CRYPTO'16].
(M[1],...,M[m]) & M
fori < 1tom—1

Cli] + 2'L @ E(2'L & M[i))
Pad < E(2™L © len(M[m]))
Clm] <= M[m] @ msb|rm) (Pad)
Y+ Clm] || 0" & Pad
Y+~ Mle---dMm-1e X
T < E(2™3L & X))
10. if A#cthen T + T ® PMACEg(A)
11. T < msb,(7T) :
12. return (C,T)
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IND-gCPA Insecurity of OCB2

Algorithm £x(N, A, M) IND-qCPA attack:

« Quantum phase: Use Simon’s algorithm to recover

L + E(N) E,(0™), as done by Kaplan et. al. [CRYPTO'16].

(M[1],...,M[m]) & M

fori— 1ltom—1 * Classical phase: (...)
Cli] + 2'L @ E(2'L & M[i))

Pad < E(2™L © len(M[m]))

Clm] <= M[m] @ msb|rm) (Pad)

5 « C[m]||0* ® Pad

Y Mle---oeMm-1]16 X

T @(2’”3[/ @ X))

10. if A# e then T < T & PMACEg(A)

11. T < msb,(7T) )

12. return (C,T)

R S OF bR IR

=




IND-gCPA Insecurity of OCB2

Algorithm £x(N, A, M) IND-qCPA attack:
« Quantum phase: Use Simon’s algorithm to recover
L1L @(N) E,.(0™), as done by Kaplan et. al. [CRYPTO"16].
2. (M[1],...,M[m]) < M
3. fori—1ltom-—1  Classical phase: (...)
S G« 2 £ 53 E:{(Q L & Mli]) * Unlike our attack against OCB1, cannot pick messages
5. Pad « E{(Z L © len(M[m])) Mgy and M7 depending on L = Ey(N).
6. C[m] <= M[m| ® msb) s (Pad)
7. 5 « C[m] | 0* @ Pad
8. X+ M1®---®dMm—-1] X
9. T « E;(2m3L ®X)
10. if A# e then T < T & PMACEg(A)
11. T < msb,(7T) )
12. return (C,T)




IND-gCPA Insecurity of OCB2

Algorithm £x(N, A, M) IND-qCPA attack:
« Quantum phase: Use Simon’s algorithm to recover

L1L @(N) E,.(0™), as done by Kaplan et. al. [CRYPTO"16].
2. (M[1],...,M[m]) < M
3. fori—1ltom-—1  Classical phase: (...)
S G« 2 £ 53 E:{(Q L & Mli]) * Unlike our attack against OCB1, cannot pick messages
5. Pad « Q(Z L © len(M[m])) Mg and M1 depending on L = Ej(N).
6. C[m] <= M[m| ® msb) s (Pad)
7. X+ C[m]||0* @ Pad « Idea: Evaluate L = E(N) in the post-challenge phase
8. X« M[]®---dMm—-1X using Deutsch’s algorithm —i.e., raw block-cipher access!
g 1"+ E[’{(2mSL @ X)

10. if A# e then T < T & PMACEg(A)

11. T < msb,(7T)

12. return (C,T)




IND-gCPA Insecurity of OCB2

Algorithm £x(N, A, M) IND-qCPA attack:
» Quantum phase: Use Simon’s algorithm to recover
L1L @(N) . E,.(0™), as done by Kaplan et. al. [CRYPTO"16].
2. (M[L],...,M[m]) & M
3. fori<«—1 tom—1 * C(lassical phase: (...)
;l' P g[izérgl?@E{Q 1(}]\39[1\4][)2)])  Unlike our attack against OCB1, cannot pick messages
n kil K e 2 My and M7 depending on L = E, (N).
6. Clm] <= M[m| ® msb|r[m) (Pad) ’ ' )
7. X+ C[m] || 0* & Pad » Idea: Evaluate L = Ej(N) in the post-challenge phase
8. X« M[]®---dMm—-1X using Deutsch’s algorithm —i.e., raw block-cipher access!
18' 7;, Z 5(2?}?L GDTE(l T & PMAC (A) « Assumption: Tags are untruncated —i.e., T = n.
.1 # £ then E|
11. |T < msb,(T) « We thank Melanie Jauch for pointing this issue.
12. return (C,T)
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IND-gCPA Security(!) of OCB2

However, if attacker is not allowed to use AD, then OCB2 is an IND-gCPA secure
AE mode when the underlying block-cipher is a quantum-secure PRP!

Recall that OCBT and OCBS3 are insecure even when AD is always empty.

Though OCBZ2, as a “pure” AE, is IND-CCA insecure [Inoue et. al.,, CRYPTO9], itis
still provably IND-CPA secure [Rogaway, ASIACRYPT'04].

Classical IND-CPA proof interprets OCBZ2 as a tweakable block-cipher (XEX*) mode.

« Eis asecure PRP = XEX* is indistinguishable from a “tweakable uniform random permutation”.
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IND-gCPA Security(!) of OCB2

« Kaplan et. al. [CRYPTO"16] showed that XEX* is a “quantumly” insecure tweakable

block-cipher, even if E is a quantum-secure PRP
* However their result does not reflect how XEX* is used in OCB?2.

» Nonetheless, we extended their analysis to show that, in a quantum setting, XEX*
remains insecure even in the way it is used in OCB2.

* Hence to show IND-gCPA security of OCB2, must work at a block-cipher level
while relying on quantum security of E.

« We used techniques by Anand et. al. [PQCRYPTO'16] that were used to show
IND-qCPA security of CBC mode.
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AEAD Mode “Pure” AE Mode “Pure” AE Mode
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Summary of IND-gCPA Results

Random Nonces, Random Nonces, Adaptive Nonces,
AEAD Mode “Pure” AE Mode “Pure” AE Mode
N/A

OCB1 Insecure Insecure
OCB2 Insecure* Secure Insecure
OCB3 Insecure Insecure Insecure

Adapted a forgery attack by Bhaumik et. al.
[ASIACRYPT'21] to break IND-gqCPA security
using only a single quantum encryption query!

*when tags are untruncated.
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f+{0,1}"* = {0,1}"
x — OCB2, (N, x||x[|0™, €)

fu(x) = B (2°3V @ Ec(2V @ x) @ E(22V @ x)) @ (N | V < 3°E0")

(This is a refinement of the attack presented by Kaplan et. al. [CRYPTO"16].)

» Function satisfies fy(x @ 2V @ 22V) = fy(x).
« 2V @ 22V is independent of nonce N, since V = 32E, (0™).
« Can again apply Simon’s algorithm w.rt. fy to recover 2V @ 22V.



Quantum Attack on Integrity: OCB2

f+{0,1}"* = {0,1}"
x — OCB2, (N, x||x[|0™, €)

fu(x) = B (2°3V @ Ec(2V @ x) @ E(22V @ x)) @ (N | V < 3°E0")

(This is a refinement of the attack presented by Kaplan et. al. [CRYPTO"16].)

» Function satisfies fy(x @ 2V @ 22V) = fy(x).
« 2V @ 22V is independent of nonce N, since V = 32E, (0™).
« Can again apply Simon’s algorithm w.rt. fy to recover 2V @ 22V.

» Existential forgery: Under a random nonce N, if OCB2, (N, A[|A]|0™, m) = (C,T), then
(C,T) =0CB2, (N, (A @ 2V @ 22V)||(A & 2V & 22V)|[0™, m).




IND-gCPA Insecurity of OCB2

Algorithm SEK(N, A, M)

L+ E(N)
(M[1],...,M[m]) & M
fori<1tom—1

Cli] + 2'L @ E(2'L & M[i))
Pad < E(2™L © len(M[m]))
Clm] <= M[m] @ msb|rm) (Pad)
Y+ C[m] || 0* & Pad
S MIl@---oMm—-16X
T « E(2™3L & X))
10. if A# e then T < T & PMACEg(A)
11. T < msb,(7T) )
12. return (C,T)
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Deutsch’s Algorithm

Proc. R. Soc. Lond. A 400, 97-117 (1985)
Printed in Greal Britain

Quantum theory, the Church-Turing principle and
the universal quantum computer

By D. Devrsch
Department of Astrophysics, South Parks Road, Oxford 0X1 3RQ, UK.

(Communicated by R. Penrose, F.R.S. — Received 13 July 1984)

It is argued that underlying the Church-Turing hypothesis there is an
implicit physical assertion. Here, this assertion is presented explicitly as
a physical principle: ‘every finitely realizible physical system can be
perfectly simulated by a universal model computing machine operating
by finite means’. Classical physics and the universal Turing machine,
because the former is continuous and the latter discrete, do not obey the
principle, at least in the strong form above. A class of model computing
machines that is the quantum generalization of the class of Turing
machines is described, and it is shown that quantum theory and the
‘universal quantum computer’ are compatible with the principle. Com-
puting mncqhmes resembling the universal quantum computer could, in
principle, be built and would have many remarkable properties not
reproducible by any Turing machine. These do notinclude the computation
of non-recursive functions, but they do include ‘quantum parallelism’,
a method by which certain probabilistic tasks can be performed faster
by a universal quantum computer than by any classical restriction of it.
The intuitive explanation of these properties places an intolerable strain
on all interpretations of quantum theory other than Everett’s. Some of
the numerous connections between the quantum theory of computation
and the rest of physies are explored. Quantum complexity theory allows
a physically more reasonable definition of the *complexity *or ‘knowledge
in a physical system than does classical complexity theory.

f:{0,1} - {0,1}

AVAVAVA/A
@ '\/\/\/\/\/ Is f a constant

function?

Yes/No ) _
_ Deutsch’s algorithm
(in 1 query) computes f(0) @ f(1) with
a single quantum query to f.
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(This is inspired by the OCB3 forgery attack of Bonnetain et. al. [ASIACRYPT'21].)
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« fO0) @ fP(1) = i-th bit of {E;(2- 3V @ ap) + E(2 -3V @ a;)}




Raw Block-cipher Access: Ex (inp)

f®:{0,1} - {0,1}
b — i-th bit of {OCB2, (N, a3, €)},
whereay =2-3Vanda, =23V @ inp

V «+ 3*E(0™)

(This is inspired by the OCB3 forgery attack of Bonnetain et. al. [ASIACRYPT'21].)

« We have f®(b) = i—th bit of {E,,(3L) @ Ex(2 -3V @ a},)}.
« With a single quantum query to f®, Deutsch’s algorithm computes:

« fO0) @ fP(1) = i-th bit of {E;(2- 3V @ ap) + E(2 -3V @ a;)}

= i-th bit of {E, (0™) @ E, (inp)}




Raw Block-cipher Access: Ex (inp)

f®:{0,1} - {0,1}
b — i-th bit of {OCB2, (N, a3, €)},
whereay =2-3Vanda, =23V @ inp

V «+ 3*E(0™)

(This is inspired by the OCB3 forgery attack of Bonnetain et. al. [ASIACRYPT'21].)

« We have f®(b) = i—th bit of {E,,(3L) @ Ex(2 -3V @ a},)}.
« With a single quantum query to f®, Deutsch’s algorithm computes:

« fO0) @ fP(1) = i-th bit of {E;(2- 3V @ ap) + E(2 -3V @ a;)}

= i-th bit of {E, (0™) @ E, (inp)}

« By applying Deutsch’s algorithm Vi € {1, ..., n}, we recover E,(0™) @ E (inp).




Raw Block-cipher Access: Ex (inp)

f®:{0,1} - {0,1}
b — i-th bit of {OCB2, (N, a3, €)},

whereay =2-3Vanda, =23V @ inp V « 3°E(0")

(This is inspired by the OCB3 forgery attack of Bonnetain et. al. [ASIACRYPT'21].)

We have f®(b) = i—th bit of {E, (3L) @ E,(2-3V @ a;)}.
With a single quantum query to f®, Deutsch's algorithm computes:
e FO0) D FO) =i-thbitof {E,(2-3VD ay) + E,(2-3V® ay))
= i-th bit of {E},(0™) @ E\ (inp)}
By applying Deutsch’s algorithm Vi € {1, ...,n}, we recover E,(0™) @ Ey(inp).

Hence, prior knowledge of E} (0™) = knowledge of E; (inp)'



IND-gCPA Insecurity of OCB2

Algorithm SEK(N, A, M)

=
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IND-gCPA Insecurity of OCB2

Algorithm SEK(N, A, M)

=

R S OF bR IR

L+ E(N)
(M[1],...,M[m]) & M
fori < 1tom—1
Cli] + 2'L @ E(2'L & M[i))
Pad < E(2™L © len(M[m]))
C[m] — M[m] @ msb|rr(m)| (Pad)
Y+ C[m] || 0* & Pad
Y+ MI1le---aMm-1o X
T < E(2™3L & X))
if A#2ethen T < T & PMACEg(A)

K

. T < msb-(T)
. return (C,T)

IND-gCPA attack:

« Quantum phase: Use Simon’s algorithm to recover

E,(0™), as seen w.rt. existential forgery of OCB2.

» Classical phase: Pick arbitrary 1-block messages My, M7,

with My # M7 (and set A = g). Record the nonce N used
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IND-gCPA Insecurity of OCB2

Algorithm £x(N, A, M) IND-qCPA attack:
» Quantum phase: Use Simon’s algorithm to recover
Lo L« 'Erlc(N) E,(0™), as seen w.rt. existential forgery of OCBZ.
2. (M[1],...,M[m]) < M
3. fori+—1tom—1 » Classical phase: Pick arbitrary 1-block messages My, M7,
- i i : with Mg # M7 (and set A = €). Record the nonce N used
;l' Pag[iz(zziﬁ@%zn%ﬁ[%[ﬁ]) by the challenger to generate the ciphertext (C,T).
6. Clm| < M[m] @ msb|prr(m)| (Pad) « Quantum phase: Evaluate L = E,(N) using Deutsch’s
7. X+ C[m]||0* @ Pad algorithm. Also compute the value Pad = Ej (2L @ n).
8. ¢+ M1|b---dMm—-1|6 X
9 T E([217]'L§9L @ g) | & * Return b =0 ifand only if C = My @ Pad.
10. if A# ¢ then T ¢+ T ® PMACg(A)
11. T < msb,(7T)
12. return (C,T)
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Tweakable Block-ciphers

* A tweakable block-cipher (TBC) is a function E: K X T X M — M such that

V(k,t)EKXT, E(k, t, -)is apermutation on M; here, t is the public tweak.
A conventional block-cipher is a TBC where tweak-space T is singleton.

* Like BC security, a TBC is secure if it's indistinguishable from a "tweakable uniform
random permutation” (TURP) f: TX M — M.



OCB2: TBC Abstraction

Algorithm SEK(N, A, M)

L+ E(N)
(M[1],...,M[m]) < M
fori<1tom—1

Cli] +|2'L & E{(Q";L & Mli))
Pad < E(2™L @ len(M[m]))
Clm] <= M[m] @ msb|rm) (Pad)
Y+ C[m] || 0* & Pad
S MIl@---oMm—-16X
T « E(2™3L & X))
10. if A# e then T < T & PMACEg(A)
11. T < msb,(7T) )
12. return (C,T)
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Algorithm ©CB2.E~(N, A, M)
(M[1],...,M[m]) & M
for :=1tom—1

Cli] «- B >0 (M)
Pad + E*%N"0(1en(M[m)))
C[m] — M[m] D me|M[m]| (Pad)
Y+ C[m]||0* & Pad
Y+~ MI1&---dMm—-1]0 X
T + EXONml(5)
return (C,7T)
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OCB2: TBC Abstraction

Algorithm SEK(N, A, M) Algorithm ©CB2.E~(N, A, M)
1. L« E(N) 1. (M[1],...,Mm]) & M
2. (M[1],...,M[m]) < M 2. for i =1tom—1
3. fori« 1tom—1 3. Cli] + [E2N50(M][i])
4. Cl]+|2'L @ E(2'L & M][i]) 4. Pad « E*%N0(1en(M[m]))
5. Pad < E(2™L @ len(M[m])) 5. C[m] <— M[m] ® msb|pr[m) (Pad)
6. C[m] <= M[m| ® msb) s (Pad) 6. X < C[m]|| 0" & Pad
7. X+ C[m] || 0* @ Pad 7. N« MU - &Mm-1¢ X
8. X+ M1]a---dMm—-1aX 8. T « EXONm1(5)
9. T < E(2™3L & X)) 9. return (C,T)

10. if A# e then T < T & PMACEg(A)

11. T' < msb-(T') E*: “Xor-Encrypt-Xor” (XEX*) TBC

12. return (C,T)
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M1 Mz MS M4
(len)
w7 Ly LRy w3
Pad
N
NP
Ch Cs Cs Cy

Tag

IND-CPA advantage w.r.t. ideal TURP T =0
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OCB2: TBC Abstraction

« Kaplan et. al. [CRYPTO"16] show that an attacker querying classical tweaks and
inputs in superposition can distinguish XEX* TBC from a TURP

* We extended their analysis to show that, in a quantum setting, XEX* is an

insecure TBC even when tweaks are not allowed to repeat.
« Since in OCB2, nonces are a part of tweaks.

* Hence to show IND-gCPA security of OCB2, must work at a BC-level rather than
at a TBC-level.

« We used techniques by Anand et. al. [PQCRYPTO'16] that were used to show
IND-qCPA security of CBC mode.
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Other Results

« We presented quantum attacks breaking universal unforgeability of OCB2 and

OCB3 in the random nonce setting.
 Attacks use raw block-cipher access obtained via Deutsch’s algorithm, as seen earlier.

* Interestingly, the above universal forgery attacks do not extend to OCB1 - since

OCBT1is a "pure” AE mode which does not process AD.
» We were still able to break universal unforgeability of OCB1in a quantum setting using
adaptive nonces.

» Our analysis of OCB2 can be used to show that the disk encryption standard

XTS (IEEE P1619, NIST SP800-38E) is an IND-qCPA secure scheme when:
» encrypted data is written on random disk sectors (to be interpreted as "nonces”), and
* the length of messages is a multiple of block size.




Summary of IND-gCPA Results

Random Nonces, Random Nonces, Adaptive Nonces,
AEAD Mode “Pure” AE Mode “Pure” AE Mode
N/A

OCB1 Insecure Insecure
OCB2 Insecure* Secure Insecure
OCB3 Insecure Insecure Insecure

*when tags are untruncated.



OCB2: TBC Abstraction

Algorithm SEK(N, A, M)

L+ E(N)

(M[1],...,M[m]) & M
fori<1tom—1

Cli] < 2'L & E(2'L & M[i))
Pad < E(2™L @ len(M[m]|))
Clm] <= M[m] @ msb|rm) (Pad)
Y+ C[m] || 0* & Pad

S+ M1&---dMm—-16X

T « E(2™3L @ %)

10. if A# e then T < T & PMACEg(A)
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12. return (C,T)

R S OF bR IR

=




OCB2: TBC Abstraction

Algorithm SEK(N, A, M)

L+ E(N)
(M[1],...,M[m]) & M
fori+— 1tom—1

Cli] < 2°'L & EK(z'iL ® M]i)) Cli] «+ EXVN40(MIi))

Pad < E(2™L @ len(M[m]|))

Clm] <= M[m] @ msb|rm) (Pad)
Y+ C[m] || 0* & Pad

S MU --dMm-1]6X

T + E(2"3L & %)

10. if A# e then T < T & PMACEg(A)
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OCB2: TBC Abstraction

Algorithm SEK(N, A, M)

L+ E(N)
(M[1],...,M[m]) & M
fori<1tom—1
Cli] < 2'L & E(2'L & M[i)) Cli] « E=HN40(M))
Pad < E(2™L @ len(M[m]|))
Clm] <= M|m] & msb)rs(m) (Pad) _
Y+ Clm] || 0" & Pad *: “Xor-Encrypt-Xor” (XEX*) TBC
Y+~ M1lo---dMm-10X

T « E(2™3L @ %)

10. if A# e then T < T & PMACEg(A)
11. T < msb,(7T) ¢
12. return (C,T)
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OCB2: TBC Abstraction

Algorithm SEK(N, A, M)

L+ E(N)

(M[1],...,M[m]) & M

fori < 1tom—1

Cli] « 2L ® E(2'L & M)
Pad < E(2™L @ len(M[m]|))
C[m] — M[m] @ msb|rr(m)| (Pad)
Y+ Clm] || 0" & Pad

Y+~ Mle---dMm-1e X
T < E(2™3L & X))

R S OF bR IR

=

10. if A# e then T < T & PMACEg(A)

K

11. T < msb,(7T)
12. return (C,T)

Cli] + BB 0 (M[i])

—_—~

E*: “Xor-Encrypt-Xor” (XEX*) TBC

E is a secure PRP =
E* is indistinguishable from a “tweakable
uniform random permutation”



