

More Inputs Makes Difference: Implementations of Linear Layers Using Gates with More Than Two Inputs

$\begin{array}{ccc} \textbf{Qun Liu}^{1,2} & \text{Weijia Wang}^{1,2} & \text{Ling Sun}^{1,2} & \text{Yanhong Fan}^{1,2} \\ & \text{Lixuan Wu}^{1,2} & \text{Meiqin Wang}(\boxtimes)^{1,2,3} \end{array}$

¹Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan, China

> ²School of Cyber Science and Technology, Shandong University, Qingdao, China

³Quan Cheng Shandong Laboratory, Jinan, China

March 22, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Background

- 2 Motivation and Contribution
- 3 New Aspects for SLP Problem
- Graph Extending Algorithm
- **5** Transforming Framework

6 Application

Outline

Background

- 2 Motivation and Contribution
- 3 New Aspects for SLP Problem
- 4 Graph Extending Algorithm
- 5 Transforming Framework

6 Application

Lightweight Cryptography

Applications

- Internet of Things
- Radio-Frequency Identification tags

Limitations

- The circuit size
- The power consumption
- The latency

Directions

- Designing Lightweight Primitives
- Optimizing Existing Implementations

Lightweight Cryptography

Applications

- Internet of Things
- Radio-Frequency Identification tags

Limitations

- The circuit size
- The power consumption
- The latency

Directions

- Designing Lightweight Primitives
- Optimizing Existing Implementations

Lightweight Cryptography

Applications

- Internet of Things
- Radio-Frequency Identification tags

Limitations

- The circuit size
- The power consumption
- The latency

Directions

- Designing Lightweight Primitives
- Optimizing Existing Implementations

Our work

In this paper, our work mainly focuses on the area of linear layers.

Liu et al. (Shandong University)

More Inputs Makes Difference

FSE 2023

5/34

Background

- 2 Motivation and Contribution
 - 3 New Aspects for SLP Problem
- 4 Graph Extending Algorithm
- 5 Transforming Framework

6 Application

AES round function An example

[1	1	1	1	1]
0	1	1	1	1
0	0	0	1	1

 $y_0 = x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_2 = x_3 \oplus x_4$

8 XOR gates -> 16 GE

 $y_2 = x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus y_2$ $y_0 = x_0 \oplus y_1$

4 XOR gates -> 8 GE

▲ 伊 ▶ ▲ 三

AES round function An example

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{split} y_0 &= x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \\ y_1 &= x_1 \oplus x_2 \oplus x_3 \oplus x_4 \\ y_2 &= x_3 \oplus x_4 \end{split}$$

8 XOR gates -> 16 GE

 $y_2 = x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus y_2$ $y_0 = x_0 \oplus y_1$

4 XOR gates -> 8 GE

< 冊 > < Ξ

 $y_0 = x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_2 = x_3 \oplus x_4$

AES round function An example

[1	1	1	1	1]
0	1	1	1	1
0	0	0	1	1

8 XOR gates -> 16 GE

 $y_2 = x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus y_2$ $y_0 = x_0 \oplus y_1$

4 XOR gates -> 8 GE

< A >

Previous Work

- Paar's work (first work)
- Boyar et al. (efficient algorithm)
- Siwei Sun et al. (depth limitation)
- Quanquan Tan et al., Zejun Xiang et al., · · ·

Previous Work

- Paar's work (first work)
- Boyar et al. (efficient algorithm)
- Siwei Sun et al. (depth limitation)
- Quanquan Tan et al., Zejun Xiang et al., · · ·

Further Work – Multi-Input Gates

- Directly search. (Baksi et al.) (Too large search space)
- Transform strategy. (Banik et al.) (Requiring more candidates)

Contribution

- The transforming framework (n to n + 1)
- The graph extending algorithm
- Application to many linear layers of block ciphers (2/3/4-input XOR gates)

Experiment: 5500 matrices

FSE 2023

æ

э.

э

Background

- 2 Motivation and Contribution
- 3 New Aspects for SLP Problem
- 4 Graph Extending Algorithm
- 5 Transforming Framework

6 Application

SLP Problem

The Shortest Linear Program (SLP) problem is defined as finding a solution with the minimum number of XORs to compute the multiplication of an $m \times n$ constant matrix A over \mathbb{F}_2 .

Finding Solutions

It's NP-hard, and no efficient algorithm can solve it exactly.

- Optimization
- Computational geometry
- Operations research

SLP Problem

The Shortest Linear Program (SLP) problem is defined as finding a solution with the minimum number of XORs to compute the multiplication of an $m \times n$ constant matrix A over \mathbb{F}_2 .

Finding Solutions

It's NP-hard, and no efficient algorithm can solve it exactly.

- Optimization
- Computational geometry
- Operations research

New Problem

The minimum XORs vs. the lowest area

SLPA Problem (SLP problem with the lowest Area)

Given the cost $\lambda_i \ (1 \leq i \leq \varepsilon)$ of every operation, the metric is defined as

$$\min(\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_{\epsilon} e_{\epsilon}),$$

where e_i counts the number of the *i*-operation.

 ϵ -operation ($\epsilon \in \mathbb{N}$): an operation containing ϵ 2-input xor gates. 1-operation: XOR2, 2-operation: XOR3, 3-operation: XOR4

Directed Acyclic Graph (DAG)

A directed acyclic graph is a directed graph that has no cycles.

Topological Ordering

The topological ordering T_G of a directed acyclic graph G is an ordering of its nodes into a sequence.

Directed Acyclic Graph (DAG)

A directed acyclic graph is a directed graph that has no cycles.

Topological Ordering

The topological ordering T_G of a directed acyclic graph G is an ordering of its nodes into a sequence.

Background

- 2 Motivation and Contribution
- 3 New Aspects for SLP Problem
- Graph Extending Algorithm
- 5 Transforming Framework

6 Application

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

 $t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{\underline{12},8,9}, t_{13,9,10}, t_{\underline{14},4,11}, t_{\underline{15},5,11}, t_{\underline{16},12,13}, t_{\underline{17},13,14},$

It requires 10 XOR gates.

Liu et al. (Shandong University)

More Inputs Makes Difference

FSE 2023

16/34

Single Graph and Extended Graph

The single graph is a directed graph so that each non-unit node has only one implementation.

The extended graph is the directed graph so that each node can have more than one implementation.

$$t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{\underline{12},8,9}, t_{13,9,10}, t_{\underline{14},4,11}, t_{\underline{15},5,11}, t_{\underline{16},12,13}, t_{\underline{17},13,14}.$$
(1)

 $\begin{array}{l} t_{8,0,1},t_{9,2,3},\{t_{10,4,5},t_{10,14,15}\},t_{11,6,7},t_{\underline{12},8,9},t_{13,9,10},\{t_{\underline{14},4,11},t_{\underline{14},10,15}\},\\ \{t_{\underline{15},5,11},t_{\underline{15},10,14}\},\{t_{\underline{16},12,13},t_{\underline{16},8,10}\},\{t_{\underline{17},13,14},t_{\underline{17},9,15}\}. \end{array} \tag{2}$

Generating the Extended Graph

Algorithm 1 GenerateExtendedGraph()

```
Input: A single graph G_* and the operation op (2 or 3)
Output: An extended graph G_e
  R_{G_*} = \text{GetReachabilitySet}(G_*)
 if TopologicalOrdering(G_s) = error then
                                                                         ▷ Checking the cycles
     return error
 end if
  T = \text{TopologicalOrdering}(G_s)
 G_e \leftarrow G_*
 for i from 1 to |T| - 1 do
                                          Checking whether two nodes has the same value
     u = T[i]
      for i from i + 1 to |T| do
         v = T[j]
         if u = v then
             Remove v and let the origin of each edge whose origin is v be u
         end if
      end for
 end for
 for each u \in G, do
                                                         \triangleright Generating the extended graph G.
      if u is not unit node then
         A \leftarrow \phi
                                                           ▷ The available set of all the nodes
         for each v \in G_s/\{u\} do
             if v not in R., then
                 \mathcal{A} \leftarrow \mathcal{A} \cup \{v\}
             end if
         end for
         if (|\mathcal{A}| < 2 \text{ and } op = 2) or (|\mathcal{A}| < 3 \text{ and } op = 3) then
             Continue
         end if
         if op = 2 then
             for w, v \in \mathcal{A}(w \neq v) do
                                                                                 ▷ Using XOR2
                 if u = w \oplus v and u has not the implementation (w, v) then
                     Add (w, v) for u in G_e
                                                       \triangleright Adding a new implementation for u
                 end if
             end for
         end if
         if op = 3 then
             for w, v, p \in A(w \neq v \neq p) do
                                                                                 ▷ Using XOR3
                 if u = w \oplus v \oplus p and u has not the implementation (w, v, p) then
                     Add (w, v, p) for u in G_e
                                                       \triangleright Adding a new implementation for u
                 end if
             end for
         end if
      end if
 end for
```

Nodes	reachability sets
t_0, t_1	$\{t_8, t_{12}, t_{16}\}$
t_2, t_3	$\{t_9, t_{12}, t_{13}, t_{16}, t_{17}\}$
t_4	$\{t_{10}, t_{13}, t_{14}, t_{16}, t_{17}\}$
t_5	${t_{10}, t_{13}, t_{15}, t_{16}, t_{17}}$
t_{6}, t_{7}	$\{t_{11}, t_{14}, t_{15}, t_{17}\}$
t_8	$\{t_{12}, t_{16}\}$
t_9	$\{t_{12}, t_{13}, t_{16}, t_{17}\}$
t_{10}	$\{t_{13}, t_{16}, t_{17}\}$
t_{11}	$\{t_{14}, t_{15}, t_{17}\}$
t_{12}	$\{t_{16}\}$
t_{13}	$\{t_{16}, t_{17}\}$
t_{14}	$\{t_{17}\}$
t_{15}, t_{16}, t_{17}	ϕ

FSE 2023

< □ > < 同 > < 回 > < 回 > < 回 >

18 / 34

$t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{\underline{12},8,9}, t_{13,9,10}, t_{\underline{14},4,11}, t_{\underline{15},5,11}, t_{\underline{16},12,13}, t_{\underline{17},13,14}.$ The single graph

$$\begin{split} t_{8,0,1}, t_{9,2,3}, \{t_{10,4,5}, t_{10,14,15}\}, t_{11,6,7}, t_{\underline{12},8,9}, t_{13,9,10}, \{t_{\underline{14},4,11}, t_{\underline{14},10,15}\}, \\ \{t_{\underline{15},5,11}, t_{\underline{15},10,14}\}, \{t_{\underline{16},12,13}, t_{\underline{16},8,10}\}, \{t_{\underline{17},13,14}, t_{\underline{17},9,15}\}. \end{split}$$

The extended graph

- $G_{s_{31}}: \quad t_{8,0,1}, t_{9,2,3}, t_{11,6,7}, t_{\underline{12},8,9}, t_{13,9,10}, t_{10,14,15}, t_{\underline{14},10,15}, t_{\underline{15},10,14}, t_{\underline{16},8,10}, t_{\underline{17},9,15}.$

32 single graphs

. . .

. . .

< 日 > < 同 > < 三 > < 三 > <

Removing Redundant Nodes

After splitting the extended graph, the nodes in different single graphs may have different in-degrees and out-degrees.

The out-degree 0 means that the node is not used to generate other nodes.

Property

Given a DAG, if out(u) = 0, u must be the target node or the redundant node.

32 graphs: 18 with 10 XORs, 12 with 9 XORs, 2 with 8 XORs.

Removing Redundant Nodes

After splitting the extended graph, the nodes in different single graphs may have different in-degrees and out-degrees.

The out-degree 0 means that the node is not used to generate other nodes.

Property

Given a DAG, if $out(\mathfrak{u})=0,\,\mathfrak{u}$ must be the target node or the redundant node.

32 graphs: 18 with 10 XORs, 12 with 9 XORs, 2 with 8 XORs.

Removing Redundant Nodes

After splitting the extended graph, the nodes in different single graphs may have different in-degrees and out-degrees.

The out-degree 0 means that the node is not used to generate other nodes.

Property

Given a DAG, if $\text{out}(\mathfrak{u})=0,\,\mathfrak{u}$ must be the target node or the redundant node.

32 graphs: 18 with 10 XORs, 12 with 9 XORs, 2 with 8 XORs.

Wrong Graph

The wrong graph is an incorrect circuit for the corresponding matrix, which usually contains the cycles in the graph. Unit nodes cannot generate the nodes in the cycle.

Reduced graph 1	$t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{\underline{12},8,9}, t_{\underline{14},4,11}, t_{\underline{15},5,11}, t_{\underline{16},8,10}, t_{\underline{17},9,15},$
Reduced graph 2	$t_{8,0,1}, t_{9,2,3}, t_{11,6,7}, t_{\underline{12},8,9}, t_{\underline{14},4,11}, t_{\underline{15},5,11}, t_{10,14,15}, t_{\underline{16},8,10}, t_{\underline{17},9,15},$
Reduced graph 3	$t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{\underline{12},8,9}, t_{\underline{15},5,11}, t_{\underline{14},10,15}, t_{\underline{16},8,10}, t_{\underline{17},9,15},$
Reduced graph 4	$t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{\underline{12},8,9}, t_{\underline{14},4,11}, t_{\underline{15},10,14}, t_{\underline{16},8,10}, t_{\underline{17},9,15}.$

Algorithm

Algorithm 2 ExtendGraph2()

```
Input: A single graph G_{*}
Output: The set \mathcal{G}_2 containing all the reduced graphs
  G_e = \text{GenerateExtendedGraph}(G_s, 2)
                                                                                     \triangleright The extended graph
  \mathcal{G}_2 = \text{SplitExtendedGraph}(G_e)
                                                                          ▷ Generating the single graphs
  for each G_r \in \mathcal{G}_2 do
                                                                            ▷ Removing additional nodes
       G_r = \text{RemovingRedundantNodes}(G_r)
  end for
  for each G_r \in \mathcal{G}_2 do
                                                                                  \triangleright Deleting wrong graphs
       if TopologicalOrdering(G_r) = error then
           \mathcal{G}_2 \leftarrow \mathcal{G}_2 / \{G_r\}
       end if
  end for
  return \mathcal{G}_2
```

- 1. Generate the extended graph.
- 2. Split the extended graph.
- 3. Remove redundant nodes.
- 4. Delete wrong graphs.

Background

- 2 Motivation and Contribution
- 3 New Aspects for SLP Problem
- 4 Graph Extending Algorithm
- **5** Transforming Framework

6 Application

Limitation

If we use g_{ε} -XOR metric, only i-input ($i \leq \varepsilon + 1$) xor gates can be used.

Transformation

 $\lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_{n-1} e_{n-1}$ to $\lambda_1 e'_1 + \lambda_2 e'_2 + ... + \lambda_{n-1} e'_{n-1} + \lambda_n e'_n$

Question 1

Which node can be removed?

Question 2

How to remove one node?

Question 3

Which node should be removed first when both nodes can be removed?

э

• • = • • = •

Proposition

Suppose that the circuit is with the g_{ε} -XOR metric and in(u) = j. Only when the in-degree k of every node in O(u) is not greater than $\varepsilon + 2 - j$, can we remove u.

u can be removed.

26/34

Proposition

Let N be the maximum value such that $(N + 1)\lambda_1 - N\lambda_2 > 0$ holds. Given a circuit with XOR2 gates, it can reduce the cost by removing the nodes with out-degree n $(n \le N)$.

 $u = a \oplus b$ $v = u \oplus c$ $w = u \oplus d$

Condition: $3\lambda_1 - 2\lambda_2 > 0$.

 $v = a \oplus b \oplus c$ $w = a \oplus b \oplus d$

The area of the new circuit is $2\lambda_2 < 3\lambda_1$.

27 / 34

Proposition

Suppose that the upper bound is N. If out(u) = m and out(v) = n $(n < m \le N)$, removing v will reduce more cost than u.

The out-degree of u is m. The out-degree of v is n. We have m > n. We remove v first.

```
Algorithm 3 EGT2()
Input: A single graph G_*
Output: A set G_3 containing all the reduced graphs with 2/3-input xor gates
  \mathcal{G}_2 = \text{ExtendGraph}_2(\mathcal{G}_*)
                                             ▷ Containing the reduced graphs with XOR2 gates
  N \leftarrow 0
                                                                                  ▷ The upper bound
  while ((N+1)+1)\lambda_1 - (N+1)\lambda_2 > 0 do
      N \leftarrow N + 1
  end while
  for each G_r \in \mathcal{G}_2 do
                                                                                    ▷ Removing nodes
      \mathcal{T} = \text{TopologicalOrdering}(G_r)
      The set \mathcal{U} containing all the target nodes in G_r
      n \leftarrow 1
      while n \leq N do
          for each node u in \mathcal{T} do
              if u \notin U, out(u) = n, and O(u) \cap U = \phi then
                  We remove u, delete corresponding edges, and add n operations in G_r
                  Put the nodes in O(u) into \mathcal{U}
               end if
           end for
          n \leftarrow n + 1
      end while
      \mathcal{G}_3 \leftarrow \mathcal{G}_3 \cup \{G_r\}
  end for
  return G_2
```

< □ > < 同 > < 回 > < 回 > < 回 >

4-Input XOR Gate

∃ →

Image: A mathematical states of the state

æ

Algorithm 4 EGT3()

```
Input: A single graph G.
Output: A set G_4 containing all the reduced graphs with 2/3/4-input gates
  G_4 \leftarrow \phi
   G_3 \leftarrow \phi
   G_2 = EGT2(G_s)
   for each graph G_r in G_2 do
      \mathcal{G}' = EGT3(G_r)
       for each graph G in G' do
           \mathcal{G}_3 \leftarrow \mathcal{G}_3 \cup \{G\}
       end for
   end for
   N_1 \leftarrow 0
   N_2 \leftarrow 0
   while \lambda_2 + (N_1 + 1)(\lambda_1 - \lambda_2) > 0 do
       N_1 \leftarrow N_1 + 1
  end while
   while \lambda_1 + \lambda_2 - \lambda_3 - N_2 \cdot \min((\lambda_2 - \lambda_1), (\lambda_3 - \lambda_2)) > 0 do
       N_2 \leftarrow N_2 + 1
   end while
   for each G_r \in G_3 do
                                                                                       ▷ Removing nodes
       \mathcal{T} = \text{TopologicalOrdering}(G_r)
       The set U containing all the target nodes in G_r
       n_1, n_2 \leftarrow 1
       while n_1 \le N_1 or n_2 \le N_2 do
           for each node u in T do
               if n_1 \leq N_1, u matches Type 1, O(u) \cap U = \phi, and u \notin U then
                    Remove u, delete corresponding edges, and add edges from I(u) to O(u)
                    Put the nodes in O(u) into U
               end if
               if n_2 \le N_2, u matches Type 2, O(u) \cap U = \phi, and u \notin U then
                    Remove u, delete corresponding edges, and add edges from I(u) to O(u)
                    Put the nodes in O(u) into U
               end if
           end for
           n_1 \leftarrow n_1 + 1
           n_2 \leftarrow n_2 + 1
       end while
       \mathcal{G}_4 \leftarrow \mathcal{G}_4 \cup \{G_4\}
   end for
  return G_4
```

Liu et al. (Shandong University)

ESE 2023

イロト イポト イヨト イヨト

Background

- 2 Motivation and Contribution
- 3 New Aspects for SLP Problem
- 4 Graph Extending Algorithm
- 5 Transforming Framework

Matrix	XZLBZ ^a	[BDK+21] ^b	[BFI21] ^b	XZLBZ+BFI ^b	XZLBZ+EGT2 ^b	XZLBZ+EGT3 ^c
AES [DR20]	306.3 (92)	258.9 (12,47)	260.3 (39, 28)	259.0 (26, 37)	255.0 (29, 34)	243.0 (22, 21, 12)
ANUBIS [BR00]	329.6 (99)	274.2 (11,51)	293.0 (60, 20)	270.3(35, 33)	270.3(35, 33)	253.6(21, 24, 12)
CLEFIA M_0 [SSA ⁺ 07]	326.3 (98)	271.63 (13,49)	293.0 (60, 20)	276.3 (34, 35)	270.9 (31, 36)	258.9 (23, 16, 18)
CLEFIA M_1 [SSA+07]	342.9 (103)	298.9 (3,62)	294.3 (38, 36)	292.9 (39, 35)	283.6(32, 38)	270.2(20, 27, 13)
FOX MU4 [JV04]	452.8 (136)	-	353.5 (46, 43)	374.2 (48,46)	372.2(46, 47)	347.5 (32, 26, 20)
JOLTIK [JNP15]	146.5 (44)	122.5(6, 22)	127.8 (16, 16)	126.5 (10,20)	123.8 (12,18)	115.8 (9, 12, 5)
MIDORI [BBI+15]	79.9 (24)	74.5(0, 16)	71.9(16, 4)	71.9(16, 4)	71.9(16, 4)	71.9(16, 4, 0)
PRINCE M_0, M_1 [BCG ⁺ 12]	79.9 (24)	74.5 (0,16)	71.9(16, 4)	71.9(16, 4)	71.9 (16,4)	71.9(16, 4, 0)
PRIDE $L_0 - L_3$ [ADK+14]	79.9 (24)	74.5(0, 16)	71.9(16, 4)	71.9(16, 4)	71.9(16, 4)	71.9(16, 4, 0)
QARMA128 [Ava17]	159.8(48)	-	145.8 (34, 7)	145.8(34,7)	144.5(28, 11)	144.5(28, 11, 0)
QARMA64 [Ava17]	79.9 (24)	74.5(0, 16)	71.9(16, 4)	71.9(16, 4)	71.9(16, 4)	71.9(16, 4, 0)
SMALLSCALE AES [CMR05]	143.1(43)	111.8(0, 24)	123.8 (19, 13)	123.8 (19, 13)	121.8(17, 14)	118.4(5, 9, 10)
TWOFISH [SKW ⁺ 98]	369.6 (111)	317.5 (17,56)	338.9 (43, 42)	312.9 (31, 45)	306.9(25, 48)	$293.5\ (13, 28, 20)$

^a Using 2-input xor gates.

^b Using 2/3-input xor gates.

^c Using 2/3/4-input xor gates.

Conclusion

- The transforming framework
- The graph extending algorithm

э

Thanks for Your Attention!

Liu et al. (Shandong University)

More Inputs Makes Difference

FSE 2023