

More Inputs Makes Difference: Implementations of Linear Layers Using Gates with More Than Two Inputs

Qun Liu^{1,2} Weijia Wang^{1,2} Ling Sun^{1,2} Yanhong Fan^{1,2} Lixuan Wu 1,2 Meiqin Wang $(\boxtimes)^{1,2,3}$

 1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan, China

> ²School of Cyber Science and Technology, Shandong University, Qingdao, China

³Quan Cheng Shandong Laboratory, Jinan, China

March 22, 2023

Outline

[Background](#page-2-0)

- 2 [Motivation and Contribution](#page-7-0)
- 3 [New Aspects for SLP Problem](#page-15-0)
- 4 [Graph Extending Algorithm](#page-21-0)
- 5 [Transforming Framework](#page-31-0)

6 [Application](#page-40-0)

4 0 8

∍

 Ω

Outline

1 [Background](#page-2-0)

- **[Motivation and Contribution](#page-7-0)**
- 3 [New Aspects for SLP Problem](#page-15-0)
- **[Graph Extending Algorithm](#page-21-0)**
- 5 [Transforming Framework](#page-31-0)

[Application](#page-40-0)

4 D F

∢母→

Þ

Lightweight Cryptography

Applications

- Internet of Things
- Radio-Frequency Identification tags

- The circuit size
- The power consumption $\begin{array}{c} \bullet \\ \bullet \end{array}$
- The latency

- **Designing Lightweight Primitives**
- **Optimizing Existing Implementations**

Lightweight Cryptography

- Internet of Things
- Radio-Frequency Identification tags

Limitations

- The circuit size
- The power consumption
- The latency

- **Designing Lightweight Primitives**
- **Optimizing Existing Implementations**

Lightweight Cryptography

- Internet of Things
- Radio-Frequency Identification tags

- The circuit size
- The power consumption $\begin{array}{c} \bullet \\ \bullet \end{array}$
- The latency

Directions

- **•** Designing Lightweight Primitives
- **Optimizing Existing Implementations**

Our work

In this paper, our work mainly focuses on the area of linear layers.

Liu et al. (Shandong University) [More Inputs Makes Difference](#page-0-0) FSE 2023 5/34

4 D F

 200

[Background](#page-2-0)

- 2 [Motivation and Contribution](#page-7-0)
- 3 [New Aspects for SLP Problem](#page-15-0)
- **[Graph Extending Algorithm](#page-21-0)**
- 5 [Transforming Framework](#page-31-0)

[Application](#page-40-0)

4 D F

AES round function An example

 $y_0 = x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_2 = x_3 \oplus x_4$

8 XOR gates \sim 16 GE

 $y_2 = x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus y_2$ $y_0 = x_0 \oplus y_1$

4 XOR gates $-$ > 8 GE

∢ 何 ▶ - ∢ ∃

4 D F

AES round function An example

 $y_0 = x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_2 = x_3 \oplus x_4$

8 XOR gates \sim 16 GE

 $y_2 = x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus y_2$ $y_0 = x_0 \oplus y_1$

4 XOR gates $-$ > 8 GE

∢ 何 ≯ →

 $y_0 = x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$ $y_2 = x_3 \oplus x_4$

AES round function An example

8 XOR gates \sim 16 GE

 $y_2 = x_3 \oplus x_4$ $y_1 = x_1 \oplus x_2 \oplus y_2$ $y_0 = x_0 \oplus y_1$

4 XOR gates $-$ > 8 GE

Previous Work

- Paar's work (first work)
- Boyar et al. (efficient algorithm)
- Siwei Sun et al. (depth limitation)
- Quanquan Tan et al., Zejun Xiang et al., \cdots

Previous Work

- Paar's work (first work)
- Boyar et al. (efficient algorithm)
- Siwei Sun et al. (depth limitation)
- Quanquan Tan et al., Zejun Xiang et al., \cdots

Further Work – Multi-Input Gates

- Directly search. (Baksi et al.) (Too large search space)
- Transform strategy. (Banik et al.) (Requi[rin](#page-11-0)g [m](#page-13-0)[o](#page-11-0)[re](#page-12-0) [c](#page-6-0)[a](#page-14-0)[n](#page-14-0)[d](#page-7-0)[i](#page-6-0)da[te](#page-15-0)[s\)](#page-0-0)

Contribution

- The transforming framework (n to $n + 1$)
- The graph extending algorithm
- Application to many linear layers of block ciphers $\left(\frac{2}{3}/4\right)$ -input XOR gates)

Experiment: 5500 matrices

4 D F

э

≃

[Background](#page-2-0)

- **[Motivation and Contribution](#page-7-0)**
- 3 [New Aspects for SLP Problem](#page-15-0)
- **[Graph Extending Algorithm](#page-21-0)**
- 5 [Transforming Framework](#page-31-0)

[Application](#page-40-0)

4 D F

Þ

 QQ

SLP Problem

The Shortest Linear Program (SLP) problem is defined as finding a solution with the minimum number of XORs to compute the multiplication of an $m \times n$ constant matrix A over \mathbb{F}_2 .

It's NP-hard, and no efficient algorithm can solve it exactly.

- Optimization
- Computational geometry
- Operations research

 \leftarrow \Box

 200

SLP Problem

The Shortest Linear Program (SLP) problem is defined as finding a solution with the minimum number of XORs to compute the multiplication of an $m \times n$ constant matrix A over \mathbb{F}_2 .

Finding Solutions

It's NP-hard, and no efficient algorithm can solve it exactly.

- **•** Optimization
- Computational geometry
- Operations research

 200

New Problem

The minimum XORs vs. the lowest area

SLPA Problem (SLP problem with the lowest Area)

Given the cost λ_i ($1 \le i \le \epsilon$) of every operation, the metric is defined as

$$
\min(\lambda_1e_1+\lambda_2e_2+\ldots+\lambda_\varepsilon e_\varepsilon),
$$

where e_i counts the number of the *i*-operation.

 ϵ -operation $(\epsilon \in \mathbb{N})$: an operation containing ϵ 2-input xor gates. 1-operation: XOR2, 2-operation: XOR3, 3-operation: XOR4

Directed Acyclic Graph (DAG)

A directed acyclic graph is a directed graph that has no cycles.

The topological ordering T_G of a directed acyclic graph G is an ordering of its nodes into a sequence.

Directed Acyclic Graph (DAG)

A directed acyclic graph is a directed graph that has no cycles.

Topological Ordering

The topological ordering T_G of a directed acyclic graph G is an ordering of its nodes into a sequence.

[Background](#page-2-0)

- **[Motivation and Contribution](#page-7-0)**
- [New Aspects for SLP Problem](#page-15-0)
- 4 [Graph Extending Algorithm](#page-21-0)
- 5 [Transforming Framework](#page-31-0)

[Application](#page-40-0)

4 D F

Þ

 QQ

$$
\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}
$$

 $t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{12,8,9}, t_{13,9,10}, t_{14,4,11}, t_{15,5,11}, t_{16,12,13}, t_{17,13,14},$

It requires 10 XOR gates.

Liu et al. (Shandong University) [More Inputs Makes Difference](#page-0-0) FSE 2023 16/34

4 D F

э

 QQ

Single Graph and Extended Graph

The single graph is a directed graph so that each non-unit node has only one implementation.

The extended graph is the directed graph so that each node can have more than one implementation.

$$
t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{\underline{12},8,9}, t_{13,9,10}, t_{\underline{14},4,11}, t_{\underline{15},5,11}, t_{\underline{16},12,13}, t_{\underline{17},13,14}.\tag{1}
$$

 $t_{8,0,1}, t_{9,2,3}, \{t_{10,4,5}, t_{10,14,15}\}, t_{11,6,7}, t_{12,8,9}, t_{13,9,10}, \{t_{14,4,11}, t_{14,10,15}\},$ ${\{t_{15,5,11}, t_{15,10,14}\}, \{t_{16,12,13}, t_{16,8,10}\}, \{t_{17,13,14}, t_{17,9,15}\}.$ (2)

Generating the Extended Graph

Algorithm 1 GenerateExtendedGraph()

```
Input: A single graph G_s and the operation op (2 \text{ or } 3)Output: An extended graph Ge
  R_{G_s} = GetReachabilitySet(G_s)
 if TopologicalOrdering(G_s) = error then
                                                                        \triangleright Checking the cycles
     return error
 end if
 T = \text{TopologicalOrdering}(G_s)G_e \leftarrow G_efor i from 1 to |T| - 1 do
                                         \triangleright Checking whether two nodes has the same value
     u = T[i]for j from i+1 to |T| do
         v = T[i]if u = v then
             Remove v and let the origin of each edge whose origin is v be uend if
      end for
 end for
 for each u \in G, do
                                                         \triangleright Generating the extended graph G_cif u is not unit node then
         A \leftarrow \phi\triangleright The available set of all the nodes
         for each v \in G_s/\{u\} do
             if v not in R_v, then
                 \mathcal{A} \leftarrow \mathcal{A} \cup \{v\}end if
         end for
         if (|A| < 2 and op = 2 ) or (|A| < 3 and op = 3 ) then
             Continue
         end if
         if op = 2 then
             for w, v \in A(w \neq v) do
                                                                                \triangleright Using XOR2
                 if u = w \oplus v and u has not the implementation (w, v) then
                     Add (w, v) for u in G_e\rhd Adding a new implementation for uend if
             end for
         end if
         if op = 3 then
             for w, v, p \in A(w \neq v \neq p) do
                                                                                \triangleright Using XOR3
                 if u = w \oplus v \oplus p and u has not the implementation (w, v, p) then
                     Add (w, v, p) for u in G_e\rhd Adding a new implementation for uend if
             end for
         end if
      end if
 end for
```


イロト イ母ト イヨト イヨト

 QQ

∍

$t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{12,8,9}, t_{13,9,10}, t_{14,4,11}, t_{15,5,11}, t_{16,12,13}, t_{17,13,14}.$ The single graph

 $t_{8,0,1}$, $t_{9,2,3}$, $\{t_{10,4,5}, t_{10,14,15}\}$, $t_{11,6,7}$, $t_{12,8,9}$, $t_{13,9,10}$, $\{t_{14,4,11}$, $t_{14,10,15}\}$, ${\{\mathsf{t}_{15,5,11},\mathsf{t}_{15,10,14}\}, {\{\mathsf{t}_{16,12,13},\mathsf{t}_{16,8,10}\}, {\{\mathsf{t}_{17,13,14},\mathsf{t}_{17,9,15}\}.}}$

The extended graph

- G_{s_0} : $t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{12,8,9}, t_{13,9,10}, t_{14,4,11}, t_{15,5,11}, t_{16,12,13}, t_{17,13,14},$ G_{s_1} : $t_{8,0,1}, t_{9,2,3}, t_{11,6,7}, t_{12,8,9}, t_{13,9,10}, t_{14,4,11}, t_{15,5,11}, t_{10,14,15}, t_{16,12,13}, t_{17,13,14},$ $G_{s_2}:$ $t_{8,0,1}, t_{9,2,3}, t_{10,4,5}, t_{11,6,7}, t_{12,8,9}, t_{13,9,10}, t_{15,5,11}, t_{14,10,15}, t_{16,12,13}, t_{17,13,14},$ ~ 10 \cdots
- $G_{s_{31}}:$ $t_{8,0,1}, t_{9,2,3}, t_{11,6,7}, t_{12,8,9}, t_{13,9,10}, t_{10,14,15}, t_{14,10,15}, t_{15,10,14}, t_{16,8,10}, t_{17,9,15}.$

32 single graphs

÷.

Removing Redundant Nodes

After splitting the extended graph, the nodes in different single graphs may have different in-degrees and out-degrees.

The out-degree 0 means that the node is not used to generate other nodes.

Given a DAG, if out(u) = 0, u must be the target node or the redundant node.

32 graphs: 18 with 10 XORs, 12 with 9 XORs, 2 with 8 XORs.

Removing Redundant Nodes

After splitting the extended graph, the nodes in different single graphs may have different in-degrees and out-degrees.

The out-degree 0 means that the node is not used to generate other nodes.

Property

Given a DAG, if $out(u) = 0$, u must be the target node or the redundant node.

32 graphs: 18 with 10 XORs, 12 with 9 XORs, 2 with 8 XORs.

つへへ

Removing Redundant Nodes

After splitting the extended graph, the nodes in different single graphs may have different in-degrees and out-degrees.

The out-degree 0 means that the node is not used to generate other nodes.

Property

Given a DAG, if $out(u) = 0$, u must be the target node or the redundant node.

32 graphs: 18 with 10 XORs, 12 with 9 XORs, 2 with 8 XORs.

Wrong Graph

The wrong graph is an incorrect circuit for the corresponding matrix, which usually contains the cycles in the graph. Unit nodes cannot generate the nodes in the cycle.

Algorithm

Algorithm 2 ExtendGraph2()

```
Input: A single graph G_sOutput: The set \mathcal{G}_2 containing all the reduced graphs
  G_e = \text{GenerateExtendedGraph}(G_s, 2)\triangleright The extended graph
  \mathcal{G}_2 = \text{SplitExtendedGraph}(G_e)\triangleright Generating the single graphs
  for each G_r \in \mathcal{G}_2 do
                                                                             \triangleright Removing additional nodes
       G_r =RemovingRedundantNodes(G_r)end for
  for each G_r \in \mathcal{G}_2 do
                                                                                   \triangleright Deleting wrong graphs
       if TopologicalOrdering(G_r) = error then
           \mathcal{G}_2 \leftarrow \mathcal{G}_2/\{G_r\}end if
  end for
  return \mathcal{G}_2
```
- 1. Generate the extended graph.
- 2. Split the extended graph.
- 3. Remove redundant nodes.
- 4. Delete wrong graphs.

[Background](#page-2-0)

- **[Motivation and Contribution](#page-7-0)**
- 3 [New Aspects for SLP Problem](#page-15-0)
- **[Graph Extending Algorithm](#page-21-0)**
- 5 [Transforming Framework](#page-31-0)

[Application](#page-40-0)

4 D F

∢母→

Þ

 QQ

Limitation

If we use q_{ϵ} -XOR metric, only i-input ($i \leq \epsilon + 1$) xor gates can be used.

Transformation

 $\lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_{n-1} e_{n-1}$ to $\lambda_1 e'_1 + \lambda_2 e'_2 + ... + \lambda_{n-1} e'_{n-1} + \lambda_n e'_n$

4 0 8

Question 1

Which node can be removed?

Question 2

How to remove one node?

Question 3

Which node should be removed first when both nodes can be removed?

4 0 8

э

Proposition

Suppose that the circuit is with the g_{ε} -XOR metric and $in(u) = j$. Only when the in-degree k of every node in $O(u)$ is not greater than $\varepsilon + 2 - i$, can we remove u.

u can be removed.

つへへ

Proposition

Let N be the maximum value such that $(N + 1)\lambda_1 - N\lambda_2 > 0$ holds. Given a circuit with XOR2 gates, it can reduce the cost by removing the nodes with out-degree $n (n \leq N)$.

> $u = a \oplus b$ $v = u \oplus c$ $w = u \oplus d$

Condition: $3\lambda_1 - 2\lambda_2 > 0$.

 $v = a \oplus b \oplus c$ $w = a \oplus b \oplus d$

The area of the new circuit is $2\lambda_2 < 3\lambda_1$.

 200

Proposition

Suppose that the upper bound is N. If $out(u) = m$ and $out(v) = n$ $(n < m < N)$, removing v will reduce more cost than u.

The out-degree of u is m. The out-degree of ν is π . We have $m > n$. We remove ν first.

 200

```
Algorithm 3 EGT2()
Input: A single graph G<sub>s</sub>Output: A set \mathcal{G}_3 containing all the reduced graphs with 2/3-input xor gates
  G_2 = \text{ExtendedGraph2}(G_*)\triangleright Containing the reduced graphs with XOR2 gates
  N \leftarrow 0\triangleright The upper bound
  while ((N+1)+1)\lambda_1 - (N+1)\lambda_2 > 0 do
       N \leftarrow N + 1end while
  for each G_r \in \mathcal{G}_2 do
                                                                                        \triangleright Removing nodes
      \mathcal{T} = \text{TopologicalOrdering}(G_r)The set U containing all the target nodes in G_r.
      n \leftarrow 1while n \leq N do
           for each node u in T do
               if u \notin \mathcal{U}, out(u) = n, and O(u) \cap \mathcal{U} = \phi then
                   We remove u, delete corresponding edges, and add n operations in G_rPut the nodes in O(u) into \mathcal Uend if
           end for
           n \leftarrow n + 1end while
      \mathcal{G}_3 \leftarrow \mathcal{G}_3 \cup \{G_r\}end for
  return \mathcal{G}_2
```
 $A \Box B$ A

Þ

э

重

Algorithm 4 EGT30

```
Input: A single graph G_*Output: A set \mathcal{G}_4 containing all the reduced graphs with 2/3/4-input gates
  G_4 \leftarrow \phiG_3 \leftarrow \phiG_2 = EGT2(G_s)for each graph G_r in G_2 do
       \mathcal{G}' = EGT3(G_r)for each graph G in G' do
           G_3 \leftarrow G_3 \cup \{G\}end for
   end for
   N_1 \leftarrow 0N_2 \leftarrow 0while \lambda_2 + (N_1 + 1)(\lambda_1 - \lambda_2) > 0 do
       N_1 \leftarrow N_1 + 1end while
   while \lambda_1 + \lambda_2 - \lambda_3 - N_2 \cdot \min((\lambda_2 - \lambda_1), (\lambda_3 - \lambda_2)) > 0 do
        N_2 \leftarrow N_2 + 1end while
   for each G_r \in \mathcal{G}_3 do
                                                                                            \triangleright Removing nodes
       \mathcal{T} = \text{TopologicalOrdering}(G_r)The set U containing all the target nodes in G_r.
       n_1, n_2 \leftarrow 1while n_1 \leq N_1 or n_2 \leq N_2 do
           for each node u in T do
                if n_1 \leq N_1, u matches Type 1, O(u) \cap \mathcal{U} = \phi, and u \notin \mathcal{U} then
                     Remove u, delete corresponding edges, and add edges from I(u) to O(u)Put the nodes in O(u) into \mathcal Uend if
                if n_2 \leq N_2, u matches Type 2, O(u) \cap \mathcal{U} = \phi, and u \notin \mathcal{U} then
                     Remove u, delete corresponding edges, and add edges from I(u) to O(u)Put the nodes in O(u) into \mathcal Uend if
            end for
            n_1 \leftarrow n_1 + 1n_2 \leftarrow n_2 + 1end while
       \mathcal{G}_4 \leftarrow \mathcal{G}_4 \cup \{G_4\}end for
  return \mathcal{G}_4
```
Liu et al. (Shandong University) [More Inputs Makes Difference](#page-0-0) FSE 2023 31/34

イロト イ押ト イヨト イヨト

Þ

[Background](#page-2-0)

- **[Motivation and Contribution](#page-7-0)**
- 3 [New Aspects for SLP Problem](#page-15-0)
- **[Graph Extending Algorithm](#page-21-0)**
- 5 [Transforming Framework](#page-31-0)

4 D F

{ n →

Þ

 QQ

^a Using 2-input xor gates.

 b Using 2/3-input xor gates.</sup>

 \rm^c Using 2/3/4-input xor gates.

Conclusion

- The transforming framework
- The graph extending algorithm

(□) () +)

÷,

Thanks for Your Attention!

4 D F

Þ