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Abstract. Fast correlation attack, pioneered by Meier and Staffelbach, is an important
cryptanalysis tool for LFSR-based stream cipher, which exploits the correlation
between the LFSR state and key stream and targets at recovering the initial state
of LFSR via a decoding algorithm. In this paper, we develop a vectorial decoding
algorithm for fast correlation attack, which is a natural generalization of the original
binary approach. Our approach benefits from the contributions of all correlations in a
subspace. We propose two novel criteria to improve the iterative decoding algorithm.
We also give some cryptographic properties of the new FCA which allows us to
estimate the efficiency and complexity bounds. Furthermore, we apply this technique
to the well-analyzed stream cipher Grain-128a. Based on a hypothesis, an interesting
result for its security bound is deduced from the perspective of iterative decoding.
Our analysis reveals the potential vulnerability for LFSRs over matrix ring and also
for nonlinear functions with biased multidimensional linear approximations such as
Grain-128a.
Keywords: Linear approximation · Fast correlation attack · Iterative decoding ·
Grain-128a

1 Introduction
Stream ciphers are a widely used class of symmetric-key cryptosystems. A key stream
sequence is generated from the initial state derived from the key. The plaintext is encrypted
by XORing with the key stream of the same length.

Linear feedback shift register (LFSR) based stream ciphers form an important class of
stream cipher system, in which one or more LFSRs are often used. LFSRs could be defined
over different algebraic structures, such as finite fields and matrix rings. Besides LFSR,
these ciphers usually adopt a nonlinear filter function or a finite state automaton (FSM)
with a nonlinear function. The history of these ciphers can be traced back to decades
ago, e.g., LILI-128 [CDF+02], the SNOW family [EJ00, EJ03, UEA06, EJMY19] and the
Grain family etc.

The Grain family includes three well-known stream ciphers: Grain-128a [ÅHJM11],
Grain-128 [HJMM06] and Grain-v1 [HJM07]. Grain-v1 is in the eSTREAM portfolio and
Grain-128a is standardized by ISO/IEC [29115]. All the members of the Grain family
share a similar structure. Several lightweight ciphers proposed recently also adopt similar
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structures [AM15, AHMN13, MAM16]. However, the Grain family is reported to be
vulnerable to fast correlation attacks (FCA) in CRYPTO 18 [TIM+18]. After that, the
same FCA approach is applied to Grain-like small state stream ciphers such as Plantlet,
Fruit-v2 and Fruit-80 [WLLM19].

FCA is pioneered by Meier and Staffelbach in 1989 [MS89]. Generally speaking, FCA
exploits the correlation between the key stream and the state or the outputs of LFSR. The
problem of recovering the initial state of LFSR is transformed into a decoding problem.
The linear part of the stream cipher is treated as a linear code, and the nonlinear part of
the stream cipher is treated as noise. According to the differences in decoding strategies,
these FCA approaches can be roughly divided into two classes.

The first class adopts a one-pass decoding algorithm. For example, the FCA adopts
convolution codes and Viterbi decoding algorithm [JJ99b], which is improved by turbo
codes [JJ99a]. Another FCA adopts maximum likelihood decoding on a reduced set of
information bits [CJS00]. The parity-checks are usually folded to eliminate partial bits.
List decoding and polynomial reconstruction can also be applied in FCA [MFI02, JJ00].
An important improvement is accelerating the parity-check evaluations by fast Walsh-
Hadamard transform (FWHT) [CJM02]. This technique is applied in cryptanalysis of the
stream cipher E0 [LV04]. It was later generalized to extension fields and applied to stream
cipher SNOW 2.0 [ZXM15]. A recent improvement of FCA is based on commutative
property and applied to Grain family [TIM+18].

The second class adopts a probabilistic iterative decoding algorithm. After Meier and
Staffelbach’s original FCA, low-density parity-check code (LDPC) is introduced into FCA
to improve the iterative decoding algorithm [CT00]. There are many related works in this
area, such as [ÅLHJ12, CT00, Gol01, CGD96, GH05, MG91, MG93]. Intuitively, iterative
decoding algorithm seems to be more powerful, as their decoding abilities are closer to
Shannon’s bound [Sha48]. However, compared with the FCA decoding by information
set, it has some inconveniences. Firstly, it is usually very hard to describe its properties
by mathematical language, e.g., the relationship among the number of parity-checks,
the decoding ability and the noise distribution. Thereby, it is hard to derive a clear
time/space/memory complexity as expected, sometimes even for toy ciphers. Secondly,
although multidimensional linear approximations may have advantages in cryptanalysis
stream ciphers [ZXM15], it still lacks a convenient iterative decoding algorithm to work
with the multidimensional linear approximation. For these reasons, the application of the
FCA based on an iterative algorithm to modern stream ciphers is very limited. In addition,
in terms of iterative algorithms, even though some principles are discussed to avoid the
iterative process being trapped into a “tie” state too early [MG91, CGD96], how to get
rid of the tie state is also need to be considered.

Our Contributions

Firstly, we propose a vectorial iterative decoding algorithm for fast correlation attack,
which generalizes Meier and Staffelbach’s original FCA very naturally. The vectorial
approach benefits from a multidimensional linear approximation, while the binary version
only exploits a binary linear approximation. Moreover, the quantity of parity-checks fitting
for the vectorial algorithm is much more than that for binary algorithms. We propose two
novel criteria to improve the iterative decoding process. One is proposed for breaking the
tie state, which may be also applied for some binary iterative algorithms. We also perform
a scaled experiment to verify the validity of the vectorial algorithm and perform another
experiment to verify the generality of the idea for breaking a tie state.

Secondly, we give some cryptographic properties for the first iteration via distribution
approximations, which allows us to describe the relationship between the decoding efficiency
and the noise distribution. We also give two propositions that involve the relationship
between the number of parity-checks, the noise distribution and the data complexity. The
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first one illustrates the number of parity checks needed when the noise distribution is
fixed. In addition, by the first proposition, we show that the vectorial algorithm may
have theoretical advantages in data complexity for some cases. Given the number of
parity-checks and the noise distribution, the second one shows the length of data needed
to correct errors. These results reveal some theoretical constraints of the complexity,
which provide us a more clear profile of the complexities of the FCA based on an iterative
algorithm.

Finally, we apply those results to the well-analyzed stream cipher Grain-128a. In the
first step, we construct a multidimensional linear approximation by bundling up the linear
approximations proposed in [TIM+18]. In the second step, based on a hypothesis there are
parity-checks with two taps or with a special form, we give a data complexity estimation
by the proposed theoretical bounds for the vectorial algorithm. The result shows maybe
its potential security margin is lower than we thought from the perspective of vectorial
iterative decoding. Our analysis reveals the potential vulnerability for LFSRs over matrix
ring and also for nonlinear functions with biased multidimensional linear approximations.

Outline

The rest of the paper is organized as follows. Section 2 is preliminary. Section 3 describes
the details of the vectorial decoding algorithm and the scaled experiments. In section 4,
we propose some cryptographic properties. How to apply the new FCA to Grain-128a is
explained in section 5. Section 6 shows the limitations and open problems. Finally, we
conclude the paper.

2 Preliminaries
2.1 Notations and Definitions
Some notations are introduced for convenience.

• Given 2 binary row vectors x = (x1, . . . , xn) ∈ Fn2 and y = (y1, . . . , yn) ∈ Fn2 , their
inner product is denoted by x ·y = ⊕ni=1xiyi. The Hamming weight of x are denoted
by wt(x).

• Let F : Fm2 → Fn2 denote a vectorial Boolean function. A binary linear approximation
of F with m-bit input mask u = (u1, . . . , um) and n-bit output mask pair v =
(v1, . . . , vn) can be represented by u·x⊕v·F (x). When we have 1 < a ≤ m+n linearly
independent mask pair (u1,v1), . . . , (ua,va), a vectorial (or multidimensional) linear
approximation is denoted by Ux⊕ V F (x), where the i-th row of (U, V ) is (ui,vi),
x are treated as a column vector unless otherwise stated.

• Linear correlation is used to measure the bias of a binary linear approximation.
Let e(x) = u · x ⊕ v · F (x), the correlation of the binary linear approximation is
defined by c(u,v) = c(e) = 2−m (#{x : e(x) = 0} −#{x : e(x) = 1}). Similarly, let
e(x) = Ux ⊕ V F (x), w is an r bits binary linear mask, the correlation of linear
approximation with mask pair (wU,wV ) is

c(w) = 2−m (#{x : w · e(x) = 0} −#{x : w · e(x) = 1}) ,

where w is treated as a row vector.

• Let X ∼ P denote a discrete random variable follows distribution P and takes values
in Fm2 , Its probability density function p(x) is denoted by

(
p(0,...,0), . . . , p(1,...,1)

)
=

(Pr(X = (0, . . . , 0)), . . . ,Pr(X = (1, . . . , 1))).



Zhaocun Zhou and Dengguo Feng and Bin Zhang 325

• Let a ∈ Fm2 denote a binary vector. There is an integer a =
∑m−1
i=0 ai+12i corre-

sponding to a. For convenience, we alternatively use them if there is no ambiguity in
the context, especially as a subscript. For example, for a probability density function(
p(0,...,0), . . . , p(1,...,1)

)
, we mean the same thing when denote it by (p0, . . . , p2m−1).

• LetMm(F2) denote them×m matrix ring over F2. Given a LFSR with rank d andm-
bit cell, its generator is denoted by L(x) = E+C1x+C2x

2 + · · ·+Cdxd ∈Mm(F2)[x],
where Cd is nonsingular and E is the identity matrix. The number of information
bits of L(x) are denoted by k = d×m. If L(x) ∈ F2m [x], it can also be mapped into
GLm(F2)[x].

• Give 2 positive integers a and b with gcd(a, b) = 1. The b-cyclotomic coset modulo
a containing i is denoted by Ci = {i, ib, . . . , ibr−1} mod a, where r is the smallest
positive integer such that ibr ∼= i mod a. The minimal integer in Ci is called coset
header and denoted by ī. All coset headers form a set Rb,a.

• Given 2 vectors a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn, The notation
a � b implies that there is at least one 1 ≤ j ≤ n satisfying aj > bj , while � has
reverse meaning.

Walsh-Hadamard Transform

Walsh-Hadamard transform is a spectral tool widely used in cryptanalysis. Let X ∼ P
denote a discrete random variable which take values in Fm2 . The Walsh-Hadamard transform
of X is defined by

W(X)w = 2−m
∑
x∈Fm2

px(−1)w·x.

Since Walsh-Hadamard transform is a linear operator for XOR, let X = X1 ⊕X2 ⊕
· · · ⊕Xk, we can efficiently compute probability distribution of X with the help of the
convolution property

px =W−1(W(X1)× · · · ×W(Xk))x.

Square Euclid Imbalance

Relative entropy (or KullbackâĂŞLeibler divergence) is used to measure the difference
between two probability distributions P and Q, i.e.,

D (p(x) ‖ q(x)) =
∑
x

px log px
qx
.

If p(x) is close to q(x), i.e., px = qx + ε(x), the relative entropy could be approximated
by D (p(x) ‖ q(x)) ≈ 1

2
∑
x

(px−qx)2

qx
+ O

(
ε3(x)

)
. The summation term is usually called

capacity, and denoted by C(p ‖ q). Square Euclid Imbalance (SEI) is defined to be the
capacity between a probability distribution and uniform distribution, i.e.,

∆(p(x)) = 2m
∑
x

(
px −

1
2m

)2
. (1)

The following theorem reveals the relationship between SEI and linear correlation.
Theorem 1 ([BJV04]). Let X ∈ Fm2 be a random variable with density function px, then
its SEI

∆(p(x)) =
∑
w

ε̂2(w) =
∑
w 6=0

c2(w),

where ε(x) = px − 2−m, ε̂(w) denotes the FWHT of ε(x). For convenience, we use
∆(p) if x is well known in the context, or ∆(X) if the random variable X with density
function p(x) is clear. Particularly, we have c2(e) = ∆(p) when m = 1.
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Parity-Check and Characteristic Polynomial

A parity-check corresponds to an equation that fulfills the LFSR output sequence xt. For
example, it is well known that any multiples of L(x) ∈ F2m [x] is a parity-check. Usually,
only those very sparse parity-checks with a low degree are exploited in FCA.

Let set H(τ + 1, d) denote all parity-checks with τ + 1 taps and degree at most d,
abbreviated by H without ambiguity. The available parity-checks at position n denoted
by H(n) ⊆ H. Suppose a parity-check for sequence xt is denoted by

Gnxt + · · ·+G1xt+n−1 + Ext+n = 0, (2)

where Gn is nonsingular. Its characteristic polynomial is denoted by Fn(x) = det(Ex+A) =
det(

∑n
i=0Gn−ix

i), where A denotes the companion matrix

A =


0 E 0 0 · · · 0
0 0 E 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 E
Gn Gn−1 Gn−2 · · · G2 G1

 .

2.2 A Brief Description of Original FCA
Meier and Staffelbach’s original FCA includes a precomputation phase and a decoding
phase.

Precomputation Phase

Let LFSR’s generator polynomial L(x) ∈ F2[x]. The purpose of the precomputation phase
is to find sufficient very sparse parity-checks with a low degree, which is a hard open
problem. One way recommended by Zeng [ZYR91] is evaluating logarithms in finite fields
of characteristic 2. It is rather efficient to find low weight multiples, but the degree is
not promised to be low. Another way is by extended K-tree algorithm based on general
birthday collision [NS15]. The extended k-tree algorithm can be used to find low-weight
multiples of a polynomial with not-so-large degrees with flexible parameters.

Decoding Phase

The decoding phase targets to recover the initial state of LFSR from key stream. Suppose
we have found sufficient suitable parity-checks xn⊕a(n)

l = 0, where a(n)
l is the sum of τ taps

a
(n)
l =

∑τ
k=1 xn−lk . The check value is zn ⊕ b(n)

l , where b(n)
l =

∑τ
k=1 zn−lk is the sum of τ

key stream bits corresponding to xn−lk . The nonlinear part of a stream cipher is modeled
as a binary symmetric channel (BSC), the crossover probability is p = Pr[xn ⊕ zn = 1].
The critical part of the decoding phase is calculating a posterior probability (APP) with
prior distribution symbol by symbol. Suppose that the check values are all 0 for a subset
H0 ⊆ H, then by Bayes’ formula,

p∗ =
p
∏
l∈H0

(1− sl)
∏
l∈H\H0

sl

p
∏
l∈H0

(1− sl)
∏
l∈H\H0

sl + (1− p)
∏
l∈H\H0

(1− sl)
∏
l∈H0

sl
,

where each si = s(pl1 , . . . , plτ ) = Pr[a(n)
l = b

(n)
l ] depends on the probability of τ symbols

involved in parity-check. Moreover, sl can be calculated recursively in the BSC model

s(pl1 , . . . , plτ ) = plτ s(pl1 , . . . , plτ−1) + (1− plτ )(1− s(pl1 , . . . , plτ−1)).

The specific process is depicted in Algorithm 1. For more details, we refer to the original
paper [MS89].
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Algorithm 1 Meier and Staffelbach’s binary iterative decoding Algorithm B

Input: A key stream sequence z of length N and H.
1. Calculate the probability threshold pthr and quantity threshold Nthr.
2. For round r ∈ {1, 2, . . .} do
3. For iteration i from 1 to a small integer do
4. Calculate APP p∗ from priori probability p, assign p∗n = pn for all position n.
5. If Nw ≥ Nthr where Nw = |{n|pn > pthr}| then, break; EndIf
6. EndFor
7. Complement the bits of z with pn > pthr.
8. Reset all positions to initial probability p.
9. If z satisfies all parity-checks then, break; EndIf
10. EndFor
11. Terminate with x = z.

3 Fast Correlation Attack Based on Vectorial Iterative De-
coding Algorithm

3.1 Channel Model
The FCA based on binary linear approximations usually deploys the binary symmetric
channel (BSC). Similarly, when the transmitted w-bit word is x, and received word is
z = x⊕ e, we can model it as the symmetric channel (SC). Its transition matrix has the
following properties. Each row is a permutation of another row, and so as to columns.
Moreover, the sum of each row equals 1 by the definition of SC. SC can be treated as
an extended BSC. Its channel capacity is C = w −H(r), where r denotes a row of the
transition matrix.

Suppose we have a linear approximation with dimension m, i.e.,⊕
i∈{1,...,#Tx}

j(i)∈Tx

Uixj(i) ⊕
⊕

i∈{1,...,#Tz}
j(i)∈Tz

Vizj(i) = e. (3)

where Tx and Tz are sets of indexes related to linear approximation, all Ui and Vi are m×w
matrices over F2, both xj(i) and zj(i) are w-bit vectors, e is a m-bit noise. Similarly as
BSC, the channel noise vector e is XORed to

⊕
i∈{1,...,#Tx},j(i)∈Tx Uixj(i), and the output

is
⊕

i∈{1,...,#Tz},j(i)∈Tz Vizj(i), see Fig. 3.1.
Remark 1. When we are discussing a generic multidimensional linear approximation, we
can always obtain a linear approximation with form Ux′ ⊕ V z′, i.e., only including one
input vector x′ and one output vector z′, for example, by rewriting x′ to a larger input
vector of dimension w×#Tx. Thus the rank of U becomes larger than those Ui. However,
although we are interesting to those linear approximations with large dimensions and large
SEI, the SEI is hard to always increase sufficiently as the dimension increases. Thus we
pick multidimensional linear approximation with form (3) as a generic form.

3.2 Checking Parity with Vectorial Noise
Let l ∈ H(n) denote a specific parity-check:

l : Exn ⊕G1xn−1 ⊕ · · · ⊕Gnxn−d = 0. (4)

where E is the w × w identity matrix, and all Gi are w × w square matrices, which is a
common case for the LFSR over the finite field Fw2 or the matrix ring Mw(F2).
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Figure 1: Channel model for VFCA

Since all Ui in (3) are m× w matrices, we multiply (4) with Ui, and we acquire that

UiExn+j(i) ⊕ UiG1xn−1+j(i) ⊕ . . .⊕ UiGdxn−d+j(i) = 0.

In order to check parity over matrix ring, we require that for each Gk, there is a m×m
matrix G′k such that UiGk = G′kUi,∀i ∈ {1, . . . ,#Tx}. Here Ui, Gk, G′k are m×w, w×w
and m×m matrices respectively. Thus we have

E(Uixn+j(i))⊕G′1(Uixn−1+j(i))⊕ . . .⊕G′d(Uixn−d+j(i)) = 0, i ∈ {1, . . . ,#Tx}.

According to (3), we can sum them up, and check parity by substituting those Uixn+j(i),
. . ., Uixn−d+j(i) with the observed values. Thus we have

d⊕
i=0

G′i

#Tx⊕
j=1

Ujxn−i+k(j)

 =
d⊕
i=0

G′i

#Tz⊕
j=1

Vjzn−i+k′(j)

⊕ d⊕
i=0

G′ien−i, (5)

where k(j) ∈ Tx, k′(j) ∈ Tz, G′0 = E, and en−i is a m-bit noise vector. Consequently, the
purpose is to determine en−i of each position, when observing

⊕#Tz
j=1 Vjzn−i+k′(j).

This process can be done for all parity-checks in H(n). Notice that the approach here
is generic. When the parity-checks and linear approximations have special forms, a more
efficient checking approach is feasible, see section 5.2. To describe the effect of these
parity-checks, we divide them into two sets. Let HI include those parity-checks whose
coefficients are all E, while HII includes the rest. They are called type I and type II
parity-checks respectively, which play different roles in the iterative decoding phase.

Notice that there is no need that all Gi = E as in linear distinguishing attack in large
alphabets [YJM20], which is expected to have a very high degree. For example, the degree
of those special parity-checks with weight 4 of SNOW 3G is expected to be 2172.

3.3 Vectorial Iterative Decoding Algorithm
3.3.1 Iterative Process

In this subsection, we consider how to extract information from a noisy sequence by a
vectorial iterative decoding algorithm. Firstly, we try to generalize the original Algorithm
B, then improve the iterative criteria.

Let #H(n) = h denote the number of parity-checks with τ + 1 taps at position (or
clock) n. Let e1 . . . eN denote the sequence of noises, and z′1 . . . z′N denote the derived
sequence from key stream z1 . . . zN by

⊕
i∈{1,...,#Tz},j(i)∈Tz Vizj(i). The initial priori

distribution P is the same for each en, which is derived by linear approximation. Let
p

(n)
ζ = Pr[en = ζ, ζ ∈ Fm2 ] denote its density function, then the APP p

∗(n)
ζ could be
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Algorithm 2 Calculate the nominator

Input: priori p.d p(n)
ζ

1. Let priori probability distribution p(n) = (p0, p1, . . . , p2m−1).
2. For each parity-check l ∈ H(n) do
3. Calculate distribution p(l) of

∑τ
i=1G

′
li
en−li by FWHT and convolution property.

4. Permute p(l)x ← p(l)x⊕ζ , x ∈ Fm2 .
5. End For.
6. Multiply corresponding coordinate together of all these p(l).

Algorithm 3 Vectorial iterative decoding

Input: The sequence z′ of length N derived from key stream,
The sequence of noises e with initial p.d. p,
The parity-checks set H with τ + 1 taps.

parameters: Maximal rounds R, maximal iterations T and minimal gap G to infuse new noises.

1. pri← p, Eglb = (Eglb1 , . . . , Eglb2m−1)← 0.
2. For r = 1, 2, . . . , R do
3. Ernd = (Ernd1 , . . . , Ernd2m−1)← 0, ζ ← 0.
4. For i = 1, 2, . . . , T do
5. Eitr = (Eiter1 , . . . , Eiter2m−1)← 0.
6. For n = 1, 2, . . . , N do
7. Compute app from pri by equation (6).
8. If p(n)

j > p
(n)
0 then Eitrj ← Eitrj + 1/N, j ∈ {1, 2, . . . , 2m − 1}. End If.

9. End For.
10. If Eitr � Ernd then Ernd ← Eitr, pri← app. End If.
11. If Eitr � Ernd or i = T then
12. If Eitr = 0 then return failed.
13. else if ||Ernd −Eglb|| < G then reset z′ ← z′ ⊕ n, break.
14. else Eglb ← Ernd, select ζ that maximizes Erndint(ζ) + Eitrint(ζ), break. End If.
15. End If.
16. End For.
17. If ζ 6= 0 then complement all positions of z′ such that pζ > p0 with ζ. End If.
18. If z′ satisfies all parity-checks then return success. End If.
19. Reset pri← p.
20. End For.
21. Terminate.

computed by Bayes’s formula.

p
∗(n)
ζ = Pr [en = ζ|when observed check values (c1, c2, . . . , ch)]

=
p

(n)
ζ

∏
l∈H(n) Pr[

⊕τ
i=1G

′
li
en−li = cl ⊕ Eζ]⊕

η p
(n)
η
∏
l∈H(n) Pr[

⊕τ
i=1G

′
li
en−li = cl ⊕ Eη]

.
(6)

We always assume en−li are independent and all parity-checks are orthogonal. As
ζ ∈ Fm2 runs over the alphabet, Pr[

∑τ
i=1G

′
li
· en−li = cl + E · ζ] can be calculate by

convolution property and FWHT. Thus, the nominator and denominator can be computed
by Algorithm 2.

The vectorial iterative decoding algorithm is listed in Algorithm 3. In line 1, the prior
distribution is initialized with the noise distribution p, and a global empirical vector Eglb

is initialized with 0. In line 3 of the main loop, the round empirical vector Ernd and the
coin ζ are all set to be zero. In line 5 of the iteration loop, an iteration empirical vector
Eitr is set to be zero. For each symbol, we compute the app and increase the empirical
vector Eitr, see line 7 and 8. If Eitr is still increasing, then we assign Ernd with Eitr and
pri with app, and continue the iteration, see line 10. Otherwise, if Ernd is close to Eglb,
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i.e., the algorithm may correct very few errors, we inject an appropriate noise sequence
and break the current loop, which is a new criterion, see line 13. Otherwise, we choose a
coin ζ which is likely to correct more errors and break the current loop in line 14. The
complements in Algorithm 3 are applied on the derived sequence z′. The n-th position
z′n is changed to z′n ⊕ ζ when the noise en is determined to be ζ and the complement is
performed. If z′ satisfies all parity-checks at the end, we just deduce that all ei = 0. Thus
with the help of LFSR’s feedback polynomial, the initial state of LFSR can be recovered.
The criteria that are used to break the iterative loop and trigger a resetting process are
the main factors affecting the speed of convergence [CGD96, MG91].

3.3.2 Iterative Criteria

The criteria used in the vectorial algorithm could be summarized in two points.
Criterion 1. Passing through sufficient iterations before breaking up and resetting,

which corresponds to line 7-10 and 14. More specifically, if new app strengthens the
empirical complement effect and iterations are less than maximal, then continue iteration
by Bayes’s rule. Otherwise, select the complement coin which has the potential largest
empirical complement effect.

Criterion 2. When the empirical complement effect is weak from the previous round
to the current round, a sequence of very biased noises is infused in order to break the
tie caused by the self-combination property of LFSR. The noises’ SEI is required to be
appropriate, neither very large to counteract the previous decoding work nor very small to
break the tie.

These criteria are motivated by scaled experiments when parity-checks are not so
many, and proposed for different purposes. On one hand, notice that if the loop is broken
when achieves a preset threshold as in Algorithm B, it is easier to be triggered in the
earlier rounds than in the later rounds. However, when a complement is performed very
early without passing through enough iterations, it will pull the algorithm into a tie state
very early and weaken the decoding efficiency. A tie state represents that the decoding
algorithm reaches the point where the iterations fail to improve the correction of the key
stream sequence. To improve this, Criterion 1 is proposed to avoid converging to a tie
state too early. We hope it will help to correct errors as many as possible in each of the
early rounds.

On the other hand, notice that once the algorithm entered into a tie state, i.e., the
number of right complements and the wrong complements are almost equal, the correcting
effect is very weak. However, If we only reset the iterative process, the experiments show
that the new process will enter into the tie state again without profits. The main reason is
that the noise errors are no longer independent with the parity-checks in higher rounds.
Therefore, a new sequence of biased noises is XORed to the sequence z′ to get out of the
trap. We hope it will improve the convergency to some extent.

Intuitively, a tie state is likely to appear, when it is close to the bound of decoding
ability. Let e′ = e′0, e

′
1, . . . , e

′
N−1 denote the current noise sequence after many rounds.

In higher rounds, the check result maybe indicate the e′i is a swing error for many
i ∈ {0, 1, . . . , N − 1}, i.e., either to be 0 or ζ. Complementing those e′i with e′i ⊕ ζ will
have no profits. However, injecting noise n maybe weaken the dependency between e′
and the parity-checks. The new sequence e′ ⊕ n maybe far away from the original e′ in
the sense of the check result. Thus it may pull the algorithm out of the tie state when
both the number of parity-checks and the SEI of initial noise are not too small. Thus we
require that the SEI of the infused noise is not too small, or it will counteract all previous
iterative correcting processes. Meanwhile, the SEI of the infused noise should not be too
large, or the pull will be too small to get out of the trap, as the changes for e′ are not
enough in this case. As for the binary case, i.e., e′ is a binary sequence, the difference is
that a tie state maybe satisfy that almost half of parity-checks hold. Thereby, it seems
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Figure 2: Several vectorial iterative decoding curves of scaled experiments

that the idea may be applied to some binary iterative algorithms. The experiment results
in the next subsection also provide an evidence.
Remark 2. Regardless of the differences in criteria, the original FCA proposed by Meier et.
al. can be treated as a special case of the new FCA with dimension m = 1. The coefficient
matrices of LFSR degenerate to scalar elements in F2. Therefore, the commutative
condition for coefficient matrices of parity-checks is not needed to be considered. The
multidimensional linear approximation degenerates to a binary linear approximation, and
ζ must be 1.

3.4 Scaled Experiments and A Discussion for Comparison
3.4.1 Small Scale Experiments

In this section, we perform scaled experiments to verify the vectorial iterative algorithm
and the idea of Criterion 2. The first scaled experiments show the validity of the vectorial
iterative algorithm. The second experiment shows that the idea of Criterion 2 may be
applied to other binary iterative algorithms.

The first experiment settings are as follows. The generator polynomial of LFSR is
g(x) = x16 + x15 + x+ α ∈ F22 [x], where α is the primitive element of F22 . The output
of LFSR at time t is xt. The noise stems from a SC channel instead of nonlinear part of
a stream cipher. The target is recovering LFSR output sequence x1x2 . . .xN from noisy
sequence z1z2 . . . zN = (x1x2 . . .xN )⊕ (e1e2 . . . eN ).

We tweak the parameters such as channel capacity, the number of parity-checks and
the infused noises to verify the word-error ratio (WER) after iterating a number of rounds.
Specifically, the density functions of 2 priori distributions P1 and P2 are (0.45, 0.25, 0.2, 0.1)
and (0.33, 0.25, 0.22, 0.20) respectively. The length of data is N = 219 or 221 key stream
words. The number of parity-checks with τ = 2 are h = 9, hI = 36 or hII = 36. The
results of experiment are illustrated in 2. For example, the curve (1, 1, 2, 9, 19) denotes
the result derived by parameters P1, h = 9, N = 219 with Criteria 1 and 2. The curve
(2, thr,−, 36II, 19) denotes the result derived by parameters P2, hII = 36, N = 219 with
threshold criterion like Algorithm B.

Some observations could be induced from Figure 2. Firstly, comparing the curve
(1, 1, 2, 9, 19) with (1, 1, 2, 36I, 19), we see that the speed of convergence increases with the
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number of parity-checks when channel capacity is fixed. Secondly, comparing the curve
(1, 1, 2, 9, 19) with (1, 1,−, 9, 19), we see that Criterion 2 indeed improves the convergence.
The algorithm will enter into a tie state at about the 29th round without Criterion 2.
However, it can’t improve convergency, when the SEI is very small, see (3, 1, 2, 36I, 19).
This result verifies our above statements. Thirdly, from the curves (1, 1,−, 9, 19) and
(1, thr,−, 9, 19), it seem that Criterion 1 improves the convergence too. Finally, it seems
that more data also improves the convergence from (2, 1, 2, 36I, 19) (2, 1, 2, 36I, 21). Notice
that (2, 1, 2, 36I, 19) seems be worse than (2, 1, 2, 36II, 19). The reason is that the length
of key stream N = 219 is not sufficiently large comparing with the degrees. Therefore, the
average feasible parity-checks for both the head and tail segments of the key stream in
(2, 1, 2, 36I, 19) are less than in (2, 1, 2, 36II, 19).

As stated in Section 3.3.2, the new Criterion 2 may help to improve some other binary
algorithms. We take Algorithm B in [MS89] and MIPD Algorithm in [CGD96] as examples
to perform another scaled experiment. Thereby, we have 4 binary algorithms, i.e., the
Algorithm B, the MIPD Algorithm and their modified versions with Criterion 2. The
parameters of the experiments are as follows. The length of the LFSR over F2 is 32-bit.
The noised bit zt is derived by XORing the output of LFSR xt with noise bit et. The
probability of error Pr(et = 1) = 0.378 for the Algorithm B and its modified version, while
the value is 0.371 for MIPD and its modified version. For both cases, we use 9 parity-checks
with 3 taps and 220 bits data (key stream). For Algorithm B, we inject a noise sequence
whenever Nw is still very small after the iterations. For the MIPD Algorithm, we inject a
noise sequence whenever the number of holding parity-checks changes is very small. Figure
3 illustrates the first 175 rounds of bit-error ratio (BER) for the 4 algorithms. Noticed that
the way we embed Criterion 2 into the original algorithms may not be optimal. However,
Criterion 2 still improves the convergence in both cases. The results imply that Criterion
2 maybe also work for some other binary algorithms when they approach the decoding
boundary. It seems that Criterion 2 has better performance in Algorithm B than in the
MIPD algorithm. The main reason is that the complements are performed in each iteration,
which means that the infused noises may be eliminated slowly. Thus we injected a slight
noise sequence. However, the Algorithm B complements zt after some iterations in each
round, which means the infused noises may be cleared fast. Thereby, in order to make the
improvement more obvious to be illustrated in a figure, we choose a slightly smaller initial
probability in comparison MIPD Algorithm with its modified version.

3.4.2 A Discussion about the Potential Advantages

Although the new criteria may be effective, we can not directly compare the vectorial
algorithm with a binary algorithm. The reason is that it is hard to compare them under
equal status. Firstly, as the same number of vectorial parity-checks and binary parity-
checks does not mean the equivalent comparison condition, it is hard to choose the two
numbers to make the two algorithms stand at the same starting line so far as we know.
Secondly, the corresponding concept is the bit error ratio (BER) in the binary case instead
of the word error ratio (WER). The vectorial algorithm aims at small WER, while the
binary one aims at small BER. Small BER does not strictly mean small WER and vice
versa. These differences prevent us from giving a precise and fair comparison.

However, since the purpose of proposing the vectorial decoding algorithm is to deploy
the multidimensional linear approximation, whose SEI may be significantly larger than
that of the binary linear approximation, we can observe some cases where the vectorial
algorithm may have advantages. For example, let the l-bit LFSR is defined in F2m , where
l is a multiple of m, the SEI of the multidimensional linear approximation is 2−γ . Since
the number of parity-checks should not be smaller than

( 2m−1
2m

)τ−1 2
(2m+γ)(τ−1)

2 , i.e., the
equation (18) in Section 4.2.1, we need at least 2γ/2(2m − 1) parity-checks with 3 taps.
Thus the length N of data needed satisfies (2m − 1)22−l

(
N
2
)
≈ 2γ/2(2m − 1) by a birthday
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Figure 3: An example for comparing Criterion 2

collision, which means N ≈ 2(γ+2l+2)/4/
√

2m − 1. When m = 1, N ≈ 2(γ+2l+2)/4. For the
vectorial case, N seems to be smaller than the binary case, because that m > 1 and γ is
expected to be smaller than the binary case. For more details about these relationships,
we refer to Section 4.2.1.

4 Some Cryptographic Properties for Vectorial Iterative
Algorithm

4.1 Some Statistical Properties of the Iteration
4.1.1 Convergence Property

It is necessary to figure out the convergence property when iteratively computing APP.
Intuitively, we hope that APP p

∗(n)
ζ increases when noise variable en = ζ and decreases

when en 6= ζ. Its expected value is computed as follows.

E0[p∗(n)
ζ ] =E[p∗(n)

ζ |en = ζ]

=
∑

(c1,...,ch)

p
(n)
ζ

(∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ]

)2∑
ζ p

(n)
ζ

∏
l∈H(n) Pr[

∑t
i=1G

′
li
eli = cl + Eζ]

,

E1[p∗(n)
ζ ] =E[p∗(n)

ζ |en 6= ζ]

=
∑
ζ′ 6=ζ

∑
(c1,...,ch)

p
(n)
ζ

∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ]∑

ζ p
(n)
ζ

∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ]

p
(n)
ζ′
∏
l∈H(n) Pr[

∑τ
i=1G

′
li
eli = cl + Eζ ′]

1− p(r)
ζ

.

And we conclude that E[p∗(n)] = pζE0[p∗(n)] + (1− pζ)E1[p∗(n)] = pζ .

Example 1. Let the generator polynomial of LFSR L(x) ∈ F22 [x] with degree 16. We get
the increasing and decreasing ratios in Table 1 when exploits 3 type I parity-checks with 3
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Table 1: An example of increasing and decreasing ratio

x 0 1 2 3
px 0.4500 0.2500 0.2000 0.1000

E′0/p
∗ 1.02618712 1.00117564 1.02744428 1.10462318

E′1/p
∗ 0.97857418 0.99960812 0.99313893 0.98837520

E0/p
∗ 1.03907892 1.06836181 1.16004050 1.19334394

E1/p
∗ 0.96802634 0.97721273 0.95998988 0.97851734

taps. The second row is a priori probability distribution P . E0[p∗]/[p∗] and E1[p∗]/[p∗]
denote the increasing and decreasing ratio. Particularly, E′0/p∗ and E′1/p∗ denote the case
only considering the number of holding parity-checks. Both cases meet our expectations.

4.1.2 Decoding Efficiency

In algorithm B, a threshold Nthr is computed to promote the efficiency of the complements.
It is determined by the intersection point of two shrunk normal distributions, In the
multidimensional case, the intersection point becomes an intersection curve (surface). The
threshold reflects the correcting ability of the first iteration in the binary case. Although
we do not need such a threshold to promote efficiency in the vectorial case, it still reflects
the decoding efficiency from the first iteration. Thus we discuss how to estimate the
correcting ability by measuring the volume of the intersection area in this subsection.

Let N thr
ζ denote this threshold corresponding to ζ. Without loss of generality, we

assume that the priori probability distribution P of noise sequence e1 . . . eN s.t. p0 ≥ p1 ≥
. . . ≥ p2m−1 > 0. Suppose that a random variable X ∼ P , we require that the distribution
of new random variable G′liX still has 0 as the maximal value point 1. It surely holds when
G′li is nonsingular. This requirement may reduce the number of available parity-checks,
but it simplifies the analysis of the effect of parity-checks.

Let X1, . . . , Xτ denote τ independent random variables all follow P . Let Q denote the
distribution of their linear combination

∑τ
i=1G

′
li
Xi. Thus Q still has 0 as its maximal

value point, which could be deduced from the convolution property and Walsh-Hadamard
transform. Particularly, if all G′li = E, Q preserves the order of P , i.e., q0 ≥ q1 ≥ . . . ≥
q2m−1 > 0.

The approach to calculate N thr
ζ is inspired by the fact p∗ζ is large when more check

values appear to be ζ. Let qc = Pr[
∑τ
i=1G

′
li
en−li = c] denote the probability that the τ

taps sum to be c for parity-check l. Obviously, qc depends on the individual parity-check.
This phenomenon makes it very complicated to calculate the threshold N thr

ζ . To simplify
the calculation, we divide all parity-checks into two sets HI and HII according to its
coefficients, then deal with them separately.

The set HI includes all parity-checks whose coefficients are all identity. For this class,
qc is obviously independent of parity-checks. Let #HI = hI , the probability the current
noise e = ζ and xi check values equal i, i ∈ {0, . . . , 2m − 1} is as follows 2

pζq(x0, . . . , x2m−1, ζ) = pζ
hI !

x0! . . . x2m−1!

2m−1∏
i=0

qxii⊕ζ , (7)

where x2m−1 = hI −
∑2m−2
i=0 xi.

1Minimal value point is similar. We assume that p0 is minimal instead.
2Actually, check values are vectors in Fm2 , here we use integers i to denote the same thing.
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Figure 4: An example for the difference distribution

Obviously, x = (x0, . . . , x2m−1) follows multinomial distribution Multi(hI , qζ) with pa-
rameter qζ = (qζ , . . . , q2m−1⊕ζ). Its density function is denoted by q(x, ζ). For convenience,
we introduce notations

qxζ =
2m−1∏
i=0

qxii⊕ζ ,

(
hI
x

)
= hI !
x0! . . . x2m−1! .

Let A(ζ) be a subset of all possible x. Once we complement those noises with ζ 6= 0
when the vectors in A(ζ) are observed, the expected number of correctly complemented
noises and erroneously complemented noises are respectively

N ×W (P,A(ζ), ζ) = N
∑

x∈A(ζ)

pζq(x, ζ), N ×W (P,A(ζ), 0) = N
∑

x∈A(ζ)

p0q(x, 0), (8)

where N denote the length of data. All the other cases of complements are neutral.
Thereby, the number of actual corrected positions is the difference

N × I(P,A(ζ), ζ, 0) = N ×W (P,A(ζ), ζ)−N ×W (P,A(ζ), 0) . (9)

Given P andHI , if we can find a set A(ζ) maximizing I(P,A(ζ), ζ, 0), then the expected
number of actual corrected positions of each complement should be maximized. Firstly, we
observe that the means of the two multinomial distributions are hIqζ and hIq0 respectively.
Therefore, similar as the binomial case, there is a set A(ζ) of x in which I(P,A(ζ), ζ, 0)
takes non-negative value.

Since given x, I(P,A(ζ), ζ, 0) and p∗ζ − p∗0 have the same sign, it is equivalent to find
A(ζ) such that p∗ζ − p∗0 > 0 for each x ∈ A(ζ) , that is to determine the region A(ζ) such
that

δ(ζ, 0) = pζq(x, ζ)− p0q(x, 0) > 0,x ∈ A(ζ). (10)

Example 2. Let initial distribution P and LFSR be the same as in Example 1, and
hI = 15. The difference δ(ζ, 0) is illustrated in Fig. 4. The green circles denote the negative
δ(ζ, 0), while the red circles denote the positive δ(ζ, 0). The size of circle represents the
relative value of |δ(ζ, 0)|. The non-negative and the negative area are separated. The
region A(ζ) corresponds to those x which derives red circles.
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Table 2: Direct computation and normal approximation for I(p,A(1), 1, 0)

hI 40 80 200 400
direct computation 0.0686 0.1138 0.1835 0.2266

normal approximation 0.0707 0.1148 0.1841 0.2267

When h is small, it is feasible to evaluate N thr
ζ by exhaustively searching. The threshold

N thr
ζ can be determined by

N thr
ζ = N

 ∑
x∈A(ζ)

∑
η∈Fm2

pηq(x, η)

 . (11)

The time complexity is about O(2m
(
hI+2m

2m
)
).

When hI is large and q is not near the boundary of the parameter space, multivariate
normal distribution approximation is suitable. Multi(hI , q) could be approximated by
N (µ,Σ) with density function

1√
(2π)2m−1|Σ|

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
,

where superscript T denotes transposition, mean vector µ and covariance matrix Σ are
determined by Multi(hI , q). Therefore, the area A(ζ) maximizing the multiple integral

I(P,A(ζ), ζ, 0) ≈
∫
A(ζ)

(
pζN (µζ ,Σζ)− p0N (µ0,Σ0)

)
dx (12)

should be part of a hypercube with dimension 2m − 2 that restricted by the 2m − 1
coordinate plane and two surfaces

Ω1 :
2m−2∑
i

xi = hI ,

Ω2 : 12
(
(x− µ0)TΣ−1

0 (x− µ0)
)
− 1

2

(
(x− µζ)TΣ−1

ζ (x− µζ)
)
− ln p0

pζ
= 0.

(13)

Notice that Ω2 is a quadratic form in the real field, the multiple integral (12) can be
computed by repeated integral. Once A(ζ) is determined, the threshold can be calculated
by volume integral

N
∑
η∈Fm2

∫
A(η)
N (µη,Ση)dx. (14)

Example 3. Let the probability distribution P and LFSR be the same as in Example 1.
To illustrate this multivariate normal approximation, I(P,A(1), 1, 0) is computed by two
methods and depicted in Table 2. In order to simplify the integral, we could even slightly
adequate the boundary of A without fluctuating the result much.

When the parity-checks stem from HII = H\HI , qc depends on individual parity-
check. Thus when the probability value peak is q0, we introduce a symmetric multinomial
distribution Q′ to simulate the influences of type II parity-checks, which parameter is

q′0 = q0, q
′
1 = · · · = q′2m−1 = 1− q′0

2m − 1 . (15)

Then the calculation is similar as for HI . According to the size of HI and HII , we could
estimate N thr

ζ by combine HI and HII together. The multinomial distribution is replaced
by Multi(hI , qζ)Multi(hII , q′ζ) in this case.
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Table 3: Theoretical and empirical value of N thr
ζ /N

No. of parity-checks
ζ theoretical

empirical
(hI , hII) N = 219 N = 220 N = 221

(36,0)
1 0.277133 0.227242 0.250517 0.264012
2 0.253926 0.242359 0.246835 0.249339
3 0.200412 0.164480 0.181245 0.190250

(18,18)
1 0.297959 0.251286 0.270056 0.279394
2 0.260769 0.220915 0.238914 0.248543
3 0.167968 0.125576 0.144096 0.154273

(0,138)
1 0.376058 0.360392 0.364783 0.368026
2 0.325561 0.321800 0.332389 0.338674
3 0.221771 0.198662 0.213513 0.221388

Example 4. To verify the validity of these approximations, with the same P and LFSR
as in Example 1, we compute the theoretical ratio of N thr

ζ /N and the empirical ratio by
the ratio where p∗ζ > p∗0. Table 3 depicts that our estimations are very precise.

We also give some direct properties from the point view of information theory in
Appendix B, which maybe imply some relationships among the decoding efficiency, the
initial noise distribution and the number of the parity-checks.

4.2 Two bounds Related to Cryptanalysis Complexity
As the number of parity-checks h influences the decoding complexity. We focus on the
property of the first iteration in the first round, which seems to be the critical part by the
previous section, and discuss how to deduce some theoretical bounds for h as well as key
stream length N .

4.2.1 A Bound Derived from Decoding Codes

Similarly, as Proposition 1 in [CS91], in order to perform error-corrected iterative decoding,
the lower bounds of h should satisfy that there exists at least a ζ such that p∗ζ > p∗0. It is
summarized as follows.

Proposition 1. If iterative decoding is feasible, then there is at least one ζ ∈ {1, 2, . . . , 2m−
1} such that pζq(x, ζ)/(p0q(x, 0)) > 1. Particularly, when P , Q and Q′ are multinomial
probability distributions as before, then ζ = 2m − 1 and

pζ
p0

>

(
qζ
q0

)hI (q′ζ
q′0

)hII
. (16)

Proof. Since if pζq(x, ζ)/(p0q(x, 0)) ≤ 1 holds for all ζ, then p∗i converges to 0 or becomes
ambiguous during the iterations, i.e., p∗0 = p∗i is one of the largest. The decoding algorithm
won’t work.

Particularly, when the probability values of P and Q (or Q′) are in order as stated
before, and all values of parity-checks are ζ, obviously we have

pζq
x
ζ

p0qx0
≤
pζq

hI
ζ qhIIζ

p0q
hI
0 qhII0

.
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Table 4: Two probability distributions P and P ′

x 0 1 . . . 2m − 2 2m − 1
px − 2−m 2−

2m+γ
2 −2−

2m+γ
2 . . . 2−

2m+γ
2 −2−

2m+γ
2

p′x − 2−m 2−
2m+γ

2 ε . . . ε ε

Remark 3. Though the ratio η(ζ, 0) has large value when all check values are ζ, The lower
bound for h given in Proposition 1 may be loose, as the probability that all check values
are ζ is small.

A lower bound for N could be derived through Proposition 1. For example, when
generator polynomial L(x) ∈ F2m [x], the number of parity-checks h and the key stream
length N shall satisfy that

(
N
τ

)
(2m − 1)τ ≈ h2k.

As an application of Proposition 1, we consider an example of two special probability
distributions. Since when ∆(e) = 2−γ , it is expected that there are probability values
around 2−m ± 2−

2m+γ
2 in practice [YJM20], the distributions P and P ′ in Table 4 may be

useful, where ε denotes (2−
2m+γ

2 )/(2m − 1) 3.
When 2−γ/2 is relatively small to 1, by Taylor’s formula, we have

p2i+1

p0
=≈ 1− 2

−γ+2
2 ,

p′i
p′0

=≈ 1− 2m

2m − 12−
γ
2 .

Furthermore, by the convolution property, when each parity-check has τ + 1, τ ≥ 2 taps,
we have

q2i+1

q0
= 1− 2−

τγ
2

1 + 2− τγ2
≈ 1− 2

−τγ+2
2 .

Hence, by Proposition 1, the number of type I parity-checks for P is

1− 2
−γ+2

2 ≥
(

1− 2
−τγ+2

2

)hI
⇒ hI ≥ 2

(τ−1)γ
2 . (17)

For the case of P ′, the general term formula of distributions convolution could be
deduced by its recursion formula, i.e.,

q′0 = 2−m + 2m(τ−1)

(2m − 1)τ−1 2−
2m+γ

2 τ , q′i = 2−m − 2m(τ−1)

(2m − 1)τ 2−
2m+γ

2 τ .

Thus we have
q′i
q′0
≈ 1− 2m(τ+1)

(2m − 1)τ 2−
2m+γ

2 τ ,

which means

1− 2m

2m − 12
−γ

2 ≥
(

1− 2m(τ+1)

(2m − 1)τ 2−
2m+γ

2 τ

)h
⇒ h ≥

(
2m − 1

2m

)τ−1
2

(2m+γ)(τ−1)
2 . (18)

Notice that type I and II parity-checks are not distinguished in the case of P ′.
The FCA mainly benefits from the increased SEI. More specifically, according to

Theorem 1, there are 2m− 1 binary linear approximations contributing to the SEI of linear
approximation with dimension m. Notice that there are other distributions, e.g., P ′′ with
p′′0 = 2−m − 2−

2m+γ
2 , while the other value points are all the same. This case is similar

with P ′ except that 0 is the minimal value point.
3Since the SEI of P ′ is less than 2−γ , the number of parity-checks h needed in practice may be smaller

than that derived from P ′.
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4.2.2 A Bound Derived from the Practical Corrected Errors

In this part, we discuss how to deduce a bound from the number of expected positions
with p∗ζ > p∗0, ζ 6= 0.

Let us consider the sets A(i), i ∈ {1, 2, . . . , 2m− 1} for multinomial distributions. Since
A(i) may intersect with each other, the way of computing threshold in section 4.1.2 can’t be
directly applied. Thereby, we introduce some new sets: A′(i) = A(i)−A(i) ∩ (

⋃i−1
j=1A(i)),

That is A(i) excluding all elements that are included in previous sets A(i), i ∈ {1, 2, . . . , i}.
Let M ′i denote the summation of probability values over set A′(i), more specifically,

2m−1∑
ζ=1

M ′ζ =
2m−1∑
ζ=1

pζ
∑

x∈A′(ζ)

q(x, ζ). (19)

It is reasonable to require that
∑2m−1
ζ=1 M ′ζ > 1 after the first iteration. Then the succeeding

iterations may trigger more positions with p∗ζ > p∗0. This phenomenon may be the main
advantage that soft decision decoding algorithms have.

Summing up the probability values in multinomial distributions is inconvenient. Though
multivariate normal distribution approximation could also be used as before when h is
large, the integral may not be easy to evaluate in practice, as the integral area A′(ζ) is
very complicated. Since symmetric distribution Q′ simulates the iterative process very
well, we could deduce boundaries for A′(ζ) using Multi(h, q′). The following results show
how to estimate M ′ζ in this case.

Proposition 2. For multinomial probability distribution Multi(h, q′), we have

M ′ζ =
h∑

l=hb

(
h

l

)
(1−

ζ∑
i=0

q′i⊕ζ)h−l
∑

(x0,...,xζ)∈B(ζ)

(
l

x0, . . . , xζ

) ζ∏
i=0

q′xii⊕ζ , 1 ≤ ζ < 2m,

where B(ζ) is constrained by
∑ζ
i=1 xi = l, xζ − x0 ≥ hb and xi − x0 ≤ hb, 1 ≤ i < ζ.

Particularly, when
∑ζ
i=0 q

′
i⊕ζ is small and hq′i ≤ hb, the expected number of positions

with p∗ζ > p∗0 in the first iteration are dominated by those small l.

Proof. Since q′1 = · · · = q′2m−1, we have

M ′ζ =
∑

x∈A′(ζ)

(
h

x

)
q′xζ

=
h∑

l=hb

(
h

l

)
(1−

ζ∑
i=0

q′i⊕ζ)h−l
∑

(x0,...,xζ)∈B(ζ)

(
l

x0, . . . , xζ

) ζ∏
i=1

q′xii⊕ζ .

By Proposition 1, we deduce that there is a minimal positive integer hb such that δ(ζ, 0) > 0
when xζ − x0 ≤ hb. Furthermore, xi − x0 < hb should holds for all 0 < i < ζ to exclude
the points in A′(i). Therefore, when p∗ζ > p∗0, (x0, . . . , xζ) ∈ A′(ζ) must satisfy that

xi ≥ 0, 0 ≤ i ≤ ζ,
xi − x0 < hb, 0 < i < ζ,
xζ − x0 ≥ hb,
x0 + · · ·+ xζ < h .

When h is not small and
∑ζ
i=0 q

′
i⊕ζ is not high, multidimensional distribution Multi(h, q′ζ)

could be approximated by ζ+1 independent Poisson distributions with means λi⊕ζ = hq′i⊕ζ ,
i.e.,

Pr(X = x) ≈
∑
A′(ζ)

ζ∏
i=0

λxii⊕ζ
xi!

e−λi⊕ζ = λ
xζ
0
xζ !

e−λ0
λ
x0+···+xζ−1
ζ

x0! . . . xζ−1!e
−ζλζ . (20)
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As λi ≤ hb, the maximal value of Pr(X = x) is when
∑ζ
i=0 xi is small, i.e., when l is

small.

Proposition 2 gives us a hint that the value corresponding small l dominate M ′i . When
ζ is not very large, M ′ζ could be approximated by partial summation for small l close to
the boundary. Obviously, M ′i 6=0 are monotone non-increasing sequence.

When ζ = 1, there is another elegant way to estimate M ′1 by Skellam distribution.
Let Y0 ∼ Pois(λ1) and Y1 ∼ Pois(λ0), we know that their difference K = Y1 − Y0 follows
Skellam distribution with following probability density function.

p(k, λζ , λ0) = e−λζ−λ0

(
λζ
λ0

)k/2
I|k|(2

√
λ1λ0),

where I|k| is the modified Bessel function of the first kind. Obviously,M ′1 = Npζ Pr(K > hb)
since a boundary line is x1 ≥ x0 + hb by Proposition 2.

5 Application to Grain-128a
In this section, we apply our new techniques to stream cipher Grain-128a. We assume the
cryptanalysis is under the known-plaintext scenario. Since the output is directly used as
key stream and the plaintext never participates in updating internal states, this assumption
is reasonable for Grain-128a.

5.1 A Brief Description of Grain-128a
Grain-128a includes a 128-bit LFSR cascaded with a 128-bit NFSR. Let s(t) = (st, st+1,
. . ., st+127) and b(t) = (bt, bt+1, . . . , bt+127) denote their internal states at time t. The
output yt of the pre-output function at time t is represented by

yt = h(s(t), b(t))⊕ st+93 ⊕ bt+2 ⊕ bt+15 ⊕ bt+36 ⊕ bt+45 ⊕ bt+64 ⊕ bt+73 ⊕ bt+89,

where h(s(t), b(t)) is defined as

h(s(t), b(t)) =h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)
=bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+40st+79 ⊕ bt+12bt+95st+94.

The feedback bits of LFSR and NFSR are computed by

st+128 =st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96,

bt+128 =st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96⊕
bt+3bt+67 ⊕ bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59⊕
bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84⊕
bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82 ⊕ bt+88bt+92bt+93bt+95.

Key stream bit zt = yt in the stream cipher mode, while zt = y2w+2t in the authenticated
mode, where w is the tag size. The overall structure of Grain-128a is depicted in Fig. 5.

5.2 Constructing Multidimensional Linear Approximations and Check-
ing Parity

In [TIM+18], the authors proposed a family of linear approximations of Grain-128a by
pilling up different clocks to eliminate the linear terms of the NFSR, which forms are

⊕i∈Tzyt+i ≈ ⊕i∈Tzst+i+93 ⊕⊕j∈Ast+j ⊕i∈Tz 〈Λi[1− 3], (st+i+8, st+i+13, st+i+20)〉
⊕ 〈Λi[5− 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉,

(21)
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Figure 5: The overall schematic of Grain-128a

where A = {2, 15, 36, 45, 64, 73, 89},Tz = {0, 26, 56, 91, 96, 128}, Λi is a 9-bit binary linear
mask, two bits Λi[0, 4] are fixed.

According to [TIM+18], an assignment of Λi[1 − 3] and Λi[5 − 8] will completely
determine the correlation of h function, when Λi[0, 4] is fixed. For a specific i ∈ Tz,
there are only 64 possible Λi[0, 4], i ∈ A such that the correlation of Eq. (21) is nonzero.
Hence, the linear correlation value of (21) can be deduced by summing up all these 64
Λi[0, 4], i ∈ Tz. Meanwhile, there are 26 values of Λi[1−3, 5−8] of a specific i ∈ Tz with the
correlation of h function is nonzero. For example, when Λi[1− 3, 5− 8] = 0000000,∀i ∈ Tz,
the correlation of (21) is about ±2−57.0454. For more details of these linear approximations,
we refer to [TIM+18].

In this paper, we reuse these linear approximations but in a new way by bundling them
up. Firstly, we choose 42 linear approximations which Λi[1− 3, 5− 8], i ∈ Tz has form

(Λ0[1− 3, 5− 8],Λ26[1− 3, 5− 8], . . . ,Λ128[1− 3, 5− 8]) = (0, . . . , 0, 1, 0, . . . , 0),

i.e., Λi[1− 3, 5− 8], i ∈ Tz as a group of standard basis. Then a linear approximation with
dimension 9 ≤ m ≤ 42 can be established as follows

E(xt + ut) + Eyt = et, (22)

where E is a m×m identity matrix in F2. et is noise vector, and

xt = (. . . , st+i+8, st+i+13, st+i+20, st+i+42, st+i+60, st+i+79, st+i+94, . . .) ,

ut =

 ∑
i∈A
⋃

Tz

st+i,
∑

i∈A
⋃

Tz

st+i, . . . ,
∑

i∈A
⋃

Tz

st+i

 ,

yt =
(∑
i∈Tz

yt+i,
∑
i∈Tz

yt+i, . . . ,
∑
i∈Tz

yt+i

)
,

et = (et, et+1, . . . , et+m−1) .

Any even Hamming weight linear combination of Eq. (22) will generate a linear
approximation without

∑
i∈A
⋃

Tz st+i and
∑
i∈Tz yt+i, which correlation would be treated

as 0. As for odd linear combinations, it is still required that any of Λi[1−3, 5−8], i ∈ Tz will
not deduce a zero correlation for h function. Therefore, we can construct a multidimensional
linear approximation with dimension 9 ≤ m ≤ 42, which consists of 2m−1−6 = 2m−7 linear
approximations with correlation ±2−57.0454. By Theorem 1, its SEI ∆(et) = 2m−121.0908.
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As st is a m-sequence, shifting and summation sequence s′t+c′
j

= st+cj +
∑
i∈A
⋃

Tz st+i

is also a a m-sequence with same generator polynomial as st. Let vectorial sequence
x′t = (s′t+c′1 , . . . , s

′
t+c′m), since shift offsets c′j , 1 ≤ j ≤ m have large difference, the parity-

checks with τ = 1 are not all ruled out.
Since x′t runs over Fm2 \{0}, there is at most one parity-check with τ = 1 for each

0 < n ≤ N/m. In order to increase the occurrence possibility for parity-check with t = 1,
several redundant binary linear approximations with nonzero correlation could be added
into the subspace. The dimension increases but SEI is almost unchanged. Therefore, the
maximal probability value should decrease.

Another way is exploiting a kind of special parity-checks with τ > 1. In order to avoid
the great loss of SEI while implementing convolution, we play a trade-off trick when special
parity-checks are feasible. For example, suppose we have h special parity-checks as follows.

Gn,1x
′
t−dn,1 +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0, . . . , Gn,hx′t−dn,h +

a∑
i=1

Gn−i,hx
′
t−di + Ex′t = 0.

Notice that all of them involve vector variables x′t,x′t−d1
, . . . ,x′t−da except for the last

variable x′t−dn,j Let Dn−i,j = Gn−i,j +Gn−i,1, 1 ≤ i ≤ a, denote the coefficient difference
between the j-th and the 1-st equation. Let

∑a
i=1Dn−i,jx

′
t−di = δj denote the difference

value. Moreover, we require that δj satisfies some restrictions.
Since we have h− 1 groups of linear equations with coefficients (Dn−1,j , . . ., Dn−a,j),

we require that those linear equation groups have the same solution subspace S with large
dimension, for example, with dimension am− 1 or am− 2, which implies that the rank
of (Dn−1,j , . . . , Dn−a,j) may be 1 or 2. Thus when (x′t,x′t−d1

, . . . ,x′t−da) ∈ S, all δj = 0.
Otherwise, δj 6= 0 are likely different. Thus we have

Gn,1x
′
t−dn,1 + 0 +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0,

Gn,2x
′
t−dn,2 + δ2 +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0,

. . .,

Gn,rx
′
t−dn,h + δh +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0.

Then the APP for
∑a
i=1Gn−i,1et−di +Eet could be evaluated by total probability theorem

according to whether all of δj are 0. The initial state is recovered from observed values zt
of the error-corrected positions, i.e.,

a∑
i=1

Gn−i,1(x′t−di + et−di) + E(x′t + et) =
a∑
i=1

Gn−i,1x
′
t−di + Ex′t = zt.

The dimension of linear approximation is not changed but the APP converges slower. Thus
the decoding ability decreases when dimension of S decreasing. However, the constraints
for parity-checks is relaxed.

With these techniques, a fast correlation attack could be performed with these special
parity-checks and multidimensional linear approximations in (22).

5.3 Complexity Estimation
In this section, we estimate some theoretical bounds for Grain-128a, which would bring us
a new perspective on its security margin.
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Let the SEI ∆(et) = 2−γ , dimension m = 42. According to results in [YJM20], we
can assume p0 = 2−m + 2−

2m+γ
2 be the maximal probability value. This implies that all

other points are very close to 2−m. Thereby, the probability distribution P stemming from
SEI is close to symmetric distribution. To simplify the process of estimating the expected
number of positions with p∗ζ > p∗0 , we need the following hypothesis.

Hypothesis 1. There are at least 2 parity-checks with two taps, or there are more special
parity-checks as stated in the previous section.

Suppose we have h special parity-checks corresponding to a solution subspace of dimen-
sion am−1 as stated above. Let v1, . . . ,vh denote the check values, γ = (γ0, . . . , γ2m−1) and
γ′ = (γ′0, . . . , γ′2m−1) denote the frequency of values in v1, . . . ,vh and v1,v2⊕δ2, . . . ,vh⊕
δh respectively. There are two events that may deduce p∗ζ > p∗0: event A denotes that
γ ∈ A′(ζ), while event B denotes that γ′ ∈ A′(ζ). For simplicity, we only consider that
when A occurs, then we have

M ′ζ =1
2pζ

 ∑
γ∈A′(ζ)

(
h

γ

)∏
i

pγii⊕ζ +
∑

γ∈A′(ζ)

(
h

γ′

)∏
i

p
γ′i
i⊕ζ

 ,

M ′0 =1
2p0

 ∑
γ∈A′(ζ)

(
h

γ

)∏
i

pγii +
∑

γ∈A′(ζ)

(
h

γ′

)∏
i

p
γ′i
i

 .

The first term denotes the probability that current noise symbol is ζ or 0, when the
frequency vector γ ∈ A′(ζ) and all δj = 0. The second term corresponds to when the
frequency vector γ ∈ A′(ζ) but many δj 6= 0, 2 ≤ j ≤ h. Thus the observed vector is γ′.
Since γ′i are likely different, it is reasonable to assume that the second terms of M ′ζ and
M ′0 are close. To simplify the evaluation, we only consider the first term.

Table 5 in Appendix A depicts the approximation of M ′ζ( 1
2 is neglected). M ′1 is

estimated by two methods: Skellam distribution and summation for small l. The two
estimations are very close to each other. Let D′i = M ′i −M ′0 denote the difference. We also
compute the summation

∑236

i=1M
′
i and the difference summation

∑236

i=1D
′
i. For example,

when h = hb = 2, the expected key stream length N > 248+42+1 = 291. As P is symmetric,
it seems there is no need to evaluate every probability value of APP distribution. Therefore,
we use the key stream length N multiplied by the number of parity-checks h as time
complexity. For the other case when there are at least 2 parity-checks with two taps, there
is no probability loss caused by the trade-off. The complexity estimation is similar.

6 Discussion and Open Problems
The analysis of the vectorial iterative decoding algorithm is very complicated, there are
still several open problems needed further study.

Firstly, it seems we cannot directly compare the vectorial decoding algorithm with a
binary algorithm. The main reason is that we do not know how to put them in the same
start line. For example, how many parity-checks means they have equal status. Although
we point out the potential theoretical advantages for some cases in Section 3.4, it is still
an open problem for the generic case.

Secondly, the other theoretical properties of the vectorial algorithm are still not clear.
For example, the time complexity is estimated by the key stream length multiplied by the
number of parity-checks. There are lots of redundant computations. However, we have no
idea whether FWHT acceleration technique could be applied in this case.

Thirdly, the main difficulties are figuring out the existence of the special parity-checks
and proposing an efficient algorithm to generate suitable parity-checks in matrix rings
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instead of finite fields. In this paper, on one hand, we don’t know whether Hypothesis
1 is realistic. Thus the estimation for M ′i and D′i of Grain-128a is not very concrete. In
Appendix C, we attempt to discuss some necessary conditions for the existence of special
parity-checks by observations. However, we don’t know the results for the generic case as
it seems to be a difficult problem. Perhaps it is related to classifying all the sequences
generated by the LFSRs over a matrix ring, which needs a lot of future work. On the
other hand, we didn’t study how to generate parity-checks in a matrix ring. Thus the
complexity of the precomputation phase is skipped over. We leave them as open problems.

7 Conclusion
In this paper, a vectorial iterative decoding algorithm for FCA is proposed. Two novel
criteria are given to break the tie and improve the decoding efficiency. The original binary
FCA proposed by Meier and Staffelbach is a special case of our FCA with dimension 1.
We describe some cryptographic properties of its statistical model, decoding efficiency,
etc. Based on the statistical property of the first iteration, we estimate the number of
needed parity-checks and the bound of expected key stream length from the perspective
of iterative decoding. We also perform a scaled experiment to verify the validity of the
vectorial iterative decoding algorithm and the generality of the iterative criterion.

Moreover, we apply it to stream cipher Grain-128a. We construct a multidimensional
linear approximation with large SEI by bundling up those binary linear approximations
proposed in CRYPTO 18. We also give a trade-off approach to use special parity-checks
with more than 2 taps. Consequently, based on a hypothesis, we give an estimation of
the potential security margin of Grain-128a from the point view of vectorial probabilistic
iterative decoding.
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A Estimation of M ′
i

Table 5 depicts some estimatied values about the data complexity.

Table 5: Estimation of some M ′i with m = 42

log2(h) log2(D1) log2(M ′1)
log2(

∑236

i=1M
′
i) log2(

∑236

i=1D
′
i)summation Skellam

1 -122.5454 -84.0004 -83.0000 -47.9999 -86.5435
2 -119.9605 -81.4150 -81.0000 -45.4151 -83.9722
3 -117.7381 -79.1926 -79.0000 -43.1943 -81.7714
4 -115.6385 -77.0931 -77.0000 -41.1209 -79.7206
5 -113.5912 -75.0458 -75.0000 -39.0876 -77.7676
6 -111.5682 -73.0227 -73.0000 -37.1719 -75.9413
7 -109.5567 -71.0113 -71.0000 -35.4574 -74.3296
8 -107.5511 -69.0056 -69.0000 -34.0809 -73.0173
9 -105.5483 -67.0028 -67.0000 -33.0023 -71.9597
10 -103.5469 -65.0014 -65.0000 -32.0000 -70.9649
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B Some Information Theory Properties
In this subsection, we discuss some properties from the point view of information theory.
Suppose the noises are independent and the parity-checks are linearly independent, the rela-
tive entropy between Multi(h, q0) with density function q(x) and Multi(h, (2−m, . . . , 2−m))
with density function u(x) is

D(q ‖ u) = H(q, u)−H(q) = h

2m−1∑
i=0

qi log qi
2−m = h(m−H(q0)). (23)

That is the relative entropy is the number of parity-checks times the SEI of probability
distribution Q.

Secondly, we hope that the right corrected positions are as many as possible in the
complement process. Now we think about the sum of relative entropy between Multi(h, qc)
and Multi(h, q0) for all c 6= 0, and we have

Proposition 3. Let qc(x) and q0(x) be density functions of Multi(h, qc) and Multi(h, qc)
respectively, then

∑
c 6=0

D(qc(x) ‖ q0(x)) = −h log
2m−1∏
i=0

qi − h2mH(q0).

Proof.

∑
c6=0

D(qc(x) ‖ q0(x)) =
∑
c 6=0

h(
2m−1∑
i=0

qi⊕c log qi⊕c −
2m−1∑
i=0

qi⊕c log qi)

=− h(2m − 1)H(q0)− h
2m−1∑
i=0

∑
c6=0

qi⊕c log qi

=− h(2m − 1)H(q0)− h
2m−1∑
i=0

(1− qi) log qi

=− h log
2m−1∏
i=0

qi − h2mH(q0).

This tells us when the probability distribution of noises approaches uniform distribution,
the total relative entropy converges to 0.

C A Discussion for Sparse Parity-checks
Since sparse parity-checks have large advantages while checking parity, we are interested
in these parity-checks with 2 or 3 taps, and those special parity-checks stated in Section
5.2. In this section, we give some miscellaneous observations about them.

Let xt = (xt+c1 , xt+c2 , . . . , xt+cm), c1 < . . . < cm denotes the output at time t of LFSR
with generator polynomial L(x) ∈Mm(F2)[x]. Each coordinate sequence is a m-sequence
x1x2 . . . left shifting ci times, and its minimal polynomial f(x) ∈ F2[x] has degree k.
Particularly, when shift vector (c1, c2, . . . , cm) satisfies special condition, it becomes a
LFSR over extension field F2m [GX94]. Though parity-checks with 2 taps have very large
advantages, unfortunately, the following direct observations imply that they must satisfy
some necessary conditions.
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Proposition 4. Let xt = (xt+c1 , xt+c2 , . . . , xt+cm) be as stated above, we have

• If cm − c1 +m− 1 < k, then there is no parity-check with τ = 1.

• Given two parity-checks with τ = 1, Gxt + Ext+d1 = 0, G′xt + Ext+d2 = 0, if
d1 = d2 and xt run over all values in Fm2 \{0}, then G = G′. If d1 6= d2, then
gcd(d1, d2) > k −m.

• Assume that the sequence x is periodic, if there are two special parity-checks as stated
in Section 5.2, let Gxt + . . .+G′xt+d = 0 denote their sum, then both the head G
and the tail G′ must be invertible.

Proof. 1. Let Gxt + Ext+d = 0 be a parity-check. Since i-th row of A and E forms a
check polynomial fi with nonzero constant for xt, then f |fi. As G is nonsingular, there
must be two different check polynomials fi(x) and fj(x). That means fi + fj also forms a
check polynomial, but cm − c1 +m− 1 < k means a polynomial with degree less than k
could be deduced, which is impossible.

2. When d1 = d2, it is deduced that (G+G′)xt = 0 for all xt, When xt run over all
values in Fm2 \{0}, then we have G = G′.

When d1 < d2, we could deduce another linearly dependent parity-check

G′(G−1xt + Ext+d2−d1) = 0.

Therefore, according to Euclid long division algorithm, there is a G∗ which satisfies

G∗xt + Ext+gcd(d1,d2) = 0.

Since there are k information bit of LFSR, then gcd(d1, d2) ≥ k −m.
3. As the sum of two different parity-checks still satisfies the sequence x, and x is

periodic, then we must have both G and G′ are invertible.

These observations imply that parity-checks with 2 taps may be rare, but it doesn’t
mean none, even though the key stream length needed may be large. For example, when
all (xt+c1 , xt+c2 , . . . , xt+cm) are only in a subspace of Fm2 , and cm − c1 + m − 1 is large.
Once a parity-check is found, more could be constructed by sliding and adding together.

Alternatively, the parity-checks with 2 taps may be indirectly constructed for some
very special cases. For example, assume that we can find a parity-check with 4 taps, which
has the following form

Ext +Gxt−a +G′xt−b−a +G′Gxt−b−2a = 0.

Moreover, if it happens that the multidimensional linear approximation has the form

Uxt ⊕ UGxt−a ⊕
⊕

i∈{1,...,#Tz},j(i)∈Tz

Vizt+j(i) = e,

Thus we have a parity-check with 2 taps Eyt + G′yt−b−a = 0 for a new sequence yt =
Ext + Gxt−a. When x is a binary m-sequence with period 2n − 1, the above 4 taps
parity-check with small b+ 2a does not exist, when gcd(a, 2n − 1) = 1. The reason is that
b must be a multiple of the period of sequence y, whose period is also 2n − 1. Thus if
there is a low degree one, then at least gcd(a, 2n − 1) is large.

Besides that, we have the following observations. If a parity-check satisfies sequence x,
then its characteristic polynomial Fn(x) ∈ F2[x] has f(x) as a factor. Since Gn = G,G1 =
. . . = Gn−1 = 0, then Fn(x) = det(Exn +G), the number of choices for matrix G and n is
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(N/m− 1)|GLm(F2)|. Let S = {Fn(x) : 1 ≤ nm ≤ N} denote all possible characteristic
polynomials. For convenience, we introduce a map sending Fn(x) ∈ SG to F2[x].

φ : SG → F2[x]
Fn(x) = det(Exn +G)→ F (x) = det(Ex+G).

Since F (x) is the characteristic polynomial of invertible matrix G, the number of different
F (x) is 2m−1. Suppose that F (x) = fn1

1 . . . fnvv , where all fi are distinct irreducible
polynomials of degree di, it has been proved that the number of G with given F (x) is
θ(F (x)) [Ger61], i.e.,

θ(F (x)) =
2m2−m∏m

i=1(1− 2−i)∏v
i=1
∏ni
j=1(1− 2−jdi)

.

We also know that Fn1(x) = Fn2(x)2i for some i > 0 when n1 and n2 are in the same 2-
cyclotomic coset Cn̄ modulo ord(f) = 2k−1. And the size of set F = {Fn̄(x) : 1 < nm < N}
is bounded by N/(km) < #F ≤

∑
d|k µ(d)

∑k/d
i=1 2i, where µ(·) is Möbius function.

For the case τ ≥ 2, there are about (N/m− 1)|GLm(F2)|(2m2 − 1) choices for the two
coefficients and n. An upper bound of #S is the number of conjugacy classes of T in
GLnm(F2), which is roughly about 2nm −

∑b(nm−1)/2c
i=bnm/3c 2i. We believe it is much more

than (2m − 1)2 when L(x) ∈ F2m .
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