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1.1 Backgrouds

• Linear feedback shift register (LFSR) based stream ciphers form an important class
of stream cipher system: LILI-128 [CDF02], the SNOW family [EJ00] and the Grain
family [AHJM11], etc

• Cryptanalysis based on correlation plays an important role in their evaluations, e.g.,
(fast) correlation attacks (FCA), linear distinguishing attacks (LDA), etc

• According to decoding strategies, FCA can be divided into two classes
• One-pass: information set decoding [TIM18], convolution codes [JJ99], etc
• Probabilistic iterative: Algorithm B [MS89], LDPC codes [CT00], etc

• Applications of iterative decoding are limited as
• Its properties are hard to describe by mathematical language
• Lacks of a convenient iterative decoding algorithm to work with the multidimensional

linear approximation
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1.2 The binary iterative decoding algorithm [MS89]
• A binary iterative decoding algorithm to improve the time complexity of FCA that

thought to be exponential to the length of the LFSR [MS89]

Algorithm 1 Meier and Staffelbach’s binary iterative decoding Algorithm B

Input: A key stream sequence z of length N and H.

1. Calculate the probability threshold pthr and quantity threshold Nthr.
2. For round r ∈ {1, 2, . . .} do

3. For iteration i from 1 to a small integer do

4. Calculate APP p∗ from priori probability p, assign p∗
n = pn for all position n.

5. If Nw ≥ Nthr where Nw = |{n|pn > pthr}| then, break; EndIf

6. EndFor

7. Complement the bits of z with pn > pthr.
8. Reset all positions to initial probability p.
9. If z satisfies all parity-checks then, break; EndIf

10. EndFor

11. Terminate with x = z.
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1.2 The binary iterative decoding algorithm [MS89]

• The critical part of the decoding phase is calculating a posterior probability (APP)
p∗ from prior distribution p symbol by symbol through Bayes’ formula, instead of
directly determine 0/1

p∗ =
p
∏

l∈H0
(1 − sl)

∏
l∈H\H0

sl

p
∏

l∈H0
(1 − sl)

∏
l∈H\H0

sl + (1 − p)
∏

l∈H\H0
(1 − sl)

∏
l∈H0

sl
,

s(pl1 , . . . , plτ ) = plτ s(pl1 , . . . , plτ−1) + (1 − plτ )(1 − s(pl1 , . . . , plτ−1))

• The more parity-checks holds (check value = 0), the lower value p∗ (suppose that
p < 1 − p)

• When the number of positions with large p∗ is greater than a threshold value,
perform a complement
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1.3 Our Work

• We propose a vectorial iterative decoding algorithm for FCA that
• Generalizes the binary algorithm in [MS89] naturally
• May benefit from a multidimensional linear approximation
• Equips with two novel criteria to improve the iterative decoding process

• We present some cryptographic properties on the vectorial algorithm such as
• the relationship between the decoding efficiency and the noise distribution by analyzing

the first iteration
• two propositions involving the relationship between the number of parity-checks, the

noise distribution and the data complexity
• We apply those results to stream cipher Grain-128a and show its security margin

from the perspective of vectorial iterative decoding

7 / 34



1. Introduction

2. Vectorial iterative algorithm and FCA

3. Some properties of the vectorial iterative algorithm

4. Applications to Grain-128a

5. Summary

8 / 34



2.1 Channel model: from BSC to SC
• Suppose a linear approximation with dimension m⊕

i∈{1,...,#Tx}
j(i)∈Tx

Uixj(i) ⊕
⊕

i∈{1,...,#Tz}
j(i)∈Tz

Vizj(i) = e.

where all Ui and Vi are m × w matrices over F2, Tx and Tz are sets of indexes related
to the linear approximation

• Similarly as BSC, the channel noise vector e is XORed to the code word

LFSR

SC

e
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2.2 Checking parity with vectorial noises

• Suppose a parity-check over the matrix ring Mw(F2)

Exn ⊕ G1xn−1 ⊕ · · · ⊕ Gnxn−d = 0

• Require that for each Gk, there is a m × m matrix G′
k satisfies that

UiGk = G′
kUi, ∀i ∈ {1, . . . ,#Tx}. Multiplying with these Uis

d⊕
i=0

G′
i

#Tx⊕
j=1

Ujxn−i+k(j)

 =
d⊕

i=0
G′

i

#Tz⊕
j=1

Vjzn−i+k′(j)

⊕
d⊕

i=0
G′

ien−i

• The target is to determine en−i of each position when observing
⊕#Tz

j=1 Vjzn−i+k′(j),
which can be accomplished by a vectorial iterative decoding algorithm
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2.3 Vectorial iterative algorithm

• Similarly as the binary case, calculate APP from the priori distribution according to
check values by Bayes’ formula (suppose en−li are independent and all parity-checks
are orthogonal)

p∗(n)ζ =Pr [en = ζ|when observed check values (c1, c2, . . . , ch)]

=
p(n)ζ

∏
l∈H(n) Pr[

⊕τ
i=1 G′

lien−li = cl ⊕ Eζ]⊕
η p(n)η

∏
l∈H(n) Pr[

⊕τ
i=1 G′

lien−li = cl ⊕ Eη]

• For each symbol, we compute APP and increase an empirical vector Eitr. If Eitr is
still increasing, then we assign PRI with APP, and continue iterating
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2.3 Vectorial iterative algorithm
Input: The sequence z′ of length N derived from key stream,

The sequence of noises e with initial p.d. p,
The parity-checks set H with τ + 1 taps.

parameters: Maximal rounds R, maximal iterations T and minimal gap G to infuse new noises.

1. pri ← p, Eglb = (Eglb
1 , . . . , Eglb

2m
−1) ← 0.

2. For r = 1, 2, . . . , R do

3. Ernd = (Ernd
1 , . . . , Ernd

2m
−1) ← 0, ζ ← 0.

4. For i = 1, 2, . . . , T do

5. Eitr = (Eiter
1 , . . . , Eiter

2m
−1) ← 0.

6. For n = 1, 2, . . . , N do

7. Compute app from pri by equation (6).

8. If p
(n)
j > p

(n)
0 then Eitr

j Eitr
j + 1/N, j ∈ {1, 2, . . . , 2m − 1}. End If.

9. End For.
10. If Eitr ≻ Ernd then Ernd ← Eitr, pri ← app. End If.
11. If Eitr ° Ernd or i = T then

12. If Eitr = 0 then return failed.
13. else if ||Ernd − Eglb|| < G then reset z′ ← z′ ⊕ n, break.
14. else Eglb ← Ernd, select ζ that maximizes Ernd

int(ζ) + Eitr
int(ζ), break. End If.

15. End If.
16. End For.
17. If ζ Ó= 0 then complement all positions of z′ such that pζ > p0 with ζ. End If.
18. If z′ satisfies all parity-checks then return success. End If.
19. Reset pri ← p.
20. End For.
21. Terminate.
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2.4 Scaled experiments for the vectorial algorithm
Choose LFSR to be x16 + x15 + x + α ∈ F22 [x]. Tweak channel capacity, the number of
parity-checks and the infused noises to verify the word-error ratio (WER).
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2.5 Two novel iterative criteria

• Criterion 1. Passing through sufficient iterations before breaking up and resetting
• If new APP strengthens the complement effect, continue iterating
• Otherwise, select the complement coin with the potential largest complement effect

• Criterion 2. When the empirical complement effect is weak, a sequence of very
biased noises is infused in order to break the tie

• The noises’ SEI is required to be appropriate, neither very large to counteract the
previous decoding work nor very small to break the tie

• May help to improve some other binary algorithms, e.g., Algorithm B [MS89], MIPD
[CGD96]
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2.6 Scaled experiments for Criterion 2
• Algorithm B [MS89], MIPD algorithm [CGD96] versus their modified versions by

Criterion 2
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3.1 Statistical properties of the first iteration
(1) Convergence property
• Suppose decoding is feasible, it is expected that APP p∗(n)ζ increases when noise

variable en = ζ and decreases when en ̸= ζ. Similarly as the binary case, we have
E[p∗(n)] = pζE[p∗(n)ζ |en = ζ] + (1 − pζ)E[p∗(n)ζ |en ̸= ζ] = pζ

Examples (1)
Let LFSR be the same as the previous, and the number of parity-checks h = 3 with τ = 3
taps.

x 0 1 2 3
px 0.4500 0.2500 0.2000 0.1000

E′
0/p∗ 1.02618712 1.00117564 1.02744428 1.10462318

E′
1/p∗ 0.97857418 0.99960812 0.99313893 0.98837520

E0/p∗ 1.03907892 1.06836181 1.16004050 1.19334394
E1/p∗ 0.96802634 0.97721273 0.95998988 0.97851734
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3.1 Statistical properties of the first iteration

(2) Estimating decoding efficiency
• In binary case [MS89], a threshold Nthr is introduced to measure the decoding

efficiency, which is determined by the intersection point of two shrunk normal
distributions

• In vectorial case, the intersection point becomes an intersection curve (surface)
• Our idea is classification and approximation

• Classification: the parity-checks are divided into two classes, i.e., those whose
coefficients are all identity matrices (the set HI) and the others (the set HII)

• Approximation: multinomial distribution is approximated by multivariate normal
distribution
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3.1 Statistical properties of the first iteration

• Suppose p0 ≥ p1 ≥ . . . ≥ p2m−1 > 0. Let qc denote the probability that the τ taps
sum to be c

• The probability that noise e = ζ and xi check values equal i follows multinomial
distribution

pζq(x0, . . . , x2m−1, ζ) = pζ
hI!

x0! . . . x2m−1!

2m−1∏
i=0

qxi
i⊕ζ

• For HI, using distribution pi and qi. For HII, using distribution pi and symmetric
distribution q′i

q′0 = q0, q′1 = · · · = q′2m−1 =
1 − q′0
2m − 1
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3.1 Statistical properties of the first iteration
Example (2)
Let parameters be the same as the previous. Calculate the theoretical and approximate
value of Nthr

ζ /N via classifying parity-checks.

No. of parity-checks
ζ theoretical approximate

(hI, hII) N = 219 N = 220 N = 221

(36,0)
1 0.277133 0.227242 0.250517 0.264012
2 0.253926 0.242359 0.246835 0.249339
3 0.200412 0.164480 0.181245 0.190250

(18,18)
1 0.297959 0.251286 0.270056 0.279394
2 0.260769 0.220915 0.238914 0.248543
3 0.167968 0.125576 0.144096 0.154273

(0,138)
1 0.376058 0.360392 0.364783 0.368026
2 0.325561 0.321800 0.332389 0.338674
3 0.221771 0.198662 0.213513 0.221388 20 / 34



3.1 Statistical properties of the first iteration
Approximating the threshold by multivariate normal distribution
When multivariate normal approximation is feasible, the threshold can also be

N
∑
ζ∈Fm

2

∫
A(ζ)

N (µζ ,Σζ)dx.

where A(ζ) is part of a hypercube restricted by 2m − 1 coordinate planes and two surfaces

2m−2∑
i

xi = hI,
1
2
(
(x − µ0)

TΣ−1
0 (x − µ0)

)
− 1

2
(
(x − µζ)

TΣ−1
ζ (x − µζ)

)
− ln

p0
pζ

= 0,

and maximizes the multiple integral

I(P,A(ζ), ζ, 0) ≈
∫
A(ζ)

(
pζN (µζ ,Σζ)− p0N (µ0,Σ0)

)
dx
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3.1 Statistical properties of the first iteration

Example (3)
Let parameters be the same as the previous. In order to simplify the integral, we could
even slightly adequate the boundary of A without much fluctuation.

Table: Direct computation and normal approximation for I(p,A(1), 1, 0)

hI 40 80 200 400
direct computation 0.0686 0.1138 0.1835 0.2266

normal approximation 0.0707 0.1148 0.1841 0.2267
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3.2 Two bounds related to complexities

(1) An iterative bound
• In order to perform iterative decoding, the lower bound of h should satisfy that there

exists at least a ζ such that p∗ζ > p∗0

Proposition 1
If iterative decoding is feasible, then there is at least one ζ ∈ {1, 2, . . . , 2m − 1} such that
pζq(x, ζ)/(p0q(x, 0)) > 1. Particularly, when P, Q and Q′ are multinomial distributions as
before, then ζ = 2m − 1 and

pζ
p0

>

(qζ
q0

)hI
(

q′ζ
q′0

)hII

.
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3.2 Two bounds related to complexities

• Potential advantages of vectorial iterative decoding

Examples (4)
When SEI ∆(e) = 2−γ , it is expected that there are probability values around
2−m ± 2−

2m+γ
2 in practice [YJM20]. According to Prop. 1, we need at least 2γ/2(2m − 1)

parity-checks with 3 taps. Thus the length N of data needed satisfies
(2m − 1)22−l(N

2
)
≈ 2γ/2(2m − 1) by a birthday collision, which means

N ≈ 2(γ+2l+2)/4/
√

2m − 1. While m = 1, N ≈ 2(γ+2l+2)/4. For the vectorial case, N
seems to be smaller than the binary case, because that m > 1 and γ is expected to be
smaller than the binary case.
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3.2 Two bounds related to complexities

(2) A bound related to the expected number of corrected errors
• Let A′(i) = A(i)−A(i) ∩ (

∪i−1
j=1 A(i)), M′

ζ = pζ
∑

x∈A′(ζ) q(x, ζ). It is reasonable to
require that

∑2m−1
ζ=1 M′

ζ > 1 after the first iteration. Then the succeeding iterations
may trigger more positions with p∗ζ > p∗0

• Summing the probability values in multinomial distributions is inconvenient.
Meanwhile, since the integral area A′(ζ) is very complicated, multivariate normal
approximation is not practical when h is large

• However, since q′ simulates the iterative process very well, we could deduce a bound
using multinomial distribution Multi(h,q′)
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3.2 Two bounds related to complexities

Proposition 2
For multinomial distribution Multi(h,q′), we have

M′
ζ =

h∑
l=hb

(
h
l

)
(1 −

ζ∑
i=0

q′i⊕ζ)
h−l

∑
(x0,...,xζ)∈B(ζ)

(
l

x0, . . . , xζ

) ζ∏
i=0

q′xi
i⊕ζ , 1 ≤ ζ < 2m,

where B(ζ) is constrained by
∑ζ

i=1 xi = l, xζ − x0 ≥ hb and xi − x0 ≤ hb, 1 ≤ i < ζ.
Particularly, when

∑ζ
i=0 q′i⊕ζ is small and hq′i ≤ hb, the expected number of positions with

p∗ζ > p∗0 in the first iteration are dominated by those small l.

• When ζ = 1, M′
1 can be estimated by Skellam distribution
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4.1 Grain-128a
Grain-128a includes a 128-bit LFSR cascaded with a 128-bit NFSR.

tb +127tb ts +127ts

h
7 2 17

6524

g f

ty
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4.2 Constructing a multidimensional linear
approximation
• There are binary linear approximations with correlation ±2−57.0454 [TIM18]
• Bundling up them will derive a linear approximation with dimension 9 < m ≤ 42, SEI

2m−121.0908, and the form
E(xt + ut) + Eyt = et,

xt =(. . . , st+i+8, st+i+13, st+i+20, st+i+42, st+i+60, st+i+79, st+i+94, . . .) ,

ut =

 ∑
i∈A

∪
Tz

st+i,
∑

i∈A
∪

Tz

st+i, . . . ,
∑

i∈A
∪

Tz

st+i

 ,

yt =

(∑
i∈Tz

yt+i,
∑
i∈Tz

yt+i, . . . ,
∑
i∈Tz

yt+i

)
, et = (et, et+1, . . . , et+m−1) .

• When m = 42, the standard basis of linear masks is
(Λ0[1 − 3, 5 − 8],Λ26[1 − 3, 5 − 8], . . . ,Λ128[1 − 3, 5 − 8]) = (0, . . . , 0, 1, 0, . . . , 0), . . .29 / 34



4.3 Estimating the data complexity
• Suppose the SEI is 2−γ , p0 = 2−m + 2−

2m+γ
2 is maximal probability point

• Hypothesis: suppose there are at least 2 parity-checks with two taps, or there are
more special parity-checks with form

Gn,1x′t−dn,1 +
a∑

i=1
Gn−i,1x′t−di + Ex′t = 0, . . . ,Gn,hx′t−dn,h +

a∑
i=1

Gn−i,hx′t−di + Ex′t = 0.

• According the two bounds when m = 42
• E.g., h = 2, the 1-st bound: N > 248+42+1 = 291, and the 2-nd bound:

N > 286.54+42+1 = 2129.54

log2(h) log2(D1)
log2(M′

1) log2(
∑236

i=1 M′
i) log2(

∑236

i=1 D′
i)summation Skellam

1 -122.5454 -84.0004 -83.0000 -47.9999 -86.5435
2 -119.9605 -81.4150 -81.0000 -45.4151 -83.9722
3 -117.7381 -79.1926 -79.0000 -43.1943 -81.7714
4 -115.6385 -77.0931 -77.0000 -41.1209 -79.7206

30 / 34



1. Introduction

2. Vectorial iterative algorithm and FCA

3. Some properties of the vectorial iterative algorithm

4. Applications to Grain-128a

5. Summary

31 / 34



Discussion and open problems

• We cannot directly compare the vectorial decoding algorithm with a binary
algorithm, and theoretical advantage in the general case is an open problem

• The other theoretical properties of the vectorial algorithm are still not clear
• the main difficulties are figuring out the existence of the special parity-checks and

proposing an efficient algorithm to generate suitable parity-checks in matrix rings
instead of finite fields
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Concluding remarks

• We propose a vectorial iterative decoding algorithm for FCA. The original binary
FCA [MS89] is a special case of our FCA with dimension 1

• We describe some cryptographic properties and estimate the quantity of needed
parity-checks and keystream

• We apply it to stream cipher Grain-128a and estimate its potential security margin
from the point view of vectorial probabilistic iterative decoding
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Thank you for your attention!
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