Vectorial Decoding Algorithm for Fast Correlation Attack and Its Applications to Stream Cipher Grain-128a

Zhaocun Zhou, Dengguo Feng and Bin Zhang

Trusted Computing and Information Assurance Laboratory, Institute of Software Chinese Academy of Sciences

March 18, 2023

Overview

- **1. Introduction**
- **2. Vectorial iterative algorithm and FCA**
- **3. Some properties of the vectorial iterative algorithm**
- **4. Applications to Grain-128a**
- **5. Summary**

1. Introduction

- **2. Vectorial iterative algorithm and FCA**
- **3. Some properties of the vectorial iterative algorithm**
- **4. Applications to Grain-128a**
- **5. Summary**

1.1 Backgrouds

- *•* Linear feedback shift register (LFSR) based stream ciphers form an important class of stream cipher system: LILI-128 [CDF02], the SNOW family [EJ00] and the Grain family [AHJM11], etc
- *•* Cryptanalysis based on correlation plays an important role in their evaluations, e.g., (fast) correlation attacks (FCA), linear distinguishing attacks (LDA), etc
- *•* According to decoding strategies, FCA can be divided into two classes
	- *•* One-pass: information set decoding [TIM18], convolution codes [JJ99], etc
	- *•* Probabilistic iterative: Algorithm B [MS89], LDPC codes [CT00], etc
- *•* Applications of iterative decoding are limited as
	- *•* Its properties are hard to describe by mathematical language
	- *•* Lacks of a convenient iterative decoding algorithm to work with the multidimensional linear approximation

1.2 The binary iterative decoding algorithm [MS89]

• A binary iterative decoding algorithm to improve the time complexity of FCA that thought to be exponential to the length of the LFSR [MS89]

Algorithm 1 Meier and Staffelbach's binary iterative decoding Algorithm B

Input: A key stream sequence z of length *N* and H .

- 1. Calculate the probability threshold p_{thr} and quantity threshold N_{thr} .
- 2. **For** round $r \in \{1, 2, ...\}$ **do**
- 3. **For** iteration *i* from 1 to a small integer **do**
- 4. Calculate APP p^* from priori probability p , assign $p_n^* = p_n$ for all position n .
- 5. **If** $N_w \geq N_{thr}$ where $N_w = |\{n|p_n > p_{thr}\}|$ then, break; **EndIf**
- 6. **EndFor**
- 7. Complement the bits of z with $p_n > p_{thr}$.
- 8. Reset all positions to initial probability *p*.
- 9. **If** *z* satisfies all parity-checks **then**, break; **EndIf**
- 10. **EndFor**
- 11. Terminate with $x = z$.

1.2 The binary iterative decoding algorithm [MS89]

• The critical part of the decoding phase is calculating a posterior probability (APP) *p ∗* from prior distribution *p* symbol by symbol through Bayes' formula, instead of directly determine 0/1

$$
p^* = \frac{p \prod_{l \in \mathcal{H}_0} (1 - s_l) \prod_{l \in \mathcal{H} \setminus \mathcal{H}_0} s_l}{p \prod_{l \in \mathcal{H}_0} (1 - s_l) \prod_{l \in \mathcal{H} \setminus \mathcal{H}_0} s_l + (1 - p) \prod_{l \in \mathcal{H} \setminus \mathcal{H}_0} (1 - s_l) \prod_{l \in \mathcal{H}_0} s_l},
$$

$$
s(p_{l_1}, \ldots, p_{l_{\tau}}) = p_{l_{\tau}} s(p_{l_1}, \ldots, p_{l_{\tau-1}}) + (1 - p_{l_{\tau}}) (1 - s(p_{l_1}, \ldots, p_{l_{\tau-1}}))
$$

- *•* The more parity-checks holds (check value = 0), the lower value *p ∗* (suppose that $p < 1 - p$
- *•* When the number of positions with large *p ∗* is greater than a threshold value, perform a complement

1.3 Our Work

- We propose a vectorial iterative decoding algorithm for FCA that
	- *•* Generalizes the binary algorithm in [MS89] naturally
	- *•* May benefit from a multidimensional linear approximation
	- *•* Equips with two novel criteria to improve the iterative decoding process
- We present some cryptographic properties on the vectorial algorithm such as
	- the relationship between the decoding efficiency and the noise distribution by analyzing the first iteration
	- *•* two propositions involving the relationship between the number of parity-checks, the noise distribution and the data complexity
- *•* We apply those results to stream cipher Grain-128a and show its security margin from the perspective of vectorial iterative decoding

1. Introduction

2. Vectorial iterative algorithm and FCA

- **3. Some properties of the vectorial iterative algorithm**
- **4. Applications to Grain-128a**
- **5. Summary**

2.1 Channel model: from BSC to SC

• Suppose a linear approximation with dimension *m*

$$
\bigoplus_{\substack{i\in\{1,\ldots,\#\mathcal{T}_x\}\\ j(i)\in\mathcal{T}_x}} U_i\textbf{x}_{j(i)}\oplus\bigoplus_{\substack{i\in\{1,\ldots,\#\mathcal{T}_z\}\\ j(i)\in\mathcal{T}_z}} V_i\textbf{z}_{j(i)}=\textbf{e}.
$$

where all U_i and V_i are $m \times w$ matrices over \mathbb{F}_2 , \mathcal{T}_x and \mathcal{T}_z are sets of indexes related to the linear approximation

• Similarly as BSC, the channel noise vector *e* is XORed to the code word

2.2 Checking parity with vectorial noises

• Suppose a parity-check over the matrix ring $M_w(\mathbb{F}_2)$

$$
Ex_n \oplus G_1x_{n-1} \oplus \cdots \oplus G_nx_{n-d} = \mathbf{0}
$$

 \bullet Require that for each G_k , there is a $m \times m$ matrix G'_k satisfies that $U_iG_k = G'_kU_i, \forall i \in \{1, \ldots, \#T_x\}$. Multiplying with these U_i s

$$
\bigoplus_{i=0}^d G_i'\left(\bigoplus_{j=1}^{\#\mathcal{T}_x} U_j\mathbf{x}_{n-i+k(j)}\right)=\bigoplus_{i=0}^d G_i'\left(\bigoplus_{j=1}^{\#\mathcal{T}_z} V_j\mathbf{z}_{n-i+k'(j)}\right)\oplus \bigoplus_{i=0}^d G_i'\mathbf{e}_{n-i}
$$

• The target is to determine e_{n-1} of each position when observing $bigoplus_{j=1}^{#T_z} V_j z_{n-i+k'(j)}$ which can be accomplished by a vectorial iterative decoding algorithm

2.3 Vectorial iterative algorithm

• Similarly as the binary case, calculate APP from the priori distribution according to check values by Bayes' formula (suppose *en−lⁱ* are independent and all parity-checks are orthogonal)

$$
p_{\zeta}^{*(n)} = \Pr\left[\mathbf{e}_n = \zeta | \text{when observed check values } (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_h)\right]
$$

$$
= \frac{p_{\zeta}^{(n)} \prod_{l \in \mathcal{H}^{(n)}} \Pr[\bigoplus_{i=1}^{\tau} G_{l_i} \mathbf{e}_{n-l_i} = \mathbf{c}_l \oplus E\zeta]}{\bigoplus_{\eta} p_{\eta}^{(n)} \prod_{l \in \mathcal{H}^{(n)}} \Pr[\bigoplus_{i=1}^{\tau} G_{l_i} \mathbf{e}_{n-l_i} = \mathbf{c}_l \oplus E\eta]}
$$

 \bullet For each symbol, we compute APP and increase an empirical vector \bm{E}^{itr} . If \bm{E}^{itr} is still increasing, then we assign PRI with APP, and continue iterating

2.3 Vectorial iterative algorithm

Input: The sequence *z* ′ of length *N* derived from key stream, The sequence of noises *e* with initial p.d. *p*, The parity-checks set H with $\tau + 1$ taps. **parameters**: Maximal rounds *R*, maximal iterations *T* and minimal gap *G* to infuse new noises. 1. $\mathbf{pri} \leftarrow \mathbf{p}, \ \mathbf{E}^{glb} = (E_1^{glb}, \dots, E_{2^m-1}^{glb}) \leftarrow \mathbf{0}.$ 1. **For** $r = 1, 2, ..., B$ **do**

2. For $r = 1, 2, ..., R$ **do**

3. $E^{rnd} = (E_1^{rnd}, ..., E_{2^m-1}^{rnd}) \leftarrow 0, \zeta \leftarrow 0.$ 4. **For** *i* = 1*,* 2*, . . . , T* **do** 5. $E^{itr} = (E_1^{iter}, \dots, E_{2^m-1}^{iter}) \leftarrow 0.$ 6. **For** $n = 1, 2, ..., N$ **do**
7. Compute **any** from **r** 7. Compute *app* from *pri* by equation (6). 8. **If** $p_j^{(n)} > p_0^{(n)}$ then E_j^{itr} $E_j^{itr} + 1/N, j \in \{1, 2, ..., 2^m - 1\}$. End If. 9. **End For**. 10. **If** $E^{itr} \succ E^{rnd}$ then $E^{rnd} \leftarrow E^{itr}$, $pri \leftarrow app$. End If. 11. **If** $E^{itr} \preceq E^{rnd}$ or $i = T$ then 12. **If** $E^{itr} = 0$ **then** return failed. 13. **else if** $||E^{rnd} - E^{glb}|| < G$ **then** reset $z' \leftarrow z' \oplus n$, break. 14. **else** $E^{glb} \leftarrow E^{rnd}$, select ζ that maximizes $E^{rnd}_{int(\zeta)} + E^{itr}_{int(\zeta)}$, break. **End If**. 15. **End If**. 16. **End For**. 17. **If** $\zeta \neq 0$ **then** complement all positions of z' such that $p_{\zeta} > p_0$ with ζ . **End If**. 18. **If** *z* **′** satisfies all parity-checks **then** return success. **End If**. 19. Reset $\boldsymbol{pri} \leftarrow \boldsymbol{p}$. 20. **End For**. 21. Terminate.

2.4 Scaled experiments for the vectorial algorithm

Choose LFSR to be $x^{16} + x^{15} + x + \alpha \in \mathbb{F}_{2^2}[x]$. Tweak channel capacity, the number of parity-checks and the infused noises to verify the word-error ratio (WER).

13 / 34

- Criterion 1. Passing through sufficient iterations before breaking up and resetting
	- If new APP strengthens the complement effect, continue iterating
	- Otherwise, select the complement coin with the potential largest complement effect
- *•* Criterion 2. When the empirical complement effect is weak, a sequence of very biased noises is infused in order to break the tie
	- *•* The noises' SEI is required to be appropriate, neither very large to counteract the previous decoding work nor very small to break the tie
	- *•* May help to improve some other binary algorithms, e.g., Algorithm B [MS89], MIPD [CGD96]

2.6 Scaled experiments for Criterion 2

• Algorithm B [MS89], MIPD algorithm [CGD96] versus their modified versions by Criterion 2

- **1. Introduction**
- **2. Vectorial iterative algorithm and FCA**

3. Some properties of the vectorial iterative algorithm

- **4. Applications to Grain-128a**
- **5. Summary**

(1) Convergence property

• Suppose decoding is feasible, it is expected that APP *p ∗*(*n*) *ζ* increases when noise variable $e_n = \zeta$ and decreases when $e_n \neq \zeta$. Similarly as the binary case, we have $E[p^{*(n)}] = p_\zeta E[p^{*(n)}_\zeta | \boldsymbol{e}_n = \zeta] + (1-p_\zeta)E[p^{*(n)}_\zeta | \boldsymbol{e}_n \neq \zeta] = p_\zeta$

Examples (1)

Let LFSR be the same as the previous, and the number of parity-checks $h = 3$ with $\tau = 3$ taps.

(2) Estimating decoding efficiency

- *•* In binary case [MS89], a threshold *Nthr* is introduced to measure the decoding efficiency, which is determined by the intersection point of two shrunk normal distributions
- In vectorial case, the intersection point becomes an intersection curve (surface)
- *•* Our idea is classification and approximation
	- *•* Classification: the parity-checks are divided into two classes, i.e., those whose coefficients are all identity matrices (the set \mathcal{H}_I) and the others (the set \mathcal{H}_{II})
	- *•* Approximation: multinomial distribution is approximated by multivariate normal distribution

- \bullet Suppose $p_0 \geq p_1 \geq \ldots \geq p_{2^m-1} > 0$. Let *q_c* denote the probability that the *τ* taps sum to be *c*
- The probability that noise $e = \zeta$ and x_i check values equal *i* follows multinomial distribution

$$
p_{\zeta}q(x_0,\ldots,x_{2^m-1},\zeta)=p_{\zeta}\frac{h_I!}{x_0!\ldots x_{2^m-1}!}\prod_{i=0}^{2^m-1}q_{i\oplus\zeta}^{x_i}
$$

• For \mathcal{H}_I , using distribution p_i and q_i . For \mathcal{H}_{II} , using distribution p_i and symmetric distribution *q ′ i*

$$
q'_0=q_0, q'_1=\cdots=q'_{2^m-1}=\frac{1-q'_0}{2^m-1}
$$

Example (2)

Let parameters be the same as the previous. Calculate the theoretical and approximate value of *N thr ζ /N* via classifying parity-checks.

Approximating the threshold by multivariate normal distribution

When multivariate normal approximation is feasible, the threshold can also be

$$
N\sum_{\zeta\in\mathbb{F}_2^m}\int_{\mathcal{A}(\zeta)}\mathcal{N}(\boldsymbol{\mu}_{\zeta},\boldsymbol{\Sigma}_{\zeta})d\mathbf{x}.
$$

where *A*(*ζ*) is part of a hypercube restricted by 2*^m −* 1 coordinate planes and two surfaces

$$
\sum_{i}^{2^{m}-2} x_{i} = h_{1}, \frac{1}{2} ((\mathbf{x} - \boldsymbol{\mu}_{0})^{\mathsf{T}} \boldsymbol{\Sigma}_{0}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{0})) - \frac{1}{2} ((\mathbf{x} - \boldsymbol{\mu}_{\zeta})^{\mathsf{T}} \boldsymbol{\Sigma}_{\zeta}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\zeta})) - \ln \frac{p_{0}}{p_{\zeta}} = 0,
$$

and maximizes the multiple integral

$$
I(P, \mathcal{A}(\zeta), \zeta, 0) \approx \int_{\mathcal{A}(\zeta)} \left(p_{\zeta} \mathcal{N}(\boldsymbol{\mu}_{\zeta}, \boldsymbol{\Sigma}_{\zeta}) - p_0 \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) \right) d\mathbf{x}
$$

Example (3)

Let parameters be the same as the previous. In order to simplify the integral, we could even slightly adequate the boundary of *A* without much fluctuation.

3.2 Two bounds related to complexities

(1) An iterative bound

• In order to perform iterative decoding, the lower bound of *h* should satisfy that there exists at least a ζ such that $p^*_{\zeta} > p^*_{0}$

Proposition 1

If iterative decoding is feasible, then there is at least one $\zeta \in \{1,2,\ldots,2^m-1\}$ such that *pζq*(*x, ζ*)*/*(*p*0*q*(*x,* 0)) *>* 1. Particularly, when *P*, *Q* and *Q′* are multinomial distributions as before, then $\zeta = 2^m - 1$ and

$$
\frac{p_{\zeta}}{p_0} > \left(\frac{q_{\zeta}}{q_0}\right)^{h_l} \left(\frac{q_{\zeta}'}{q_0'}\right)^{h_{ll}}.
$$

3.2 Two bounds related to complexities

• Potential advantages of vectorial iterative decoding

Examples (4)

When SEI $\Delta(\boldsymbol{e}) = 2^{-\gamma}$, it is expected that there are probability values around 2 *[−]^m ±* 2 *−* 2*m*+*γ* ² in practice [YJM20]. According to Prop. 1, we need at least 2*γ/*² (2 *^m −* 1) parity-checks with 3 taps. Thus the length *N* of data needed satisfies $(2^m-1)^22^{-l}{N \choose 2} \approx 2^{\gamma/2}(2^m-1)$ by a birthday collision, which means $N \approx 2^{(\gamma+2l+2)/4}/\sqrt{2^m-1}$. While $m = 1$, $N \approx 2^{(\gamma+2l+2)/4}$. For the vectorial case, *N* seems to be smaller than the binary case, because that $m > 1$ and γ is expected to be smaller than the binary case.

(2) A bound related to the expected number of corrected errors

- $\bullet\;\mathsf{Let}\;\mathcal{A}'(i)=\mathcal{A}(i)-\mathcal{A}(i)\cap(\bigcup_{j=1}^{i-1}\mathcal{A}(i)),\;\mathcal{M}'_{\zeta}=\rho_{\zeta}\sum_{\mathsf{x}\in\mathcal{A}'(\zeta)}\mathsf{q}(\mathsf{x},\zeta).$ It is reasonable to require that $\sum_{\zeta=1}^{2^m-1}$ $M'_\zeta > 1$ after the first iteration. Then the succeeding iterations may trigger more positions with $\rho_{\zeta}^* > \rho_0^*$
- *•* Summing the probability values in multinomial distributions is inconvenient. Meanwhile, since the integral area $\mathcal{A}'(\zeta)$ is very complicated, multivariate normal approximation is not practical when *h* is large
- However, since q' simulates the iterative process very well, we could deduce a bound using multinomial distribution Multi (h, \boldsymbol{q}')

3.2 Two bounds related to complexities

Proposition 2

For multinomial distribution Multi (h,\boldsymbol{q}') , we have

$$
M_{\zeta}'=\sum_{l=h_b}^h {h \choose l}(1-\sum_{i=0}^{\zeta}q'_{i\oplus\zeta})^{h-l}\sum_{(x_0,\ldots,x_{\zeta})\in\mathcal{B}(\zeta)}{l \choose x_0,\ldots,x_{\zeta}}\prod_{i=0}^{\zeta}q'^{x_i}_{i\oplus\zeta}, 1\leq\zeta<2^m,
$$

where $\mathcal{B}(\zeta)$ is constrained by $\sum_{i=1}^{\zeta} x_i = l$, $x_{\zeta} - x_0 \geq h_b$ and $x_i - x_0 \leq h_b, 1 \leq i < \zeta$. Particularly, when $\sum_{i=0}^{\zeta} q'_{i\oplus\zeta}$ is small and $hq'_i \leq h_b$, the expected number of positions with $p_{\zeta}^*>p_0^*$ in the first iteration are dominated by those small *l*.

 \bullet When $\zeta = 1$, M'_1 can be estimated by Skellam distribution

- **1. Introduction**
- **2. Vectorial iterative algorithm and FCA**
- **3. Some properties of the vectorial iterative algorithm**

4. Applications to Grain-128a

5. Summary

4.1 Grain-128a

Grain-128a includes a 128-bit LFSR cascaded with a 128-bit NFSR.

4.2 Constructing a multidimensional linear approximation

- *•* There are binary linear approximations with correlation *±*2 *[−]*57*.*⁰⁴⁵⁴ [TIM18]
- *•* Bundling up them will derive a linear approximation with dimension 9 *< m ≤* 42, SEI 2 *^m−*121*.*0908, and the form

$$
E(\mathbf{x}_t+\mathbf{u}_t)+E\mathbf{y}_t=\mathbf{e}_t,
$$

$$
\mathbf{x}_{t} = (\ldots, s_{t+i+8}, s_{t+i+13}, s_{t+i+20}, s_{t+i+42}, s_{t+i+60}, s_{t+i+79}, s_{t+i+94}, \ldots),
$$
\n
$$
\mathbf{u}_{t} = \left(\sum_{i \in \mathbb{A} \cup \mathbb{T}_{z}} s_{t+i}, \sum_{i \in \mathbb{A} \cup \mathbb{T}_{z}} s_{t+i}, \ldots, \sum_{i \in \mathbb{A} \cup \mathbb{T}_{z}} s_{t+i}\right),
$$
\n
$$
\mathbf{y}_{t} = \left(\sum_{i \in \mathbb{T}_{z}} y_{t+i}, \sum_{i \in \mathbb{T}_{z}} y_{t+i}, \ldots, \sum_{i \in \mathbb{T}_{z}} y_{t+i}\right), \mathbf{e}_{t} = (e_{t}, e_{t+1}, \ldots, e_{t+m-1}).
$$

• When *m* = 42, the standard basis of linear masks is

$$
(\Lambda_0[1-3,5-8],\Lambda_{26}[1-3,5-8],\ldots,\Lambda_{128}[1-3,5-8])=(0,\ldots,0,1,0,\ldots,0),\ldots_{\text{29/34}}
$$

4.3 Estimating the data complexity

- *•* Suppose the SEI is 2*−^γ* , *p*⁰ = 2 *[−]^m* + 2 *−* 2*m*+*γ* ² is maximal probability point
- *•* Hypothesis: suppose there are at least 2 parity-checks with two taps, or there are more special parity-checks with form

$$
G_{n,1}x'_{t-d_{n,1}} + \sum_{i=1}^a G_{n-i,1}x'_{t-d_i} + Ex'_t = 0, \ldots, G_{n,h}x'_{t-d_{n,h}} + \sum_{i=1}^a G_{n-i,h}x'_{t-d_i} + Ex'_t = 0.
$$

- According the two bounds when $m = 42$
	- E.g., $h = 2$, the 1-st bound: $N > 2^{48+42+1} = 2^{91}$, and the 2-nd bound: $N > 2^{86.54+42+1} = 2^{129.54}$

- **1. Introduction**
- **2. Vectorial iterative algorithm and FCA**
- **3. Some properties of the vectorial iterative algorithm**
- **4. Applications to Grain-128a**
- **5. Summary**
- *•* We cannot directly compare the vectorial decoding algorithm with a binary algorithm, and theoretical advantage in the general case is an open problem
- *•* The other theoretical properties of the vectorial algorithm are still not clear
- the main difficulties are figuring out the existence of the special parity-checks and proposing an efficient algorithm to generate suitable parity-checks in matrix rings instead of finite fields
- We propose a vectorial iterative decoding algorithm for FCA. The original binary FCA [MS89] is a special case of our FCA with dimension 1
- We describe some cryptographic properties and estimate the quantity of needed parity-checks and keystream
- We apply it to stream cipher Grain-128a and estimate its potential security margin from the point view of vectorial probabilistic iterative decoding

Thank you for your attention!