Vectorial Decoding Algorithm for Fast Correlation Attack and Its Applications to Stream Cipher Grain-128a

Zhaocun Zhou, Dengguo Feng and Bin Zhang

Trusted Computing and Information Assurance Laboratory, Institute of Software Chinese Academy of Sciences

March 18, 2023

- 1. Introduction
- 2. Vectorial iterative algorithm and FCA
- 3. Some properties of the vectorial iterative algorithm
- 4. Applications to Grain-128a
- 5. Summary

1. Introduction

2. Vectorial iterative algorithm and FCA

3. Some properties of the vectorial iterative algorithm

4. Applications to Grain-128a

5. Summary

1.1 Backgrouds

- Linear feedback shift register (LFSR) based stream ciphers form an important class of stream cipher system: LILI-128 [CDF02], the SNOW family [EJ00] and the Grain family [AHJM11], etc
- Cryptanalysis based on correlation plays an important role in their evaluations, e.g., (fast) correlation attacks (FCA), linear distinguishing attacks (LDA), etc
- According to decoding strategies, FCA can be divided into two classes
 - One-pass: information set decoding [TIM18], convolution codes [JJ99], etc
 - Probabilistic iterative: Algorithm B [MS89], LDPC codes [CT00], etc
- Applications of iterative decoding are limited as
 - Its properties are hard to describe by mathematical language
 - Lacks of a convenient iterative decoding algorithm to work with the multidimensional linear approximation

1.2 The binary iterative decoding algorithm [MS89]

• A binary iterative decoding algorithm to improve the time complexity of FCA that thought to be exponential to the length of the LFSR [MS89]

Algorithm 1 Meier and Staffelbach's binary iterative decoding Algorithm B

Input: A key stream sequence \boldsymbol{z} of length N and \mathcal{H} .

- 1. Calculate the probability threshold p_{thr} and quantity threshold N_{thr} .
- 2. For round $r \in \{1, 2, ...\}$ do
- 3. For iteration *i* from 1 to a small integer do
- 4. Calculate APP p^* from priori probability p, assign $p_n^* = p_n$ for all position n.
- 5. If $N_w \ge N_{thr}$ where $N_w = |\{n|p_n > p_{thr}\}|$ then, break; EndIf
- 6. EndFor
- 7. Complement the bits of \boldsymbol{z} with $p_n > p_{thr}$.
- 8. Reset all positions to initial probability p.
- 9. If *z* satisfies all parity-checks then, break; EndIf
- 10. **EndFor**
- 11. Terminate with $\boldsymbol{x} = \boldsymbol{z}$.

1.2 The binary iterative decoding algorithm [MS89]

 The critical part of the decoding phase is calculating a posterior probability (APP) p* from prior distribution p symbol by symbol through Bayes' formula, instead of directly determine 0/1

$$p^* = \frac{p \prod_{l \in \mathcal{H}_0} (1 - s_l) \prod_{l \in \mathcal{H} \setminus \mathcal{H}_0} s_l}{p \prod_{l \in \mathcal{H}_0} (1 - s_l) \prod_{l \in \mathcal{H} \setminus \mathcal{H}_0} s_l + (1 - p) \prod_{l \in \mathcal{H} \setminus \mathcal{H}_0} (1 - s_l) \prod_{l \in \mathcal{H}_0} s_l},$$

$$s(p_{l_1}, \dots, p_{l_{\tau}}) = p_{l_{\tau}} s(p_{l_1}, \dots, p_{l_{\tau-1}}) + (1 - p_{l_{\tau}})(1 - s(p_{l_1}, \dots, p_{l_{\tau-1}}))$$

- The more parity-checks holds (check value = 0), the lower value p^* (suppose that p < 1-p)
- When the number of positions with large p^* is greater than a threshold value, perform a complement

1.3 Our Work

- We propose a vectorial iterative decoding algorithm for FCA that
 - Generalizes the binary algorithm in [MS89] naturally
 - May benefit from a multidimensional linear approximation
 - Equips with two novel criteria to improve the iterative decoding process
- We present some cryptographic properties on the vectorial algorithm such as
 - the relationship between the decoding efficiency and the noise distribution by analyzing the first iteration
 - two propositions involving the relationship between the number of parity-checks, the noise distribution and the data complexity
- We apply those results to stream cipher Grain-128a and show its security margin from the perspective of vectorial iterative decoding

1. Introduction

2. Vectorial iterative algorithm and FCA

- 3. Some properties of the vectorial iterative algorithm
- 4. Applications to Grain-128a
- 5. Summary

2.1 Channel model: from BSC to SC

• Suppose a linear approximation with dimension m

$$\bigoplus_{i\in\{1,\ldots,\#\mathcal{T}_X\}\atop j(i)\in\mathcal{T}_X} U_i \mathbf{x}_{j(i)} \oplus \bigoplus_{i\in\{1,\ldots,\#\mathcal{T}_z\}\atop j(i)\in\mathcal{T}_z} V_i \mathbf{z}_{j(i)} = \mathbf{e}.$$

where all U_i and V_i are $m \times w$ matrices over \mathbb{F}_2 , \mathcal{T}_x and \mathcal{T}_z are sets of indexes related to the linear approximation

• Similarly as BSC, the channel noise vector *e* is XORed to the code word

2.2 Checking parity with vectorial noises

• Suppose a parity-check over the matrix ring $M_w(\mathbb{F}_2)$

$$E\mathbf{x}_n \oplus G_1\mathbf{x}_{n-1} \oplus \cdots \oplus G_n\mathbf{x}_{n-d} = \mathbf{0}$$

• Require that for each G_k , there is a $m \times m$ matrix G'_k satisfies that $U_iG_k = G'_kU_i, \forall i \in \{1, \dots, \#T_x\}$. Multiplying with these U_i s

$$\bigoplus_{i=0}^{d} G'_{i} \left(\bigoplus_{j=1}^{\#\mathcal{T}_{x}} U_{j} \mathbf{x}_{n-i+k(j)} \right) = \bigoplus_{i=0}^{d} G'_{i} \left(\bigoplus_{j=1}^{\#\mathcal{T}_{z}} V_{j} \mathbf{z}_{n-i+k'(j)} \right) \oplus \bigoplus_{i=0}^{d} G'_{i} \mathbf{e}_{n-i}$$

• The target is to determine e_{n-i} of each position when observing $\bigoplus_{j=1}^{\#\mathcal{T}_z} V_j \mathbf{z}_{n-i+k'(j)}$, which can be accomplished by a vectorial iterative decoding algorithm

2.3 Vectorial iterative algorithm

 Similarly as the binary case, calculate APP from the priori distribution according to check values by Bayes' formula (suppose *e*_{n-li} are independent and all parity-checks are orthogonal)

$$p_{\zeta}^{*(n)} = \Pr\left[\boldsymbol{e}_{n} = \zeta | \text{when observed check values } (\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \dots, \boldsymbol{c}_{h})\right]$$
$$= \frac{p_{\zeta}^{(n)} \prod_{l \in \mathcal{H}^{(n)}} \Pr\left[\bigoplus_{i=1}^{\tau} G_{l_{i}}^{\prime} \boldsymbol{e}_{n-l_{i}} = \boldsymbol{c}_{l} \oplus E\zeta\right]}{\bigoplus_{\eta} p_{\eta}^{(n)} \prod_{l \in \mathcal{H}^{(n)}} \Pr\left[\bigoplus_{i=1}^{\tau} G_{l_{i}}^{\prime} \boldsymbol{e}_{n-l_{i}} = \boldsymbol{c}_{l} \oplus E\eta\right]}$$

• For each symbol, we compute APP and increase an empirical vector **E**^{itr}. If **E**^{itr} is still increasing, then we assign PRI with APP, and continue iterating

2.3 Vectorial iterative algorithm

Input: The sequence z' of length N derived from key stream. The sequence of noises e with initial p.d. p, The parity-checks set \mathcal{H} with $\tau + 1$ taps. **parameters**: Maximal rounds R, maximal iterations T and minimal gap G to infuse new noises. 1. $pri \leftarrow p, E^{glb} = (E_1^{glb}, \ldots, E_{2m-1}^{glb}) \leftarrow 0.$ 2. For r = 1, 2, ..., R do 3. $\boldsymbol{E}^{rnd} = (E_1^{rnd}, \dots, E_{2m-1}^{rnd}) \leftarrow \mathbf{0}, \zeta \leftarrow \mathbf{0}.$ 4. For i = 1, 2, ..., T do 5. $E^{itr} = (E_1^{iter}, ..., E_{2m-1}^{iter}) \leftarrow 0.$ For n = 1, 2, ..., N do 6. 7. Compute app from pri by equation (6). If $p_i^{(n)} > p_0^{(n)}$ then $E_i^{itr} = E_i^{itr} + 1/N, j \in \{1, 2, \dots, 2^m - 1\}$. End If. 8. 9. End For. If $E^{itr} \succ E^{rnd}$ then $E^{rnd} \leftarrow E^{itr}$, $pri \leftarrow app$. End If. 10. If $E^{itr} \prec E^{rnd}$ or i = T then 11 If $E^{i\bar{t}\bar{r}} = 0$ then return failed. 12. else if $||E^{rnd} - E^{glb}|| < G$ then reset $z' \leftarrow z' \oplus n$, break. 13. else $E^{glb} \leftarrow E^{rnd}$, select ζ that maximizes $E^{rnd}_{int(\zeta)} + E^{itr}_{int(\zeta)}$, break. End If. 14 15 End If 16. End For. If $\zeta \neq 0$ then complement all positions of z' such that $p_{\zeta} > p_0$ with ζ . End If. 17 If z' satisfies all parity-checks then return success. End If. 18. Reset $pri \leftarrow p$. 19. 20. End For 21. Terminate.

2.4 Scaled experiments for the vectorial algorithm

Choose LFSR to be $x^{16} + x^{15} + x + \alpha \in \mathbb{F}_{2^2}[x]$. Tweak channel capacity, the number of parity-checks and the infused noises to verify the word-error ratio (WER).

13/34

- Criterion 1. Passing through sufficient iterations before breaking up and resetting
 - If new APP strengthens the complement effect, continue iterating
 - Otherwise, select the complement coin with the potential largest complement effect
- Criterion 2. When the empirical complement effect is weak, a sequence of very biased noises is infused in order to break the tie
 - The noises' SEI is required to be appropriate, neither very large to counteract the previous decoding work nor very small to break the tie
 - May help to improve some other binary algorithms, e.g., Algorithm B [MS89], MIPD [CGD96]

2.6 Scaled experiments for Criterion 2

• Algorithm B [MS89], MIPD algorithm [CGD96] versus their modified versions by Criterion 2

1. Introduction

2. Vectorial iterative algorithm and FCA

3. Some properties of the vectorial iterative algorithm

4. Applications to Grain-128a

5. Summary

(1) Convergence property

• Suppose decoding is feasible, it is expected that APP $p_{\zeta}^{*(n)}$ increases when noise variable $\boldsymbol{e}_n = \zeta$ and decreases when $\boldsymbol{e}_n \neq \zeta$. Similarly as the binary case, we have $E[p^{*(n)}] = p_{\zeta}E[p_{\zeta}^{*(n)}|\boldsymbol{e}_n = \zeta] + (1 - p_{\zeta})E[p_{\zeta}^{*(n)}|\boldsymbol{e}_n \neq \zeta] = p_{\zeta}$

Examples (1)

Let LFSR be the same as the previous, and the number of parity-checks h=3 with $\tau=3$ taps.

x	0	1	2	3
p_{x}	0.4500	0.2500	0.2000	0.1000
E'_{0}/p^{*}	1.02618712	1.00117564	1.02744428	1.10462318
E_1'/p^*	0.97857418	0.99960812	0.99313893	0.98837520
E_0/p^*	1.03907892	1.06836181	1.16004050	1.19334394
E_1/p^*	0.96802634	0.97721273	0.95998988	0.97851734

(2) Estimating decoding efficiency

- In binary case [MS89], a threshold N_{thr} is introduced to measure the decoding efficiency, which is determined by the intersection point of two shrunk normal distributions
- In vectorial case, the intersection point becomes an intersection curve (surface)
- Our idea is classification and approximation
 - Classification: the parity-checks are divided into two classes, i.e., those whose coefficients are all identity matrices (the set H_I) and the others (the set H_{II})
 - Approximation: multinomial distribution is approximated by multivariate normal distribution

- Suppose $p_0 \ge p_1 \ge \ldots \ge p_{2^m-1} > 0$. Let q_c denote the probability that the τ taps sum to be c
- The probability that noise *e* = ζ and x_i check values equal *i* follows multinomial distribution

$$p_{\zeta}q(x_0,\ldots,x_{2^m-1},\zeta) = p_{\zeta}\frac{h_l!}{x_0!\ldots x_{2^m-1}!}\prod_{i=0}^{2^m-1}q_{i\oplus\zeta}^{x_i}$$

• For \mathcal{H}_{I} , using distribution p_{i} and q_{i} . For \mathcal{H}_{II} , using distribution p_{i} and symmetric distribution q'_{i}

$$q'_0 = q_0, q'_1 = \dots = q'_{2^m - 1} = \frac{1 - q'_0}{2^m - 1}$$

Example (2)

Let parameters be the same as the previous. Calculate the theoretical and approximate value of N_{C}^{thr}/N via classifying parity-checks.

No. of parity-checks	~	theoretical		approximate		
(h_{I}, h_{II})	ς	theoretical	$N = 2^{19}$	$N = 2^{20}$	$N = 2^{21}$	
	1	0.277133	0.227242	0.250517	0.264012	
(36,0)	2	0.253926	0.242359	0.246835	0.249339	
	3	0.200412	0.164480	0.181245	0.190250	
	1	0.297959	0.251286	0.270056	0.279394	
(18,18)	2	0.260769	0.220915	0.238914	0.248543	
	3	0.167968	0.125576	0.144096	0.154273	
	1	0.376058	0.360392	0.364783	0.368026	
(0,138)	2	0.325561	0.321800	0.332389	0.338674	
	3	0.221771	0.198662	0.213513	0.221388	

Approximating the threshold by multivariate normal distribution

When multivariate normal approximation is feasible, the threshold can also be

$$\mathbb{N}\sum_{\zeta\in\mathbb{F}_2^m}\int_{\mathcal{A}(\zeta)}\mathcal{N}(oldsymbol{\mu}_\zeta,oldsymbol{\Sigma}_\zeta)doldsymbol{x}_\zeta$$

where $\mathcal{A}(\zeta)$ is part of a hypercube restricted by $2^m - 1$ coordinate planes and two surfaces

$$\sum_{i}^{2^{m}-2} x_{i} = h_{I}, \frac{1}{2} \left((\mathbf{x} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{0}) \right) - \frac{1}{2} \left((\mathbf{x} - \boldsymbol{\mu}_{\zeta})^{T} \boldsymbol{\Sigma}_{\zeta}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\zeta}) \right) - \ln \frac{p_{0}}{p_{\zeta}} = 0,$$

and maximizes the multiple integral

$$I(P, \mathcal{A}(\zeta), \zeta, 0) \approx \int_{\mathcal{A}(\zeta)} \left(p_{\zeta} \mathcal{N}(\boldsymbol{\mu}_{\zeta}, \boldsymbol{\Sigma}_{\zeta}) - p_{0} \mathcal{N}(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) \right) d\boldsymbol{x}$$

/ 34

Example (3)

Let parameters be the same as the previous. In order to simplify the integral, we could even slightly adequate the boundary of ${\cal A}$ without much fluctuation.

Table: Direct compu	utation and normal	approximation for	or <i>I(p</i> ,	$\mathcal{A}(1)$, 1 ,	0)
---------------------	--------------------	-------------------	-----------------	------------------	--------------	----

h _l	40	80	200	400
direct computation	0.0686	0.1138	0.1835	0.2266
normal approximation	0.0707	0.1148	0.1841	0.2267

3.2 Two bounds related to complexities

(1) An iterative bound

• In order to perform iterative decoding, the lower bound of h should satisfy that there exists at least a ζ such that $p_{\zeta}^* > p_0^*$

Proposition 1

If iterative decoding is feasible, then there is at least one $\zeta \in \{1, 2, ..., 2^m - 1\}$ such that $p_{\zeta}q(\mathbf{x},\zeta)/(p_0q(\mathbf{x},0)) > 1$. Particularly, when P, Q and Q' are multinomial distributions as before, then $\zeta = 2^m - 1$ and

$$rac{p_\zeta}{p_0} > \left(rac{q_\zeta}{q_0}
ight)^{h_I} \left(rac{q'_\zeta}{q'_0}
ight)^{h_{II}}.$$

3.2 Two bounds related to complexities

Potential advantages of vectorial iterative decoding

Examples (4)

When SEI $\Delta(e) = 2^{-\gamma}$, it is expected that there are probability values around $2^{-m} \pm 2^{-\frac{2m+\gamma}{2}}$ in practice [YJM20]. According to Prop. 1, we need at least $2^{\gamma/2}(2^m - 1)$ parity-checks with 3 taps. Thus the length N of data needed satisfies $(2^m - 1)^2 2^{-l} {N \choose 2} \approx 2^{\gamma/2} (2^m - 1)$ by a birthday collision, which means $N \approx 2^{(\gamma+2l+2)/4}/\sqrt{2^m - 1}$. While m = 1, $N \approx 2^{(\gamma+2l+2)/4}$. For the vectorial case, N seems to be smaller than the binary case, because that m > 1 and γ is expected to be smaller than the binary case.

(2) A bound related to the expected number of corrected errors

- Let $\mathcal{A}'(i) = \mathcal{A}(i) \mathcal{A}(i) \cap (\bigcup_{j=1}^{i-1} \mathcal{A}(i))$, $M'_{\zeta} = p_{\zeta} \sum_{\mathbf{x} \in \mathcal{A}'(\zeta)} q(\mathbf{x}, \zeta)$. It is reasonable to require that $\sum_{\zeta=1}^{2^m-1} M'_{\zeta} > 1$ after the first iteration. Then the succeeding iterations may trigger more positions with $p^*_{\zeta} > p^*_0$
- Summing the probability values in multinomial distributions is inconvenient. Meanwhile, since the integral area $\mathcal{A}'(\zeta)$ is very complicated, multivariate normal approximation is not practical when h is large
- However, since q' simulates the iterative process very well, we could deduce a bound using multinomial distribution Multi(h, q')

3.2 Two bounds related to complexities

Proposition 2

For multinomial distribution Multi(h, q'), we have

$$\mathcal{M}'_{\zeta} = \sum_{l=h_b}^h inom{h}{l} (1-\sum_{i=0}^{\zeta} q'_{i\oplus\zeta})^{h-l} \sum_{(x_0,\ldots,x_\zeta)\in\mathcal{B}(\zeta)} inom{l}{x_0,\ldots,x_\zeta} \prod_{i=0}^{\zeta} q'^{x_i}_{i\oplus\zeta}, 1\leq \zeta<2^m,$$

where $\mathcal{B}(\zeta)$ is constrained by $\sum_{i=1}^{\zeta} x_i = l$, $x_{\zeta} - x_0 \ge h_b$ and $x_i - x_0 \le h_b$, $1 \le i < \zeta$. Particularly, when $\sum_{i=0}^{\zeta} q'_{i\oplus\zeta}$ is small and $hq'_i \le h_b$, the expected number of positions with $p_{\zeta}^* > p_0^*$ in the first iteration are dominated by those small *l*.

• When $\zeta = 1$, M'_1 can be estimated by Skellam distribution

1. Introduction

2. Vectorial iterative algorithm and FCA

3. Some properties of the vectorial iterative algorithm

4. Applications to Grain-128a

5. Summary

4.1 Grain-128a

Grain-128a includes a 128-bit LFSR cascaded with a 128-bit NFSR.

4.2 Constructing a multidimensional linear approximation

- There are binary linear approximations with correlation $\pm 2^{-57.0454}$ [TIM18]
- Bundling up them will derive a linear approximation with dimension 9 $< m \le$ 42, SEI $2^{m-121.0908}$, and the form

$$E(\mathbf{x}_t + \mathbf{u}_t) + E\mathbf{y}_t = \mathbf{e}_t,$$

$$\begin{aligned} \mathbf{x}_{t} &= (\dots, s_{t+i+8}, s_{t+i+13}, s_{t+i+20}, s_{t+i+42}, s_{t+i+60}, s_{t+i+79}, s_{t+i+94}, \dots) \,, \\ \mathbf{u}_{t} &= \left(\sum_{i \in \mathbb{A} \bigcup \mathbb{T}_{z}} s_{t+i}, \sum_{i \in \mathbb{A} \bigcup \mathbb{T}_{z}} s_{t+i}, \dots, \sum_{i \in \mathbb{A} \bigcup \mathbb{T}_{z}} s_{t+i} \right) \,, \\ \mathbf{y}_{t} &= \left(\sum_{i \in \mathbb{T}_{z}} y_{t+i}, \sum_{i \in \mathbb{T}_{z}} y_{t+i}, \dots, \sum_{i \in \mathbb{T}_{z}} y_{t+i} \right) \,, \mathbf{e}_{t} = (e_{t}, e_{t+1}, \dots, e_{t+m-1}) \,. \end{aligned}$$

• When m = 42, the standard basis of linear masks is

$$(\Lambda_0[1-3,5-8],\Lambda_{26}[1-3,5-8],\ldots,\Lambda_{128}[1-3,5-8])=(0,\ldots,0,1,0,\ldots,0),\ldots_{^{29/3}}$$

4.3 Estimating the data complexity

- Suppose the SEI is $2^{-\gamma}$, $p_0 = 2^{-m} + 2^{-\frac{2m+\gamma}{2}}$ is maximal probability point
- Hypothesis: suppose there are at least 2 parity-checks with two taps, or there are more special parity-checks with form

$$G_{n,1}\mathbf{x}'_{t-d_{n,1}} + \sum_{i=1}^{a} G_{n-i,1}\mathbf{x}'_{t-d_{i}} + E\mathbf{x}'_{t} = 0, \dots, G_{n,h}\mathbf{x}'_{t-d_{n,h}} + \sum_{i=1}^{a} G_{n-i,h}\mathbf{x}'_{t-d_{i}} + E\mathbf{x}'_{t} = 0.$$

- According the two bounds when m = 42
 - E.g., h = 2, the 1-st bound: $N > 2^{48+42+1} = 2^{91}$, and the 2-nd bound: $N > 2^{86.54+42+1} = 2^{129.54}$

$\log_2(h)$	$\log_2(D_1)$	$\log_2(M_1')$		$\log (\sum_{n=1}^{2^{36}} M')$	$l_{2} = (\sum_{i=1}^{2^{36}} D')$	
		summation	Skellam	$\log_2(\sum_{i=1}^{N_i} N_i)$	$\log_2(\sum_{i=1} D_i)$	
1	-122.5454	-84.0004	-83.0000	-47.9999	-86.5435	
2	-119.9605	-81.4150	-81.0000	-45.4151	-83.9722	
3	-117.7381	-79.1926	-79.0000	-43.1943	-81.7714	
4	-115.6385	-77.0931	-77.0000	-41.1209	-79.7206	

1. Introduction

2. Vectorial iterative algorithm and FCA

3. Some properties of the vectorial iterative algorithm

4. Applications to Grain-128a

5. Summary

- We cannot directly compare the vectorial decoding algorithm with a binary algorithm, and theoretical advantage in the general case is an open problem
- The other theoretical properties of the vectorial algorithm are still not clear
- the main difficulties are figuring out the existence of the special parity-checks and proposing an efficient algorithm to generate suitable parity-checks in matrix rings instead of finite fields

- We propose a vectorial iterative decoding algorithm for FCA. The original binary FCA [MS89] is a special case of our FCA with dimension 1
- We describe some cryptographic properties and estimate the quantity of needed parity-checks and keystream
- We apply it to stream cipher Grain-128a and estimate its potential security margin from the point view of vectorial probabilistic iterative decoding

Thank you for your attention!