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1. Introduction
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1.1 Backgrouds

Linear feedback shift register (LFSR) based stream ciphers form an important class
of stream cipher system: LILI-128 [CDF02], the SNOW family [EJOO] and the Grain
family [AHJM11], etc
Cryptanalysis based on correlation plays an important role in their evaluations, e.g.,
(fast) correlation attacks (FCA), linear distinguishing attacks (LDA), etc
According to decoding strategies, FCA can be divided into two classes

® One-pass: information set decoding [TIM18], convolution codes [JJ99], etc

® Probabilistic iterative: Algorithm B [MS89], LDPC codes [CTO00], etc
Applications of iterative decoding are limited as

® |ts properties are hard to describe by mathematical language
® |acks of a convenient iterative decoding algorithm to work with the multidimensional
linear approximation
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1.2 The binary iterative decoding algorithm [MS89]

® A binary iterative decoding algorithm to improve the time complexity of FCA that
thought to be exponential to the length of the LFSR [MS89]

Algorithm 1 Meier and Staffelbach’s binary iterative decoding Algorithm B

Input: A key stream sequence z of length N and H.

1. Calculate the probability threshold p¢p, and quantity threshold Nyp,..
2. For round r € {1,2,...} do
3. For iteration ¢ from 1 to a small integer do
4 Calculate APP p* from priori probability p, assign p}, = p,, for all position n.
5 If Ny > Ny, where Ny, = |{n|p, > pinr}| then, break; EndIf
6. EndFor
7 Complement the bits of z with p,, > pyp;--
8. Reset all positions to initial probability p.
9. If z satisfies all parity-checks then, break; EndIf
10. EndFor
11. Terminate with « = z.
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1.2 The binary iterative decoding algorithm [MS89]

® The critical part of the decoding phase is calculating a posterior probability (APP)
p* from prior distribution p symbol by symbol through Bayes' formula, instead of
directly determine 0/1

b = pH/eHo(l — s/) HIEH\HO S|
pHIE’HO( s1) H/eH\HO si+(1—p) HleH\Ho( ) HIEHO s/’

5(p/17 R pl‘r) - p/-rs(p/17 e 7p/7_1) + (l - plq')(l - S(p/17 ce vy pl‘r—l))

® The more parity-checks holds (check value = 0), the lower value p* (suppose that
p<1l-p)

® When the number of positions with large p* is greater than a threshold value,
perform a complement
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1.3 Our Work

® We propose a vectorial iterative decoding algorithm for FCA that
® Generalizes the binary algorithm in [MS89] naturally
® May benefit from a multidimensional linear approximation
® Equips with two novel criteria to improve the iterative decoding process
® \We present some cryptographic properties on the vectorial algorithm such as

® the relationship between the decoding efficiency and the noise distribution by analyzing
the first iteration

® two propositions involving the relationship between the number of parity-checks, the
noise distribution and the data complexity

® We apply those results to stream cipher Grain-128a and show its security margin
from the perspective of vectorial iterative decoding
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2. Vectorial iterative algorithm and FCA
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2.1 Channel model: from BSC to SC

® Suppose a linear approximation with dimension m

D oo D Vap-e

where all U; and V; are m x w matrices over [F», 7, and 7, are sets of indexes related
to the linear approximation

e Similarly as BSC, the channel noise vector e is XORed to the code word
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2.2 Checking parity with vectorial noises

® Suppose a parity-check over the matrix ring M,,(F2)
Ex, ® Gixp—1 DD Gpxp_g =10

® Require that for each Gy, there is a m x m matrix G| satisfies that
UGy = G U, Vie {1,...,#7T«}. Multiplying with these Ujs

d #Tx d #Tz d
DB ) =D (D vierivir | = D e
i=0 j=1 i=0 j=1 i=0

® The target is to determine e,_; of each position when observing @jﬂ—z Vizo_ivi(j)
which can be accomplished by a vectorial iterative decoding algorithm
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2.3 Vectorial iterative algorithm

® Similarly as the binary case, calculate APP from the priori distribution according to
check values by Bayes' formula (suppose e,_;, are independent and all parity-checks
are orthogonal)

pz(") Pr [e,, = (|when observed check values (c1, ¢, - - ., €3)]

B H/eH PriDi; Glen—i, = c1® E(]
@ P HIe?—L Pri®i, G eni, = ¢ @ En]

® For each symbol, we compute APP and increase an empirical vector E*". If E™" is
still increasing, then we assign PRI with APP, and continue iterating
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2.3 Vectorial iterative algorithm

Input: The sequence z’ of length N derived from key stream,

The sequence of noises e with initial p.d. p,
The parity-checks set H with 7+ 1 taps.
parameters: Maximal rounds R, maximal iterations 7" and minimal gap G to infuse new noises.

1. pri«p, B9 = (E{",... EJ® ) «o.
2. Forr=1,2,...,R do

3. E™ = (Erd . Bt )0, ¢+ 0.
4. Fori=1,2, T do
5. E" = (B} LB ) 0.
6. For n=1, 2 ,N do
7. Computc app from pri by equation (6).
8. pr LS pU ) then El" E]"" +1/N,je{1,2,..., 2™ —1}. End If.
9. End For
10. If B~ E™? then E™ « E™" pri « app. End If.
11. If E'" < E™ or i =T then
12. If E" = 0 then return failed.
13. else if \lE”" E“"|| < @ then reset 2’ « 2’ @ n, break.
14. else B/ « E™? sclect ¢ that maximizes F””« Z’fft“), break. End If.
15. End If.
16.  End For.
17. If { # 0 then complement all positions of 2z’ such that pc > po with ¢. End If.
18.  If 2’ satisfies all parity-checks then return success. End If.
19.  Reset pri < p.
20. End For.

21. Terminate.
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2.4 Scaled experiments for the vectorial algorithm

Choose LFSR to be x1® 4+ x5 + x4+ o € F2[x]. Tweak channel capacity, the number of

parity-checks and the infused noises to verify the word-error ratio (WER).
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2.5 Two novel iterative criteria

e Criterion 1. Passing through sufficient iterations before breaking up and resetting
® |f new APP strengthens the complement effect, continue iterating
® Otherwise, select the complement coin with the potential largest complement effect
e Criterion 2. When the empirical complement effect is weak, a sequence of very
biased noises is infused in order to break the tie
® The noises’ SEl is required to be appropriate, neither very large to counteract the
previous decoding work nor very small to break the tie

® May help to improve some other binary algorithms, e.g., Algorithm B [MS89], MIPD
[CGDI6]
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2.6 Scaled experiments for Criterion 2

e Algorithm B [MS89], MIPD algorithm [CGD96] versus their modified versions by
Criterion 2

1 ith Criterion
ieﬂ —o— (MIPD with Criterion 2)
X
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3. Some properties of the vectorial iterative algorithm
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3.1 Statistical properties of the first iteration

(1) Convergence property
® Suppose decoding is feasible, it is expected that APP pz(") increases when noise

variable e, = ¢ and decreases when e, # (. Similarly as the binary case, we have
Elp (")) = pc 1" len = (] + (1 — po)Elp. ™ en # €] = ¢

Examples (1)

Let LFSR be the same as the previous, and the number of parity-checks h = 3 with 7 =3

taps.
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3.1 Statistical properties of the first iteration

(2) Estimating decoding efficiency
® In binary case [MS89], a threshold Ny, is introduced to measure the decoding
efficiency, which is determined by the intersection point of two shrunk normal
distributions

® In vectorial case, the intersection point becomes an intersection curve (surface)

® Qur idea is classification and approximation

® (lassification: the parity-checks are divided into two classes, i.e., those whose
coefficients are all identity matrices (the set H,) and the others (the set 1)

® Approximation: multinomial distribution is approximated by multivariate normal
distribution
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3.1 Statistical properties of the first iteration

® Suppose pg > p1 > ... > pom_1 > 0. Let g denote the probability that the 7 taps
sum to be ¢

® The probability that noise e = ( and x; check values equal i follows multinomial

distribution
2m_1

qu(XOa <., Xom_1, C) - pC H Cff@(
i=

® For H,, using distribution p; and g;. For H;, using distribution p; and symmetric
distribution ¢}

A — .. = m [ ——
do = qo, G4 2m-1= 5m 1
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3.1 Statistical properties of the first iteration

Example (2)

Let parameters be the same as the previous. Calculate the theoretical and approximate

value of Ng’r/N via classifying parity-checks.

No. of(Zirll;cI):)checks ¢ theoretical s apxlrzqzrggte o
1 0.277133 | 0.227242 0.250517 0.264012

(36,0) 2 0.253926 | 0.242359 0.246835 0.249339

3 0.200412 | 0.164480 0.181245 0.190250

1 0.297959 | 0.251286 0.270056 0.279394

(18,18) 2 0.260769 | 0.220915 0.238914 0.248543

3 0.167968 | 0.125576 0.144096 0.154273

1 0.376058 | 0.360392 0.364783 0.368026

(0,138) 2 0.325561 | 0.321800 0.332389 0.338674

3 0.221771 | 0.198662 0.213513 0.221388
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3.1 Statistical properties of the first iteration

Approximating the threshold by multivariate normal distribution

When multivariate normal approximation is feasible, the threshold can also be

N / N (g, E¢)dx.
2 Lo B

CEFD

where A(() is part of a hypercube restricted by 2™ — 1 coordinate planes and two surfaces

2m_2
1 _ 1 _
D= = by (6= o) TEGH(x = o) = 5 (6= ) TEH (x— i) = In 22 =0,

and maximizes the multiple integral

I(P7 A(C)7 C: 0) ~ /4(@‘) (pCN(H’C? ZC) - pON(Ho, z0)) dx
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3.1 Statistical properties of the first iteration

Example (3)

Let parameters be the same as the previous. In order to simplify the integral, we could
even slightly adequate the boundary of .4 without much fluctuation.

Table: Direct computation and normal approximation for /(p,.A(1),1,0)

hy 40 80 200 400
direct computation | 0.0686 0.1138 0.1835 0.2266
normal approximation | 0.0707 0.1148 0.1841 0.2267
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3.2 Two bounds related to complexities

(1) An iterative bound

® |n order to perform iterative decoding, the lower bound of h should satisfy that there
exists at least a ¢ such that pzi > pp

Proposition 1

If iterative decoding is feasible, then there is at least one ¢ € {1,2,...,2™ — 1} such that
pca(x,¢)/(pog(x,0)) > 1. Particularly, when P, Q@ and Q' are multinomial distributions as

before, then ( =2™ — 1 and
hy
P (%)h’ 9
=> (= -1 .
Po do ere}
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3.2 Two bounds related to complexities

® Potential advantages of vectorial iterative decoding

Examples (4)
When SEI A(e) =277, it is expected that there are probability values around

2-m £ =57 i practice [YJM20]. According to Prop. 1, we need at least 27/2(2™ — 1)
parity-checks with 3 taps. Thus the length N of data needed satisfies

m— 1)22_’(’2\’) ~ 27/2(2™ — 1) by a birthday collision, which means

N~ 20+2H2)/4 7 /om T While m = 1, N ~ 200t2H2)/4_ For the vectorial case, N
seems to be smaller than the binary case, because that m > 1 and + is expected to be

smaller than the binary case.
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3.2 Two bounds related to complexities

(2) A bound related to the expected number of corrected errors
o Let A'(i) = A(i) — A() N (UZ1 A M = pe Y e () (%, ). It s reasonable to
require that Zngl M’C > 1 after the first iteration. Then the succeeding iterations
may trigger more positions with pz > Py
® Summing the probability values in multinomial distributions is inconvenient.

Meanwhile, since the integral area A’(() is very complicated, multivariate normal
approximation is not practical when h is large

® However, since ¢ simulates the iterative process very well, we could deduce a bound
using multinomial distribution Multi(h, q')
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3.2 Two bounds related to complexities

Proposition 2
For multinomial distribution Multi(h, ¢'), we have

h h 5 I I
MZZE(,)G—Z&%&"" > <x0,...,xC)_1_£q:'ﬂ5<’1§<<2m’
—=hp = =

(X07"'7XC)EB(<)

where B(() is constrained by Z§:1 Xi=1, xc—xo > hp and x; — xp < hp, 1 < i< (.
Particularly, when Zf:o qj.@g is small and hq/; < hp, the expected number of positions with
pZ > p in the first iteration are dominated by those small /.

® When ¢ =1, M can be estimated by Skellam distribution
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4. Applications to Grain-128a
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4.1 Grain-128a

Grain-128a includes a 128-bit LFSR cascaded with a 128-bit NFSR.
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4.2 Constructing a multidimensional linear
approximation

® There are binary linear approximations with correlation 42757-04%4 [TIM18]
e Bundling up them will derive a linear approximation with dimension 9 < m < 42, SEI
2m—121.0908 "3nd the form
E(x: + us) + Ey, = ey,

Xt = (- -y St4it 8, Stpit13 Stit20s Sthit 425 St4i-+605 Sti+79> StHit4s - -) 5

ug = E St+i E Sttiy e« E St+i |

ieAUT, icAJT, ieAUT,
Ye = (E Yt+iy E Yittis - - E Yt+:> € = et, €tily- -+, et+m—1)-
icT, icT, icT,

® When m = 42, the standard basis of linear masks is
(Ao[l —3,5—8],A6[1 —3,5—8],...,A12g[l —3,5—8]) = (O,...,0,1,0,...,0),..29/34



4.3 Estimating the data complexity

® Suppose the SEl is 277, pp =277 + 2=
® Hypothesis: suppose there are at least 2 parity-checks with two taps, or there are
more special parity-checks with form

a a
G”,l)(tfdn’l + Z Gn—l}l)(tfd,- + E)(t =0,..., G"vh)(t*dn,h + Z Gn—i,h)(t—d,- + E)(t =0.

i=1

m+~y

® According the two bounds when m = 42

® Eg., h=2, the 1-st bound: N > 2#+42+1 — 291 3nd the 2-nd bound:
N > 86.54+42+1 _ 120,54

i=1

is maximal probability point

log, (M) 36 36
loga(h) | logo(D1) summation 1Ske||am |0g2(2?:1 M;) |0g2(2?:1 D))
1 -122.5454 | -84.0004 | -83.0000 -47.9999 -86.5435
2 -119.9605 | -81.4150 | -81.0000 -45.4151 -83.9722
3 -117.7381 | -79.1926 | -79.0000 -43.1943 -81.7714
4 -115.6385 | -77.0931 | -77.0000 -41.1209 -79.7206
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5. Summary
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Discussion and open problems

® We cannot directly compare the vectorial decoding algorithm with a binary
algorithm, and theoretical advantage in the general case is an open problem

® The other theoretical properties of the vectorial algorithm are still not clear

® the main difficulties are figuring out the existence of the special parity-checks and
proposing an efficient algorithm to generate suitable parity-checks in matrix rings
instead of finite fields
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Concluding remarks

® \We propose a vectorial iterative decoding algorithm for FCA. The original binary
FCA [MS89] is a special case of our FCA with dimension 1

® \We describe some cryptographic properties and estimate the quantity of needed
parity-checks and keystream

e We apply it to stream cipher Grain-128a and estimate its potential security margin
from the point view of vectorial probabilistic iterative decoding
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Thank you for your attention!



	Introduction
	Vectorial iterative algorithm and FCA
	Some properties of the vectorial iterative algorithm
	Applications to Grain-128a
	Summary

