
Fast MILP Models for Division Property

Patrick Derbez1, Baptiste Lambin2

1 Univ Rennes, CNRS, IRISA
2 University of Luxembourg

1 / 22



Division Trails

Target: f = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0

• Search for division trails through f

• Decompose f into smaller layers (e.g. small Sboxes, linear layer, AND, XOR, Copy,
...)

• Valid transitions known for each layer

Accuracy

• f0(x , y , z , t) = (xt ⊕ y , xt ⊕ z), f1(u, v) = (u ⊕ v)

• Division trail (1, 0, 0, 1) → (1) (i.e. f1 ◦ f0 may depend on xt)

• XOR might lead to accuracy issue

2 / 22



Searching for Division Trails

Increase accuracy → handle larger layers

• [Xia+16]: Convex Hull (CH) to describe transitions through Sboxes (practical up
to 6 bits)

• [ZR19]: exact modelization for any linear layer, practical for binary matrices on a
field extension

• [HWW20]: quadratic constraints to modelize any linear layer → SMT solver

• [DF20]: propagation table of SuperSboxes (16 bits) → ad-hoc algorithm

• [Udo21]: modelize propagation table of SuperSboxes with thousands of logical
constraints → SAT solver

All recent works abandoned MILP solver for either ad-hoc algorithm or SAT/SMT solvers!

3 / 22



MILP Models

• A mixed-integer program (MIP) is an optimization problem of the form:

How to improve MILP models?

• Reduce the number of variables

• Reduce the number of inequalities

• Add dedicated branching strategy

• Solve easier problems

• . . .

4 / 22



MILP Models

• A mixed-integer program (MIP) is an optimization problem of the form:

How to improve MILP models?

• Reduce the number of variables

• Reduce the number of inequalities

• Add dedicated branching strategy

• Solve easier problems

• . . .

5 / 22



An Important Property

2-subset bit-based division property

A transition u
f→ v through a function f is valid if and only if xu divides at least one

monomial of f (x)v .

A direct consequence for the search of division trails through a cipher is that for all u′ ≺ u

and v ′ ≻ v , the transition u′
f→ v ′ can be safely added to or removed from the model.

• Originally used to keep minimal transitions only

• But actually, adding such ”false/unnecessary” transitions does simplify the
constraints

6 / 22



Modelisation of AND and ADDMOD

Operation AND ADDMOD

Trail (a1, a2, . . . , am) → b (a1, . . . , b1, . . .) → (y1, . . . , c1, . . .)

Constraints
a1 + . . .+ am ≥ b
a1 + . . .+ am ≤ mb

−ai − bi − ci + 2ci+1 + yi ≥ 0
ai + bi + ci − 2ci+1 − 2yi ≥ −1

• Inequalities in red can be safely removed from models

7 / 22



Modelisation of AND and ADDMOD

Operation AND ADDMOD

Trail (a1, a2, . . . , am) → b (a1, . . . , b1, . . .) → (y1, . . . , c1, . . .)

Constraints
a1 + . . .+ am ≥ b
a1 + . . .+ am ≤ mb

−ai − bi − ci + 2ci+1 + yi ≥ 0
ai + bi + ci − 2ci+1 − 2yi ≥ −1

• Inequalities in red can be safely removed from models

8 / 22



Classical Problem

• Let assume the following values for (x , y , z , t) are impossible

(0, 0, 1, 1) (0, 1, 1, 1) (1, 0, 1, 1) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 0, 0)

• Discarding those 6 values from a MILP model can be done with the 6 inequalities:

x + y + (1− z) + (1− t) ≥ 1
x + (1− y) + (1− z) + (1− t) ≥ 1
(1− x) + y + (1− z) + (1− t) ≥ 1
x + y + z + (1− t) ≥ 1
x + y + (1− z) + t ≥ 1
x + y + z + t ≥ 1

Use Quine-McCluskey algorithm to reduce the number of inequalities

9 / 22



Quine-McCluskey Algorithm

• Search for cosets of bit-aligned vector spaces of impossible values

• Example: assume the following values for (x , y , z , t) are impossible

(0, 0, 1, 1) (0, 1, 1, 1) (1, 0, 1, 1) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 0, 0)

• The QM algorithm aims at identifying pairs of impossible values that differ in only
one bit

(0, 0, ⋆, ⋆) (⋆, 0, 1, 1) (0, ⋆, 1, 1)

• Number of inequalities reduced to 3:

x + y ≥ 1
y + (1− z) + (1− t) ≥ 1
x + (1− z) + (1− t) ≥ 1

10 / 22



Going Further

• Number of inequalities reduced to 3:

x + y ≥ 1
y + (1− z) + (1− t) ≥ 1
x + (1− z) + (1− t) ≥ 1

• Quine-McCluskey algorithm solves a NP-complete problem (complexity: O(3n/
√
n))

• Adding non-minimal transitions removes the saturation step of QM algorithm → only
need to find a minimal cover

• Merge the two last inequalities:

x + y ≥ 1
x + y + 2((1− z) + (1− t)) ≥ 2

11 / 22



Going Further

• Number of inequalities reduced to 3:

x + y ≥ 1
y + (1− z) + (1− t) ≥ 1
x + (1− z) + (1− t) ≥ 1

• Quine-McCluskey algorithm solves a NP-complete problem (complexity: O(3n/
√
n))

• Adding non-minimal transitions removes the saturation step of QM algorithm → only
need to find a minimal cover

• Merge the two last inequalities:

x + y ≥ 1
x + y + 2((1− z) + (1− t)) ≥ 2

12 / 22



Modelisation Techniques

• Sbox:
• COPY-AND-XOR (Lossy)
• Convex Hull (Exact)
• QM (Exact)

•

• Linear layer:
• COPY-XOR (Lossy)
• ZR (Exact)

•
• Local ZR (Exact)

Use Callbacks to remove false-positive trails

13 / 22



Modelisation Techniques

• Sbox:
• COPY-AND-XOR (Lossy)
• Convex Hull (Exact)
• QM (Exact)
• Piecewise modelisation (Lossy)

• Linear layer:
• COPY-XOR (Lossy)
• ZR (Exact)

•
• Local ZR (Exact)

0 1 2 3 4

0

1

2

3

4

(0, 0)

(1, 1) (2, 1)

(3, 2)

(4, 4)

Figure: Piecewise linear function

Use Callbacks to remove false-positive trails

14 / 22



Modelisation Techniques

• Sbox:
• COPY-AND-XOR (Lossy)
• Convex Hull (Exact)
• QM (Exact)
• Piecewise modelisation (Lossy)

• Linear layer:
• COPY-XOR (Lossy)
• ZR (Exact)

•
• Local ZR (Exact)

• For most of Sboxes used in practice, the
following constraints are quite accurate to

describe valid transitions u
S→ v :

hw(v) =


0 if hw(u) = 0
n if hw(u) = n (for a n-bit Sbox)
1 otherwise

Use Callbacks to remove false-positive trails

15 / 22



Modelisation Techniques

• Sbox:
• COPY-AND-XOR (Lossy)
• Convex Hull (Exact)
• QM (Exact)
• Piecewise modelisation (Lossy)

• Linear layer:
• COPY-XOR (Lossy)
• ZR (Exact)
• Weight equality (Lossy)

• Local ZR (Exact)

u
L→ v valid iif the minor is invertible

=⇒ hw(u) = hw(v)

Use Callbacks to remove false-positive trails

16 / 22



Modelisation Techniques

• Sbox:
• COPY-AND-XOR (Lossy)
• Convex Hull (Exact)
• QM (Exact)
• Piecewise modelisation (Lossy)

• Linear layer:
• COPY-XOR (Lossy)
• ZR (Exact)
• Weight equality (Lossy)
• Local ZR (Exact)

if the minor is not invertible

1. find a linear combination of rows equals
to 0

2. compute the same linear combination of
rows on the full matrix

3. look at columns with a non-zero coefficient

4. add a constraint to ensure that if those
lines are selected, at least one of the
columns is selected as well

Use Callbacks to remove false-positive trails

17 / 22



Running Times

Cipher Rounds Type of Result Word Size Our Time Previous Time

AES 5 No Ext. Dist. 8-bit 13min 31min [EY21]†

ARIA 5 No Ext. Dist. 8-bit 5h ≥ 24h [EY21]†

CRAFT
13 Conv. Dist. - 3.6s -
14 No Ext. Dist. 16-bit 11min -

HIGHT
20 Ext. Dist. 16-bit 12min 13 days [DF20]
21 No Ext. Dist. 16-bit 14min -

LED 8 No Ext. Dist. 16-bit 3h∗ 16h [Udo21]

Skinny
11 Ext. Dist. 16-bit 9min 22min [DF20]
12 No Ext. Dist. 16-bit 80s 4min [DF20]

Camellia 7 Conv. Dist. - 30s 99min [HWW20]

CLEFIA 10 Conv. Dist. - 23min 82min [HWW20]

LEA 8 Conv. Dist. - 20s 30min [SWW17]

18 / 22



Best Strategies

Cipher Rounds Modeling LC-S-box LC-Lin LC-SSB

AES
4 PWL + WE 0 0 -
5 QM + WE - 60 -

ARIA
4 PWL + WE 0 0 -
5 QM + CX - 91 -

CRAFT
13 QM/CH + QM/CH - - 0
14 QM/CH + CX - 0 314

HIGHT
20 CX - 6 0
21 CX - 21 0

LED 8 QM/CH + WE - 107 54

Skinny
11 QM/CH + QM/CH - - 7
12 QM/CH + QM/CH - - 93

Camellia
7 PWL + WE 0 0 -
8 QM + CX - 31 -

CLEFIA
10 PWL + WE 0 0 -
11 QM + CX - 9 -

19 / 22



About Weight Equality

What is the probability for a minor of an invertible matrix to be invertible?

• A random binary matrix is invertible with probability between 30 and 50%

• But matrices used in block ciphers are (most often) not random!

• Percentage of invertible minors for AES MixColumns matrix:

20 / 22



Conclusion

• New modelisation techniques for 2-subset division property

• Much better to not add all constraints into the model → use callbacks!

• Considering SuperSboxes not as useful as expected

• Optimizing models is important

• Code: https://github.com/FastMILPDivisionProperty/FastMILPDivision

Thank you for your attention!

21 / 22

https://github.com/FastMILPDivisionProperty/FastMILPDivision


Conclusion

• New modelisation techniques for 2-subset division property

• Much better to not add all constraints into the model → use callbacks!

• Considering SuperSboxes not as useful as expected

• Optimizing models is important

• Code: https://github.com/FastMILPDivisionProperty/FastMILPDivision

Thank you for your attention!

22 / 22

https://github.com/FastMILPDivisionProperty/FastMILPDivision

	Introduction

