

Fast MILP Models for Division Property

Patrick Derbez¹, Baptiste Lambin²

¹ Univ Rennes, CNRS, IRISA ² University of Luxembourg

Division Trails

Target:
$$f = f_n \circ f_{n-1} \circ \ldots \circ f_1 \circ f_0$$

- Search for division trails through f
- Decompose *f* into smaller layers (e.g. small Sboxes, linear layer, AND, XOR, Copy, ...)
- Valid transitions known for each layer

Accuracy

- $f_0(x, y, z, t) = (xt \oplus y, xt \oplus z), f_1(u, v) = (u \oplus v)$
- Division trail $(1,0,0,1) \rightarrow (1)$ (i.e. $f_1 \circ f_0$ may depend on xt)
- XOR might lead to accuracy issue

Increase accuracy \rightarrow handle larger layers

- [Xia+16]: Convex Hull (CH) to describe transitions through Sboxes (practical up to 6 bits)
- [ZR19]: exact modelization for any linear layer, practical for binary matrices on a field extension
- [HWW20]: quadratic constraints to modelize any linear layer \rightarrow SMT solver
- [DF20]: propagation table of SuperSboxes (16 bits) \rightarrow ad-hoc algorithm
- **[Udo21]:** modelize propagation table of SuperSboxes with thousands of logical constraints \rightarrow SAT solver

All recent works abandoned MILP solver for either ad-hoc algorithm or SAT/SMT solvers!

MILP Models

• A mixed-integer program (MIP) is an optimization problem of the form:

MILP Models

• A mixed-integer program (MIP) is an optimization problem of the form:

How to improve MILP models?

- Reduce the number of variables
- Reduce the number of inequalities
- Add dedicated branching strategy
- Solve easier problems

. . .

 $c^T x$ Minimize Subject to Ax = b $l \le x \le u$ some or all x_i integer

2-subset bit-based division property

A transition $u \xrightarrow{f} v$ through a function f is valid if and only if x^u divides at least one monomial of $f(x)^v$.

A direct consequence for the search of division trails through a cipher is that for all $u' \prec u$ and $v' \succ v$, the transition $u' \stackrel{f}{\rightarrow} v'$ can be safely **added to or removed from** the model.

- Originally used to keep minimal transitions only
- But actually, adding such "false/unnecessary" transitions does simplify the constraints

Modelisation of AND and ADDMOD

Operation	AND	ADDMOD		
Trail	$(a_1,a_2,\ldots,a_m) o b$	$(a_1,\ldots,b_1,\ldots) o (y_1,\ldots,c_1,\ldots)$		
Constraints	$a_1 + \ldots + a_m \ge b$ $a_1 + \ldots + a_m \le mb$	$egin{array}{llllllllllllllllllllllllllllllllllll$		

Modelisation of AND and ADDMOD

Operation	AND	ADDMOD		
Trail	$(a_1,a_2,\ldots,a_m) o b$	$(a_1,\ldots,b_1,\ldots) o (y_1,\ldots,c_1,\ldots)$		
Constraints	$a_1 + \ldots + a_m \ge b$ $a_1 + \ldots + a_m \le mb$	$-a_i - b_i - c_i + 2c_{i+1} + y_i \ge 0$ $a_i + b_i + c_i - 2c_{i+1} - 2y_i \ge -1$		

• Inequalities in red can be safely removed from models

Classical Problem

• Let assume the following values for (x, y, z, t) are impossible (0,0,1,1) (0,1,1,1) (1,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,0,0)

• Discarding those 6 values from a MILP model can be done with the 6 inequalities:

$$egin{aligned} & x+y+(1-z)+(1-t)\geq 1 \ & x+(1-y)+(1-z)+(1-t)\geq 1 \ & (1-x)+y+(1-z)+(1-t)\geq 1 \ & x+y+z+(1-t)\geq 1 \ & x+y+(1-z)+t\geq 1 \ & x+y+z+t\geq 1 \end{aligned}$$

Use Quine-McCluskey algorithm to reduce the number of inequalities

Quine-McCluskey Algorithm

- Search for cosets of bit-aligned vector spaces of impossible values
- Example: assume the following values for (x, y, z, t) are impossible

(0,0,1,1) (0,1,1,1) (1,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,0,0)

• The QM algorithm aims at identifying pairs of impossible values that differ in only one bit

$$(0,0,\star,\star)$$
 $(\star,0,1,1)$ $(0,\star,1,1)$

• Number of inequalities reduced to 3:

$$egin{array}{l} x+y\geq 1 \ y+(1-z)+(1-t)\geq 1 \ x+(1-z)+(1-t)\geq 1 \end{array}$$

Going Further

• Number of inequalities reduced to 3:

$$egin{array}{l} x+y\geq 1 \ y+(1-z)+(1-t)\geq 1 \ x+(1-z)+(1-t)\geq 1 \end{array}$$

- Quine-McCluskey algorithm solves a NP-complete problem (complexity: $O(3^n/\sqrt{n})$)
- Adding non-minimal transitions removes the saturation step of QM algorithm \rightarrow only need to find a minimal cover

Going Further

• Number of inequalities reduced to 3:

$$egin{aligned} & x+y \geq 1 \ & y+(1-z)+(1-t) \geq 1 \ & x+(1-z)+(1-t) \geq 1 \end{aligned}$$

- Quine-McCluskey algorithm solves a NP-complete problem (complexity: $O(3^n/\sqrt{n})$)
- Adding non-minimal transitions removes the saturation step of QM algorithm \rightarrow only need to find a minimal cover
- Merge the two last inequalities:

$$\begin{array}{l} x+y \geq 1 \\ x+y+2((1-z)+(1-t)) \geq 2 \end{array}$$

- Sbox:
 - COPY-AND-XOR (Lossy)
 - Convex Hull (Exact)
 - QM (Exact)

- Linear layer:
 - COPY-XOR (Lossy)
 - ZR (Exact)

- Sbox:
 - COPY-AND-XOR (Lossy)
 - Convex Hull (Exact)
 - QM (Exact)
 - Piecewise modelisation (Lossy)
- Linear layer:
 - COPY-XOR (Lossy)
 - ZR (Exact)

Figure: Piecewise linear function

- Sbox:
 - COPY-AND-XOR (Lossy)
 - Convex Hull (Exact)
 - QM (Exact)
 - Piecewise modelisation (Lossy)
- Linear layer:
 - COPY-XOR (Lossy)
 - ZR (Exact)

For most of Sboxes used in practice, the following constraints are quite accurate to describe valid transitions u → v :

$$hw(v) = \begin{cases} 0 & \text{if } hw(u) = 0 \\ n & \text{if } hw(u) = n \text{ (for a } n\text{-bit Sbox)} \\ 1 & \text{otherwise} \end{cases}$$

- Sbox:
 - COPY-AND-XOR (Lossy)
 - Convex Hull (Exact)
 - QM (Exact)
 - Piecewise modelisation (Lossy)
- Linear layer:
 - COPY-XOR (Lossy)
 - ZR (Exact)
 - Weight equality (Lossy)

 $u \xrightarrow{L} v$ valid iif the minor is invertible

$$\implies \mathsf{hw}(u) = \mathsf{hw}(v)$$

- Sbox:
 - COPY-AND-XOR (Lossy)
 - Convex Hull (Exact)
 - QM (Exact)
 - Piecewise modelisation (Lossy)
- Linear layer:
 - COPY-XOR (Lossy)
 - ZR (Exact)
 - Weight equality (Lossy)
 - Local ZR (Exact)

if the minor is not invertible

- 1. find a linear combination of rows equals to 0 $\,$
- 2. compute the same linear combination of rows on the **full** matrix
- 3. look at columns with a non-zero coefficient
- 4. add a constraint to ensure that if those lines are selected, at least one of the columns is selected as well

Running Times

Cipher	Rounds	Type of Result	Word Size	Our Time	Previous Time	
AES	5	No Ext. Dist.	8-bit	13min	31min [EY21] [†]	
ARIA	5	No Ext. Dist.	8-bit	5h	\geq 24h [EY21] [†]	
CRAFT	13	Conv. Dist.	-	3.6s	-	
	14	No Ext. Dist.	16-bit	11min	-	
HIGHT	20	Ext. Dist.	16-bit	12min	13 days [DF20]	
	21	No Ext. Dist.	16-bit	14min	-	
LED	8	No Ext. Dist.	16-bit	3h*	16h [Udo21]	
Skinny	11	Ext. Dist.	16-bit	9min	22min [DF20]	
	12	No Ext. Dist.	16-bit	80s	4min [DF20]	
Camellia	7	Conv. Dist.	-	30s	99min [HWW20]	
CLEFIA	10	Conv. Dist.	-	23min	82min [HWW20]	
LEA	8	Conv. Dist.	-	20s	30min [SWW17]	

Best Strategies

Cipher	Rounds	Modeling	LC-S-box	LC-Lin	LC-SSB
AES	4	PWL + WE	0	0	-
	5	QM + WE	-	60	-
ARIA	4	PWL + WE	0	0	-
	5	QM + CX	-	91	-
CRAFT	13	QM/CH + QM/CH	-	-	0
	14	QM/CH + CX	-	0	314
HIGHT	20	CX	-	6	0
	21	CX	-	21	0
LED	8	QM/CH + WE	-	107	54
Skinny	11	QM/CH + QM/CH	-	-	7
	12	QM/CH + QM/CH	-	-	93
Camellia	7	PWL + WE	0	0	-
	8	QM + CX	-	31	-
CLEFIA	10	PWL + WE	0	0	-
	11	QM + CX	-	9	-

What is the probability for a minor of an invertible matrix to be invertible?

- $\bullet\,$ A random binary matrix is invertible with probability between 30 and 50%
- But matrices used in block ciphers are (most often) not random!
- Percentage of invertible minors for AES MixColumns matrix:

1:15.9% $5:1.4\% \quad 9:1.9\%$ 13:3.5%17:5.1%21:12.3%25:18.6% $29 \cdot 26.3\%$ 2:6.4%6:0.9%10:1.3% 14:3.6% 18:6.0% 22:13.0%26:18.7%30:31.5%3:2.9%7:0.6% 11:1.6% 15:3.4% 19:7.5% 23:15.3%27:20.5%31:44.5%4:1.9% 8:1.8% 12:1.9% 16:3.8% 20:11.4%24:17.5% 28:22.5% 32:100%

Conclusion

- New modelisation techniques for 2-subset division property
- Much better to not add all constraints into the model \rightarrow use callbacks!
- Considering SuperSboxes not as useful as expected
- Optimizing models is important
- Code: https://github.com/FastMILPDivisionProperty/FastMILPDivision

Conclusion

- New modelisation techniques for 2-subset division property
- Much better to not add all constraints into the model \rightarrow use callbacks!
- Considering SuperSboxes not as useful as expected
- Optimizing models is important
- Code: https://github.com/FastMILPDivisionProperty/FastMILPDivision

Thank you for your attention!