
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 2, pp. 253–288. DOI:10.46586/tosc.v2022.i2.253-288

Differential Trail Search in Cryptographic
Primitives with Big-Circle Chi:

Application to Subterranean

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen

Radboud University, Nijmegen, The Netherlands
alireza.mehrdad@ru.nl, silvia.mella@ru.nl, lorenzo.grassi@ru.nl, joan@cs.ru.nl

Abstract. Proving upper bounds for the expected differential probability (DP) of
differential trails is a standard requirement when proposing a new symmetric primitive.
In the case of cryptographic primitives with a bit-oriented round function, such as
Keccak, Xoodoo and Subterranean, computer assistance is required in order to
prove strong upper bounds on the probability of differential trails. The techniques
described in the literature make use of the fact that the non-linear step of the round
function is an S-box layer. In the case of Keccak and Xoodoo, the S-boxes are
instances of the chi mapping operating on `-bit circles with ` equal to 5 and 3
respectively. In that case the differential propagation properties of the non-linear
layer can be evaluated efficiently by the use of pre-computed difference distribution
tables.
Subterranean 2.0 is a recently proposed cipher suite that has exceptionally good
energy-efficiency when implemented in hardware (ASIC and FPGA). The non-linear
step of its round function is also based on the chi mapping, but operating on
an ` = 257-bit circle, comprising all the state bits. This making the brute-force
approach proposed and used for Keccak and Xoodoo infeasible to apply. Difference
propagation through the chi mapping from input to output can be treated using
linear algebra thanks to the fact that chi has algebraic degree 2. However, difference
propagation from output to input is problematic for big-circle chi. In this paper,
we tackle this problem, and present new techniques for the analysis of difference
propagation for big-circle chi.
We implemented these techniques in a dedicated program to perform differential trail
search in Subterranean. Thanks to this, we confirm the maximum DP of 3-round
trails found by the designers, we determine the maximum DP of 4-round trails and
we improve the upper bounds for the DP of trails over 5, 6, 7 and 8 rounds.
Keywords: Differential Trail Search · Chi Mapping · Trail Weight Bounds · Sub-
terranean

1 Introduction
One of the main security requirements for any symmetric cryptographic primitive is
resistance against differential cryptanalysis (DC) [BS90,BS93]. One way to analyze it is
through the study of the differential probability (DP) of differential trails and the proof
of upper bounds for it. A differential trail (also called differential characteristic or path)
consists of a sequence of state differences through the rounds of the primitive. Its DP is
defined as the fraction of all possible input pairs that satisfy the initial difference in the
trail and also all intermediate and final differences when going through the rounds. Trails
with sufficiently high DP and/or cluster of differential trails forming a high probability
differential can be exploited in differential attacks and hence should be absent. A way to

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-11-23 Revised: 2022-03-01 Accepted: 2022-05-01 Published: 2022-06-10

https://doi.org/10.46586/tosc.v2022.i2.253-288
mailto:alireza.mehrdad@ru.nl
mailto:silvia.mella@ru.nl
mailto:lorenzo.grassi@ru.nl
mailto:joan@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/

254 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

characterize the DP of a differential trail is by its weight. The weight of a round differential
is defined as the negative of the binary logarithm of its DP, or equivalently, DP = 2−w.
Assuming that the round differentials are independent, the weight of a trail is given by the
sum of the weight of its round differentials (i.e. the pairs of differences at the input and
output of each round). Clearly, exploiting a trail becomes harder as the weight increases.
Therefore, trails with low weight (i.e. with high DP) are a potential weakness and finding
lower bounds on the weight of trails (i.e. upper bounds on the DP) provides insights on
the security margin of the primitive.

For some primitives, it is possible to derive trail bounds analytically. For instance,
for AES there is a simple proof that the minimum weight for 4-round differential trails
is 150 [DR02]. For other primitives, bounds are obtained by computer-aided proofs.
In this case, a program is used to generate trails over a given number of rounds to
find for instance the minimum number of active S-boxes [BPP+17], or the minimum
number of AND gates [Hei11,WH19], or the minimum weight [DA12,MDA17,DHAK18].
Such computer-aided proofs often make use of mixed integer linear programming (as in
[SHW+14,BPP+17,BJK+16,WH19]), or SAT solvers (as in [MP13]), but can also involve
programs dedicated to a specific primitive. As early as 2000, Daemen et al. [DPVAR00]
used a dedicated program to prove bounds in Noekeon. Later, dedicated programs have
been developed to prove bounds on Keccak-f [DA12,MDA17], Xoodoo [DHAK18], and
Subterranean 2.0 [DMMR20].

The approach used in [DA12,MDA17,DHAK18] to lower bound the weight of trails
over r rounds, consists in generating all r-round trail cores with weight up to a target T . A
trail core represents a class of trails with common intermediate differences and the weight
of a trail core is by definition the minimum weight over all trails in the class. A key aspect
of such dedicated programs is the ability to compute such minimum weight without the
need of generating all trails within the class, significantly reducing the computational cost.
If trail cores with weight T or below are found, the one with the minimum weight defines
a tight lower bound on the weight of all r-round trails. Otherwise, T + 1 defines a lower
bound that is not necessarily tight. To generate trail cores over multiple rounds, trail cores
over two rounds are first generated and then extended. Since a 2-round trail core is fully
determined by a single state difference at the input of the linear layer, the generation of
2-round trail cores in these dedicated programs is performed as a tree search, where the
nodes of the tree are such state differences. To efficiently prune the tree during the search,
methods to compute a lower bound on the weight of a node and all its descendants are
introduced. This allows to discard entire branches of the tree as soon as such lower bound
exceeds the limit, making the tree search computationally feasible. Extension is performed
in the forward direction by iteratively appending a round differential at the end of the
trail core and in the backward direction by iteratively prepending a round differential at
the beginning of the trail core.

Differential propagation through the circulant map χ`. During the trail search, to
extend trail cores, compute their weight, and to lower bound the weight of a node and all
its descendants in the tree, one has to deal with the differential propagation properties of
the non-linear layer. In both Keccak-f and Xoodoo permutations, the non-linear layer
can be seen as a layer of `-bit S-boxes defined by the mapping χ`. χ` is a transformation
operating on `-bit strings and defined by

[χ`(x)]i = xi + (xi+1 mod ` + 1) · xi+2 mod `, ∀i ∈ {0, . . . , `− 1} .

The mapping χ` is circulant and we refer to the `-bit string as a circle. Differential
propagation through S-boxes, and thus through these χ instances, can be traced efficiently
by the use of 2` × 2` difference distribution tables (DDT) that can be pre-computed and
easily manipulated as long as 22` is sufficiently small. In most ciphers that make use of

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 255

χ`, the circle size is relatively small (e.g. ` = 5 in Keccak-f and ` = 3 in Xoodoo)
and this approach works fine. We speak of small-circle χ in this case. This approach
breaks down if the circle size ` is large, as it becomes a challenge to compute and store the
corresponding DDT. We speak of big-circle χ in this case. For example, primitives such as
Subterranean [CDGP93] and before it Cellhash [DGV91] have all 257 state bits in a
single big-circle. In this case, we speak of a single-circle χ mapping and χ = χ`.

In this work, we analyze the differential propagation properties of big-circle χ needed
to perform trail search. For the propagation in the forward direction (from the input of χ
to the output) we can rely on previous results based on the algebraic degree of χ. For the
backward direction (from the output of χ to the input) we introduce new results.

Ciphers using big-circle χ. An immediate target for our results is the Subterranean
permutation, for which we introduce a dedicated program to scan the space of all trail cores
up to a target weight over a given number of rounds. This tool allows us to improve over
known bounds for different number of rounds. In particular, we can prove an upper bound
on the DP of 8-round trails of 2−116, which is 218 times smaller than the bound reported
in [DMMR20]. The interest in analyzing Subterranean derives from its exceptional
performance in hardware, which makes it a good starting point for promising future
developments. Among the candidates to the second round of NIST LWC competition, it is
in fact the most efficient in terms of throughput/area and stands out for its extremely low
energy consumption on different platforms [MHN+20,KPC20,AZ21]. However, its design
dates back to 1992 and one can expect to see improved variants in the near future. This is
motivated by the fact that using big-circle χ, and thus single-circle χ, presents different
advantages over small-circle χ, and one can expect to see new cryptographic primitives
with such non-linear layers.

An example of such advantages is the impact on the complexity of algebraic attacks
that involve equations of input bits of χ` in terms of its output bits. The algebraic degree
of χ` is 2, while that of its inverse and the number of monomials in its inverse increase
with the circle size `. An algorithm to compute the inverse of χ` and consequently its
degree is introduced in [Dae95, Sect. 6.6.2]. The recent algebraic attacks on Farfalle
instantiated with Keccak-f [CFG+18] and with the Xoodoo permutation [CG20] make
use of the Meet-in-the-Middle (MitM) strategy to set up a system of algebraic equations
solved using the linearization technique. In both attacks, this MitM strategy is efficient
due to the fact that the non-linear layers of Keccak-f and of Xoodoo have low degrees
both in the forward and in the backward directions. In the case of a big-circle χ, such an
MitM strategy would be more cumbersome due to the higher degree of χ−1 and number of
monomials in the equations.

Another advantage can be seen against higher order differential cryptanalysis [Knu94],
such as cube attacks [DS09], where the data complexity increases strongly with the number
of rounds attacked. In ciphers where there is a whitening key added to the state before
the output, one often peels off a round by guessing part of the whitening key. When χ
is used as non-linear layer, by guessing the key bits corresponding to a circle, one can
compute the input of the circle, effectively peeling off a non-linear layer and potentially
reducing the algebraic degree of the whole cryptographic function by a factor 2. Typically,
the offline phase of the attack must then be repeated for all such key guesses, i.e., 2` times.
In case of big-circle χ, this may be a prohibitively large factor. By guessing only part of
the whitening key bits, say m bits, one can often determine several bits of the χ input, but
this depends on the particular output at hand. In the case of cube attacks, one needs to
compute the input for all outputs corresponding to the inputs in a cube and the probability
of being able to compute some input bits for all these inputs decreases exponentially with
`−m.

Moreover, according to [DMM21], choosing a non-linear layer consisting of big-circle

256 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

χ, leads to the same behavior (if not better) compared to short-circle χ in terms of the
distribution of differentials with given DP. The number of differentials with given DP gives
information about how a non-linear layer may perform in the wide trail strategy. Namely,
less differentials with high DP means less opportunity to form trails with high DP over
multiple rounds. As an example, using big-circle χ, in place of short-circle χ, results in
a smaller number of differentials up to a given weight in Xoodoo and almost the same
number in Keccak-f .

Finally, we point out that the computational cost of a χ mapping is independent of
the circle size, since it consists of one binary addition (XOR), one binary multiplication
(AND) and one negation per bit.

For all these reasons, one of the main goal of this work is to provide useful techniques for
studying the security of primitives instantiated with big-circle and single-circle χ mapping
with respect to classical differential attack. To this end, we present our results for big-circle
χ in a generic way, separating them from the techniques introduced to perform trail search
specifically for Subterranean, which are presented at the end of the paper in a dedicated
section.

Our contribution. In this paper, we analyze the differential propagation properties of
big-circle χ that are used for the generation of 2-round trail cores and their extension. The
methods we present apply to all circle lengths, including even lengths (for which collisions
exist, but there are applications where these collisions may be tolerated). In this work, we
also present a tool to perform the trail search for Subterranean and use it to improve
over known bounds. More in details, we present the following results:

• A function that lower bounds the weight of a 2-round trail core and all
its descendants during the tree search. According to [MDA17], to efficiently
generate 2-round trail cores as nodes of a tree a lower bound function on the weight
of the 2-round trail core and all its descendants is needed. We show how to define it
when we deal with big-circle χ. This function is composed by a quantity that only
depends on the action of the non-linear layer and a quantity that depends on the
action of the both linear and non-linear layers of the primitive under analysis. For
the former, we present a way to compute it for big-circle χ in Section 4, while for the
latter, we present a way to compute it in the case of Subterranean in Section 5.

• A method to efficiently compute the minimum weight of a trail core. For
a given output difference a, we show how to build an input difference b that minimizes
the weight of the differential (b, a). We then use such input difference to compute the
minimum weight of the differential. This result is used to compute the exact weight
of 2-round trail cores during the tree search and the weight of trail cores obtained
during backward extension.

• A method to efficiently perform backward extension up to a given weight.
For a given difference at the input of χ`, the set of output differences with weight
greater than 0 (DP(b, a) > 0) form an affine space and a recipe to build this affine
space is given in [Dae95]. This can be used to perform forward extension efficiently.
On the contrary, for a given difference at the output of χ`, the set of input differences
with weight greater than 0 does not have a simple structure. To compute such set,
the approach used for small-circle χ is based on exhaustively studying all the pairs of
outputs with difference a. In this work, we show how to build the input differences for
big-circle χ. Moreover, we show how to limit the generation of such input differences
to those for which the differential has weight smaller than a certain target.

• A software tool for differential trail search tailored for Subterranean.
The tool implements the framework of [MDA17] for the tree search adapted to

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 257

Table 1: Lower bounds on the weight of differential trails in Subterranean.

of rounds 1 2 3 4 5 6 7 8
lower bound [DMMR20] 2 8 25 [49, 58] ≥ 54 ≥ 65 ≥ 70 ≥ 98
lower bound (this work) 2 8 25 58 ≥ 62 ≥ 78 ≥ 80 ≥ 116

Subterranean and the aforementioned results on big-circle χ. These methods
together allow to scan the space of all r-round trail cores up to a given weight that is
higher than what was reachable before. An immediate consequence is the ability to
improve over known bounds, as summarized in Table 1. As our main results, we prove
for the first time that the minimum weight of any 4-round trail in Subterranean is
58 and that any 8-round trail has weight at least 116. Namely, DP ≤ 2−116, a result
that is 218 times smaller than what was reported in [DMMR20]. This allows us to
increase the security margin of 8-round Subterranean with respect to differential
cryptanalysis.

Organization of the paper. In Section 2, we first recall the concepts of differential trails,
trail cores, trail extension and the general strategy to generate all trail cores up to a given
target weight. Then we recall the tree-search framework for the generation of 2-round trail
cores. In Section 3, after having defined our terminologies, we recall some information
about the χ mapping and the way to compute the weight of a differential over χ given
its input difference. In Section 4, we introduce our main new results. First, we provide a
method to lower bound the weight of a 2-round trail core and all its descendants during
the tree search. Then, we show how to compute the minimum weight of a 2-round trail
core. Finally, we present an algorithm that generates all possible differences at the input
of χ` for a given difference at the output of χ` to perform backward extension. Finally, in
Section 5 we present techniques and results specific for Subterranean. First, we recall
the Subterranean round function, then we present how we instantiate the tree search
for Subterranean, and provide the results of our analysis applied to it.

2 Differential trail search
We will recall the concepts of DP, weight, differential trails and trail cores over iterative
cryptographic primitives, where we assume that the round function consists of a linear
mapping followed by a non-linear mapping of degree 2, as χ. We also recall the general
strategy to bound the weight of trails over a given number of rounds, the trail extension
and the concept of trail core, and finally how to generate all 2-round trail cores up to a
given weight.

Notation. In the following, we interpret input differences and output differences as vectors
in F`2, that is, the vector space of dimension ` over F2. We denote a basis vector with a
single 1 at index i as ei ∈ F`2. We use the symbol + for the addition over different groups
and let its meaning depend on the types of the operands.

2.1 Differentials and differential trails
A differential over a transformation α of Fn2 is an ordered pair (a, b) with a, b ∈ Fn2 , where
a is a difference at the input of α and b is a difference at its output. The differential

258 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

probability (DP) of a differential (a, b) over α, denoted as DPα(a, b), is:

DPα(a, b) = 2−n#{x ∈ Fn2 | α(x− a)− α(x) = b} .

If the transformation is clear from the context, we write DP(a, b). If DPα(a, b) > 0 we call
(a, b) a possible differential and we say b is an output difference compatible with a and a is
an input difference compatible with b.

The weight (also called restriction weight [DR02]) of a differential wr(a, b) is the
logarithm of its DP with base 1/2: wr(a, b) = − log2 DP(a, b). In what follows we work
with weights instead of DP, simplifying notations and expressions.

2.1.1 Differential trails and their weight

We consider iterative mappings consisting of the iteration of a number or rounds Ri:
f = Rr . . . ◦ R2 ◦ R1. Estimating DPf (a0, ar) for some given differential or finding the
differentials (a0, ar) over f with high DP requires the study of so-called differential trails.

A differential trail Q over an iterative mapping f is a chain of round differentials:

Q = a0 R1−→ a1 R2−→ . . .
Rr−1−→ ar−1 Rr−→ ar (1)

An r-round trail is fully specified by the sequence of r+ 1 differences: Q = (a0, a1, . . . , ar).
The DP of a trail is the probability that a pair of inputs to f with difference a0 propagates
to difference a1, a2, . . . , ar respectively after 1, 2, . . . , r rounds.

The product of the DP values of the round differentials gives a good indication of the
DP of the differential trail and is called its expected DP (EDP):

EDPf (Q) =
r∏
i=1

DPRi(ai−1, ai) . (2)

In the case of trails with EDP� 2−b in b-bit permutations or block ciphers that do not
exhibit superboxes (like in, e.g., AES), it is very plausible that DP(Q) ≈ EDP(Q) – see,
e.g., [BDKA21] for more details.

The weight of a differential trail Q is the logarithm of its EDP. It follows from Eq. (2)
that wr(Q) =

∑r
i=1 wr(ai−1, ai).

2.2 Finding all trails with weight below some limit
We wish to find lower bounds for the weight of trails over a number of rounds r. To this
end, one can generate all r-round trails up to a given target weight Tr. If such space is not
empty, the trail with the smallest weight defines a tight lower bound on the weight of any
r-round trail. Otherwise, Tr + 1 defines a non-tight lower bound. In this case, the bound
can be improved by scanning the space of all r-round trails up to a bigger target weight.

To generate all r-round trails up to a given weight, we first generate all trails with a
lower number of rounds (and weight below some limit weight) and extend them. We do
this in a recursive way. Namely, we generate long trails by extending shorter trails.

The conceptually simplest way to generate all r-round trails up to some weight T goes
as follows. Since there exists at least one round differential (1-round trail) with weight
bT/rc in all r-round trails up to weight T , we start by generating all 1-round trails up
to bT/rc. We first extend these 1-round trails forward by r − 1 rounds up to weight T .
This gives all r-round trails where the profile has 1-round trail up to bT/rc in the first
position. Then we extend these 1-round trails backward by one round and forward by r− 2
rounds up to weight T . This gives all r-round trails where the profile has 1-round trail up
to bT/rc in the second position. By repeating this for all positions, we can generate all
r-round trails with weight up to T .

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 259

However, if the round function has a strong mixing layer, it is more efficient to start
from all two-round trails up to weight b2T/rc than to start from single-round trails up to
bT/rc. This is the case in, e.g., AES [DR02] and Keccak [DA12,MDA17]. In such ciphers,
there are orders of magnitude less two-round trails with weight 2w than single-round trails
with weight w for relatively small weight. This results in the fact that the number of trails
that have to be extended to r rounds when targeting a certain T is much less if we start
from two-round trails. Moreover, using the knowledge of the linear and non-linear layers,
generating these two-round trails can be done very efficiently. This was first done in the
trail analysis of the lightweight block cipher Noekeon [DPAR00] and later refined and
applied to Keccak-f in [DA12] and in [MDA17]. In [DA12] a technique was presented to
generate three-round trails directly.

2.3 Trail extension and trail cores
In our analysis we limit ourselves to round transformations that consist of a linear layer
that we denote by λ, a non-linear layer that we denote by χ, and the addition of a round
constant or key. This is the shape used in many modern ciphers, like AES, Keccak,
PRESENT, SKINNY, etc.

Since the constant or key addition has no influence in the propagation of differences, it
can be omitted in the analysis of differential trails. We extend the trails description by
including the differences at the input of each non-linear layer, that we denote by bi:

Q : a0 λ−→ b0 χ−→︸ ︷︷ ︸
R1

a1 λ−→ b1 χ−→︸ ︷︷ ︸
R2

a2 λ−→ . . .
χ−→ ar−1 λ−→ br−1 χ−→︸ ︷︷ ︸

Rr

ar . (3)

As λ is linear, we have DPλ(ai, bi) = 1 if bi = λ(ai) and 0 otherwise. Clearly, for the round
differentials to be possible, we have bi = λ(ai). The weight of this trail is therefore given
by: wr(Q) =

∑r
i=1 wr(bi−1, ai).

In many round functions the non-linear layer has algebraic degree 2 and this is also the
case for χ. The DP of a possible differential over such a non-linear layer is fully determined
by the input difference, and hence so is the weight. We can thus write wr(b) for the weight
of a differential (b, a) over a non-linear map of degree 2 and the weight of the trail becomes
wr(Q) =

∑r
i=1 wr(bi−1). It follows that the weight of a valid r-round trail is independent

of the last difference ar.

2.3.1 Trail extension

Given an r-round trail Q, it is possible to extend it to r + 1 rounds and the extension can
be done in the forward or backward direction.

Forward extension consists in appending pairs (br, ar+1) to Q, such that br = λ(ar) and
ar+1 is compatible with br. When the non-linear layer consists of the parallel application
of small S-boxes, as in the case of small-circle χ, the output differences ar+1 compatible
with a given input difference br can be listed efficiently using the DDT. This brute-force
approach through the DDT is not applicable with big-circle and single-circle χ. However,
for χ`, such compatible differences form an affine space of size 2wr(br) that can be efficiently
described by an offset and basis vectors [Dae95]. An r-round trail Q will give rise to 2wr(br)

(r + 1)-round trails with Q as prefix. The weight of such trails is wr(Q) + wr(br).
Similarly, backward extension consists in prepending pairs (a−1, b−1) to Q, such that

b−1 is compatible with a0 and a−1 = λ−1(b−1). This operation will give a set of trails
with Q as trailing part and the weight of such trails is given by wr(b−1) + wr(Q). Again,
in the case of small S-boxes and hence of small-circle χ, compatible differences can be
computed efficiently through the DDT. In the case of big-circle or single-circle χ this is
too expensive and moreover, the set of such compatible differences is not an affine space
that can be efficiently scanned. We will tackle this problem in Section 4.4.

260 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Forward and backward extension can be iterated or combined to extend over multiple
rounds.

If we are interested in (r + 1)-round trails with weight up to T , we can discard all
extended trails with weight above that limit. We call this extension up to weight T .

2.3.2 Differential trail cores

Since the weight of an r-round trail Q is independent of the last difference ar, the sequence
of differences (a0, b0, . . . , ar−1, br−1) – which is Q with the last difference removed – defines
a set of r-round trails with the same weight wr(Q).

When extending a trail in the backward direction, all differences b−1 compatible with
a0 are built. We call the minimum weight over all these compatible differences b−1 the
minimum reverse weight and we denote it by wrev(a0). It follows that the weight of
any r + 1-round trail obtained by backward extension of Q can be lower bounded by
wrev(a0) + wr(Q).

Therefore, a sequence (a0, b0, . . . , ar−1, br−1) defines a set of r + 1-round trails with
the sequence as central part and with weight at least wrev(a0) + wr(Q). We call this set
of trails r + 1-round trail core as in [DA12] and denote it by Q̃r+1. We call the quantity
wrev(a0) + wr(Q) the weight of the trail core.

Since the aim of our search is to bound the minimum weight of trails, we can restrict
our search to trail cores and find bounds for them. Therefore, instead of scanning all
r-round trails up to a target weight Tr, we generate r-round trail cores up to Tr. This
allows to avoid passing through two non-linear layers, which significantly reduces the
computation effort.

According to Section 2.2, and similar to [DA12,MDA17,DHAK18], we can thus start
by generating 2-round trail cores (a, b) below a limit weight T2 and extend them. Since
a 2-round trail core is fully determined by the difference a, as b = λ(a), the problem of
generating all 2-round trail cores up to a certain weight T2 comes down to the generation
of differences a from which we can compute its minimum reverse weight and the weight
of λ(a), namely wrev(a) + wr(λ(a)). The feasibility of computing the weight of a 2-round
trail core depends on the non-linear layer under analysis. For ciphers like Keccak, they
can be easily computed by building the differential distribution table. For other ciphers
like Subterranean, their computation can be more involved.

2.4 Generating 2-round trail cores as a tree search
In the approach introduced in [MDA17], differences a are encoded as ordered lists of units.
Then given a unit, its unique 2-round trail core can be built by computing b = λ(a). A
unit is a pattern of so called active bits, where a difference bit is called active when its
value is one, otherwise it is called passive.

The unit list representation naturally arranges the difference patterns in a tree, where
the root of the tree is the all-zero state corresponding to the empty unit list. The children
of a node are obtained by adding one more unit to the list of the node. Equivalently, the
parent of a node is obtained by removing the last unit of the node. Siblings have all but
the last unit in the list in common.

Generating 2-round trail cores up to some weight consists in traversing portions of this
tree. In particular, units shall be defined so that low-weight 2-round trail cores will be
situated near the root of the tree and one only has to traverse that part of the tree.

2.4.1 Lower bounding the weight of a node and its descendants

We use the term weight of a node to call the weight of the 2-round trail core specified by
that node. To traverse the tree more efficiently, it is useful to define a lower bound on the

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 261

Algorithm 1 next() function.
if (toFirstChild() == true) then

if (additional conditions are satisfied) then
return true;

do
while (toSibling() == true) do

if (additional conditions are satisfied) then
return true;

while (toParent() == true)
return false;

weight of a node and of all its descendants.
In this work, we will call such a lower bound the score of the node. We denote the

score of a node a as score(a). Therefore score(a) is such that score(a) ≤ wrev(a) + wr(λ(a))
and score(a) ≤ wrev(a′) + wr(λ(a′)) for all descendants a′ of a. It follows that as soon as
we encounter a node whose score is above the limit weight, we can safely discard the node
and all its descendants.

If units are defined so that their addition to a node is monotonic in the weight, then
the score of a node can simply be defined as the weight of the node itself. However, this
requirement can lead to complicated definitions of units. It may be more convenient to
choose a simple definition of units for which the weight is not monotonic, but that allows
to define a score function that is efficiently computable and reasonably tight.

To this end it is convenient to split the score in two parts, one that lower bounds
wrev(a) and wrev(a′) and one that lower bounds wr(λ(a)) and wr(λ(a′)). We call the former
a score-at-a function and the latter a score-at-b function. The definition of a score-at-a
function can be made independent of the linear layer as long as units are defined so that
they cannot overlap in a. The definition of a score-at-b function instead always depends
on the linear layer and typically keeps track of active bits at b that cannot become passive
with the addition of new units and considers only their contribution to the weight.

2.4.2 Traversing the tree

The tree traversal is performed in a depth-first fashion, by iteratively calling the function
next() (Algorithm 1) to look for the next valid node. The traversal starts by calling
next() on an empty list and ends when next() returns false, that is when there are no
more nodes worth visiting.

There are three possible moves in the function next(). The first is performed by the
function toFirstChild(), which will look for the first child of the current node by trying
to add the smallest possible unit after the last unit. If the node is the root, then it adds
the smallest possible unit. If adding a new unit is not possible, it returns false. Otherwise,
it returns true and additional conditions are checked. Here, the additional conditions are
typically whether the score is below the limit weight. If such additional conditions are
satisfied, the algorithm has found the next node in the tree. If there is no valid child,
e.g. because there are no more units to add or because the score of all children is above
the budget, the routine will look for a valid sibling of the current node. This is done by
the function toSibling() which iterates the value of the last unit in the list. If a sibling
is found then the additional conditions are checked. If there are no valid siblings, the
algorithm moves back to the parent of the current node, by removing the last unit from
the list with the function toParent(), and looks for a valid sibling of the parent. This is
done recursively until a valid node or the root is reached. In the latter case the function
next() returns false and the traversal is over.

262 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

3 Properties of non-linear mappings χ
In this section, we introduce the χ` family of transformations and the χ mapping via
the notions of translation-invariant mappings. Next, we recall some results presented
in [Dae95] about the differential properties of χ` such as how to compute the weight of a
differential over χ` given its input. Finally, we provide a new method to locally check the
compatibility of a given pair of differences at the input and output of χ`.

Notation for strings. There is a bijection between the vector space F`2 and the set of
strings {0, 1}`, that is, the set of binary strings of length `.

We denote binary strings by lowercase letters, say s, and the i-th bit of s as si, where
we start indexing from 0. Hence, we have s = s0s1s2 . . . s|s|−1, where |s| denotes the length
of the string s. We denote the number of 1-bits in a string s by ||s|| and call it Hamming
weight of s.

We write s‖s′ for the concatenation of two strings s and s′. Given a string s, we denote
by (s)n the n-fold concatenation of s. We say that s′ is a substring of s if |s′| ≤ |s| and
there exists an offset i such that s′j = sj+i for all j ∈ [0, |s′| − 1].

We use the notation (0)` for the all-zero difference and (1)` for the all-one difference.

Definition 1. A 0-run is a string of only zeroes.

So (0)n is a 0-run of length n.

About circular strings. In some instances we need strings that have an additional feature:
they are circular. In a circular string s, we allow indexing outside the range [0, |s| − 1] by
reducing the index modulo |s|. As a consequence, in a circular string the leftmost bit s0
and rightmost bit s|s|−1 are neighbors and this has implications for the substring relation.

A substring of a circular string s is a substring of s‖s of length at most |s|.

Definition 2 (Substring of a circular string). We say s′ is a substring of a circular string
s if |s′| ≤ |s| and there exists an offset i such that s′j = sj+i mod |s| for all j ∈ [0, |s′| − 1].

For example s′ = 10000 is not a substring of string s = 00110011100 but it is a
substring of the circular string s since s′j = sj−3 mod 11 for 0 ≤ j < 5. When speaking
about substrings of a string s, we will assume it is known from the context whether s is
circular or not.

3.1 Translation-invariant mappings
The transformation χ` has a symmetry property called translation-invariance.

Definition 3 (Translation τ`). Let τ` : F`2 → F`2 be defined as τ`(x) = y with

∀i ∈ {0, 1, . . . , `− 1} : yi = xi+1 mod ` .

We will often omit the subscript ` if it is known from the context. In the following
we will assume indexes to be elements of the additive group Z/`Z and omit the modular
reduction.

Clearly, τ is a translation over 1 position to the left. It is a linear permutation of F`2,
and with the functional composition it generates a cyclic group 〈τ〉 of order `. We denote
the elements of this cyclic group as τ i.

Definition 4 (Translation Invariance). A transformation αn of F`2 is translation-invariant
if it commutes with τ , that is, αn ◦ τ = τ ◦ αn.

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 263

Clearly, as a cyclic group is commutative, a translation-invariant transformation
commutes with all elements of 〈τ〉. Moreover, τ is a translation-invariant transformation
itself.

A translation-invariant transformation is fully determined by the specification of its
first component. The restriction of a transformation α to its first component is its local
map.

Definition 5 (local map). The local map ϕα of a translation-invariant transformation α
over F`2 is given by

ϕα : F`2 → F2 : ϕα(x) = y0 with y = α(x) .

Thanks to the translation-invariance, we can derive the coordinate functions of the
other components from the local map.

Lemma 1. The coordinate function of component i of a translation-invariant mapping α
over F`2 with local map ϕα(x) is given by ϕα(τ i(x)) .

Proof. Let y = α(x). Its i-th component is equal to

yi = [α(x)]i = [τ i ◦ α(x)]0 = [α ◦ τ i(x)]0 ,

as α commutes with τ i. Hence, its i-th component is equal to ϕα(τ i(x)).

In our descriptions it is often useful to indicate the value of a state restricted to a
subset of state bits. For that we introduce the expression to be in a landscape.

Definition 6 (Landscape). A landscape Λ is a set of states in {0, 1}` specified by an
ordered pair of circular strings l(v), l(m) ∈ {0, 1}`. A state a is in landscape Λ if a matches
l(v) in the positions where l(m) is 1. Formally:

a ∈ Λ ⇐⇒ ∀j : (aj + l
(v)
j) · l(m)

j = 0 .

We use a shortcut notation for landscape literals by merging l(v) and l(m) in a single string
l(t) containing of 3 symbols: 0, 1 and ? with l(t)i = l

(v)
i if l(m)

i = 1 and l(t)i = ? otherwise.
We then compress l(t) by centering around the position with index 0 that we indicate by
underlining it and omitting all unnecessary symbols ?.

Example 1. For a circular string of length 11, let the landscape (l(v), l(m)) = (01000000000,
11010000001), then l(t) = 01 ? 0 ? ? ? ? ? ?0. After compression it gives 001 ? 0.

We say bit i of a state a is in landscape Λ = (l(m), l(v)) if the state a translated over i
positions is in the landscape. Formally (with some abuse of notation):

ai ∈ Λ ⇐⇒ ∀j : (ai+j + l
(v)
j) · l(m)

j = 0 .

3.2 The family of mappings χ` and χ
The mapping χ` is a family with domain F`2 of any dimension ` ≥ 3. We denote members
of this family by χ3, χ4, χ5, The mappings χ` for all ` > 2 form a family of mappings
all specified by the same local map.

Definition 7 (χ`). χ` is a translation-invariant transformation of F`2 with local map

ϕχ(x) = x0 + (x1 + 1)x2 .

We say χ` has circle size `.

264 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

x0 x1 x2 . . . xi xi+1 xi+2 . . . x`−3 x`−2 x`−1 x

.⊕
◦

⊕
◦

⊕
(x0 + 1)x1

y0 y1 y2 . . . yi yi+1 yi+2 . . . y`−3 y`−2 y`−1 y

Figure 1: χ` with input x and output y.

Using landscapes, we can specify χ` as: yi = xi + 1 if xi ∈ ?01 and yi = xi otherwise.
Fig. 1 represents χ` with input x and output y that are clearly circular strings.

We use the symbol χ to denote non-linear layers that consists of the parallel application
on a number of instances of χ` to an array of n bits, that we typically call the state. We
call the parts of a state that the instances of χ` operate on circles. Typically, the array
consists of m circles of equal length `. For example χ in Keccak-f[1600] has 320 circles of
length 5 [BDPA11], χ in Ascon has 64 circles of length 5 [DEMS14] and χ in Xoodoo has
128 circles of length 3 [DHAK18]. The size of the state is n = m× `.

If m = 1, we speak of single-circle χ when χ = χ` and n = `. This is the case for
Subterranean where we have ` = 257.

3.3 Differentials over χ` given its input difference
Given a difference b at the input of χ`, we denote by A(b) the set of compatible output
differences

A(b) := {a ∈ F`2 | ∃x ∈ F`2 s.t. a = χ`(x− b)− χ`(x)}, (4)
where x− b means the addition of the additive inverse of b to x. As observed in [Dae95,
Sect. 6.9], since the map χ` has algebraic degree two, the set A(b) is an affine space.
The cardinality of this affine space is 2wr(b). It is possible to find such set in an efficient
way by exploiting the fact that the map χ` has degree two. Indeed, the components of
a = χ`(x− b)− χ`(x) are given by

ai = [χ`(x− b)]i − [χ`(x)]i = [χ`(b)]i + bi+2 · xi+1 + bi+1 · xi+2 (5)

when [χ`(b)]i represents the i-th bit of the output of χ` for a certain input difference b
and input vector x. For a given input difference, the bits bi are fixed and the bits xi are
variables.
Proposition 1 ([Dae95, Sect. 6.9.1]). Given b ∈ F`2, the set A(b) defined in Eq. (4) is an
affine subspace of the form

A(b) = χ`(b) + 〈M(b) × e0,M(b) × e1, . . . ,M(b) × e`−1〉 ,

where

M(b) :=

0 b2 b1 0 . . . 0 0
0 0 b3 b2 . . . 0 0
0 0 0 b4 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
...

b`−1 0 0 0 . . . 0 b0

b1 b0 0 0 . . . 0 0

. (6)

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 265

A method to build offset and basis vectors for the affine space was presented in [Dae95,
Sect. 6.9]. Later, Bertoni et al. in [BDPA11, Sect. 2.3] introduced a method to build
basis vectors with the minimum Hamming weight in Keccak where χ consists of parallel
applications of the χ5 mapping, however proofs are missing there. We recall the rules to
build basis vectors with minimum Hamming weight in Table 6, and provide proofs for
these rules in Appendix A that result in generalizing these rules for any circle size. We
also introduce a new method to build an offset with minimum Hamming weight using local
rules as in Tables 5 and 7, and provide a proof for them in Appendix A.

3.3.1 Computing wr(b) for a given b

As mentioned in [Dae95, Sect. 6.9], the weight of any differential (b, a) over χ` depends
only on b and can be computed using the following propositions.
Proposition 2. Given compatible input/output differences b, a ∈ F`2, the weight wr(b, a)
is equal to the rank of the matrix M(b) given in Eq. (6).
Proof. By definition of the weight and due to Eq. (6), we have the following

wr(b, a) = `− log2
(
|{x ∈ F`2 | χ`(x− b)− χ`(x) = a}|

)
= `− log2

(
|{x ∈ F`2 | M(b) × x = a− χ`(b)}|

)
= `− (`− rank(M(b))) = rank(M(b)).

In particular, the weight of any differential (b, a) can be computed using Proposition 3
and Proposition 4 (whose proofs are given in Appendix B).
Proposition 3. For a non-fully active difference b ∈ F`2 \ {(1)`} at the input of χ`, the
weight of b equals its Hamming weight plus the number of strings 001 it contains, denoted
by #001(b):

wr(b) = ||b||+ #001(b). (7)

Proposition 4. The weight of a fully active difference b = (1)` at the input of χ` is `− 1.
It follows that:

Corollary 1. For each b ∈ F`2 \ {(0)`} at the input of χ`: 2 ≤ wr(b) ≤ `− 1.
The proofs of Corollary 1 is given in Appendix B.

3.4 A method for locally checking compatibility
Since χ` can be defined as a local map, we can check compatibility between an input
difference and an output difference locally by considering substrings. We introduce this
new method in the following lemma.
Lemma 2. Given four adjacent bits of an input difference b ∈ F`2 \ {(1)`}, the output
difference a ∈ F`2 is not compatible with b if one of the following conditions is satisfied:

• bi ∈ 00 and bi−1 6= ai−1; or

• bi ∈ 101 and bi−1 6= ai−1 + ai.
Proof. If b is compatible with a, a ∈ A(b) and a = χ`(x − b) − χ`(x) for some x ∈ F`2.
Since χ` is translation-invariant, we focus on i = 0. From Eq. (5), if b0 ∈ 00, then

a−1 = [χ`(b)]−1 + b1x0 + b0x1 = b−1 + b0b1 + b0 + b1x0 + b0x1 = b−1 .

Similarly, if b0 ∈ 101, then
a−1 + a0 = b−1 + b0b1 + b0 + b1x0 + b0x1 + b0 + b1b2 + b1 + b2x1 + b1x2 = b−1 .

266 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Invertibility. As a direct consequence of Lemma 2 and of other analogous results presented
in Appendix A, we have that the χ` function is not invertible if ` is even.

Lemma 3. If ` is an even integer, then there are four input differences b compatible with
output difference a = (0)`, that is:

(0)`, (10)`/2, (01)`/2, (1)` . (8)

Such a result result can be easily verified by e.g. exploiting the formula for offset and
basis vectors to build the affine spaces A(b) for such b’s presented in Appendix A. It follows
that for even ` collisions exist and hence χ` is non-invertible. Based on Proposition 3, the
minimum weight for having such collision is `/2.

4 Differential properties of χ−1

In this section we present three tools for dealing with the inverse of χ in trail generation.
The first one is useful in two-round trail core generation: an efficiently computable and
reasonably tight score-at-a function. The other two are useful in backward extension: a
method to compute the minimum reverse weight of a difference at the output of χ and an
algorithm to generate all input differences for a given output difference of χ up to some
weight.

A mapping χ consists of χ` if it is single-circle and the parallel application of a number
of χ` mappings otherwise. Therefore, the weight and minimum reverse weight of a state is
simply that of its circles. Moreover, backward extension can be done at the level of the
circles. Therefore, in this section we work at the level of χ`. We denote differences at the
input of χ` by b and differences at its output as a.

We start this with the score-at-a function for χ` that we denote it as scoreχ−1(a). Let
us call states a′ that can be constructed from a by replacing passive bits with active bits
descendants of a. Then, a function qualifies as a score-at-a function if it lower bounds for
the minimum reverse weight of a and all its descendants.

Definition 8 (descendants of an output difference a). We denote the set of descendants
of a by desc(a).

desc(a) := {a′ ∈ Fn2 | ∀i : (a′i + 1) · ai = 0}.

Note that according to this definition a ∈ desc(a).

Definition 9 (Score-at-a function). A function f(a) that takes as input a difference
pattern a and returns an integer qualifies as a score-at-a with respect to χ` if

∀a′ ∈ desc(a) : f(a) ≤ wrev(a′), .

We first define dense substrings and dense circular strings that we need in our descrip-
tions.

Definition 10 (Dense string). We call a string dense if its leftmost bit and rightmost bit
are both 1 and it does not contain string 00 as substring.

Examples of dense strings are 1, 11, 101, 111, 1101, 1011, 1111,

Definition 11 (Dense circular string). We call a circular string dense if it does not contain
string 00 as substring, and non-dense otherwise.

Examples of circular dense strings are 01101 and 101010, while circular strings 1101001
and 010110 are non-dense.

We will first present our score-at-a for dense output differences of χ` and then for the
more complicated case of non-dense output differences.

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 267

4.1 Score-at-a for a dense output difference of χ`
Lemma 4. For a dense output difference a of χ`, f(a) =

⌈
`
2
⌉
qualifies as a score-at-a

function.

Proof. Per definition, the minimum reverse weight of a is the minimum weight over all input
differences b compatible with a. A compatible input difference b can have no substrings
0000 as it would give rise to a string 00 in a (see Lemma 2) that contradicts the fact that
a is dense.

So, any compatible b can be written as a concatenation of strings ∈ {1, 01, 001, 0001}.
Each one of the substrings from {1, 01, 001, 0001} in b contributes to its weight: due to
Proposition 3 strings 1 and 01 contribute 1, while 001 and 0001 contribute 2.

The sum of the lengths of the substrings must match `. Let q0, q1, q2, q3 denote the
number of 1, 01, 001, 0001 substrings in b and q = (q0, q1, q2, q3). The minimum reverse
weight is upper bound by the following quantity:

min
q with q0+2q1+3q2+4q3=`

q0 + q1 + 2q2 + 2q3 =

min
q with q0+2q1+3q2+4q3=`

(q0 + 2q1 + 3q2 + 4q3) + q0 + q2

2 = min
q0,q2

`+ q0 + q2

2 .

Clearly, the minimum is achieved by minimizing q0 + q2. This corresponds with forming b
by as many possible 01 or 0001 strings that fit in ` bits:

• for even ` the weight is `/2, achieved by input differences solely consisting of strings
01 and 0001.

• for odd `, the weight is (`+ 1)/2, achieved by input differences that have a single
string 1 or 001 and all remaining strings 01 or 0001.

This proves that the minimum reverse weight of a is lower bound by
⌈
`
2
⌉
. Moreover, when

adding active bits to a dense output difference it remains dense, and therefore
⌈
`
2
⌉
qualifies

as a score-at-a.

4.2 Score-at-a for a non-dense output difference of χ`
For non-dense differences we define a score-at-a function that makes use of a decomposition
of a in dense strings interleaved with 0-runs of length at least 2. We call this the dense-string
decomposition.

Definition 12 (Dense-string decomposition). The dense-string decomposition of a non-
dense circular string s is

s = τk(d0 ‖ (0)p0 ‖ d1 ‖ (0)p1 ‖ . . . ‖ dµ−1 ‖ (0)pµ−1) .

for the smallest offset k ∈ [0, `−1] and with di dense strings and pi ≥ 2 for all i ∈ [0, µ−1].

We reserve the term dense substring for the dense strings di in the dense-string
decomposition of an output difference a of χ`.

In this section we approach the construction and correctness proof of scoreχ−1(a) for
non-dense strings in an incremental way. We first show a lower bound for score-at-a
functions in the form of the minimum weight of input differences in a certain class defined
by a: the score-bounding input differences. A score-bound input difference for a has for
each dense substring in a a so-called semi-dense substring. We observe that the weight of
semi-dense substrings can be split in a context-free inherent weight and a context-dependent
bonus weight, and this leads to an intermediate non-tight score-at-a function based on the
inherent weights only. We then analyze the relative positioning of semi-dense substrings

268 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

in score-bounding input differences given the dense-string decomposition of a, and lower
bound the contribution of the bonus weights, arriving at a tighter score-at-a function, that
we call scoreχ−1(a).

Any input difference compatible with an output difference a or any of its descendants
must satisfy the conditions stated in the following lemma.

Lemma 5. Let a be a non-dense output difference, then an input difference b compat-
ible with a or with any a′ ∈ desc(a) shall satisfy the following conditions. For each
dense substring in a with l and r denoting the positions of its leftmost and rightmost bit
respectively:

1. b shall have at least one active bit in the interval [l, l + 2],

2. b shall have at least one active bit in the interval [r, r + 2],

3. b shall have no substrings 0000 in the interval [l, r + 2].

We call a difference b that satisfies these three conditions a score-bounding input difference
for output difference a.

Proof. We prove each of the conditions separately:

1. If b has 000 in position [l, l + 2], then a′l = 0. Now, al is the leftmost bit of a dense
string and is 1 and hence it follows a′l = 1, so this is not possible.

2. If b has 000 in position [r, r+ 2], then a′r = 0. Now, ar is the rightmost bit of a dense
string and is 1 and hence it follows a′r = 1, so this is not possible.

3. If b has 0000 in position [i, i+ 3] then a′ has 00 in position [i, i+ 1] and so must a.
A dense string has no 00 substrings so this cannot occur for i ∈ [l, r] and therefore
the interval [l, r + 2] of b cannot have a substring 0000.

Score-bounding input differences have for each dense substring in a a substring that
we call semi-dense.

Definition 13 (Semi-dense string). We call a string semi-dense if its leftmost bit and
rightmost bit are both 1 and it does not contain string 0000 as substring.

Examples of semi-dense strings are 1, 11, 101, 111, 1101, 110001, but 100001 not.

Corollary 2. Let b be a score-bounding input difference for a non-dense output difference
a. Then for each dense substring in a in position [l, r], there shall be a semi-dense string
in b with leftmost bit in interval [l, l + 2] and rightmost bit in interval [r, r + 2].

Proof. This follows immediately from Lemma 5 with a′ = a.

The contribution of a semi-dense substring of a score-bounding input difference b to
its weight is simply its Hamming weight plus the number of 001-strings it contains, plus
1 if there is a 00-string at its left. This possible 00-string at its left is not part of the
semi-dense substring and hence depends on the context. However, the other part of the
contribution can be computed from the semi-dense substring alone. We call that part its
inherent weight and the contribution due to the 00-string at its left its bonus weight. We
will now provide exact definitions.

Definition 14 (Inherent and bonus weight of substrings). The inherent weight of a
substring of b is its Hamming weight plus the number of 001 strings it contains.

The bonus weight of a substring of b in position [l, r] is 1 if there is a string 001 in
interval [l − 2, l + 1].

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 269

Lemma 6. The inherent weight of a semi-dense string of length n is lower bound by
b(n/2) + 1c.

Proof. A semi-dense string consists of the concatenation of strings ∈ {1, 01, 001, 0001},
where the leftmost substring is 1. The sum of the lengths of these strings must match n.
Let q0, q1, q2, q3 denote the number of 1, 01, 001, 0001 substrings in b and q = (q0, q1, q2, q3).
The weight of a semi-dense string of length n is lower bound by:

min
q with q0+2q1+3q2+4q3=n

q0 + q1 + 2q2 + 2q3 =

min
q with q0+2q1+3q2+4q3=n

(q0 + 2q1 + 3q2 + 4q3) + q0 + q2

2 = min
q0,q2

n+ q0 + q2

2 .

Clearly, the minimum is achieved by minimizing q0 + q2. As the semi-dense string starts
with 1, we have q0 ≥ 1. If n is odd, we take q0 = 1 and q2 = 0 resulting in weight n+1

2 . If
n is even, either q0 = 2 and q2 = 0 or q0 = 1 and q2 = 1 and the weight is n

2 + 1.

With the elements we now have we can already build a score-at-a function.

Corollary 3 (A loose score-at-a). The function for a non-dense output difference a that
returns

∑
i max

(
1,
⌊
|di|

2

⌋)
with the sum taken over the dense substrings di of a qualifies

as a score-at-a function.

Proof. For a dense substring of length n in a, the corresponding semi-dense substring in a
score-bounding input difference b has length between max(1, n− 2) and n+ 2. For n ≤ 2,
the semi-dense substrings with length 1 minimize the inherent weight: it is 1. For n > 2,
the semi-dense substrings of length n− 2 have minimum inherent weight that is equal to⌊
n
2
⌋
. Adding the inherent weights of the semi-dense substrings corresponding to all dense

substrings of a gives the lower bound in the corollary.

From the function in Corollary 3 we can build a tighter score function by taking into
account the bonus weight of the semi-dense substrings in score-bounding input differences
b corresponding to dense substrings in a.

Lemma 7. Consider a single-bit dense substring in a at position l(= r). Then the
corresponding semi-dense string in b has inherent weight 1 if it is one of the following
three:

• a single 1 in position l,

• a single 1 in position l + 1,

• a single 1 in position l + 2.

All other semi-dense string choices have strictly higher inherent weight.

Proof. The three conditions of Lemma 5 reduce to a single condition, namely to have an
active bit in the interval [l, l+ 2]. The lowest inherent weight is 1 and that is only obtained
for a single-bit semi-dense string.

Lemma 8. Consider a dense substring in a with even length n in position [l, r(= l+n−1)].
Then the corresponding semi-dense string in b has inherent weight n/2 if it is one of the
following types:

• length n− 1 in position [l + 1, r],

• length n− 1 in position [l + 2, r + 1].

270 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

• length n− 2 in position [l + 2, r].

All other semi-dense string choices have strictly higher inherent weight.

Proof. Clearly all three types of strings satisfy the conditions of Lemma 5, so they are
valid corresponding semi-dense strings. They are the only possible semi-dense strings with
leftmost bit in interval [l, l + 2] and rightmost bit in interval [r, r + 2] that have length
either n− 1 or n− 2 and hence having inherent weight n/2. The other two possible lengths
are n and n+ 1 and they have inherent weight n/2 + 1.

Lemma 9. Consider a dense substring in a with odd length n > 1 in position [l, r]. Then
the corresponding semi-dense string in b with inherent weight (n − 1)/2 is in position
[l + 2, r] and so has length n− 2. All other semi-dense string choices have strictly higher
inherent weight.

Proof. Clearly a semi-dense string in position [l + 2, r] satisfies the conditions of Lemma 5
so it is a valid corresponding semi-dense string. It is the only possible semi-dense string
with leftmost bit in interval [l, l + 2] and rightmost bit in interval [r, r + 2] that has length
n− 2 and hence has inherent weight (n− 1)/2. The three other two possible lengths are
n− 1, n and n+ 1 and they have inherent weight n/2 and higher.

Using the previous three lemmas we can now tighten the score function by taking into
account the bonus weight of each semi-dense string in score-bounding input difference b of
an output difference a.

Lemma 10 (Bonus weights due to dense substrings longer than a single bit). A dense
substring di longer than 1 in a adds a bonus weight 1 on top of the minimum inherent
weight to the score function if at least one of the following conditions are satisfied:

1. di has odd length,

2. di has 000 at its left,

3. di−1 is longer than 1.

Proof. We prove the points of the lemma one by one:

1. From Lemma 9 it follows that the only semi-dense string with inherent weight
(n − 1)/2 has its leftmost bit in position l + 2, so it has 00 in position [l, l + 1],
implying a bonus bit.

2. From Lemma 9 and Lemma 8 it follows that for semi-dense strings with minimum
inherent weight corresponding to dense substrings in a with length n > 1 we have
bl = 0. The highest possible position of the rightmost bit of the semi-dense string
corresponding to di−1 is l − 3 + 1, namely if di−1 has length 1 and the 0-run at the
left of di has length 3. Therefore b has 00 in position [l − 1, l], implying a bonus bit.

3. Let the 0-run at the left of di have length 2, so the dense substring di−1 has its
rightmost bit in l − 3. The highest possible position of the rightmost bit of the
semi-dense string corresponding to di−1 is l − 2, namely if di−1 has even length.
Therefore b has 00 in position [l − 1, l], implying a bonus bit.

Lemma 11 (Bonus weights). A dense substring di = 1 adds a bonus weight 1 on top of the
minimum inherent weight to the score function if at least one of the following conditions
are satisfied:

1. di has 0000 at its left.

2. di has 000 at its left and di−1 has even length

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 271

3. di−1 has odd length and is longer than 1.

Proof. In all 3 cases the highest possible position of the rightmost bit of the semi-dense
string corresponding to di−1 is l − 3. Therefore b has 00 in position [l − 2, l − 1], implying
a bonus bit.

Taking into account these bonus weights gives a tighter score-at-a function, that we
denote as scoreχ−1(a)r

Definition 15 (scoreχ−1(a)). Let a be an output difference of χ`. If a is dense, scoreχ−1(a) =
d `2e. If a is non-dense, let di be the dense substrings of a. We have

scoreχ−1(a) =
∑
i

⌈
|di|
2

⌉
+Bi ,

with Bi = 1 if

• di has even length and it has 000 at its left or di−1 is longer than 1.

• di = 1 and it has at its left 0000, or 000 preceded by di−1 of even length, or 00
preceded by di−1 of odd length longer than 1.

and 0 otherwise.

Proposition 5. The function scoreχ−1(a) defined in Definition 15 qualifies as a score-at-a
function.

Proof. For dense a, the proposition follows directly from Lemma 4. For non-dense a, we
look at the contribution of the three types of dense substrings to the score:

• A dense substring di in a of odd length different from 1 has inherent weight (|di|−1)/2
due to Lemma 9 and bonus weight 1 due to Lemma 10, resulting in

⌈
|di|

2

⌉
.

• A dense substring di in a of even length has inherent weight |di|/2 due to Lemma 8.
This corresponds to the contribution

⌈
|di|

2

⌉
. The value of Bi corresponds to the

bonus weight that is 1 due to Lemma 10 if it has 000 at its left or if di−1 is longer
than 1.

• A dense substring di = 1 in a of length 1 has inherent weight 1 due to Lemma 7.
This corresponds to the contribution

⌈
|di|

2

⌉
. The value of Bi corresponds to the

bonus weight that is 1 due to Lemma 11 if it has at its left 0000, or 000 preceded by
di−1 of even length, or 00 preceded by di−1 of odd length longer than 1.

4.3 Computing wrev(a) given non-dense a
In this section, we present a method for computing the exact value of wrev(a) for a
non-dense given difference at the output of χ`.

Regarding the case of dense string and since our main focus is big circles (namely,
`� 1 is a large value), the result provided in Lemma 4 is sufficient for our goal. Indeed,
we have wrev(a) ≥

⌈
`
2
⌉
. Since we want to generate 2-round trail cores up to a target weight

T2, if this weight is smaller than
⌈
`
2
⌉
we can safely assume that this case cannot happen

and the output difference contains at least a substring of two consecutive zeroes.

272 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

b0 b1 b2 b3 b4 b5 b6 b7 . . . b`−2 b`−1

a0 a1 a2 a3 a4 a5 a6 a7 . . . a`−2 a`−1

Figure 2: Required bits at the input and output of χ` to set one bit of representative
minimum input difference at b5.

The “representative minimum input difference”. Although it is possible that several
input differences realize the minimum reverse weight for a given output difference, we
limit ourselves to generate only one of them, that we call representative minimum input
difference. Thus, given a non-dense a, the weight of its representative minimum input
difference is the minimum reverse weight of a. We provide an algorithm that sets the
value of one bit of the representative minimum input difference bi−1, given the output
difference and two bits of the representative minimum input difference, namely bi and
bi+1. Working iteratively, we can build the entire representative minimum input difference.
As an example, Fig. 2 represents the required bits of the representative minimum input
difference b and output difference a to set b5.

Algorithm for generating the “representative minimum input difference”. Our algo-
rithm first determines two adjacent bits of b and then the remaining bits in an iterative
fashion. A pseudo-code of this algorithm is given in Algorithm 2.

Since we assume a is not dense, then there is a 0-run of length at least 2 in a. W.l.o.g.,
we assume that the 0-run of length more than 1 start at position i, namely ai ∈ 00. We
consider the four possible cases for bi‖bi+1, namely bi ∈ {00, 01, 10, 11}. For each one of
these cases, the algorithm generates all the other bits of the input differences iteratively,
using the rules that are described in Proposition 6. Given these four input differences
corresponding to the cases bi ∈ {00, 01, 10, 11}, the compatible one with the lowest weight
is the representative minimum input difference.

Proposition 6. Let a ∈ F`2 \ {0} be a non-dense output difference of χ`. Let’s denote by
b the “representative minimum input difference”. For each i ∈ {0, 1, . . . , n− 1}, given a
and bi‖bi+1 ∈ F2

2 two adjacent bits of the representative minimum input difference:

• bi−1 ← 1 if one of the following conditions is satisfied:

1. bi ∈ 00 and ai ∈ 1?,
2. bi ∈ 01 and ai ∈ 111?1,
3. bi ∈ 10 and ai ∈ 00(10)m ? 10, where m = 2m′ + 1,
4. bi ∈ 01 and ai ∈ {0(01)m1?1, 00(10)m0?1}, where m = 2m′ + 1;

• in all other cases: bi−1 ← 0.

Proof. We assume i = 0 and prove that b−1 = 1 minimizes the weight when one of
the listed conditions is satisfied. But, the proof can be generalized for any i since χ`
is translation-invariant. To minimize the weight of the input difference, the sum of the
number of (001)-strings and the Hamming weight should be minimized. We analyze the
conditions separately and use Lemma 2 to check compatibility.

1. Here, b−1 = a−1 = 1 because otherwise, the input and output are incompatible.

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 273

2. If b0 ∈ 01 and a0 ∈ 111?1, then to affect active bit at a−3, at least one bit in the
interval [−3,−1] of the input must be active. Hence, we have three sub-cases:

(a) if b0 ∈ 10001, then the input is not compatible with the output because
b−2 6= a−2;

(b) if b0 ∈ 1001, then b can be compatible with the output, and this 4-bit part of b
weighs 3;

(c) if b0 ∈ ?101, then the input can be compatible with the output, and this 4-bit
part of b weighs at most 3 but it can weigh 2.

Therefore, setting b−1 to 1 is the best choice.

3. We start by proving the result for m′ = 0, and then we prove it for a generic m′.

• Case m′ = 0: then b0 ∈ 10 and a0 = 0010 ? 10. To affect the active bit at a−3
we need to have at least one active bit in the interval [−3,−1]. In order to prove
this case, we need to consider 7 bits of the input then, we have three sub-cases:
(a) if b0 ∈ ? ? 10010, then the input can be compatible with the output, and

this 7-bit part of b weighs at least 4;
(b) if b0 ∈ ? ? ?1010, then in case of a0 = 0010110, b is not compatible with the

output, and in case of a0 = 0010010 this 7-bit part of b weighs at least 3;
(c) if b0 ∈ ? ? ? ? 110, then the input can be compatible with the output, and

this 7-bit part of b weighs at least 3;
In order to cover both a0 = 0010110 and a0 = 0010010 and have the minimum
possible weight, b−1 = 1 is the best choice.

• More generally, assume b′−1 = 1 minimizes the weight when a′0 ∈ 00(10)2m′+1?10,
then we prove b−1 = 1 minimizes the weight when a0 ∈ 00(10)2(m′+1)+1 ? 10.
In the case of a0 ∈ 00(10)2m′+3 ? 10, the two passive bits at positions −4m′ − 9
and −4m′ − 8 do not influence our analysis. Therefore, we represent this
difference as a0 ∈ xx(10)2m′+3 ? 10 when bits that do not play any role in our
analyse are denoted by x’s. To affect the leftmost active bit at a−4m′−7, there
should be at least one active bit in the interval [−4m′ − 7,−4m′ − 5]. Just like
previous case, we have 3 sub-cases and among them b−4m′−5 = 1 minimizes the
weight.
An active bit at b−4m′−5 affects both active bits at a−4m′−7 and a−4m′−5 then,
we have a0 ∈ xxxxx0(10)2m′+1 ?10. Since x’s do not play any role in our analyse
we can consider them as passive bits.
Based on our assumption, b′−1 = 1 minimizes the weight when a′0 ∈ 00(10)2m′+1?
10. Therefore, b−1 = 1 minimizes the weight in this case.

4. The conditions can be analyzed in the same way as case 3.

As adding active bits cannot decrease the weight, this proves the proposition.

Special Case: 0-run with length at least 4. In the case in which a has a 0-run of length
4 or more, then we can speed up the construction of the representative minimum input
difference. Indeed, in such a case, we can fix the bits of b that correspond to the 0-run of
length more than 3 in a to zero, as we are going to prove in the Lemma 12. Therefore, we
can immediately fix the value of some parts of the representative minimum input difference
and furthermore, instead of considering 4 different cases (bi ∈ {00, 01, 10, 11}), we only
have one case.

274 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Algorithm 2 Generating the representative minimum input difference for a given output.
Input: A non-dense output difference a ∈ F`2
Output: The representative minimum input difference b ∈ F`2

if (∃j s. t. aj ∈ 0000) then
bj‖bj+1‖bj+2‖bj+3 = 0000
for all i = (j)→ (0) & (n− 1)→ (j + 5) do

if (ai & bi satisfies one of the conditions in Proposition 6) then
bi−1 ← 1

else
bi−1 ← 0

return b
else if (∃j s. t. aj ∈ 00) then

b
(0)
j ‖b

(0)
j+1 = 00, b(1)

j ‖b
(1)
j+1 = 01, b(2)

j ‖b
(2)
j+1 = 10, b(3)

j ‖b
(3)
j+1 = 11

for all k = 0→ 3 do
for all i = (j)→ (0) & (n− 1)→ (j + 3) do

if (ai & bi satisfies one of the conditions in Proposition 6) then
b

(k)
i−1 ← 1

else
b

(k)
i−1 ← 0

if (b(k) is compatible with a and wr(b(k)) is the minimum) then
return b(k)

Lemma 12. Let a be an output difference of χ` that has a 0-run with length 4 or more.
Then, a compatible input difference b with minimum reverse weight has a 0-run of the same
length in the same position as the one in a.

Proof. Since χ` is translation-invariant, let’s assume the 0-run is in [0,m] with 3 ≤ m < `.
In order to minimize the weight, we have to find the compatible difference that minimizes
the sum of Hamming weight and #001. To this end, we aim to minimize #001 in compatible
differences with minimum Hamming weight.

According to the definition of χ`, each bit in the input difference bi affects three bits of
the output, namely in the interval [i− 2, i]. Therefore, having active bits at the input in
the interval [2,m] only affects bits of the output in the interval [0,m]. Since there is no
active bit in the interval [0,m] of the output, we put zero-string in the interval [2,m] of the
input difference to minimize its Hamming weight. In this case and when 3 ≤ m, having
active bit(s) at b0 or b1 makes the input incompatible with the output (see Lemma 2). So,
we set b0‖b1 = 00 that implies the interval [0,m] of the input is fully passive.

Verification. We experimentally verified the rules provided in Proposition 6 for all non-
dense output differences of χ` when 3 ≤ ` ≤ 22.

4.4 Generating all input differences of χ` given its output difference
Using a similar method as in Section 2.4.2, we show how to generate all input difference
of χ up to a target weight for a given output difference a. Since χ` acts on each circle
independently, the total weight over χ is given by the sum of the weight of each circle.
Therefore, we work at the level of χ`. The algorithm generates a tree where each node of
the tree represents an input difference of χ`.

The algorithm starts from the root node that is a fully passive input difference (b = (0)`).
The algorithm iteratively applies the function next() (Algorithm 1) to visit the next node
in the tree. Let us denote by bt the active bit of b with the smallest index, so t represents

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 275

the position of its leftmost active bit. Then, the three functions used during the search are
defined as follows:

toFirstChild() adds an active bit in bt−1 if t > 0, and returns true. It returns false if
t = 0. When the current node is empty, it adds one active bit at position `− 1.

toSibling() moves leftmost active bit of input difference by one position to the left
(bt → bt−1), if t > 0. If t = 0 it returns false and true otherwise.

toParent() removes the leftmost bit. It returns false if the result is an empty input
difference and true otherwise.

The search ends by returning false.
Here, additional conditions consist of verifying that the weight of the input difference

does not exceed the target weight, and checking compatibility of the input and output.
Since the interval [t, `− 1] of b is known in each node, using local compatibility rules given
in Lemma 2, it is possible to check compatibility once the value of the input difference bit
at the interval [`− 3, `− 1] is fixed. That is due to the fact that the provided rules check
the compatibility of bit bi−1 with the output given bits at the interval [i, i+ 2] of b. Hence,
after setting 3 bits of the input of χ`, once we add a new bit, we can check compatibility
since the interval [t, `− 1] is known.

5 Differential trail search in Subterranean
We applied the techniques presented in Sections 2 to 4 to perform differential trail search in
Subterranean. We report on the bounds on the weight of differential trails in Table 1 for
different number of rounds. In this section, we first provide details about Subterranean
and then, we explain how we achieved the results of Table 1.

5.1 The round function R in Subterranean
The round function R in Subterranean operates on a 257-bit state and consists of four
steps: R = π ◦ θ ◦ ι ◦ χ, where χ is the only non-linear mapping. For each 0 ≤ i < 257 we
have:

χ : si ← si + (si+1 + 1) · si+2 ,

ι : s0 ← s0 + 1 ,
θ : si ← si + si+3 + si+8 ,

π : si ← s12·i ,

with indices taken modulo 257. Fig. 3 illustrates the round function of Subterranean
and the steps to compute a single bit s92 at the output of the round function. The
Subterranean 2.0 cipher suite consists of 3 primitives: an extendable output function
(XOF) Subterranean-XOF, a deck function Subterranean-Deck and a session
authenticated encryption scheme Subterranean-SAE. The former two have 8 blank
rounds between the absorbing and the squeezing phases and the latter has 8 blank rounds
after the loading of the session diversifier and before the generation of each tag. The
rationale is that it is assumed to be infeasible to exploit difference propagation over 8 or
more rounds.

5.2 Tree-search in Subterranean
We define a unit as a single active bit at a and we denote it by its index position in the state.
Units are ordered by the order relation over natural numbers. Let ik ∈ {0, 1, . . . , n− 1}

276 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

s0 . . . s76 s77 s78 s79 s80 s81 s82 s83 s84 s85 s86 . . . r

π

θ

ι

χ⊕
5◦

⊕

⊕
◦

⊕
◦

⊕
◦

⊕
64 88 100 112 124 136

s0 . . . s91 s92 s93 . . . r + 1

Figure 3: Subterranean round function.

denote the position of an active bit at a, i.e., aik = 1. Given a difference pattern a, its
unit list is the ordered list [i1, i2, . . . , ij], where aik = 1 if and only if k ∈ {1, . . . , j} and
ik < ik+1 ∀k ∈ {1, . . . , j − 1}.

5.2.1 Translation-invariance and canonicity

The round function of many cryptographic primitives exhibits translation symmetry if we
make abstraction of round key or round constant addition. For example, in AES the state
is a 4-by-4 array of bytes and the unkeyed round function is invariant under any (cyclic)
translation of the array in the plane [DR02]. Similarly, in Keccak-f[1600] the state is an
5-by-5-by-64 array of bits and the round function with round constant addition removed is
invariant under any of the 64 (cyclic) translations in the direction of the z-axis [BDPA11].
The state of Ascon is a 5-by-64 array of bits and the round function with round constant
addition removed is invariant under any of the 64 (cyclic) translation in the direction
of the x-axis [DEMS14]. In all cases the set of translations that the round function is
invariant to forms a group and we denote it as T .

This translation-invariance is inherited by trails and trail cores and for instance in each
trail core Q̃ in Keccak-f[1600] there are 63 other trails that just consist of translated versions
of the difference patterns in Q̃. Translation invariance naturally partitions the state space
in classes where two states a and a′ are in the same class if and only if ∃τ ∈ T : a′ = τ(a).

When generating 2-round trail cores, one wishes to avoid double work to only consider
one pattern a per equivalence class. With this purpose we appoint a unique representative
per class that we call canonical and we will only consider 2-round trail cores where a is
canonical. When using χ as a non-linear layer, it makes sense to have a round function
with some form of translation-invariance and therefore it makes sense to make use of
canonicity.

In [MDA17] canonicity has been defined at the level of the unit lists. A unit is a bit
pattern in the state and therefore can be translated. Similarly, a unit list is a set of units
and its translation is just the set of all units translated. Equivalence of unit lists with
respect to translation is therefore defined as follows:

Definition 16 (Translation-equivalence of unit lists). Two unit lists U = [u1, u2, . . . uj]
and U ′ = [u′1, u′2, . . . u′j] are equivalent with respect to T if and only if ∃τ ∈ T : U ′ = τ(U).

Clearly, two unit lists can only be translation-equivalent if they have the same number of
units. Moreover, if two unit lists corresponding to a given state are translation-equivalent,
the differences a they encode are translation-equivalent. On the other hand, it is not
immediate that equivalence of differences a and a′ implies equivalence of corresponding
unit lists. This requires the definition of unit lists that is symmetric in τ : if u is a valid

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 277

unit, then τ(u) is a valid unit for all τ ∈ T . This requirement was not made explicit
in [MDA17] but is satisfied by the definition of units in that paper and follow-up work.

To define the canonicity of a unit list, Mella et al. define an order relation among unit
lists and define the canonical unit list to be the smallest within its equivalence class. This
order relation is simply lexicographical order : comparing the unit lists starting from the
smallest units and the first units they differ in determine the order.

Definition 17 (Lexicographical order of unit lists). [MDA17, Sect. 3.2] Given two unit
lists U = [u1, u2, . . . uj] and U ′ = [u′1, u′2, . . . u′j] in the same equivalence class, we say that
U ≤ U ′ if ∃k ≤ j s. t. uk ≤ u′k and um = u′m ∀m < k.

They proved that with this order relation, the parent of a canonical unit list is a
canonical unit list in [MDA17, Lemma 1].

We define canonical unit lists as follows.

Definition 18 (Canonicity). A unit list is canonical if it is the smallest in its equivalence
class with respect to some order relation defined on unit lists.

Hence, when traversing the tree of 2-round trail cores, once we encounter a node that
is non-canonical, we can prune it and all its descendants.

5.2.2 Canonicity in Subterranean

In Subterranean, all steps are translation-invariant except π. However, the analysis
given in Section 5.2.1 is still valid.

Let Q̃2 = χ−→ a
λ−→ b

χ−→ be a 2-round trail core. Then, by translating the position of
active bits at a by a certain offset x, the position of active bits at b shifts by 150x. As a
simple example, consider a 2-round trail core with only one active bit at a0. After λ there
will be three active bits, namely b0, b64 and b85. If we translate the position of the active
bit by one, i.e. we move it to a1, then the three active bits after λ will be at b150, b214 and
b235. The last three active bits at b are just translated version of the first three active bits
but with offset 1× 150. Since the χ` map is translation-invariant, these two trail cores are
equivalent. As a result, in our tree search we can consider them in an equivalence class.

Notice that in this case, the number of unit lists in each equivalence class is 257, that
is the size of the state in Subterranean. Thus, considering only one unit list among all
the 257 in each class significantly reduces the search space.

5.2.3 Traversing the tree in Subterranean

We call the first unit of a unit list [i1, i2, . . . , ij] the tail bit and denote it by t = i1, and
the last unit of it the head bit and denote it by h = ij . Then, the three functions used
in Algorithm 1 during the search are defined as follows:

toFirstChild() adds an active bit in ah+1 if h < `− 1, and returns true. If h = `− 1,
then it returns false.

toSibling() moves head bit of the unit list by one position to the right (ah → ah+1), if
h < `− 1. If h = `− 1 it returns false, true otherwise.

toParent() removes the head bit. If this results in an empty unit list it returns false and
true otherwise.

Here, additional conditions consist of canonicity check and whether the score is in budget.

278 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

8 10 12 14 16 18 20 22 24 26 28
100

101

102

103

104

105

w(Q̃2)

N
um

be
r
of

ca
no

ni
ca
l2

-r
ou

nd
tr
ai
lc

or
es

Figure 4: The number of canonical 2-round trail cores in Subterranean up to weight 28.

5.2.4 The score-at-b in Subterranean

We will denote the score-at-b that we use in Subterranean by scoresub(a). Based on the
properties of the linear layer, it is possible to identify active bits at b that cannot turn to
passive by the addition of any new unit. We refer to such bits as stable. Then we compute
the score caused by b by computing wr(b′) where b′ is a difference state composed by only
the stable bits of b.

Due to the property of θ, an active bit at ai at the input of θ affects three bits at
positions i, i− 3 and i− 8 after θ. If the distance between two active bits at a is greater
than 8 then the active bits caused by them at the output of θ cannot overlap. Since the
function toFirstChild() adds a new head bit and toSibling() only moves the current
head bit to the right, the bits of the state after θ that are at distance bigger than 8 from
the head bit will not change. Therefore, we define the function scoresub as follows.

Definition 19 (scoresub). Given a difference a with unit list [i1, i2, . . . , h], scoresub(a) =
wr(π(ā)) where

āj =
{

[θ(a)]j for i s.t. |h− j| > 8,
0 otherwise.

5.3 Differential trail bounds
Our primary goal was to scan the space of all 8-round trail cores of Subterranean
up to weight T8 = 115, but we applied our tool to find bounds also for smaller number
of rounds. To scan all 8-round trail cores up to 115, we first generate all 4-round trail
cores up to weight b115/2c = 57. This took almost 307 hours on an Intel Xeon Silver
4110 processor running at 3GHz, using a single core. According to our analysis, we can
also make a prediction on the time required to generate 8-round trail cores with bigger
weight. E.g., in order to be able to scan all 8-round trail cores up to weight 128 we need
to generate all 4-round trail cores up to weight b128/2c = 64 and then extend them. We
expect it to take almost one year to scan the space of all 4-round trail cores up to 64
without parallelization. However, the extension of 2-round trails to 3, 4 and more rounds
would be easy to parallelize and this would indeed reduce the time, generating all 2-round
trail cores would take a substantial effort to parallelize. Hence, using n cores instead of
one does not mean n times faster processing, but it will clearly increase the speed.

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 279

Table 2: Weight distribution table of canonical 2-round trail cores in Subterranean up
to weight 28.

wrev(a)
wr(b) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 - 1 - - - - - 2 - - - - - 1 - - - - - -
3 - - - 1 - - 1 - 1 2 - - - - 1 1 1 - - -
4 - - - 2 2 2 12 111 9 8 28 25 56 421 19 26 51 34 46 592
5 - 1 - 1 1 3 3 23 32 237 32 58 281 136 308 860 97 145 537
6 - - - 1 3 5 6 46 63 543 589 846 2795 7657 2953 3924 7952 8321
7 - - 2 2 5 9 49 257 108 437 640 1649 2519 7248 11550 28207 14548
8 - - 1 1 7 10 33 81 210 800 1497 3188 5832 16107 28196 85270
9 - - 1 3 10 24 72 197 855 1766 3259 6985 20312 44438 54708
10 - 1 - 2 13 31 103 359 844 1875 5192 10444 24625 55736
11 - - 1 2 14 49 117 374 1217 3474 9595 21646 51896
12 1 - 1 2 11 50 208 781 1945 4958 14616 34435
13 - - 1 5 16 86 264 708 2556 6799 21167
14 - - 2 7 27 94 502 1090 3726 11041
15 - - 2 8 26 149 438 1688 4846
16 - - 3 7 35 151 500 1940
17 - - 2 9 41 202 869
18 - 1 1 14 53 213
19 - 1 - 9 62
20 - - 3 20
21 - - 2
22 - 1

Table 3: 3-round trail core weight histogram. Each unit corresponds to 257 trail cores.

weight 25 28 29 30 31 32 33 34 35 36 37 38 39 40
trail cores 1 1 2 6 7 5 3 12 34 34 51 42 81 114

Differential trail bound for 2 rounds. To cover the space of all 8-round trail cores
up to T8 = 115, we start by generating all 2-round trail cores χ−→ a

λ−→ b
χ−→ up to

T2 = b115/4c = 28. Table 2 lists the number of 2-round trail cores, that are different
modulo translation, regarding the value of wrev(a) and wr(b). Note that we report only on
the number of canonical trail cores so, each unit in this table corresponds to 257 trail cores.
Fig. 4 also represents the total number of canonical 2-round trail cores in Subterranean
regarding their weight w(Q̃2).

Our search confirms that a 2-round trail core has at least weight 8 (as reported
in [DMMR20]), which corresponds to a single active bit in a and consequently 3 active
bits in b. Then, there is no trail up to the weight 10, since it is not possible for active bits
at a to cancel each others after θ and locate in certain places of b that results in trail with
weight smaller than 11.

If we have two active bits at a that do not cancel each others after θ, there will be 6
active bits at b. In most of the cases the two active bits at a weigh 4, and the corresponding
6 active bits at b weigh 12, that results in many 2-round trail cores with weight 16.

For a 2-round trail core of weight 17, there should be overlap after θ and the corre-
sponding active bits at b must be located in a limited certain places. This corresponds to
drop in Fig. 4 between weights 16 and 18.

Differential trail bound for 3 rounds. A 3-round trail core Q̃3 = χ−→ a1 λ−→ b1 χ−→ a2 λ−→
b2 χ−→ has weight w(Q̃3) = wrev(a1) + wr(b1) + wr(b2). This is satisfied if either wrev(a1) ≤
wr(b2) or wrev(a1) > wr(b2):

• The former case implies that 2wrev(a1) + wr(b1) ≤ T3. Therefore we can obtain all
3-round trail cores Q̃3 with wrev(a1) ≤ wr(b2) by generating all 2-round trail cores

280 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Table 4: A canonical 4-round differential trail core with the minimum weight.

state weight active bit positions
a1 12 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 {65, 66, 85, 86, 87}
b2 11 {7, 28, 134, 198, 200, 219}
b3 28 {16, 18, 22, 39, 54, 86, 88, 107, 118, 139, 152, 173, 188, 211, 252}

Q̃2 = χ−→ a1 λ−→ b1 χ−→ satisfying 2wrev(a1) + wr(b1) ≤ T3 and then extending each of
them by one round in the forward direction.

• The latter case implies that wrev(a2) + 2wr(b2) < T3. Therefore we can obtain all
3-round trail cores Q̃3 with wrev(a1) > wr(b2) by generating all 2-round trail cores
Q̃2 = χ−→ a2 λ−→ b2 χ−→ satisfying wrev(a2) + 2wr(b2) < T3 and then extending each of
them by one round in the backward direction.

We adapted our tool to support the check of the required inequalities during the tree-search.
For our experiments, we set the target weight T3 to 40 and we report the number of trail
cores found in Table 3. As before, we report only on the number of canonical trail cores,
that is each unit in this table corresponds to 257 trail cores. Our search confirms that a
3-round trail core has at least weight 25, as reported in [DMMR20].

Differential trail bound for 4 rounds. In each 4-round trail core with weight up to 57
either the first or the last 2-round sub-trail core should weigh smaller than or equal to
b57/2c = 28. Therefore, scanning the space of all 2-round trail cores up to 28 and extending
them by two rounds in both directions assures us that we scanned all 4-round trail cores up
to 57. Based on our results, there is no 4-round trail core up to weight 57 that means the
lower bound on the weight of 4-round trail cores is 58. We actually found one canonical
trail with weight 58, which is equal to the one already listed in [DMMR20] and given in
Table 4. Here we limit ourselves to point out that other canonical 4-round trail cores with
weight 58 may exist, but their research is not our primary goal. It is worth noticing, that
a tight bound for the minimum weight of any trail over 4 rounds in Subterranean was
missing before this work and we proved it.

Observation. During our search, we found that by extending all 2-round trail cores
χ−→ a3 λ−→ b3 χ−→ with wr(b3) < 5 in the backward direction, there exist no 4-round trail core
up to the weight 60. Therefore, given a 4-round trail core Q̃4 with weight T4 ≤ 60, the
following condition holds:

wr(a1) + wr(b1) + wr(b2) ≤ T4 − 5 .

Based on this observation, if we target T4 ≤ 60 then we can first generate all 3-round
trail cores up to T4 − 5 that results in minimizing the search space.

Similarly, we found that by extending all 2-round trail cores χ−→ a1 λ−→ b1 χ−→ with
wrev(a1) < 4 in the forward direction, there exist no 4-round trail core up to the weight
60. Therefore, given a 4-round trail core Q̃4 with weight T4 ≤ 60, the following condition
holds:

wr(a2) + wr(b2) + wr(b3) ≤ T4 − 4 .

Based on this observation, if we target T4 ≤ 60 then, we can start from 3-round trail
cores up to T4 − 4 that again makes the search space smaller.

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 281

Differential trail bound for 5 rounds. Any 5-round trail core with weight smaller than
T5 has at least a 4-round sub-trail core of weight smaller than T5 − 2 due to the fact that
the weight over one round is at least 2. Since there is no 4-round trail core with weight up
to 57, we conclude there exists no 5-round trail core up to the weight 57 + 2 = 59.

However, from our search on 4 rounds we know there is no 4-round trail core up to
weight 60 such that wrev(a1) < 4. It means if we extend these 4-round trails by one round
in the forward direction, there is no 5-round trail core up to weight 60 + 2 such that
wrev(a1) < 4. The same holds for the backward extension when we conclude there is no
5-round trail core up to weight 62 such that and wr(b4) < 5 since there exists no 4-round
trail core up to weight 60 when wr(b4) < 5. It means, for all 5-round trail cores up to
weight 62, wr(b4) > wrev(a1) ≥ 4.

Since we scanned the space of all 4-round trail cores up to weight 57 and there is no
trail up to this weight then w(Q̃5) ≥ 58 + 4 = 62. This result improves the known lower
bound over 5 rounds.

Differential trail bound for 6 rounds. In each 6-round trail core with weight smaller
than T6, either the first or the last 3-round sub-trail core should weigh bT6/2c or less. We
extended all 3-round trail cores up to weight 38 in both forward and backward directions
by three rounds to scan the space of all 6-round trail cores up to weight 77. Since there
exist no 6-round trail with weight 77, the lower bound on the weight of any 6-round trail
is 78, which improves the known lower bound.

Differential trail bound for 7 rounds. Any 7-round trail core with weight smaller than
T7 has at least a 6-round sub-trail core of weight smaller than T7 − 2. This follows from
the fact that the weight over one round is at least 2. Hence, the extension of all 6-round
trail cores Q̃6 with w(Q̃6) ≤ T6 by one round allows to scan the whole space of 7-round
trail cores Q̃7 with w(Q̃7) ≤ T6 + 2. Since there exists no 6-round trail core with weight
77, then there exists no 7-round trail with weight 79, which implies that the lower bound
on the weight of 7-round trails is at least 80. This result improves the previously known
lower bound.

Differential trail bound for 8 rounds. In each 8-round trail core with weight smaller
than 115, either the first or the last 4-round sub-trail core should weigh smaller than or
equal to b115/2c = 57. Since there is no 4-round trail core with weight smaller than 58,
then there is no 8-round trail core with weight smaller than 115, which implies that the
lower bound on the weight of 8-round trails is at least 116. Equivalently, the upper bound
on the DP of 8-round trails is at most 2−116 that improves the given bound in [DMMR20]
(2−98) by a factor 218.

Related work. We conclude by briefly discussing the relation of our work with the one
recently proposed by Song et al. in [STSH21]. First of all, in there, authors propose several
attacks on different primitives of Subterranean based on one-round differentials, on the
contrary, we investigated 8 rounds of Subterranean.

Besides this, in [STSH21], authors pointed out that the χ function in Subterranean
can be re-written as the non-linear layer of SIMON [BSS+13], a family of lightweight
block ciphers proposed by Beaulieu et al. Its round function contains (x ≪ α) · (x ≪
β) + (x≪ γ), where x≪ i indicates the cyclic left shift over i bits, while the χ function
in Subterranean can be re-written as x+ (x≫ 1) · (x≫ 2) + (x≫ 2) where x≫ i
indicates the cyclic right shift over i bits. This suggests that the techniques for searching
differential trails of SIMON can be potentially applied to Subterranean as well. Even if
we do not exclude it, we point out that SIMON is a Feistel scheme, which means its round
function is an involution and the same round function is used both in the forward and in the

282 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

backward direction. As a result in SIMON, extending trails in both directions is possible
without further investigation on the backward direction or lower bounding the weight of
the inverse of the non-linear layer as in [LLW17]. But in the case of Subterranean, to
efficiently extend trails in the backward direction, it is crucial to lower bound the weight
of the inverse of χ.

Therefore, the techniques for differential trail search in SIMON cannot be easily applied
to 8 blank rounds of Subterranean. In addition, providing a method to compute a lower
bound on the weight of the inverse of χ is crucial for scanning larger space of 8-round
differential trails.

Acknowledgments
Joan Daemen, Lorenzo Grassi and Alireza Mehrdad are supported by the European
Research Council under the ERC advanced grant agreement under grant ERC-2017-ADG
Nr. 788980 ESCADA. Silvia Mella is supported by the Cryptography Research Center of
the Technology Innovation Institute (TII), Abu Dhabi (UAE), under the TII-Radboud
project with title Evaluation and Implementation of Lightweight Cryptographic Primitives
and Protocols.

References
[AZ21] Mark D. Aagaard and Nusa Zidaric. ASIC Benchmarking of Round 2 Candi-

dates in the NIST Lightweight Cryptography Standardization Process. Cryp-
tology ePrint Archive, Report 2021/049, 2021. https://ia.cr/2021/049.

[BDKA21] Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche.
Thinking Outside the Superbox. In Advances in Cryptology - CRYPTO 2021,
volume 12827 of LNCS, pages 337–367. Springer, 2021.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The
keccak reference, 2011.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Advances in Cryptology - CRYPTO 2016, volume 9815 of LNCS, pages
123–153. Springer, 2016.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017, volume 10529 of LNCS, pages 321–345.
Springer, 2017.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Advances in Cryptology - CRYPTO 1990, volume 537 of LNCS,
pages 2–21. Springer, 1990.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptol. ePrint Arch., page 404, 2013.

https://ia.cr/2021/049

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 283

[CDGP93] Luc J. M. Claesen, Joan Daemen, Mark Genoe, and G. Peeters. Subterranean:
A 600 Mbit/Sec Cryptographic VLSI Chip. In Proceedings 1993 International
Conference on Computer Design – ICCD 1993, pages 610–613. IEEE Computer
Society, 1993.

[CFG+18] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jian Guo, Jérémy Jean, Jean-
René Reinhard, and Ling Song. Key-Recovery Attacks on Full Kravatte.
IACR Trans. Symmetric Cryptol., 2018(1):5–28, 2018.

[CG20] Tingting Cui and Lorenzo Grassi. Algebraic Key-Recovery Attacks on
Reduced-Round Xoofff. In Selected Areas in Cryptography - SAC 2020,
volume 12804 of LNCS, pages 171–197. Springer, 2020.

[DA12] Joan Daemen and Gilles Van Assche. Differential Propagation Analysis of
Keccak. In Fast Software Encryption - FSE 2012, volume 7549 of LNCS,
pages 422–441. Springer, 2012.

[Dae95] Joan Daemen. Cipher and hash function design, strategies based on linear
and differential cryptanalysis, PhD Thesis. K.U.Leuven, 1995. http://jda.
noekeon.org/.

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2, 2014. https://ascon.iaik.tugraz.at/.

[DGV91] Joan Daemen, René Govaerts, and Joos Vandewalle. A Framework for the
Design of One-Way Hash Functions Including Cryptanalysis of Damgård’s
One-Way Function Based on a Cellular Automaton. In Advances in Cryptology
- ASIACRYPT 1991, volume 739 of LNCS, pages 82–96. Springer, 1991.

[DHAK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol., 2018(4):1–38,
2018.

[DMM21] Joan Daemen, Alireza Mehrdad, and Silvia Mella. Computing the Distribution
of Differentials over the Non-linear Mapping χ. In Security, Privacy, and
Applied Cryptography Engineering - SPACE 2021, volume 13162 of LNCS,
pages 3–21. Springer, 2021.

[DMMR20] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann
Rotella. The Subterranean 2.0 Cipher Suite. IACR Trans. Symmetric Cryptol.,
2020(S1):262–294, 2020.

[DPAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.
Nessie proposal: the block cipher Noekeon. Nessie submission, 2000. http:
//gro.noekeon.org/.

[DPVAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
proposal: NOEKEON. In First Open NESSIE Workshop, pages 213–230,
2000.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomi-
als. In Advances in Cryptology - EUROCRYPT 2009, volume 5479 of LNCS,
pages 278–299. Springer, 2009.

http://jda.noekeon.org/
http://jda.noekeon.org/
https://ascon.iaik.tugraz.at/
http://gro.noekeon.org/
http://gro.noekeon.org/

284 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

[Hei11] Ethan Heilman. Restoring the Differential Resistance of MD6 . Cryptology
ePrint Archive, Report 2011/374, 2011. https://ia.cr/2011/374.

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In Fast Software
Encryption - FSE 1994, volume 1008 of LNCS, pages 196–211. Springer, 1994.

[KPC20] Mustafa Khairallah, Thomas Peyrin, and Anupam Chattopadhyay. Prelim-
inary Hardware Benchmarking of a Group of Round 2 NIST Lightweight
AEAD Candidates. Cryptology ePrint Archive, Report 2020/1459, 2020.
https://ia.cr/2020/1459.

[LLW17] Zhengbin Liu, Yongqiang Li, and Mingsheng Wang. Optimal differential trails
in simon-like ciphers. IACR Trans. Symmetric Cryptol., 2017(1):358–379,
2017.

[MDA17] Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques for
trail bounds and application to differential trails in Keccak. IACR Trans.
Symmetric Cryptol., 2017(1):329–357, 2017.

[MHN+20] Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud Farahmand,
Abubakr Abdulgadir, Jens-Peter Kaps, and Kris Gaj. FPGA Benchmarking of
Round 2 Candidates in the NIST Lightweight Cryptography Standardization
Process: Methodology, Metrics, Tools, and Results. Cryptology ePrint Archive,
Report 2020/1207, 2020. https://ia.cr/2020/1207.

[MP13] Nicky Mouha and Bart Preneel. Towards Finding Optimal Differential Charac-
teristics for ARX: Application to Salsa20. Cryptology ePrint Archive, Report
2013/328, 2013. https://ia.cr/2013/328.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic Security Evaluation and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other
Bit-Oriented Block Ciphers. In Advances in Cryptology - ASIACRYPT 2014,
volume 8873 of LNCS, pages 158–178. Springer, 2014.

[STSH21] Ling Song, Yi Tu, Danping Shi, and Lei Hu. Security analysis of subterranean
2.0. Des. Codes Cryptogr., 89(8):1875–1905, 2021.

[WH19] Hongjun Wu and Tao Huang. TinyJAMBU: A Family of LightweightAuthen-
ticated Encryption Algorithms, 2019.

A C++ program has been written in order to scan the space of all 8-round trail cores
of Subterranean up to weight 115 by generating all 4-round trail cores up to weight 57.
This program, along with a list of all 3-round trail cores up to weight 40, is available at

https://github.com/Subterranean2/DifferentialTrailSearch

A Generate the affine subspace A(b)
In the following, we show how to construct offset and basis vectors of the affine subspace
A(b) with minimum Hamming weight using local rules based on the landscape of bits bi’s.

To be able to specify a specific offset, we introduce the concept of “canonical offset”.

Definition 20 (Canonical offset). Given the subspace A(b) ⊆ F`2, we define the canonical
offset c ∈ F`2 such that:

https://ia.cr/2011/374
https://ia.cr/2020/1459
https://ia.cr/2020/1207
https://ia.cr/2013/328
https://github.com/Subterranean2/DifferentialTrailSearch

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 285

Algorithm 3 Generating canonical offset and basis vectors.
Input: size of the state ` and b ∈ F`2
Output: Canonical offset and basis vectors with minimum Hamming weight.

if (b = (1)`) then
if (` even) then

c = (0)`
else

c = e0
for all i ∈ {0, 1 . . . n− 1} do

v(i) = ei + ei+1

else
for all i ∈ {0, 1 . . . n− 1} do

if (bi ∈ {100, 1101}) then
ci = 1

else
ci = 0

if (bi ∈ {100, 11, 001}) then
v(j) = ei−1
j ← j + 1

else if (bi ∈ 101) then
v(j) = ei−1 + ei
j ← j + 1

1. it has the minimum Hamming weight among all possible offsets, that is ||c|| ≤ ||o||
for each offset o ∈ A(b);

2. let {i(o)
1 , . . . , i

(o)
||o||} (with i

(o)
j < i

(o)
j+1 for each j ∈ {1, . . . , ||o|| − 1}) be the position(s)

of the active bit(s) in o ∈ F`2. If ||c|| ≥ 1, then

∀o ∈ A(b) such that ||c|| = ||o|| and ∀j ∈ {1, . . . , ||c||} : i
(c)
j ≤ i

(o)
j .

The way to generate a valid offset as o = χ`(b), and also basis vectors with the minimum
Hamming weight for a given input difference of χ5 is already discussed in [BDPA11,
Sect. 2.3]. Here, we generalize the results and provide a new method to compute the
canonical offset. To this end, we present rules that allow to build the canonical offset and
basis vectors with minimum Hamming weight first for a not fully active input difference
and then for a fully active input difference. Such rules are summarized in Tables 5 to 7.
Algorithm 3 also presents a pseudo-code that takes in input a difference b and returns the
canonical offset and minimum Hamming weight basis vectors of the affine subspace A(b).

A.1 Generating offset and basis for a not fully active input difference
For input differences b ∈ F`2 \ {(1)`}, we locally generate the canonical offset and basis
vectors.

Proposition 7. Given a not fully active difference b ∈ F`2 \ {(1)`} at the input of χ`,
ci = 1 only if bi ∈ {100, 1101}.

Proof. Since χ` is translation-invariant, we only prove it for i = 0. Here, we should find
bits of the output that are always active independently of the initial state xi’s since they
have no fixed value. From Eq. (5):

a0 = b0 + b1 · b2 + b2 + b2 · x1 + b1 · x2. (9)

286 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Table 5: The positions of active bits in c for b ∈ F`2 \ {(1)`}.
bi ∈ 100 1101
ci 1 1

Table 6: The values of basis vectors v(j) for bi.
b ∈ F`2 \ {(1)`} b = (1)`

bi ∈ 101 100 11 001 1
v(j) ei−1 + ei ei−1 ei−1 ei−1 ei + ei+1

• If b0 ∈ 100, then a0 = b0 = 1 independently of x.

• If b0 ∈ 1101, then:

a0 + a1 = b0 + b2 · (1 + x1 + x3) + (b1 + b3) · (x2 + b2 + 1) (10)

In Eq. (10), if b1 +b3 = 0 and b2 = 0, then a0 +a1 is independent of x. It implies that
a0 + a1 = 1 only if b0 = 1. Since we already analyzed the case when b1 = b2 = b3 = 0
(b0 ∈ 100), here we focus on the case b1 = b3 = 1 (b0 ∈ 1101). In this last case,
a0 + a1 = 1 or equivalently, either a0 or a1 is active in this case. Since the position
of the active bits of the canonical offset is the minimum, then a0 = 1.

Now, we present the rules to generate basis vectors with the minimum Hamming weight
for b ∈ F`2 \ {(1)`}, that are also summarized in Table 6. We highlight that the method to
generate basis vectors for ` = 5 is presented in [BDPA11, Sect. 2.3]. We generalized their
method for any arbitrary ` (even or odd) and we provided a proof for it in Proposition 8.

Proposition 8. Given a not fully active difference b ∈ F`2 \ {(1)`} at the input of χ`:

1. v(j) = ei−1 + ei if bi ∈ 101,

2. v(j) = ei−1 if bi ∈ {100, 11, 001}.

Proof. Working as in the previous proof and since the value of b is given, we look for ai’s
that depend on x. We analyze the conditions separately:

1. If b0 ∈ 101 then from Eq. (5) we have a−1 = b−1 + x1 and a0 = x1. Since both a0
and a1 depend on the same bit of the input namely x1, the basis vector has two
active bits at a−1 and a0.

2. According to Eq. (5), if at least one of the b0 or b1 are 1, then a−1 depends on
x. Since we have already considered the case when there is a (101)-string in the
landscape of b, we do not consider it again. Therefore, to have at least one active bit
at b0‖b1 and no (101)-string, we have b0 ∈ {100, 11, 001}. In this case, base vector
has a single active bit at a−1.

A.2 Generating offset and basis for a fully active input difference
Next, we treat the case of fully active input difference.

Proposition 9. Given a fully active difference b = (1)` at the input of χ`:

• c = (0)` if ` is even,

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen 287

Table 7: The offset value for b = (1)`.
` even odd
c (0)` e0

• c = e0 if ` is odd.

Proof. From Eq. (5):

`−1∑
i=0

ai = (1 + x1 + x2) + (1 + x2 + x3) + · · ·+ (1 + x0 + x1) =

0, if ` is even
1, otherwise.

By Proposition 9, it follows that collisions can occur for b = (1)` and ` even, that
means χ` is not invertible in this case (as we already know).

Proposition 10. Given a fully active difference b = (1)` at the input of χ`, ∀i ∈
{0, 1, . . . , n− 1} : v(i) = ei + ei+1.

Proof. From Eq. (5) a0 = 1 +x1 +x2 and a1 = 1 +x2 +x3 so both a0 and a1 depend on x2.
Since χ` is translation-invariant, ∀i ∈ {0, 1, . . . , n− 1}, ai and ai+1 depend on xi+2.

B Proofs
B.1 Proof of Proposition 3
The rank of a matrix corresponds to the maximum number of linearly independent
rows/columns. Let us denote by ri (0 ≤ i < n) the i-th row of the matrix M(b) given in
Eq. (6). We say a row is active if it has at least one active bit. By definition the rank of
matrix M(b) for b 6= 1 is the number of unequal active rows.

Since χ` is translation-invariant, we consider a difference with a single active bit b0 at
the input of χ` with `� 1. In such a case, both r`−2 and r`−1 are active and r`−2 6= r`−1.
Since we have two unequal active rows, the weight is 2. Adding another active bit to the b
leads to one of the following cases:

• b0 = b1 = 1: the rows r`−2, r`−1 and r0 are active and unequal. In this case, the
weight is 3. Therefore, adding an active bit at b1 implies adding 1 to the weight;

• b0 = b2 = 1: the rows r`−2, r`−1, r0 and r1 are active. Since r`−1 = r0, the weight is
4− 1 = 3. So, adding an active bit at b2 implies adding 1 to the weight;

• b0 = bi = 1 for 3 ≤ i < n − 2: the rows r`−2, r`−1, ri−2 and ri−1 are active and
unequal. In this case, the weight is 4. Hence, adding an active bit at bi when
3 ≤ i < n− 2 implies adding 2 to the weight;

• b0 = b`−2 = 1: the rows r`−4, r`−3, r`−2 and r`−1 are active, and r`−3 = r`−2 thus,
the weight is 4− 1 = 3. So, adding an active bit at b`−2 increases the weight by 1;

• b0 = b`−1 = 1: then rows r`−3, r`−2 and r`−1 are active and unequal. In this case,
the weight is 3. So, adding an active bit at b`−1 implies adding 1 to the weight.

As a result, if an active bit has a distance of at least two bits with other active bits, it adds
2 to the rank of M(b). Hence, whenever an active bit forms a (001)-string (or (100)-string),
it adds two to the weight. Otherwise, each active bit increases the weight by one.

288 Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

B.2 Proof of Proposition 4
The weight of a given input difference b is the rank of matrix M(b). After setting b to (1)`
and row reduction, the rank of the matrix M(b) is `− 1.

B.3 Proof of Corollary 1
Regarding the minimum value and based on Proposition 3, if b has one active bit, then
||b||+ #001(b) = 1 + 1 = 2. If b has two active bits, then 1 ≤ #001(b) ≤ 2, which implies
that ||b||+ #001(b) ≥ 2 + 1 = 3. If b has at least three active bits, then ||b||+ #001(b) ≥ 3.

Regarding the maximum value, it can be achieved in the following cases:

• b = 1;

• ||b|| = n− 1 (and so #001(b) = 0);

• ||b|| = n− 2 and #001(b) = 1 (that is, the two passive bits in b are consecutive).

In all other cases, wr(b) ≤ n−2. Note that #001(b) = x ≥ 2 if at least 2x bits in b are equal
to zero, which implies that ||b|| ≤ n−2x, that is ||b||+#001(b) ≤ n−2x+x = n−x ≤ n−2.

	Introduction
	Differential trail search
	Differentials and differential trails
	Finding all trails with weight below some limit
	Trail extension and trail cores
	Generating 2-round trail cores as a tree search

	Properties of non-linear mappings Chi
	Translation-invariant mappings
	The family of mappings Chin and Chi
	Differentials over chin given its input difference
	A method for locally checking compatibility

	Differential properties of the inverse of chi
	Score-at-a for a dense output difference of chi
	Score-at-a for a non-dense output difference of chi
	Computing diffAftWeight) given non-dense OutputDif
	Generating all input differences of Chin given its output difference

	Differential trail search in Subterranean
	The round function round in Subterranean
	Tree-search in Subterranean
	Differential trail bounds

	Generate the affine subspace Affine
	Generating offset and basis for a not fully active input difference
	Generating offset and basis for a fully active input difference

	Proofs
	Proof of computeWeight
	Proof of computeWeightFullActive
	Proof of HammingRestrWeight

