

Accelerating the Best Trail Search on AES-Like Ciphers

Seonggyeom Kim

Deukjo Hong Jaechul Sung

Seokhie Hong

Korea University, Seoul, South Korea *jeffgyeom@korea.ac.kr* Jeonbuk National University, Jeonju, South Korea *deukjo.hong@jbnu.ac.kr* University of Seoul, Seoul, South Korea *jcsung@uos.ac.kr* Korea University, Seoul, South Korea *shhong@korea.ac.kr*

> FSE 2023 March, 2023

Presentation Overview

- 1. Contributions
- 2. Preliminaries
- 3. Two Accelerating Strategies
- 4. Analysis Results of BOGI-based Ciphers
- 5. Conclusion

Contribution -1: Accelerating the Best Trail Search on AES-like Ciphers

- We accelerate Matsui's search algorithm [Mat95] with
 - 1. Strengthening the Pruning Conditions and
 - 2. Employing Permutation Characteristics in Trail Search.
- Strict pruning conditions are derived from
 - the structure of *AES-like ciphers*.
 - → Two rounds can be represented with Super-Boxes.
- Employing permutation characteristics in trail Search
 - allows to reduce the search space.
- Apply it to GIFT, PRESENT, AES, LED, MIDORI-64, CRAFT, and SKINNY.
 - Trail searches get faster up to 1904 factors.
- Our implementation and codes can be found publicly in

https://github.com/jeffgyeom/Best-Trail-Search-on-AES-Like-Ciphers.

• An example of AES-like cipher's round function

Contribution -1: Accelerating the Best Trail Search on AES-like Ciphers

Cipher	Best Trail Type	Range of Analysis Rounds	Total Elapsed Time
GIFT-64	Differential	$2\sim 28~({ m full-round})$	$0.390\mathrm{s}^{*}$
	Linear	$2\sim 28~({ m full-round})$	$9.755\mathrm{s}^{*}$
CTTT_108	Differential	$2\sim 40~({ m full-round})$	89.0h*
GIF I=120	Linear	$2\sim 40~({ m full-round})$	$451.3h^*$
PRESENT	Differential	$2 \sim 31$ (full-round)	7.280s
AEG	Differential	$2 \sim 3$	$17.452 \mathrm{s}$
ALO	Linear	$2 \sim 3$	21.009s
	Differential	$2 \sim 3$	0.008s
	Linear	$2 \sim 3$	0.013s
MTDORT-64	Differential	$2 \sim 12$	210.5h
MIDURI-64	Linear	$2 \sim 16~({ m full-round})$	74.2h
CBAET	Differential	$2 \sim 8$	$456.9\mathrm{h}$
CRAF I	Linear	$2 \sim 7$	$3.2\mathrm{h}$
SKINNY-64	Differential	$2 \sim 7$	$27.6\mathrm{h}$
	Linear	$2 \sim 7$	$256.1\mathrm{h}$
SKINNY-128	Differential	$2 \sim 6$	24.998s
	Linear	$2 \sim 6$	$0.5\mathrm{h}$

 First analysis result on full-round GIFT-128

Contribution -1: Accelerating the Best Trail Search on AES-like Ciphers

- We accelerate Matsui's search algorithm [Mat95] with
 - 1. Strengthening the Pruning Conditions and
 - 2. Employing Permutation Characteristics in Trail Search.
- Strict pruning conditions are derived from
 - the structure of *AES-like ciphers*.
 - → Two rounds can be represented with Super-Boxes.
- Employing permutation characteristics in trail Search
 - allows to reduce the search space.
- Apply it to GIFT, PRESENT, AES, LED, MIDORI-64, CRAFT, and SKINNY.
 - Trail searches get faster up to 1904 factors.
- Our implementation and codes can be found publicly in

https://github.com/jeffgyeom/Best-Trail-Search-on-AES-Like-Ciphers.

• An example of AES-like cipher's round function

Contribution-2: Investigating the Most DC/LC Resistant BOGI-based Cipher

- GIFT-variants, called *BOGI-based Ciphers*, by replacing the existing S-box and bit permutation.
 - Considered S-boxes : 2,654,208
- Totally, 2^{37.09} variants!

- Considered bit perms : 55,296
- Deduce equivalent combinations and take their representatives.
 - Representatives : $2^{37.09} \rightarrow 41,472$
- Minimum required rounds to prevent effective trails for DC/LC.
 - Each representation gives 16-,32-,64-,128-bit BOGI-based ciphers.
- Search results show that there are GIFT-variants allowing fewer rounds than GIFT.
 - $\,\circ\,$ To prevent effective differential and linear trails,
 - $\circ~2$ rounds fewer than <code>GIFT-64</code>
 - \circ 3 rounds fewer than GIFT-128

• Super-box of GIFT

S-box and Bit-perm of BOGI-based Cipher

AES-like Cipher

- An AES-like cipher applies an <u>identical</u> round function R in all rounds.
- The AES-like round function R = Shuf•Mix•Sub consists of
 - 1. S-layer Sub : $nm \, \underline{identical} \, w$ -bit S-boxes S are applied concurrently.
 - 2. Mixing-layer Mix : n identical *wm*-bit matrix multiplications M are applied concurrently.
 - 3. Shuffle-layer Shuf : shuffles nm w-bit words. Thus, Sub \circ Shuf = Shuf \circ Sub.

- AES-like Round Function
- Depending on whether M is a bit permutation or not, we call R and the cipher as
 - Bit permutation-based AES-like cipher
 : PRESENT, GIFT
 - Non-bit permutation-based AES-like cipher : MIDORI, SKINNY, LED, CRAFT

Examples - PRESENT, GIFT-64

• PRESENT, GIFT-64, and GIFT-128 are bit permutation-based AES-like ciphers.

Weight and Minimum Required Rounds for DC/LC Resistances

• Weight

• Negative Logarithm of Probability of Differential Trail (or Squared Linear Correlation of Linear Trail)

$$W(\mathbb{T}) = -\log_2 \prod_{i=1}^R \Pr\left[\mathbb{T}[i] : \mathbb{X} \xrightarrow{\mathsf{R}} \mathbb{T}[i] : \mathbb{X}'\right]$$

• Let n_b be the block size. In general, DC/LC can be mounted with a trail \mathbb{T} such that

 $W(\mathbb{T}) < n_b.$

- We are interested in **the minimum rounds** when every trail does not satisfy the above condition.
- Therefore, if the *R*-round best (minimum) weight as

 $\geq n_b$,

we can show that the non-existence of distinguisher for DC/LC in R rounds.

Matsui's Search Algorithm [Mat95]

Branch-and-bound Depth-First Search algorithm

٠

• When we search for $(R \ge 2)$ -round best trails,

it traverses all the possible trails while checking the pruning condition with the knowledge of

```
1 \sim (R-1)-round best weights \mathbb{B}[1, \dots, R-1].
```

- This requirement can be satisfied by reclusively applying the algorithm from 2-round.
- **Pruning Condition**
 - Main Speedup Factor

Pruning Condition of Matsui's Search Algorithm

• Check the pruning condition S-box by S-box.

- $\sum_{i=1}^{3} \mathbb{T}[i].\mathbb{W} + \sum_{j=0}^{2} \mathbb{T}[4].\mathbb{W}[j] + \mathbb{B}[4] \leq \mathbb{W}(\mathbb{T})$ $B_{set}: \text{ currently minimum weight.}$ $\bullet \text{ Pruning Condition}$ $\sum_{i=1}^{3} \mathbb{T}[i].\mathbb{W} + \sum_{j=0}^{2} \mathbb{T}[4].\mathbb{W}[j] + \mathbb{B}[4] > B_{set}$
 - $\Rightarrow W(\mathbb{T}) > B_{set}$
 - \therefore We don't need to go further!

• Stricter pruning condition: Make the left side of the pruning condition bigger.

Pruning Condition of Matsui's Search Algorithm

• Check the pruning condition S-box by S-box.

• Stricter pruning condition: Make the left side of the pruning condition bigger.

Strict Pruning Conditions for AES-like cipher

Strict Pruning Conditions for AES-like cipher

Accelerating Strategy - 1

Four Subparts in the Middle Part

For Bit Permutation-based AES-like Cipher

• When M is a bit permutation,

the partial input can provide the (non-trivial > 1) lower bound for # output active S-boxes.

For Bit Permutation-based AES-like Cipher

Employing Permutation Characteristics in Trail Search

Permutation Characteristic

- It was presented originally for invariant subspace attack [LMR15].
- Although permutation characteristics can be used for the attack in a limited way due to key(constant) additions, we can ignore them in trail search.
- $^{\circ}~$ It ensures that two different trails have the same weight. ightarrow reduced search space
- Concept

For any sequences of values, there must exist the corresponding word-wise permutated sequence.

 \therefore After trail search from an input active S-box pattern D, we don't have to consider trails from A(D).

Permutation Characteristics

• *R*-round permutation characteristic: a sequence of $A_i \stackrel{R}{\Rightarrow} B_i$ such that

$$A_1 \xrightarrow{R} B_1(=A_2) \xrightarrow{R} B_2(=A_3) \xrightarrow{R} \cdots \xrightarrow{R} B_R.$$

• *R*-round permutation characteristic only covers $(t \le R)$ -round trail search.

• Iterative permutation characteristics are needed for the arbitrary round trail search.

$$A_1 \xrightarrow{R} B_1(=A_2) \xrightarrow{R} B_2(=A_3) \xrightarrow{R} \cdots \xrightarrow{R} B_R(=A_1)$$

Obtaining Iterative Permutation Characteristics

- Generate a directed graph and find the cyclic subgraphs
 - After obtaining A \xrightarrow{M} B, extend them as A \xrightarrow{Mix} B and A \xrightarrow{Perm} B; DWSE(Perm).
 - Find cycles in the corresponding directed graph (vertex A, B, edge $\stackrel{R}{\Longrightarrow}$).
 - All Permutations (vertices) in a cycle can reduce the considered inputs.

Algorithm 2: *R*-Round Permutation Characteristics of AES-like Cipher

Input: Perm^{*} and Rounds $R \ge 2$ Output: \mathcal{D}

 $1 \ \mathcal{D} \leftarrow \varnothing$

- $2 \quad \overrightarrow{\mathrm{DWSE}}(\mathsf{Perm}^*) \leftarrow \{(\mathsf{A},\mathsf{B}) \in \mathrm{DWSE}(\mathsf{Perm}^*) : \exists \mathsf{X} \text{ such that } (\mathsf{B},\mathsf{X}) \in \mathrm{DWSE}(\mathsf{Perm}^*)\}$
- **3** $G \leftarrow$ a directed graph regarding the pairs in $\overrightarrow{\text{DWSE}}(\mathsf{Perm}^*)$ as the edges

4 $\mathcal{C} \leftarrow$ the set of connected cyclic subgraphs in G

5 $\mathcal{L} \leftarrow$ the set of connected linear subgraphs in G

```
6 for H \in \mathcal{C} do
```

 $\mathbf{7} \quad | \quad \mathcal{D} \leftarrow \mathcal{D} \cup \{ \text{all vertices (word-wise permutations) in } H \}$

```
8 for H \in \mathcal{L} do
```

// Note that there is one more removed vertex for $H\,.$

9
$$\mathcal{D} \leftarrow \mathcal{D} \cup \{ \text{from the first head vertex, } \min(0, |H| + 1 - R) \text{ vertices in } H \}$$

10 return \mathcal{D}

(a) GIFT-64

(b) GIFT-128

(c) AES

(d) MIDORI-64

Iterative Permutation Characteristics of Considered Ciphers

- The number of word-wise permutations on iteratives permutation characteristics is up to 16.
- The number of input active S-box patterns decreases up to 15.77 factors.

Cipher	$ \mathcal{A}tab $	$ DWSE(Perm^*) $	$ \overleftarrow{\mathrm{DWSE}}(\operatorname{Perm}^*) $	$ \mathcal{D} $	$ Opt \mathcal{A}tab $	$ \mathcal{A}tab / Opt\mathcal{A}tab $
AES	$65,\!535$	6,144	16	16	$4,\!155$	15.77
LED	$65,\!535$	20	4	4	$16,\!455$	3.98
MIDORI-64	$65,\!535$	7,962,624	576	16	$4,\!155$	15.77
CRAFT	$65,\!535$	20	4	4	$16,\!575$	3.95
SKINNY	$65,\!535$	20	4	4	$16,\!455$	3.98
PRESENT	$65,\!535$	24	1	1	$65,\!535$	1
GIFT-64	$65,\!535$	6,144	16	16	$4,\!155$	15.77
GIFT-128	$2^{32} - 1$	$\approx 2^{31.3}$	512	1	$2^{32} - 1$	1

Performance Comparisons

- Strategy 1: Accelerate up to 474 factors
- Strategy 2: Accelerate up to 10 factors

• Both : Accelerate up to 1904 factors

Cipher	$rac{ \mathcal{A}tab }{ Opt\mathcal{A}tab }$	Round	Trail	\mathcal{M}_{prev}	\mathcal{M}_{pc}	\mathcal{M}_{our}	$rac{\mathcal{M}_{prev}}{\mathcal{M}_{pc}}$	$rac{\mathcal{M}_{pc}}{\mathcal{M}_{our}}$	$rac{\mathcal{M}_{prev}}{\mathcal{M}_{our}}$
PRESENT	1	$2 \sim 31$	Dif.	$9.777~\mathrm{s}$	$5.131 \mathrm{\ s}$		1.91	1	1.91
GIFT-64	15.77	$2 \sim 28$	Dif.	436.242 s	$57.235~\mathrm{s}$	$5.627 \mathrm{\ s}$	7.62	10.17	77.52
			Lin.	$1.0~{ m h}$	$0.5~{ m h}$	$177.506~\mathrm{s}$	1.92	10.31	19.79
		$2 \sim 19$	Dif.	68.2 h	4.5 h		15.00	1	15.00
GIF1-128	1		Lin.	$354.9~\mathrm{h}$	62.	0 h	5.72	1	5.72
4.50	15.77	2 ~ 2	Dif.	1.0 h	$<\!0.001 { m \ s}$	$<\!0.001 { m \ s}$	∞	2.00	∞
AES			Lin.	1.4 h	${<}0.001~{\rm s}$	${<}0.001~{\rm s}$	∞	2.00	∞
LED	3.98	2~3	Dif.	7.393 s	$0.033 \mathrm{\ s}$	$0.008 \mathrm{\ s}$	221.34	3.98	880.11
			Lin.	$24.191~{\rm s}$	$0.051 \mathrm{~s}$	$0.013 \mathrm{\ s}$	474.34	4.02	1904.83
MIDORI-64	15.77	5.77 2~2	Dif.	$0.535 \mathrm{\ s}$	$0.004 \mathrm{\ s}$	$0.001 \mathrm{\ s}$	130.51	6.83	891.83
			Lin.	$0.084~{\rm s}$	$0.002 \mathrm{\ s}$	${<}0.001~{\rm s}$	33.44	6.25	209.00
CRAFT	3.95	0.7	Dif.	235.3 h	4.6 h	1.4 h	50.94	3.30	168.10
		2~7	Lin.	$171.3 \ h$	$3.3~\mathrm{h}$	$3.2~\mathrm{h}$	51.75	1.05	54.26
SKINNY-64	3.98	$2 \sim 6$	Dif.	$291.702~{\rm s}$	$11.468~\mathrm{s}$	$2.139 \mathrm{\ s}$	25.44	5.36	136.39
			Lin.	$0.9~{ m h}$	$164.916~{\rm s}$	$35.964~\mathrm{s}$	19.81	4.59	90.86
SKINNY-128	3.98	2~6	Dif.	$446.164~\mathrm{s}$	$52.572~\mathrm{s}$	$24.998~{\rm s}$	8.49	2.10	17.85
			Lin.	7.9 h	$1.0 \ h$	$0.5~{ m h}$	8.17	2.15	17.54

BOGI Design

- BOGI (Bad Output must go to Good Input) Design
 - GIFT is based on this design.
 - The fundamental prevention of consecutive single active bit propagations over a trail.
 - $\,\circ\,\,$ It requires a proper combination of S-box and bit permutation.

• S-box and Bit-perm of BOGI-based Cipher

- Such combinations amount to 2,654,208 \times 55,296 = $2^{37.09}$.
 - S-box : 2,654,208
 - 16-bit permutation ({ib, ob} and {LS}) :96×576 = 55,296

H M

BOGI-based Cipher

Definition 7. A $(16 \cdot n)$ -bit *BOGI-based cipher*, denoted by BOGI-16 $\cdot n$, is a bit permutationbased AES-like cipher that is parameterized by the state dimension $(m = 4) \times n$ and the word size w = 4. Each component of the AES-like round function is given as follows.

- $Sub_{BOGI16 \cdot n}$: The parallel application of a BOGI-applicable S-box $S_{BOGI} \in \mathcal{BS}$ that has differential uniformity of 6 and linearity of 8.
- $Mix_{BOGI16\cdot n}$: The parallel application of a 16-bit permutation M_{BOGI} which is derived from $LS \in \mathcal{LS}$ and $(ib, ob) \in \mathcal{BP}(S_{BOGI})$ as described in Figure 5.
- Shuf_{BOGI16}: The shuffle layer with $\sigma_{BOGI16}(j) = n \times (j \mod 4) + \lfloor \frac{j}{4} \rfloor$.

Note that the number of considered S_{BOGI} is 2,654,208, $|\mathcal{LS}| = 576$, and $|\mathcal{BP}(S_{BOGI})| = 96$ as we mentioned. Therefore, the number of $(16 \cdot n)$ -bit BOGI-based ciphers is about $2^{37.09}$.

- Each combination gives a (16 \cdot n)-bit BOGI-based cipher with a proper shuffle layer.
- Therefore, each version amounts to $2^{37.09}$.

DC/LC-Equivalent BOGI-based Cipher

- Deduce DC/LC-equivalence classes between super boxes → # BOGI-based ciphers for each block size is same.
 - DDT-Equivalence : $|Sub| = 2,654,208 \rightarrow 10,398$
 - (LS)-Equivalence : $|LS| = 576 \rightarrow 24$
 - (ib,S,ob)-Equivalence : $|Sub| \times |Mix| = |Sub| \times |LS| = 1,728 \times 24 = 41,472$

(We don't specify the shuffle layer)

Trail Search on BOGI-based Cipher

- Strategy 1: Use the Pruning Condition for Bit Permutation-based AES-like Cipher
- Strategy 2: Obtaining Permutation Characteristics for Each Version
 - BOGI-64 : Up to 15.77 factor
 - BOGI-128 : Up to 32 factor

BOGI-16 \cdot n	Combinations	Trail Type	Rounds	Min Elapsed	Avg Elapsed	Max Elapsed
BOGT-16		Differential	$2 \sim 15$	0.001 s	$0.016 \mathrm{~s}$	$1.261 \mathrm{~s}$
B001-10		Linear	$2 \sim 10$	< 0.001 s	$0.003 \mathrm{\ s}$	$0.11 \mathrm{s}$
BOGI-32	$41,\!472$	Differential	$2 \sim 15$	0.001 s	$0.072 \mathrm{~s}$	$4.622 { m s}$
		Linear	$2 \sim 10$	$0.001 { m s}$	$0.03 \mathrm{s}$	$1.229 \mathrm{s}$
BOGI-64		Differential	$2 \sim 13$	0.004 s	$29.508 \ \mathrm{s}$	0.5 h
		Linear	$2 \sim 15$	$0.002 { m s}$	$40.618~{\rm s}$	1.3 h
BOGI-128		Differential	$2 \sim 11$	0.011 s	1.5 h	450.9 h
		Linear	2 11	$0.004 \mathrm{\ s}$	0.9 h	156.4 h

Trail Search on BOGI-based Cipher

- Strategy 1: Use the Pruning Condition for Bit Permutation-based AES-like Cipher
- Strategy 2: Obtaining Permutation Characteristics for Each Version
 - BOGI-64 : Up to 15.77 factor
 - $^\circ\,$ BOGI-128 $\,$: Up to 32 factor
- There exist better combinations than GIFT-64 and GIFT-128 in terms of DC/LC-resistance.
 - Only replacing the existing bit permutation even allows fewer rounds.

Block	Minimum Required Rounds to Prevent Efficient Trails for DC/LC					
Size	CITT-b*	With Replacement of	With Replacement of			
(b-bit)	GIF1-D	Bit Permutation	Bit Perm. and S-box			
16-bit	6 rounds	6 rounds	5 rounds			
32-bit	10 rounds	10 rounds	8 rounds			
64-bit	14 rounds	13 rounds (1 Rour	nd) 12 rounds (2 Rou	nds Fewer)		
128-bit	22 rounds	20 rounds (2 Rour	d) 19 rounds** (3 Rou	nds Fewer)		

Toward Most Resistant BOGI-based Cipher

Best Weights of 64-bit BOGI-based Ciphers

Cryptographic Algorithm Laboratory

Best Weights of 128-bit BOGI-based Ciphers

Conclusion

- We attempted to optimize Matsui's Search Algorithm with two strategies.
- Moreover, taking advantage of the optimization, we obtain the first analysis results of best trail of full-round GIFT-128 and investigate the most DC/LC-resistant BOGI-based ciphers.
- Our implementations, codes, and analysis results can be found publicly in

https://github.com/jeffgyeom/Best-Trail-Search-on-AES-Like-Ciphers.

Q&A Thanks

