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Abstract. At EUROCRYPT ’93, Matsui introduced linear cryptanalysis. Both
Matsui’s Algorithm 1 and 2 use a linear approximation involving certain state bits.
Algorithm 2 requires partial encryptions or decryptions to obtain these state bits
after guessing extra key bits. For ciphers where only part of the state can be obtained,
like some stream ciphers and authenticated encryption schemes, Algorithm 2 will not
work efficiently since it is hard to implement partial encryptions or decryptions. In
this case, Algorithm 1 is a good choice since it only involves these state bits, and
one bit of key information can be recovered using a single linear approximation trail.
However, when there are several strong trails containing the same state bits, known as
the linear hull effect, recovering key bits with Algorithm 1 is infeasible. To overcome
this, Röck and Nyberg extended Matsui’s Algorithm 1 to linear hulls. However, Röck
and Nyberg found that their theoretical estimates are quite pessimistic for low success
probabilities and too optimistic for high success probabilities. To deal with this,
we construct new statistical models where the theoretical success probabilities are
in a good accordance with experimental ones, so that we provide the first accurate
analysis of the extension of Matsui’s Algorithm 1 to linear hulls. To illustrate the
usefulness of our new models, we apply them to one of the ten finalists of the NIST
Lightweight Cryptography (LWC) Standardization project: TinyJAMBU. We provide
the first cryptanalysis under the nonce-respecting setting on the full TinyJAMBU v1
and the round-reduced TinyJAMBU v2, where partial key bits are recovered. Our
results do not violate the security claims made by the designers.
Keywords: Matsui’s Algorithm 1 · Linear Hull · TinyJAMBU

1 Introduction
The linear cryptanalysis of block ciphers, originally proposed by Matsui [Mat93], uses a
strong linear approximation u · x⊕ w · EK(x) = v ·K between certain bits of the plaintext
x, the ciphertext EK(x), and the key K, where a · b = ⊕n−1

j=0 ajbj is the inner product of
the two n-bit values a and b. Here, u and w are called the input and the output masks,
respectively.

To evaluate how strong the approximation is, the correlation c = 2p− 1 was introduced,
where p is the probability that the approximation holds. We say that an approximation
is strong if the absolute value of the correlation is large. In order to find such strong
approximations, Matsui aimed to find a linear trail by chaining approximations from round
to round over the cipher and estimate the total correlation using the Piling-Up Lemma.

With such approximations, and given a sufficient amount of data, key bits can be
recovered by comparing the correlation of u · x ⊕ w · EK(x) evaluated under known
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plaintext-ciphertext pairs (x, EK(x)) with the value of the correlation obtained by Matsui’s
Algorithms 1 and 2. However, attacks based on this approach make many assumptions
that, while successful in the case of the Data Encryption Standard (DES), fail to hold for
other ciphers due to strong linear hull effects.

Daemen et al. [DGV94] found that there may exist several trails that share the same
input and output masks and give non-negligible contributions to the total correlation of
u · x⊕ w · EK(x). The set of all trails that share the same u and w was called the linear
hull by Nyberg [Nyb94]. Hence, Matsui’s algorithms will not work as expected in this case
since correlation of u · x⊕ w · EK(x) is determined by all trails in the hull, rather than by
a single trail. Moreover, the correlation of a linear hull is related to the value of the key.
For instance, the sign of the correlation of a linear trail for key-alternating ciphers varies
with the value of the key and thus leads to different values of the correlation of this hull.

Several approaches have been proposed to deal with the key dependency of correlations
of these trails. Nyberg [Nyb94] showed that the squared total correlation of the hull is
equal to the average of the squared total correlation over the keys. However, there can
be keys that give correlations with negligible magnitude so that the linear distinguisher
is not effective, as pointed out by Murphy [Mur12]. For a fixed key, the correlation
of the (composition of the) linear hull can be estimated by evaluating the correlations
of all strong trails that belong to this hull under the same key. Cho [Cho10] showed
how this can lead to improved linear attacks on PRESENT. Besides these approaches,
there has been some interest in deducing key information from the value of the observed
correlations [AR16, CS11, HN11, NH07, RN13].

To obtain more key information, attacks often follow the approach of Matsui’s Algorithm
2 by guessing key bits involved outside the hull. However, for certain stream ciphers or
authenticated encryption schemes where only partial input or output bits of state can be
obtained, Matsui’s Algorithm 2 will not work efficiently since it is hard to proceed with
partial encryptions or decryptions. In this case, Matsui’s Algorithm 1 can be used since it
only uses these partial input and output bits of the state.

For ciphers with a strong linear hull effect, key recovery attacks based on Matsui’s
Algorithm 1 are complicated. To deal with this problem, Röck and Nyberg [RN13] proposed
the linear hull version of Matsui’s Algorithm 1 which can recover more information about
the key. It uses the fact that the correlation of a linear hull can be the same for different
keys in key-alternating ciphers. Then, the whole key space can be divided into disjoint
key classes according to the corresponding correlations. If the key space can be divided in
such a way, we may identify in which key class the right one lies according to the observed
correlation after collecting a sufficient amount of data.

Röck and Nyberg [RN13] introduced a decision function that takes the observed
correlation as input and outputs the guessed key class based on the maximum likelihood
estimate (MLE). Note that there can be cases where the decision function takes a wrong
class as output. As shown in [RN13], the error probability for such cases is related not
only to the data complexities but also the key class that the right one lies in. In other
words, when mounting attacks, this error probability will vary with the value of the right
key. To theoretically decide how much data should be collected in their attack, Röck and
Nyberg [RN13] adopted the approach of evaluating the average error probabilities over
all keys as the total error probability of the attack. When deducing the relation between
data complexities and total error probabilities, they equally treated the error probability
for each wrong decision, and then computed the amount of data gathered using their
statistical model in each case. The data complexity is then evaluated as the upper bound
of these data complexities computed for each wrong decision.

To recover more key information, they also proposed statistical models under the basic
and multiple related-key settings, where the differences of the correlations under a pair
of related keys and under multiple related keys are considered, respectively. However,
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Table 1: Comparison of Statistical Models involved in this paper. As our experiments
show in Appendix F, our MLE-based model is slightly more precise but much slower to
compute, compared to the threshold-based model.

Statistical Model Röck and Nyberg This Paper
Threshold-Based MLE-Based

Methodology
asymptotic estimate CDF of accurately

of upper bound approximated distribution
of data complexity of data complexity

Decision Function MLE threshold MLE

Absolute Error 93.75% (Fig. 4) 2.19 % (Fig. 3) 1.9 % (Fig. 5)

Reference [RN13] Sect. 3.1 Sect. 3.2

Röck and Nyberg observed in their experimental verification of these three statistical
models on PRESENT [BKL+07] that the relation between the data complexities and the
error probabilities is not accurately described. To be more specific, the data complexities
predicted by the theoretical models are quite pessimistic for low success probabilities,
and too optimistic for high success probabilities. We found that the reason for such
an inaccuracy comes from their methodology of deducing the relation, where the error
probability is evaluated using an asymptotic estimate of the upper bound of the data
complexities.

We will construct two kinds of new statistical models that accurately describe the
relation between the data complexities and the error probabilities. The accuracy benefits
from a new methodology to deduce the error probability using the cumulative distribution
function (CDF) of the accurately approximated distribution of the statistic related to the
data complexities. With this new methodology, two different kinds of decision functions
are adopted. The first one is based on the maximum likelihood estimate (MLE) that was
also exploited by Röck and Nyberg [RN13]; the second one is based on threshold values,
which is slightly less precise but much easier to handle. A detailed comparison of these two
statistical models along with the one proposed by Röck and Nyberg [RN13] is depicted in
Table 1. The contributions of this paper are as follows:

New Statistical Models, Methodology, and Decision Function. In Sect. 3, we propose
several new statistical models following the new methodology for all three attack settings
considered in [RN13], which Röck and Nyberg refer to as the direct attack, the basic
related-key, and the multiple related-key settings. Moreover, we build two different models
under each setting according to whether the data collected are distinct or not. In all these
attack settings, we are given all correlations for this linear hull and the corresponding key
classes. Then, we have to decide in which key class the right one lies by comparing the
statistical value with the theoretical correlation values. There are two kinds of decision
functions we adopted: the one based on the maximum likelihood estimate (MLE) and the
one based on threshold values. Since the MLE-based decision function has already been
introduced by Röck and Nyberg [RN13], we omit the description of this kind of decision
function here, and focus on the threshold-based one.

Take the statistical model for the direct attack setting where the threshold-based
decision function is exploited as an example. Assume that there are q possible correlations,
and let C(K) = {c0, c1, . . . , cq−1} denote the set containing them where ci < ci+1 for all
0 ≤ i ≤ q − 2. Let K(ci) be the set that consists of all keys under which the correlation
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of the linear hull is ci. Given a sufficient amount of data, it is likely that the observed
correlation ĉ is close to the correlation evaluated under the right key. The statistical
behavior of ĉ can be approximated by a normal distribution and there are q normal
distributions with different expectations. To deal with the decision problem related to
multiple distributions, we adopt the threshold-based decision function where the average
value of every two adjacent correlations is taken as the threshold. In other words, K(ci) is
regarded as the right key class if ĉ fulfills (ci−1 + ci)/2 < ĉ ≤ (ci + ci+1)/2. As for the case
when i = 0 and q − 1, we only have to compare ĉ with (c0 + c1)/2 and (cq−2 + cq−1)/2,
respectively.

Such a decision strategy is inspired by several previous works [BLNW12, BW12,
BBR+13, WCC+16] where a decision between two distributions has to be made. The
probability of making a wrong decision can then be accurately evaluated with the cumulative
distribution function (CDF) of the distribution of the statistic. To show the impact of
this new methodology, we also applied it to the MLE-based decision function adopted by
Röck and Nyberg [RN13] in Sect. 3. A detailed comparison of these two different kinds of
statistical models is shown in Appendix F.

Our experiments on the 256-round permutation of TinyJAMBU confirm the error
probabilities predicted theoretically, and show that the statistical models introduced
by Röck and Nyberg [RN13] are far from accurate. More specifically, we find that the
maximum absolute value of the theoretical probability minus the experimental probability
of our models is 2.19 % (threshold-based) or 1.9 % (MLE-based), compared to 93.45 % for
their models. We refer to Figs. 3, 4, and 12 for detailed comparisons.

Cryptanalysis of TinyJAMBU. TinyJAMBU is a family of Authenticated Encryption
with Associated Data (AEAD) algorithms. In March 2021, the updated version Tiny-
JAMBU v2 was selected as one of the ten finalists of the NIST LWC Standardization
project [Nat21].

In [SSS+20], Saha et al. introduced the first third-party cryptanalysis on round-reduced
TinyJAMBU v1 in the nonce-misuse setting. Later in [TSY+21], Teng et al. gave the first
partial key recovery attacks on round-reduced TinyJAMBU v1 in the nonce-respecting
setting, however, their attacks can only be applied on the cipher with the 128-bit key.

In Sect. 4, we provide partial key recovery attacks in the nonce-respecting setting which
are suitable for all key lengths (i.e., 128, 192, and 256 bits). These attacks are on the full
TinyJAMBU v1 and the round-reduced TinyJAMBU v2 by respectively using 384-round
and 387-round linear hulls in the tag generation phase with our proposed statistical models.
Note that they are the first cryptanalysis results in the nonce-respecting setting on the
full TinyJAMBU v1 and the round-reduced TinyJAMBU v2. A comparison between our
attacks and the above two works is given in Table 2. The security claims made by the
designers are not violated by our results.

To allow our results to be reproduced, all source code along with detailed instructions
for all experiments in this paper is available at: https://github.com/MuzhouLi/attack_
tinyjambu_code.

2 Preliminaries
2.1 Linear Trails and Linear Hulls of Key-Alternating Ciphers
Denote Fn2 as the space of n-dimensional binary vectors over F2 = {0, 1}. Then we can
denote EK(x) as the block cipher encryption of the plaintext x ∈ Fn2 under the κ-bit master
key K ∈ Fκ2 .

In this paper, we only consider key-alternating iterative ciphers. The concept of key-
alternating ciphers was proposed by Daemen and Rijmen [DR02]. It forms a special but

https://github.com/MuzhouLi/attack_tinyjambu_code
https://github.com/MuzhouLi/attack_tinyjambu_code
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Table 2: Summary of attacks on TinyJAMBU.

TinyJAMBU v1 TinyJAMBU v2

Attack Phase
Nonce Setup, Initialization

Tag Generation Tag Generation
AD Processing & Encryption

Attacked/Total Rounds 338/384 2604/3200 384/384 387/640
Nonce-Respecting 7 3 3 3
Data Complexity 262.68 214 ≥ 296.8 ≥ 296.8

Success Probability ≈ 63 % N/A ≥ 82 % ≥ 82 %

Attack Type Forgery
Partial Key Rec. Partial Key Rec. Partial Key Rec.

(1-bit key) (≥ 7-bit key) (≥ 7-bit key)
Attack Method Differential Cube Linear Hull Linear Hull
Supported Key Length 128, 192, 256 128 128, 192, 256 128, 192, 256
Reference [SSS+20] [TSY+21] Sect. 4 Sect. 4

important subset of modern block ciphers. Almost all Substitution-Permutation Networks
(SPNs) and some Feistel ciphers are key-alternating.

Let ki represent the n-bit round key in round i of an iterative block cipher with
1 ≤ i ≤ r. Then for a key-alternating cipher EK(x), ki is XORed with the output state
of the i-th round function fi. Additionally, the initial round key k0 is XORed with the
plaintext before the first round. All round keys ki with 0 ≤ i ≤ r are generated from K by
means of the key schedule.

Assuming that there is a linear trail θ of an r-round key-alternating cipher, the input
mask of round i is θi−1 and the output mask is θi with 1 ≤ i ≤ r. The inner product of
binary vectors is defined as u · x =

⊕n−1
j=0 ujxj where x0 is the rightmost bit of x. Then

the correlation of the i-th round can be defined as

Cθi−1,θi = 2 Pr[θi−1 · x⊕ θi · fi(x) = 0]− 1

where fi : Fn2 → Fn2 is the i-th round function. The correlation of the linear trail θ under
K for a key-alternating cipher [DGV94] is

Cθ(K) = (−1)θ0·k0

r∏
j=1

(−1)θi·kiCθi−1,θi = (−1)θ0·k0⊕···⊕θr·kr
r∏
j=1

Cθi−1,θi .

Note that only the sign of Cθ(K) is affected by K. The statistical models that we will
introduce later, as well as those of Röck and Nyberg [RN13], are actually benefiting from
this property. In fact, this property still holds for the variant of the iterated Even-Mansour
structure where the round key is only XORed with part of the state. A simple explanation
of this property is: if one takes the part that does not XOR any key in each round as
XORing all 0 key bits, such ciphers can be regarded as key-alternating ciphers. Another
formal proof of this property for such ciphers is provided in Appendix A. For simplicity, we
will still refer to them as key-alternating ciphers when introducing the statistical models.

A linear hull (u,w), as proposed by Nyberg [Nyb94], consists of all linear trails satisfying
u = θ0 and w = θr. Its correlation can be computed if we can know all correlations of the
linear trails comprising this linear hull with the condition that they are estimated under
the same key K. In other words, the correlation of the linear hull (u,w) under K is

C(K) =
∑

θ:θ0=u,θr=w
Cθ(K) =

∑
θ:θ0=u,θr=w

(−1)θ0·k0⊕···⊕θr·kr
r∏
j=1

Cθi−1,θi .

In the original version of Matsui’s Algorithm 1 [Mat93], one bit of information of the
key can be obtained using the sign of the observed correlation C(K). However, this will
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succeed only when there is a single dominant trail in this linear hull. In other words,
other trails in this hull are assumed to have negligible contributions. Known examples of
ciphers admitting this condition are DES and Serpent [BAK98], in contrast to for example
PRESENT [BKL+07] and TinyJAMBU [WH19, WH21] which split all correlations into a
large number of trail correlations without a single dominant trail. For ciphers that have
multiple dominant trails, Matsui’s Algorithm 1 is not suitable anymore. In order to recover
key bits for these ciphers, Röck and Nyberg [RN13] generalized Matsui’s Algorithm 1 to
consider the linear hull effect.

2.2 Extension of Matsui’s Algorithm 1 to Linear Hull
Recalling the definition of C(K), we note that its value is fully determined by the master
key K since Cθi−1,θi are independent of the key bits. Hence, different values of C(K)
will separate the whole key space into disjoint classes. With these key classes, we can
recover some information of the key by identifying in which class the key lies according to
the observed C(K), given a sufficiently large amount of data. The extension of Matsui’s
Algorithm 1 proposed by Röck and Nyberg [RN13] is based on this observation.

However, there may be a lot of trails comprising a linear hull, so that considering all of
them to compute C(K) may not be practical. Therefore, Röck and Nyberg [RN13] only
consider trails whose absolute correlations are above a certain threshold τ when computing
C(K) and rely on Assumption 1. This assumption may not hold for all ciphers. However,
for the results in this paper on TinyJAMBU, we find all trails in the linear hull, therefore
this assumption is not necessary.

Assumption 1. (Röck and Nyberg [RN13].) The number of linear trails with correlation
of magnitude at least τ is not too large and the total influence of trails with trail correlation
of magnitude essentially smaller than τ is negligible.

Röck and Nyberg [RN13] introduced the alternative key K̂ ∈ Fl2 so that all the r round
keys ki can be derived linearly from K̂. If the key schedule is linear, K̂ = K. In the case
of a non-linear key schedule, the bits of the round key generated non-linearly from the
master key bits can be seen as new bits. Hence, K̂ contains not only bits of K used to
generate the round keys, but also bits associated to the non-linear relations on the bits of
K.

Consequently, there is a linear relation between K̂ ∈ Fl2 and the round keys, so
that there must exist a linear function f : (Fn2 )r+1 → Fl2 that maps the round masks
θ0, θ1, . . . , θr to a single mask v = f(θ0, θ1, . . . , θr) such that v · K̂ = θ0 · k0 ⊕ · · · ⊕ θr · kr
for all K. Under Assumption 1, let

ρ(v) =
∑

f(θ0,θ1,...,θr)=v
|Cθ(K)|≥τ

r∏
j=1

Cθi−1,θi .

Then the correlation of a linear hull (u,w) under K can be represented as

C(K) =
∑

v∈V={v∈Fl2, ρ(v) 6=0}

(−1)v·K̂ρ(v).

To compute all possible values of C(K) and their corresponding key classes, the
trivial method is to traverse all 2κ values of K. Röck and Nyberg [RN13] introduced
a faster method by choosing a basis B = (b0, b1, . . . , bt−1) of span(V ) ⊂ Fl2, where t is
the dimension of the vector space span(V ). Denote B as the t× l matrix containing all
these basis vectors and BT as its transpose. Then each value v ∈ V can be represented
as v = (v0, v1, . . . , vt−1) ∈ Ft2 with v =

∑t−1
j=0 vjbj = vB. Therefore, we can see that
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v · K̂ = vB · K̂ = v · (K̂BT ) def= v · K̂, where K̂ is only t bits. Hence, by traversing all
K̂ ∈ Ft2 and checking whether they can lead to a possible K, we can obtain all these key
classes with their correlations C(K).

Let C = {c0, c1, . . . , c|C|−1} be the set of all possible values of C(K). Then the whole
key space is divided into |C| disjoint classes

K(ci) = {K ∈ Fκ2 | C(K) = ci ∈ C}

for all 0 ≤ i ≤ |C| − 1. Note that it is equivalent to store K̂ ∈ Ft2 rather than K in
K(ci) when dealing with linear key schedules, as K̂ = K̂BT = KBT . With these key
classes, Röck and Nyberg [RN13] constructed a statistical model by adopting T1 = NK

0 as
a statistic, where NK

0 is the number of x satisfying the linear hull u · x⊕ w · EK(x) = 0
given N known data x. Then, K(ci) is taken as the key class the secret key lies in if the
index i maximizes

log2 πi +NK
0 log2 pi + (N −NK

0 ) log2 (1− pi),

where πi = 2−κ|K(ci)| and pi = (1 + ci)/2.
Given the value of the statistic T1 evaluated under N known data, the decision function

will output the key class in which the right one lies. However, it can make mistakes. Denote
Pij as the error probability that the decision function chooses i as its output while the
right key lies in the j-th class. Thus, the error probability when the j-th class contains the
right key is

∑
i 6=j Pij . As shown in [RN13], this error probability is not only determined

by N but also j. To theoretically evaluate N , Röck and Nyberg [RN13] regarded the
average error probabilities over all keys as the total error probability Pe =

∑
j πj

∑
i6=j Pij ,

where πj is the proportion of each key class. When constructing the relation between Pe
and N , they set each Pij as Pe/(|C| − 1) with |C| representing the number of key classes.
Then, to obtain Pij when making the decision between the i-th and j-th classes, they can
compute the data complexity Nij using their statistical model. The data complexity N of
the attack is then evaluated as the upper bound of all these Nij in order to obtain Pe. For
more details of their model, we refer to Röck and Nyberg [RN13].

In addition to this key recovery attack under the direct attack setting, Röck and
Nyberg [RN13] also proposed attacks under the basic and multiple related-key settings.
These two stronger settings are used with the aim of gaining more key information. For
related keys (K,K ′) satisfying K̂ ⊕ K̂ ′ = α ∈ Fl2, they evaluated

∆K,α = C(K)− C(K ′) =
∑
v∈V

(−1)v·K̂ρ(v)−
∑
v∈V

(−1)v·(K̂⊕α)ρ(v).

Note that many terms in the sum cancel out. Hence, using related keys, we can reduce the
number of v in the summation, and in most cases, reduce the number of possible values
of the correlations. The difference ∆K,α can be calculated efficiently by using the basis
B. As in the case of direct attack setting, for ciphers with linear key schedules, we can
directly choose the difference on K̂.

Let Cα = {c0, c1, . . . , c|Cα|−1} contain all possible values of ∆K,α. Then the whole key
space is divided into |Cα| disjoint classes

Kα(ci) = {K ∈ Fκ2 | ∆K,α = ci ∈ Cα}

for all 0 ≤ i ≤ |Cα| − 1. For the related-key setting, Röck and Nyberg [RN13] used the
statistic T2 = NK

0 −NK′

0 . The right key belongs to Kα(ci) if the index i maximizes

ln παi − (T2 −Nci/2)2
/N,
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where παi = 2−κ|Kα(ci)|. With this decision function and the statistic T2, the model for
the basic related-key setting was proposed under the assumption that NK

0 and NK′

0 are
independent.

In the multiple related-key setting, t differences α0, . . . , αt−1 ∈ Fl2 are chosen in such
a way that they form a dual basis for B, i.e., αj · bi = 1 holds for j = i and αj · bi = 0
otherwise. Since all basis vectors are independent, we can always solve this system if we
can, for all j, find (K,K ′) such that K̂ ⊕ K̂ ′ = αj holds.

For ciphers with a linear key schedule, it is equivalent if we choose t differences αj on
K̂ satisfying αj = (0, . . . , 0, 1, 0, . . . , 0) with only one active bit at the j-th bit position.
Then the statistic T2 can be used under each difference αj to decide in which key class the
secret key lies.

Assume that the key class decided under difference αj is Kαj (ηj). Then by combining
the results for all 0 ≤ j ≤ t− 1, we can see that the right key must belong to

KB(η) =
⋂

0≤j≤t−1
Kαj (ηj).

Denote Nα as the data complexity of the basic related-key attack using the key difference
α. Then the total data complexity is max0≤j≤t−1Nαj +

∑t−1
j=0Nαj . To obtain the total

error probability Pe, the error probability of the j-th basic related-key attack is set as
P
αj
e = 1− (1− Pe)1/t.
Röck and Nyberg [RN13] pointed out that a shortcoming of their models is that the

relation between N and Pe is not accurately described.

3 New Methodology and Accurate Statistical Models
In this section, we will introduce two kinds of new statistical models with accurate success
probabilities under the direct attack, basic related-key, and multiple related-key settings.

These two kinds of statistical models follow the same methodology that the error
probability is deduced using the cumulative distribution function (CDF) of the accurately
approximated distribution of the statistic related to the data complexities. However, they
exploit different decision functions. The threshold-based statistical models constructed in
Sect. 3.1 are much easier to handle, but slightly less precise, compared with the MLE-based
statistical models described in Sect. 3.2. In Sect. 4, we will perform experiments to verify
the accuracy of these models. A detailed comparison of these two kinds of statistical
models is shown in Appendix F.

3.1 Threshold-Based Statistical Models
3.1.1 Statistical Model in the Direct Attack Setting

Let C = {c0, c1, . . . , c|C|−1} be the set of all possible values of C(K) with the condition
that ci < ci+1 for all 0 ≤ i ≤ |C|− 2, and let K(ci) contain all keys K satisfying C(K) = ci.
With these key classes, we use the statistic

T1 = 2N
K
0
N
− 1

to mount attacks in the direct attack setting, where NK
0 records how many x fulfill

u · x⊕w · EK(x) = 0 after collecting N known data x. Note that the data collected can be
distinct or not; we will deal with both cases in our models.

Denote K∗ as the right key. Then the hypothesis Hi is defined as K∗ ∈ K(ci),
0 ≤ i ≤ |C| − 1. Now we have to decide which one of these |C| different hypotheses is true.
To deal with this multiple hypothesis testing problem, a decision function δ is adopted.
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It takes the obtained T1 as input and outputs the index of the decided right key class by
comparing T1 with one or two threshold values. The function δ is defined as1

δ(T1) =


0, if T1 ≤ (c0 + c1)/2,
|C| − 1, if T1 > (c|C|−2 + c|C|−1)/2,
i, if (ci−1 + ci)/2 < T1 ≤ (ci + ci+1)/2, 1 ≤ i ≤ |C| − 2.

The error probability of δ choosing Hi when Hj is true is Pij = Pr[δ(T1) = i|Hj ].
Let D(T1|Hi) represent the distribution of the statistic T1 under the hypothesis Hi,

and let N (µ, σ2) denote the normal distribution with expectation µ and variance σ2. Then
we have the following lemma:

Lemma 1. For sufficiently large N , D(T1|Hi) = N
(
ci,

1−c2
i

N B
)
where

B =
{

1, for KP sampling,
2n−N
2n−1 , for DKP sampling,

and n is the length of plaintexts, assuming all events are i.i.d.2 random variables. KP
sampling considers that the known plaintexts gathered may be repeated, whereas distinct
known plaintexts are collected in the case of DKP sampling.

Proof. Under the hypothesis Hi, the correlation of the linear hull u · x⊕ w · EK(x) = 0 is
ci and holds with probability pi = (1 + ci)/2. As we can see from [BN17, DR07, Mat93],
in the case of KP sampling, NK

0 follows a binomial distribution with expectation Npi
and variance Npi(1 − pi). In the case of DKP sampling, NK

0 follows a hypergeometric
distribution with expectation Npi and variance

Npi(1− pi)
2n −N
2n − 1 .

The binomial distribution and hypergeometric distribution can be tightly approximated
by the normal distribution when N is sufficiently large. Hence, in the case of KP sampling,
NK

0 ∼ N (Npi, Npi(1−pi)). When dealing with distinct plaintexts, NK
0 ∼ N (Npi, Npi(1−

pi) 2n−N
2n−1 ). Therefore, we can obtain the distributions of T1 in both cases.

With Lemma 1 and the decision function δ, we introduce Theorem 1 which states the
relation between the data complexity and the total error probability of the attack in the
direct attack setting.

Theorem 1. Given N data, K(ci) is taken as the right key class if δ(T1) = i. For
sufficiently large N , the total error probability is

Pe =
|C|−1∑
j=0

πj
∑
i, i 6=j

Pij

1A similar decision function was adopted in [AR16, APSD20]. They also noticed that the correlation is
key-dependent but did not describe the relation between error probabilities and data complexities. Hence,
they did not construct a general attack model.

2independent and identically distributed
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with πi = 2−κ|K(ci)| and

Pij =



Φ
(√

N
B(1−c2

j
)
(
c0+c1

2 − cj
))

, if i = 0,

1− Φ
(√

N
B(1−c2

j
)

(
c|C|−2+c|C|−1

2 − cj
))

, if i = |C| − 1,

Φ
(√

N
B(1−c2

j
)

(
ci+ci+1

2 − cj
))

−Φ
(√

N
B(1−c2

j
)

(
ci−1+ci

2 − cj
))

, if 1 ≤ i ≤ |C| − 2,

where Φ(·) denotes the cumulative distribution function of N (0, 1) and B is the constant
defined in Lemma 1.

Proof. Denote U =
√

N
B(1−c2

j
) (T1−cj). Recall that Pij = Pr[δ(T1) = i|Hj ] and D(T1|Hj) =

N (cj , B(1− c2j )/N). Then U ∼ N (0, 1) if T1 ∼ D(T1|Hj).

(1) When i = 0,

Pij = Pr[δ(T1) = 0 | Hj ]
= Pr[T1 ≤ (c0 + c1)/2 | T1 ∼ N (cj , B(1− c2j )/N)]

= Pr
[
U ≤

√
N

B(1− c2j )

(
c0 + c1

2 − cj
)]

= Φ
(√

N

B(1− c2j )

(
c0 + c1

2 − cj
))

.

(2) When i = |C| − 1,

Pij = Pr[δ(T1) = |C| − 1 | Hj ]
= Pr[T1 > (c|C|−2 + c|C|−1)/2 | T1 ∼ N (cj , B(1− c2j )/N)]

= Pr
[
U >

√
N

B(1− c2j )

(
c|C|−2 + c|C|−1

2 − cj
)]

= 1− Φ
(√

N

B(1− c2j )

(
c|C|−2 + c|C|−1

2 − cj
))

.

(3) When 1 ≤ i ≤ |C| − 2,

Pij = Pr[δ(T1) = i | Hj ]
= Pr[(ci−1 + ci)/2 < T1 ≤ (ci + ci+1)/2 | T1 ∼ N (cj , B(1− c2j )/N)]

= Pr
[√

N

B(1− c2j )

(
ci−1 + ci

2 − cj
)

< U ≤
√

N

B(1− c2j )

(
ci + ci+1

2 − cj
)]

= Φ
(√

N

B(1− c2j )

(
ci + ci+1

2 − cj
))

− Φ
(√

N

B(1− c2j )

(
ci−1 + ci

2 − cj
))

.
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By the definition of Pij , Pe follows from the Total Probability Theorem.

According to Röck and Nyberg [RN13], the average key information learned from this
attack is given by its Shannon entropy [Sha48]. Thus, on average h = −

∑
i πi log2(πi)

bits of key information can be recovered in the direct attack setting.

3.1.2 Statistical Model in the Basic and Multiple Related-Key Settings

In related-key settings, one can exploit different relations between correlations evaluated
under related keys, such as their differences or sum. Following Röck and Nyberg [RN13],
we consider their differences, namely ∆K,α = C(K)− C(K ′). In this way, one may obtain
more key bits than the statistical model in the direct attack setting, as explained in
Sect. 2.2. Let Cα = {c0, c1, . . . , c|Cα|−1} be the set containing all possible values of ∆K,α

with the condition that ci < ci+1 for all 0 ≤ i ≤ |Cα| − 2, and let Kα(ci) be the key class
composed of all K satisfying ∆K,α = ci.

In the related-key setting, we use the statistic

T2 = 2N
K
0
N
− 2N

K′

0
N

to recover the key bits, where NK
0 and NK′

0 are evaluated under two independent data
sets3. Denote the hypothesis Hi as K∗ ∈ Kα(ci), 0 ≤ i ≤ |Cα| − 1, where K∗ denotes the
right key. Then we are dealing with a similar hypothesis testing problem as in the direct
attack setting. Hence, the function δ introduced in Sect. 3.1.1 can still be used here as a
decision function, except that its input is now the value obtained by T2.

As before, in order to construct the relation between the data complexities and the
total error probabilities, we have to determine D(T2|Hi).

Lemma 2. For sufficiently large N , if NK
0 and NK′

0 are calculated under two independent
data sets,

D(T2|Hi) = N (ci, 2B/N), 0 ≤ i ≤ |Cα| − 1.
The constant B indicates whether or not distinct data is used, and its definition was given
in Lemma 1.

Proof. Under the hypothesis Hi, we denote cKi as the correlation of u · x⊕ w · EK(x) = 0
and cK′i as the correlation of u · x′ ⊕ w · EK′(x′) = 0. Then ci = cKi − cK

′

i . For sufficiently
large N , according to Lemma 1, we have

NK
0 ∼ N

(
N(1 + cKi )

2 ,
N(1− (cKi )2)

4 B

)
,

NK′

0 ∼ N

(
N(1 + cK

′

i )
2 ,

N(1− (cK′i )2)
4 B

)
.

Since x and x′ are chosen from two independent data sets, NK
0 and NK′

0 are independently
distributed. Therefore,

NK
0 −NK′

0 ∼ N

(
N(cKi − cK

′

i )
2 ,

N

4 (2− (cKi )2 − (cK
′

i )2)B
)
.

3A general form of T2 is T ′
2 = 2 NK

0
N1
− 2 NK′

0
N2

, which means that NK
0 and NK′

0 are obtained from
two data sets with different size N1 and N2. Similar to Lemma 2, one can obtain its distribution
D(T ′

2 |Hi) = N (ci, ( 1
N1

+ 1
N2

)B) by assuming that (cK
i )2 � 1 and (cK′

i )2 � 1. Note that when N1 = N2,
T ′

2 will have the smallest variance 2B/N1, which is exactly the same as that of T2. Considering that smaller
variance will lead to higher success probability under the same data complexity, we directly adopted T2 as
the statistic here, rather than T ′

2 .
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Since ci = cKi − cK
′

i and (cKi )2 + (cK′i )2 � 2, we can see that

NK
0 −NK′

0 ∼ N
(
Nci

2 ,
N

2 B
)
.

Thus, the distribution of T2 under Hi can be obtained.

Using Lemma 2, the relation between the data complexity and the total error probability
of the attack under the basic related-key setting is shown in Theorem 2. The proof is
similar to the proof of Theorem 1, and is therefore omitted.

Theorem 2. Given two independent data sets with size N , Kα(ci) is taken as the right
key class if δ(T2) = i. For sufficiently large N , the total error probability is

Pαe =
|Cα|−1∑
j=0

παj
∑
i, i 6=j

Pij

with παi = 2−κ|Kα(ci)| and Pij can be computed by

Pij =



Φ
(√

N
2B
(
c0+c1

2 − cj
))
, if i = 0,

1− Φ
(√

N
2B

(
c|Cα|−2+c|Cα|−1

2 − cj
))

, if i = |Cα| − 1.

Φ
(√

N
2B

(
ci+ci+1

2 − cj
))

−Φ
(√

N
2B

(
ci−1+ci

2 − cj
))

, if 1 ≤ i ≤ |Cα| − 2,

where Φ(·) denotes the cumulative distribution function of N (0, 1) and B is the constant
defined in Lemma 1.

Using the attack in the basic related-key setting, hα = −
∑
i π

α
i log2(παi ) bits of key

information can be obtained on average.
To obtain more information about the key K, multiple key differences are used.

Following Röck and Nyberg [RN13], t differences α0, . . . , αt−1 ∈ Fl2 are chosen that form a
dual basis for B. For each key difference αj , we will proceed with an attack in the basic
related-key setting using statistic T2 and obtain the right key class Kαj (ηj). If all these
attacks succeed, the right key must belong to

KB(η) =
⋂

0≤j≤t−1
Kαj (ηj),

so that we learn on average hη = −
∑
η πη log2 πη bits of key information, where πη =

2−κ|KB(η)|.
Note that the data encrypted by K in each basic related-key attack should be chosen

independently rather than using the same data set. Otherwise, we cannot directly combine
all these right key classes due to their dependency. Denote Nα as the size of data set in the
basic related-key attack using the key difference α and Pαe as the error probability. Then
we need 2

∑t−1
j=0Nαj data in total and the error probability is Pe = 1−

∏t−1
j=0(1− Pαje ).

3.2 MLE-Based Statistical Models
Here, we will introduce another kind of statistical models with the decision function used
by Röck and Nyberg [RN13], however we will adopt the same methodology of deducing
the relation between N and Pe.

As before, we will introduce statistical models under three settings: direct attack, basic
related-key, and multiple related-key. For each setting, we will consider whether the data
is drawn under KP sampling or DKP sampling.
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3.2.1 Statistical Model in the Direct Attack Setting

Let C = {c0, c1, . . . , c|C|−1} be the set of all possible values of C(K) for all 0 ≤ i ≤ |C| − 1,
and let K(ci) contain all keys K satisfying C(K) = ci. With these key classes, we use the
statistic NK

0 to mount attacks in the direct attack setting. Note that NK
0 records how

many x fulfill u · x⊕ w · EK(x) = 0 after collecting N known data x. It follows a binomial
distribution with expectation Npi and variance Npi(1 − pi) when data is drawn under
KP sampling, where pi = (1 + ci)/2. Under DKP setting, it follows a hypergeometric
distribution with same expectation but with variance Npi(1− pi) 2n−N

2n−1 .
Denote K∗ as the right key. Then the hypothesis Hi is defined as K∗ ∈ K(ci),

0 ≤ i ≤ |C| − 1. Now we have to decide which one of these |C| different hypotheses is true
after observing the value of NK

0 .

Results under KP Sampling. Röck and Nyberg [RN13] proposed a decision function
based on the maximum likelihood estimate. By taking the prior information πi of each
hypothesis Hi into consideration, they gave the decision function δ∗1(NK

0 ) defined as the
index i that maximizes

ML(i) = log2 πi +NK
0 log2 pi + (N −NK

0 ) log2 (1− pi).

With this decision function, we can deduce the relation between N and Pe by adopting the
same methodology as in Sect. 3.1. As before, we first obtain the error probability Pij of
accepting Hi when Hj is true, and then Pe can be obtained as Pe =

∑|C|−1
j=0 πj

∑
i, i 6=j Pij

following the Total Probability Theorem.
To determine the error probability Pij , the value range of NK

0 has to be obtained.
Since δ∗1(NK

0 ) = i, ML(i) > ML(t) holds for any t 6= i. Therefore, for each t 6= i, we can
obtain an interval of NK

0 , which is

log2 πt − log2 πi +N log2(1− pt)−N log2(1− pi)
log2 pi − log2(1− pi)− log2 pt + log2(1− pt)

< NK
0 < N and NK

0 ∈ Z

when pi > pt and

0 < NK
0 <

log2 πt − log2 πi +N log2(1− pt)−N log2(1− pi)
log2 pi − log2(1− pi)− log2 pt + log2(1− pt)

and NK
0 ∈ Z

when pt > pi.
By taking the intersection between the above |C| − 1 intervals, the value range of NK

0
can be obtained. Denote the minimum of its range as N i

min and the maximum as N i
max.

Then
Pij = ΦbN,pj (N

i
max)− ΦbN,pj (N

i
min)

where ΦbN,pj is the Cumulative Distribution Function (CDF) of binomial distribution with
expectation Npj and variance Npj(1− pj). When implementing this model in practice,
we found that the evaluation procedure is rather slow. Thus, we used the CDF of normal
distribution with same expectation and variance instead to compute Pij . Note that
binomial distribution can be approximated by the normal distribution when N is extremely
large. The validity of this statistical model as well as this approximation is confirmed in
Sect. 4.4.

Results under DKP Sampling. NK
0 follows a hypergeometric distribution in this case.

We tried to deduce the relation between N and Pe by using this accurate distribution
based on the maximum likelihood estimate directly. However, it is difficult to determine
the interval of NK

0 since there is no analytical solution of ML(i) > ML(t) for any t 6= i.
Thus, we use the normal distribution to approximate this distribution.
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The decision function δ∗2(NK
0 ) is chosen as the index i that maximizes

ML(i) = ln πi −
1
2 ln pi −

1
2 ln (1− pi)−

(NK
0 −Npi)2(2n − 1)

2Npi(1− pi)(2n −N) .

To obtain Pij , we have to deduce the interval of NK
0 . For each t 6= i, we can find that NK

0
fulfills A1(NK

0 )2 +A2N
K
0 +A3 > 0, where

A1 = pi(1− pi)− pt(1− pt),
A2 = 2Npt(1− pt)pi − 2Npi(1− pi)pt,
A3 = N2pi(1− pi)p2

t −N2pt(1− pt)p2
i

− 2Npi(1− pi)pt(1− pt)
2n −N
2n − 1

(
ln πt
πi
− 1

2 ln pt
pi
− 1

2 ln 1− pt
1− pi

)
.

By solving these |C| − 1 inequalities and noticing that 0 < NK
0 < N , we can obtain the

interval of NK
0 . Then Pij can be obtained using the CDF of the normal distribution

N
(
Npj , Npj(1− pj) 2n−N

2n−1

)
.

3.2.2 Statistical Models in Basic/Multiple Related-Key Settings

Here we consider the differences between the correlations under related key pairs as
before. Let Cα = {c0, c1, . . . , c|Cα|−1} be the set containing all possible values of ∆K,α =
C(K)− C(K ′), and let Kα(ci) be the key class containing all K that satisfies ∆K,α = ci.

We adopt the statistic Nα = NK
0 − NK′

0 to mount key recovery attacks, where NK
0

and NK′

0 are evaluated under two independent data sets. Hence, according to Lemma 2, it
follows a normal distribution N

(
Nci

2 , N2 B
)
where B is the constant defined in Lemma 1.

The decision function δ∗3(Nα) based on the maximum likelihood estimate is already
given in [RN13], which outputs the index i maximizing

ln παi −
(Nα −Nci/2)2

NB
.

When δ∗3(Nα) = i and j is the right index, the value range of Nα can be obtained by
intersecting all intervals of Nα under each t 6= i. The interval of Nα when ci > ct is

B ln παt −B ln παi −Nc2t/4 +Nc2i /4
ci − ct

< Nα < N,

and the interval when ci < ct is

0 < Nα <
B ln παt −B ln παi −Nc2t/4 +Nc2i /4

ci − ct
.

Using the CDF of normal distribution N
(
Ncj

2 , N2 B
)
, we can obtain Pij under both KP

and DKP sampling. Then the total error probability Pe in the basic related-key setting
can be obtained. By evaluating Pαje under each key difference αj , one can obtain the error
probability Pe in the multiple related-key setting with Pe = 1−

∏t−1
j=0(1− Pαje ).

4 Application to TinyJAMBU
4.1 Brief Introduction to TinyJAMBU
TinyJAMBU [WH19] is a family of AEAD algorithms submitted to the NIST LWC
Standardization project and has been chosen as one of the 32 second-round candidates.
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The design is inspired by JAMBU [WH15], a third-round candidate of the CAESAR
competition.

One year after the second-round candidates were selected, only one cryptanalysis result
on TinyJAMBU was announced: Saha et al. [SSS+20] showed weaknesses in the original
TinyJAMBU v1. To address these weaknesses, the designers proposed the updated version
TinyJAMBU v2 [WH21] in September 2020, which extends all 384-round permutations
used in the original version into 640 rounds. In March 2021, TinyJAMBU v2 was selected
as one of the ten finalists of NIST LWC Standardization project [Nat21].

The TinyJAMBU AEAD mode can be divided into four phases: initialization (key
setup and nonce setup), AD processing, encryption, and finalization. Both TinyJAMBU
v1 and v2 use the same keyed permutation Pb : F128

2 → F128
2 mapping a 128-bit state

(s127, s126, . . . , s0) into (z, s127, . . . , s1) with z = s0 ⊕ s47 ⊕ (∼ (s70&s85))⊕ s91 ⊕ b, where
b is one bit of the master key K.

Following Saha et al. [SSS+20], we use the term “tag generation” to refer to the part
of the finalization phase after the keyed permutation Pb[l2]. Note that tag generation uses
only the l1-round keyed permutation, where l1 = 384 for TinyJAMBU v1 and l1 = 640 for
TinyJAMBU v2.

Given a 96-bit Nonce, a key K of 128, 192, and 256 bits, TinyJAMBU processes the
messageM and the associated data A using a 128-bit internal state and keyed permutations
Pb[l1] and Pb[l2]. The TinyJAMBU authenticated encryption mode is illustrated in Fig. 1.
Detailed parameters and security goals under unique nonces are listed in Table 3.

Denote κ as the length of master key K = (kκ−1, kκ−2, . . . , k0). In each phase, an
l-round Pb[l] is used and b = ki mod κ for the i-th round (0 ≤ i ≤ l − 1).

Init.

AD Processing Encryption Finalization

Figure 1: Structure of TinyJAMBU.

Table 3: TinyJAMBU and its security goal with a unique nonce [WH19, WH21].

Version Key State Nonce Tag
l1 l2

Security Goal
Size Size Size Size Encr. Auth.

v1
128 128 96 64 384 1024 112-bit 64-bit
192 128 96 64 384 1152 168-bit 64-bit
256 128 96 64 384 1280 224-bit 64-bit

v2
128 128 96 64 640 1024 112-bit 64-bit
192 128 96 64 640 1152 168-bit 64-bit
256 128 96 64 640 1280 224-bit 64-bit

The designers restrict the amount of messages (associated data, plaintext, or ciphertext)
per key to 250 bytes, and each message is at least 8 bytes. In other words, TinyJAMBU
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can be invoked at most 247 times under the same key if each message consists of 8 bytes
(i.e., two message blocks).

4.2 Searching All Linear Trails in a Given Hull for TinyJAMBU
In this paper, we focus on the linear cryptanalysis of the round-reduced permutation Pb[l1]
used in the tag generation phase. We aim to find a linear hull that only has non-zero masks
on the tags T0||T1. The masks on the other state bits are all set to zero, as illustrated
in Fig. 2. Linear correlations in the tag were already explored by Saha et al. [SSS+20],
however they were unable to turn their observations into an attack on TinyJAMBU v1.
We show how using this kind of linear hull, key recovery attacks can be mounted with the
statistical models4 introduced in Sect. 3 after gathering enough information on the tags
T0||T1.

TinyJAMBU
without the last permutation

Tag Generation

Figure 2: Linear hull for TinyJAMBU. Masks on normal lines are all-zero, while those on
thick lines are non-zero.

To find such a linear hull, the trails comprising this hull should be obtained first.
Since the work by Mouha et al. [MWGP11], many automatic search algorithms based
on Mixed-Integer Linear Programming (MILP) have been proposed, such as [FWG+16,
SSS+20, SSS+19, SHS+13, SHW+14a, SHW+14b, WWH+13]. In this paper, we also use
MILP to help us to search for linear trails of TinyJAMBU. In order to focus on the main
part of our model, we refer to Mouha et al. [MWGP11] for the detailed models of the basic
operations.

Denote the 32-bit non-zero input (resp. output) mask illustrated in Fig. 2 as λ0 (resp.
λ1). Note that bits of T1 can be represented by non-linear Boolean functions in the bits
of the input to Pb[l1] and K. A direct way to evaluate the correlation of the linear hull
(λ0, λ1) is to represent the approximation λ0 · T0 ⊕ λ1 · T1 as a non-linear Boolean function
in the bits of the input to Pb[l1] and K. If we can compute the correlation of this Boolean
function, the correlation of (λ0, λ1) under K can then be obtained.

Unfortunately, there is no polynomial-time algorithm for computing the correlation of
a Boolean function with a degree higher than two, as pointed out in [SSS+20, SSS+19].
Similar to the search algorithm proposed by Saha et al. [SSS+20], we make the assumption
in our search algorithm that each output bit of the AND gate affected by a key bit can be
regarded as a fresh new bit. This assumption is reasonable since key bits are randomly
chosen. We also experimentally verified this assumption in Appendix C, which confirms its
validity. Then in our search algorithm, each application of Pb introduces a new variable.
Therefore, λ0 · T0 ⊕ λ1 · T1 can be expressed as a quadratic Boolean function in the bits of
T0 and these new variables.

4These models are applicable here since Pb[l1] can be seen as an SPN cipher with a one-bit round key
that is XORed to part of the 128-bit internal state, as we mentioned in Sect. 2.1.
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In our MILP model, we declare X r = {X r127,X r126, . . . ,X r0 } ∈ F128
2 with 0 ≤ r ≤ R to

record input masks on r-th round and Yr0 ,Yr1 ∈ F2 with 0 ≤ r ≤ R− 1 to record the input
masks of AND gate in r-th round when searching for R-round trails. According to the
mask propagation rules, the following property holds:

Property 1. The output mask of the r-th round X r+1 can be computed as

X r+1
127 = X r0 , X r+1

46 = X r47 ⊕X r0 , X r+1
90 = X r91 ⊕X r0

X r+1
j−1 = X rj , ∀ j ∈ {0, 1, . . . , 127}\{0, 47, 70, 85, 91}
X r+1

69 = X r70 ⊕ Yr0 , X r+1
84 = X r85 ⊕ Yr1

where Yr0 and Yr1 can take any value in F2 if X r0 = 1, but Yr0 = 0 = Yr1 if X r0 = 0. In other
words, Yr0 ≤ X r0 and Yr1 ≤ X r0 should be satisfied.

Our search algorithm for a single linear trail has the objective to minimize the number
of active AND gates in the hope of discovering a trail with a high correlation, such as the
trail proposed in submission document of TinyJAMBU [WH19]. This is due to the fact
that the Boolean function containing an active AND gate

f(x0, x1) = x0&x1 ⊕ a0x0 ⊕ a1x1

has correlation (−1)a0a12−1, where ai ∈ F2 are known coefficients and xi ∈ F2. However,
when multiple active AND gates are contained in the Boolean function, its absolute
correlation is not always related with the number of AND gates due to the dependency
between them. This has already been pointed out in several recent papers [SSS+20,
SSS+19, STSH20]. For an illustration, see Example 1.

Example 1. Let f(x0, x1, x2) = x0&x1 ⊕ x1&x2 ⊕ a0x0 ⊕ a1x1 ⊕ a2x2 be a Boolean
function where all ai are known coefficients. One may say that its absolute correlation
|Cor(f)| is 2−2 since there are two AND gates. However, due to the dependency between
x0&x1 and x1&x2, |Cor(f)| = 2−1 if a0 = a2; otherwise, |Cor(f)| = 0.

To deal with such a dependency, Shi et al. [SSS+19] proposed an algorithm that can
transform a quadratic Boolean function into disjoint form. In other words, the input bits
for each AND gate are independent in the transformed function. Denote f(x0, x1, . . . , xn)
as the quadratic Boolean function

x0&x1 ⊕ x1&x2 ⊕ · · · ⊕ xn−1&xn ⊕ a0x0 ⊕ · · · ⊕ anxn,

where all aj are known coefficients. For such a quadratic Boolean function, each AND
gate is chained with another one, and thus we call it a Boolean function with chained AND
gates.

Proposition 1. For the R-round keyed permutation Pb[R] in the tag generation phase
of TinyJAMBU under key K = (kκ−1, kκ−2, . . . , k0) with key length κ ∈ {128, 192, 256},
λ0 ·T0⊕λ1 ·T1 can be divided into 15 disjoint Boolean functions fs. Moreover, fs contains
several Boolean functions with chained AND gates.

Proof. Let xi = (xi127, x
i
126, . . . , x

i
0) ∈ F128

2 represent the input value of Pb in the i-th
round and let xi+1 = Pb(xi) with b = ki mod κ. Equivalently,

xi+1
j = xij+1, ∀ 0 ≤ j ≤ 126; xi+1

127 = xi0 ⊕ xi47 ⊕ xi70&xi85 ⊕ 1⊕ xi91 ⊕ ki mod κ.
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Using Property 1, for the r-th round (0 ≤ r ≤ R− 1), we have

X r · xr ⊕X r+1 · xr+1 =
127⊕
j=0
X rj xrj ⊕

127⊕
j=0
X r+1
j xr+1

j

=
127⊕
j=1

(X rj ⊕X r+1
j−1 )xrj ⊕X r+1

127 x
r+1
127 ⊕X r0 xr0

= X r0 (xr47 ⊕ xr91 ⊕ Yr0xr70 ⊕ Yr1xr85 ⊕ xr+1
127 ⊕ xr0)

= X r0 (xr70&xr85 ⊕ Yr0xr70 ⊕ Yr1xr85 ⊕ 1⊕ kr mod κ).

Combining all these R equations, we get

λ0 · T0 ⊕ λ1 · T1 = X 0 · x0 ⊕XR · xR

=
R−1⊕
r=0

(X r · xr ⊕X r+1 · xr+1)

=
R−1⊕
r=0
X r0 (xr70&xr85 ⊕ Yr0xr70 ⊕ Yr1xr85 ⊕ 1⊕ kr mod κ).

Furthermore, we can see that λ0 · T0 ⊕ λ1 · T1 consists of 15 disjoint Boolean functions,
i.e., λ0 · T0 ⊕ λ1 · T1 =

⊕14
s=0 fs, where

fs =
ts⊕
j=0
X s+15j

0 (xs+15j
70 &xs+15j

85 )

⊕
ts⊕
j=0
X s+15j

0 (Ys+15j
0 xs+15j

70 ⊕ Ys+15j
1 xs+15j

85 ⊕ 1⊕ ks+15j mod κ)

and ts = bR−1
15 c for all 0 ≤ s ≤ ((R − 1) mod 15); otherwise, ts = bR−1

15 c − 1, where byc
denotes the greatest integer less than or equal to y.

Recall that xr70 = xr−15
85 for r ≥ 15, so that xs+15j

70 = x
s+15(j−1)
85 for j ≥ 1. Hence, by

replacing all xs+15j
70 with xs+15(j−1)

85 when j ≥ 1 in fs, we obtain

fs =X s0 (xs70&xs85)⊕
ts⊕
j=1
X s+15j

0 (xs+15(j−1)
85 &xs+15j

85 )

⊕X s0Ys0xs70 ⊕
ts⊕
j=1

[
X s+15(j−1)

0 Ys+15(j−1)
1 ⊕X s+15j

0 Ys+15j
0

]
x
s+15(j−1)
85

⊕X s+15ts
0 Ys+15ts

1 xs+15ts
85 ⊕

ts⊕
j=0
X s+15j

0 (1⊕ ks+15j mod κ).

From the above equation, we can see that fs is composed of several Boolean functions with
chained AND gates, since the bit xs+15j

85 may be chained with xs+15(j−1)
85 and xs+15(j+1)

85 if
X s+15j

0 = 1 = X s+15(j+1)
0 .

Song et al. [STSH20] introduced the following lemma that directly reveals the relation
between the number of chained AND gates and the absolute correlations of Boolean
functions based on the same idea as Shi et al. [SSS+19].
Lemma 3. (Lemma 1 and 2 in [STSH20].) Denote the Boolean function with chained
AND gates as

f(x0, . . . , xn) = x0&x1 ⊕ x1&x2 ⊕ · · · ⊕ xn−1&xn ⊕ a0x0 ⊕ · · · ⊕ anxn.
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(1) When n is odd, |Cor(f)| = 2−(n+1)/2.

(2) When n is even, |Cor(f)| = 2−n/2 if
⊕n/2

j=0 a2j = 0; otherwise, |Cor(f)| = 0.

The proof of Lemma 3 was given by Song et al. [STSH20]. Since we have to compute
the correlation of the linear hull based on these trails, the sign of the correlation is also
important here, but not given in [STSH20]. The proof of Corollary 1 is similar to the proof
of Lemma 3, and is given in Appendix B.

Corollary 1. Denote the sign of the correlation Cor(f) as Sign(f). Then

Sign(f) =
t−1∏
i=0

(−1)
(⊕i

j=0
a2j
)
a2i+1

where t = (n+ 1)/2 if n is odd, t = n/2 if n is even, and
⊕t

j=0 a2j = 0.

Since we aim to find all trails in a given linear hull, the actual correlation can be
computed using Lemma 3 and Corollary 1 after we find a trail. Hence, in our MILP-based
search algorithm, we still count all active AND gates with the aim of accelerating the
search process.

According to Lemma 3 and Corollary 1, the correlation of such a Boolean function is
only related to the number of AND gates and the coefficients ai. Recall the definition of
fs described in the proof of Proposition 1. There can be trails having different X r0 , Yr0
or Yr1 leading to same coefficients of fs benefiting from the XORed form of coefficients of
x
s+15(j−1)
85 for 1 ≤ j ≤ ts, and their total contributions to the correlation of fs is equivalent

to that of one of them due to Lemma 3 and Corollary 1. To clarify this, consider the
following example.

Example 2. Let f(x0, x1, x2) = x0&x1⊕x1&x2⊕x0⊕ (a0⊕a1)x1⊕x2 denote a Boolean
function having a similar form as fs, where ai are known coefficients. Due to Lemma 3
and Corollary 1, the correlation of f is Cor(f) = (−1)a0⊕a12−1. Hence, Cor(f) under
(a0, a1) = (0, 0) is the same as under (a0, a1) = (1, 1). These two trails are considered to
be different since they have different ai in our model. Nevertheless, their contribution to
the hull is only Cor(f), rather than 2Cor(f).

If all coefficients of fs comprising λ0 · T0 ⊕ λ1 · T1 are the same among the trails,
their total contribution to the correlation of this hull will be equivalent to contribution of
one of the trails. This can be deduced from Lemma 3 and Corollary 1 due to the linear
hull effect of such Boolean functions. In this paper, all these trails are said to be in the
same equivalence class. To identify which trails belong to the same equivalence class, we
introduce the following proposition.

Proposition 2. Suppose that we have obtained several trails with masks X r for all
0 ≤ r ≤ R and Yr0 ,Yr1 for all 0 ≤ r ≤ R− 1. They are in the same equivalence class if for
any 1 ≤ j ≤ ts and for any 0 ≤ s ≤ 14,

X s0 , X s0Ys0 , X
s+15ts
0 Ys+15ts

1 , X s+15j
0 , X s+15(j−1)

0 Ys+15(j−1)
1 ⊕X s+15j

0 Ys+15j
0

are the same among these trails.

In order to find all trails comprising the hull, after obtaining a trail, we have to add
extra constraints in the MILP model to remove this trail as well as the trails belonging to
the same equivalence class. This can be done with Property 2. The idea of this property
was first proposed by Balas et al. [BJ72] and also used in [SHW+14a]. Before using
this property, additional variables should be declared in order to restrict the value of



180 Revisiting the Extension of Matsui’s Algorithm 1 to Linear Hulls

X s+15j
0 Ys+15j

0 and X s+15j
0 Ys+15j

1 for all 0 ≤ j ≤ ts and for all 0 ≤ s ≤ 14. Take X s0Ys0 as
an example. Denote As0 ∈ F2 as the extra variable, then the constraints

X s0 ≥ As0
Ys0 ≥ As0
X s0 + Ys0 ≤ As0 + 1

should be added to the model. In other words, As0 = X s0Ys0 . Hence, we can restrict the
value of X s0Ys0 by restricting the value of As0 using Property 2.

Property 2. Let Z = (Z0,Z1, . . . ,Zn−1) ∈ Fn2 represent all the coefficients shown in
Proposition 2. Denote σ = (σ0, σ1, . . . , σn−1) ∈ Fn2 as a solution. Then the constraint

n−1∑
i=0

[σi + (−1)σiZi] ≥ 1

can be used to remove the solution Z = σ.

The search algorithm for all trails in a given linear hull for the round-reduced Pb[l1]
of TinyJAMBU is illustrated in Algorithm 1. The masks of the linear hull should be
determined in advance, and a different choice of (λ0, λ1) may influence the processing
time of our algorithm. Our choice of (λ0, λ1) follows a two-step heuristic strategy. Firstly,
we use the model proposed by Saha et al. [SSS+20] to search as many trails with high
correlation as possible, and record corresponding linear hulls (λ0, λ1). Then for each linear
hull, we try to find all trails comprising it using our Algorithm 1.

Algorithm 1: Searching All Trails in a Given Linear Hull for Pb[l1]
input :R: number of rounds;

(λ0, λ1): 32-bit input and output masks of linear hull;
output :L: a list containing all trails in this hull;

C(L): list with the signed correlations of the corresponding trails;
1 Declare an empty MILP modelM;
2 Declare variables X ri ∈ F2 with 0 ≤ i ≤ 127 for each 0 ≤ r ≤ R;
3 Declare variables Yrj ∈ F2 with 0 ≤ j ≤ 1 for each 0 ≤ r ≤ R− 1;
4 for r ← 0 to R− 1 do
5 Add constraints for r-th round based on Property 1;
6 M.addCon( X 0 = λ0 � 64, XR = λ1 � 64 ); //X r = (X r127,X r126, . . . ,X r0 )
7 M.addObj(

∑R−1
r=0 X r0 ); // MILP finds minimum value of objective.

8 L ← [ ], C(L)← [ ];
9 SolveM to obtain a solution;

10 while M has a solution σ do
11 Compute the actual correlation C(σ) using Lemma 3 and Corollary 1;
12 if |C(σ)| 6= 0 then
13 Add σ into L and C(σ) into C(L);
14 UpdateM by adding the extra condition given in Property 2;
15 SolveM to obtain another solution;

4.3 Collecting Key Bits Involved in a Linear Trail
After obtaining all trails consisting of the given linear hull using Algorithm 1, the key bits
involved in each linear trail should be collected in order to acquire key information with
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the statistical models introduced in Sect. 3. Saha et al. [SSS+20] proposed a similar open
question about the existence of weak keys with a strong correlation. Our analysis here can
help to find the answer to this question.

Using Lemma 3, each fs comprising λ0 · T0 ⊕ λ1 · T1 is approximated to

ts⊕
j=0
X s+15j

0 (1⊕ ks+15j mod κ).

Consequently, according to Proposition 1, we can obtain

λ0 · T0 ⊕ λ1 · T1 ≈
14⊕
s=0

ts⊕
j=0
X s+15j

0 (1⊕ ks+15j mod κ) =
R−1⊕
r=0
X r0 (1⊕ kr mod κ).

Therefore, the master key bit kj is involved in the linear trail (X 0,X 1, . . . ,XR) only if⊕
r∈J X r0 = 1, J = {r | j = r mod k, 0 ≤ r ≤ R− 1}.

4.4 Experimental Verification of our Statistical Models Using Tiny-
JAMBU

To verify the statistical models introduced in Sect. 3, we now implement key recovery
attacks in the direct attack, basic related-key, and multiple related-key settings on the
256-round keyed permutation of TinyJAMBU [WH19], respectively.

Using the search algorithm introduced in Sect. 4.2, we found a linear hull containing
four trails for the 256-round permutation using the 128-bit K = (k127, . . . , k0), as shown
in Table 4. The key bits involved are derived using the method introduced in Sect. 4.3.

Table 4: Linear trails for 256-Round Pb of TinyJAMBU, where the input mask involves
bits 7, 30, 37, 44, 54, 64, 77, 81, 84, 91, 98, 118, and 121, and the output mask involves bit
64.

Key Bits Involved Correlation
7, 27, 30, 37, 44, 81, 111, 118 +2−10

6, 7, 27, 30, 37, 44, 81, 111, 118 −2−11

7, 21, 27, 30, 37, 44, 81, 111, 118 −2−11

6, 7, 21, 27, 30, 37, 44, 81, 111, 118 +2−11

Since the key schedule of TinyJAMBU is linear, the alternative key K̂ is equal to
K. As pointed out in Sect. 2.2, to accelerate the computation of all possible values of
C(K), we can directly traverse all K̂ = K̂BT = (ek2, ek1, ek0) where ek2 = k6, ek1 =
k7 ⊕ k27 ⊕ k30 ⊕ k37 ⊕ k44 ⊕ k81 ⊕ k111 ⊕ k118, ek0 = k21. Then the key classes containing
corresponding K̂ can be obtained, which are

K(c0 = −2.5 · 2−10) = {7},K(c1 = −0.5 · 2−10) = {2, 3, 6},
K(c2 = +0.5 · 2−10) = {0, 1, 4},K(c3 = +2.5 · 2−10) = {5}.

Note that we only need to store the values of K̂ rather than K in these key classes for
ciphers with a linear key schedule, as explained in Sect. 2.2.

4.4.1 Experimental Verification of Threshold-Based Models

With the key classes K(ci), key recovery attacks under the direct attack setting can be
mounted using the threshold-based statistical model introduced in Sect. 3.1.1. In each
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experiment, we choose different values for N , compute T1, and then check whether the
right key lies in K(ci) with i = δ(T1). The attack succeeds if δ returns the right key
class. After repeating this experiment 2000 times, we can obtain the experimental error
probabilities P̂e while the theoretical probabilities Pe can be obtained by Theorem 1.

Regarding the statistical models in the related-key setting, since the key schedule is
linear, we can directly choose the key difference α for K̂. Here, we set α = 5 and obtain
the key classes

Kα(c0 = −2 · 2−10) = {0, 7},
Kα(c1 = 0) = {1, 3, 4, 6},

Kα(c2 = +2 · 2−10) = {2, 5}.

Similar to the attack in the direct attack setting, we choose different values of N , compute
T2, and then check whether the right key lies in Kα(ci) with i = δ(T2) in each experiment.
Repeating this experiment 2000 times, the experimental error probabilities can be obtained.
The theoretical values of error probabilities can be computed using Theorem 2.

In the multiple related-key setting, we choose t = 3 differences for K̂ that form a dual
basis for B. Since the key schedule is linear, it is equivalent to choose α0 = 1, α1 = 2, and
α2 = 4 for K̂. We mounted the three basic related-key attacks, and we obtained the total
error probability Pe = 1−

∏2
j=0(1− Pαje ) both experimentally and theoretically.

Comparisons of P̂e and Pe in the above three attack settings under KP sampling are
illustrated in Fig. 3, where N is the size of data set encrypted under one key. From this
figure, we can see that the experimental error probabilities confirm the theoretical models.

For the models under DKP sampling, we can conclude that the error probabilities ob-
tained experimentally also correspond to those obtained theoretically, since the probability
that plaintexts gathered under KP sampling have repeated values is

1−
N−1∏
s=1

(
1− s

2128

)
≤ 1−

(
1− N − 1

2128

)N−1
≈ 1− exp

{
N − 1
2128 (N − 1)

}
≈ 0

for all N . Moreover, since B under DKP sampling is (2128−N)/(2128−1) ≈ 1 for n = 128,
the theoretical values under KP and DKP sampling are almost the same, and the difference
is at most 2−15 according to our experiments.

As a comparison, we also mounted attacks on the same 256-round keyed permutation in
the above three settings using the statistical models proposed by Röck and Nyberg [RN13].
The results are illustrated in Fig. 4. One can see that the maximum absolute value of the
theoretical error probability minus the experimental one of our models is 2.19 %, compared
to 93.45 % for their models.

4.4.2 Experimental Verification of MLE-Based Models

To show the validity of MLE-based statistical models, we perform a comparison of the
theoretical and empirical error probabilities of the key recovery attacks. For each attack
setting, we implemented 2000 experiments on the 256-round keyed permutation of Tiny-
JAMBU with the same aforementioned linear hull. A comparison of the results under KP
sampling is given in Fig. 5. For the direct attack statistical models constructed under DKP
sampling, we provide a comparison in Fig. 6. As for the related-key statistical models
under DKP sampling, the comparison results are omitted since both the empirical and
theoretical error probabilities are very close to those under KP sampling. The maximum
absolute distance between theoretical error probabilities predicted by the MLE-based
models and experimental ones is 1.9%. This implies that our new proposed methodology
is an improvement over the models of Röck and Nyberg [RN13].



Muzhou Li, Nicky Mouha, Ling Sun and Meiqin Wang 183

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5
log(N)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Er
ro

r P
ro

ba
bi

lit
y

Pe in direct attack setting (KP)
Pe in direct attack setting (KP)
Pe in basic related-key setting (KP)
Pe in basic related-key setting (KP)
Pe in multiple related-key setting (KP)
Pe in multiple related-key setting (KP)

Figure 3: Comparison of error probabilities using the threshold-based models introduced
in Sect. 3.1.

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5
log(N)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Er
ro

r P
ro

ba
bi

lit
y

Figure 4: Comparison of error probabilities using models of Röck and Nyberg [RN13].
The legend of this graph is the same as Fig. 3.
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Figure 5: Comparison of error probabilities using the MLE-based models described in
Sect. 3.2.
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Figure 6: Comparison of error probabilities using the direct attack models under DKP
sampling using the MLE-based models described in Sect. 3.2.
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4.5 Partial Key Recovery Attacks on TinyJAMBU
In this subsection, we mount the first key recovery attacks on all key sizes using the
statistical models introduced in Sect. 3, which recover partial key bits by using a linear hull
on 384 (out of 384) and 387 (out of 640) rounds of the permutation Pb[l1] used in the tag
generation phase, for TinyJAMBU v1 and round-reduced TinyJAMBU v2 respectively. For
simplicity, we only introduce the application of the threshold-based models in this subsection.
Cryptanalysis results using the MLE-based models are summarized in Appendix F, where
we also made some comparisons between these two kinds of statistical models.

First, we introduce attack results on TinyJAMBU v1 in the direct attack, basic related-
key, and multiple related-key settings, and then we explain how a similar result can be
applied to TinyJAMBU v2. To fully understand the security of TinyJAMBU, under each
attack setting, we present two different types of key recovery results according to whether
they are implemented in the single-user or the weak-key multi-user setting. The weak-key
multi-user setting was used here because the number of tags collected per key is limited to
247. Hence, to obtain valid attacks with higher success probabilities, one has to consider
multiple users and collect fewer than 247 tags from each user. The keys owned by these
users are different but must fulfill the same XOR relation in order to use our statistical
models, as shown in Fig. 7. As a supplement of our security evaluation, we also show how
these results behave when there is a single user available.

In Table 5, we present one result under each setting as an example. As shown in Table 5,
given N tags in total, h key bits can be recovered with success probability Prsuccess using
our statistical models. All these tags are collected under 2m, 2 · 2m and 15 · 2m distinct
keys for the direct attack, basic related-key, and multiple related-key settings, respectively.

Direct attack
Basic related-key

User 1 User 2 User 2m

Single-user
Weak-key multi-user

Multiple related-key

Figure 7: Examples of keys in the direct attack, basic related-key and multiple related-key
settings, where each setting can be either single-user or weak-key multi-user. Note the
additional assumption that the attacks are not done in the uniform standard model, as
some bits of these keys must fulfill the same XOR relation. The white parts represent the
XOR relation that each key owned by these users must fulfill; the grey parts are the other
secret key bits which can be drawn uniformly at random but must be different within the
same row.

We now give a detailed description of the results. First, we start by finding suitable
linear hulls. Using Algorithm 1 with (λ0 = 0x8024C000, λ1 = 0x00220808) for 384 rounds,
we obtain all trails comprising this hull. For each κ ∈ {128, 192, 256}, there are 850 trails
in total. Their absolute correlations are computed with Lemma 3, while their signs are
first determined by Corollary 1 and then multiplied by (−1)

⊕R−1
r=0
X r0 in order to eliminate

X r0 · 1 in the approximation. Details of the correlations are shown in Table 6.
Following Sect. 4.3, we can extract the key bits involved in each of the linear trails for

every key length. Since every bit of the round key is equal to one bit of the master key,



186 Revisiting the Extension of Matsui’s Algorithm 1 to Linear Hulls

Table 5: Cryptanalysis results on the full TinyJAMBU v1.

Setting Type N 2m h Prsuccess κ = 128 κ ∈ {192, 256}

Direct attack
weak-key 296.8 250 7.639 82.35 % 3multi-user
single-user 296.8 1 7.639 82.35 % 3 3

Basic related-key
weak-key 297.1 250 8.033 86.16 % 3multi-user
single-user 297.1 1 8.033 86.16 % 3 3

Multiple related-key
weak-key 2102.31 256 14.063 84.85 % 3multi-user
single-user 2102.31 1 14.063 84.85 % 3 3

Table 6: Correlations of 850 linear trails for 384-round Pb[l1].

Correlation +2−42 +2−43 +2−44 +2−45 +2−46 +2−47 +2−48

Number of Trails 1 10 39 92 120 81 82
Correlation −2−42 −2−43 −2−44 −2−45 −2−46 −2−47 −2−48

Number of Trails 2 11 36 93 117 82 84

the alternative key K̂ is equal to K ∈ Fκ2 . To accelerate the computation of C(K) and
find key classes K(ci), as explained in Sect. 2.2, we directly traverse all K̂ = K̂BT . For
each key length, K̂ is a 15-bit value (ek14, ek13, . . . , ek0) that contains different bits of K,
as shown in Appendix D.

By traversing all 215 K̂, we can get all possible values of the correlations C(K) and
their corresponding key classes K(ci) in the direct attack setting. We find that there are
727 different values of C(K) ranging from −77.875× 2−42 to +77.875× 2−42 and therefore
727 key classes. Moreover, for every key length, they share the same values of ci and
πi = 2−15|K(ci)|, however the key classes K(ci) are different.

4.5.1 Key Recovery Attacks on TinyJAMBU v1 in the Direct Attack Setting

Using the statistical model introduced in Sect. 3.1.1, we can mount attacks in the direct
attack setting using N known tags with correlations ci.

The time complexities of these attacks correspond to the N encryption units to gather
N tags. Using Theorem 1, the success probabilities can be determined after N is chosen.
Different choices of N will lead to different success probabilities. The relation between the
data complexities and their corresponding success probabilities is illustrated in Fig. 8. If
the N tags need to be distinct (i.e., DKP sampling), we can obtain a relation between the
data complexities and their success probabilities that is almost the same as the relation
in Fig. 8 since B ≈ 1 in this case. Hence, all these attacks have approximately the same
data and time complexities if N is fixed, no matter what data sampling is used. The key
information obtained from these attacks is always 7.639 bits.

To ensure a high success probability, the attacks here require more than 296 tags.
However, the TinyJAMBU design document [WH19, WH21] assumes that at most 247

tags can be obtained per key. To satisfy this restriction, we provide variants for all the
attacks in the multi-user setting [Bir05] where tags are gathered under distinct keys. In
this case, fewer than 247 tags are required per key.

The related-key and multi-user settings are well-established in cryptographic literature,
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Figure 8: Success probabilities of direct attacks on TinyJAMBU using the threshold-based
model.

and recent works such as Bose et al. [BHT18] also consider keys generated according
to arbitrary, possibly correlated distributions. In lightweight applications, the practical
relevance of the related-key and (weak-key) multi-user settings cannot be understated. A
very large number of devices is often deployed (each with its own key). The keys may
be weak keys; they may have known XOR relations [ABM+12, § 5.2], and some bits of
the keys may be set to specific values [VGE13, Sect. 7]. Such attacks should also be
relevant to NIST: its recommendations for key generation allow keys with known XOR
relations [BRD20, § 6.3] and it may occur that keys deployed in validated modules have
reduced randomness [Yub19].

Note the weak-key multi-user setting gives the adversary more power than strictly
required. We actually allow less powerful adversaries: the first key can be without any
restrictions (it can be drawn uniformly at random from the entire key space), but it does
impose restrictions on any subsequent keys that are derived from it (they are weak keys
because the same XOR relation needs to hold on some bits of the key). This distinction can
be relevant when the adversary does not own or control one device (to fully compromise
it by extracting its key, and thereby determining the class of weak keys), but instead
between the some bits of every key there is some fixed XOR relation that is unknown to
the adversary.

Several reviewers correctly pointed out that this can be considered as some kind of
related-key setting, but we wanted to maintain a distinction because we consider that the
“direct attack” setting (including multi-user weak-key) is much more practically relevant
than the “basic related-key” and “multiple related-key” settings (where we recovery more
key bits).

Now we give detailed descriptions on our attacks. Note that the correlation of a linear
hull is only determined by the key bits involved in this hull rather than the whole key.
Denote key bits involved as KI , and the other bits as KO. Furthermore, the correlation is
equal for all KI with same K̂. Here, K̂ is the aforementioned 15-bit equivalent key.

The value of the statistic used in the statistical model introduced in Sect. 3.1.1 will
not be affected by the value of KO, and it also remains unchanged for different KI if K̂
is the same. The computation is done under tags generated with a fixed unknown value
of KI and KO (i.e., the whole key) when the attacks are implemented in the single-user
setting. However, in the weak-key multi-user setting, it is evaluated through tags collected
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under several unknown values of KI and KO with same K̂. The statistic computed with
multiple keys has the same distribution as the statistic in the single-user setting if both
statistics are computed under the same K̂. At the same time, tags gathered under these
keys are assumed to be independent with each other. Since we obtain them by encrypting
randomly chosen messages under distinct nonces, this independence assumption can be
assured by the randomness of the cipher itself. Hence, we can still use the statistical model
introduced in Sect. 3.1.1 in the weak-key multi-user setting if the keys share the same K̂.

Note that the security margin of TinyJAMBU in the multi-user setting will drop from
2d into 2d−m when 2m different values of keys are used, and d is the number of bits of
encryption security illustrated in Table 3. Under each key, N/2m tags are collected. Due
to the designers’ restriction of the data per key, N/2m ≤ 247. Meanwhile, since there are
at most 2κ−|K̂| different keys sharing the same K̂, m should satisfy that 2m ≤ 2κ−|K̂|,
where |K̂| denotes the size of K̂. Thus, N ≤ 247+m ≤ 247+κ−|K̂|. Combining all of the
above, only when N ≤ min{2d−m, 247+κ−|K̂|}, attacks in the weak-key multi-user setting
can be considered to be valid ones.

In the attacks on TinyJAMBU, |K̂| = 15 for all κ ∈ {128, 192, 256}. Given N = 296.8

tags, key information can be derived with Prsuccess = 82.35 % when 250 distinct keys
are used. These kinds of attacks are only applicable to key lengths κ ∈ {192, 256} since
N > min{2112−50, 2128−15+47} = 262 when κ = 128.

The same results can be applied to all key lengths in the direct attack setting if tags
are collected from a single user. Note that TinyJAMBU adopts an unusual definition of
the nonce-respecting setting. As stated in its design documents [WH19, WH21]: “the
associated data is part of the nonce in TinyJAMBU, i.e.,, the combination (nonce ‖
associated data) is the effective nonce of the cipher.” Therefore, although the nonce in
TinyJAMBU is only 96 bits, the effective nonce can be longer, so that it is technically
possible to specify more than 296 values without repetition. However, such results in the
single-user setting do not threaten the security of TinyJAMBU since they need more tags
per key than allowed by the designers.

4.5.2 Key Recovery Attacks on TinyJAMBU v1 in the Basic and Multiple Related-
Key Settings

In the basic related-key setting, the key difference α must be chosen carefully since it
influences Prsuccess even when N is fixed. To evaluate effects under different α, the notation
achieved key information ĥ of [RN13] is adopted here, which is the information of the
recovered key bits h multiplied by the success probability Prsuccess.

After independently collecting two sets of tags under K̂ and K̂ ⊕ α with each set
containing Nα tags, we can get Prsuccess using Theorem 2 for both KP and DKP sampling.
The relation between ĥ and Nα is described in Fig. 9, which holds for all κ, but with
different α, and does not depend on whether KP or DKP sampling is used. The data
and time complexities of these related-key attacks are N = 2Nα tags and N encryption
units, respectively. The details of the key differences chosen for each Nα can be found in
Appendix E.

In the weak-key multi-user setting, we gather these two sets of Nα tags generated
under related keys from 2m users. For each user, the values of KO used in related keys are
chosen independently. Such attacks are valid only when N ≤ min{2d−m, 2κ−|K̂|+48}. As
such, they are applicable for all key lengths except κ = 128. For instance, if Nα = 296.1

(i.e., N = 297.1), 8.033 bits of key information can be recovered with Prsuccess = 86.16 %
for both samplings where m = 50.

The same amount of key information can be obtained for all key lengths with same
complexities, as well as the same Prsuccess, in the single-user setting.

The key information recovered can be improved to 14.063 bits when multiple key



Muzhou Li, Nicky Mouha, Ling Sun and Meiqin Wang 189

93.6 94.1 94.6 95.1 95.6 96.1 96.6 97.1 97.6 98.1 98.6
log(N )

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

Ac
hi

ev
ed

 K
ey

 In
fo

rm
at

io
n

Threshold-Based: In basic related-key setting (KP and DKP)

Figure 9: The achieved key information of the basic related-key attacks on TinyJAMBU
using the threshold-based model.

differences are adopted simultaneously. In such attacks, we choose 15 differences αi =
(0, . . . , 0, 1, 0 . . . , 0) ∈ F15

2 for K̂, where only the i-th bit is active in αi. Under each αi, we
performed a basic related-key attack after independently obtaining two sets of Nα tags.
Then, the total data complexities of these attacks are N = 30Nα and time complexities
are N encryption units. The relation between Prsuccess and Nα is illustrated in Fig. 10,
which is approximately the same for any key length and for both KP and DKP sampling.
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Figure 10: Success probabilities of multiple related-key attacks on TinyJAMBU using
threshold-based model.

In this multiple related-key setting, N ≤ min{2d−m, 2κ−|K̂|+48}, leading to valid attacks
in the weak-key multi-user setting for key lengths κ ∈ {192, 256}. If we choose Nα = 297.4

and N ≈ 2102.31, 14.063 bits of key information can be recovered with Prsuccess = 84.85 %
for κ ∈ {192, 256} for both KP and DKP sampling. In the single-user setting, we can
recover 14.063 bits of key information on all three variants of TinyJAMBU v1 with the
same complexities and success probabilities.
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4.5.3 Key Recovery Attacks on Round-Reduced TinyJAMBU v2

Benefiting from the keyed permutation Pb, we can extend our 384-round linear hull into a
387-round one with λ′0 = 0x8024C000 = λ0 and λ′1 = 0x00044101 = λ1 ≫ 3 without any
extra cost. The reason is that there are no active AND gates among these three rounds,
therefore they do not contain extra key bits in the linear trails. Hence, the linear hull on
387 rounds is actually the same as the 384-round one except that they contain different
bits of the tags that do not influence the above results. Therefore, all cryptanalysis results
proposed for TinyJAMBU v1 can also be applied to the 387-round TinyJAMBU v2.

5 Conclusion and Future Work
We revisited Röck and Nyberg’s extension of Matsui’s Algorithm 1 to linear hulls, intro-
ducing new statistical models under all settings considered by Röck and Nyberg. Our
models are highly accurate: the absolute error between the theoretical and experimental
probabilities is 2.19 % (threshold-based) or 1.9 % (MLE-based), compared to 93.45 % for
Röck and Nyberg. Improvements on the accuracy between our model and theirs are mainly
due to the new methodology of deducing the relation between success probabilities and
data complexities. We obtain cryptanalysis results on TinyJAMBU, which is one of the ten
finalists of the currently ongoing NIST LWC Standardization project. Our results are under
the nonce-respecting setting on the full TinyJAMBU v1 and round-reduced TinyJAMBU
v2. To maintain high success probabilities, the number of tags gathered per key is higher
than 296. However, the designers restrict the data per key to at most 247 tags. We overcame
this by implementing the attacks under the weak-key multi-user setting where tags are
collected under several distinct keys with a fixed XOR relation instead of being uniformly
chosen. This weak-key multi-user setting is highly relevant for lightweight applications
where often many small devices are deployed, each with their own key and with some bits
of the key set to specific values. We also provided results in the single-user setting under
the assumption that there is no restriction on the number of tags per key. Nevertheless,
cryptanalysis results in this case do not violate the designers’ security claims. Benefiting
from the unusual nonce-respecting setting adopted by TinyJAMBU, more than 296 tags
can be specified by putting part of the nonce inside the associated data. Unfortunately
our attacks are only partial key recovery: an exhaustive search on the remaining key bits
would exceed the claimed 112, 168, and 224 bits of security. Although our results do not
threaten the practical security of TinyJAMBU, they are the first cryptanalysis results
in the nonce-respecting setting covering all key lengths of full TinyJAMBU v1 and the
first one on TinyJAMBU v2. For future work, we suggest to further apply our statistical
models on other cryptographic algorithms, and to investigate whether repeating the attack
with different masks or different key relations may recover more bits of information about
the key. In particular, we leave the application of our new model to PRESENT to future
work, and note that it may be necessary to rely on Assumption 1 for PRESENT as there
is a very significant amount of trail clustering, rather than considering all trails as we do
in this paper for TinyJAMBU. Lastly, we recall that our results do not violate the security
claims made by the designers.
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A Explanation of the Property Described in Sect. 2.1
Theorem 3. For an SPN cipher E, let G(x, k) : Fn2 ×Fs2 → Fn2 be the round function with
s < n, and let k0 be the initial round key that is XORed with part of the plaintext before
the first round. Given an input x ∈ Fn2 and a round key k ∈ Fs2, G first consists of the
unkeyed round function F : Fn2 → Fn2 , followed by the XOR of only part of the output with
the round key k. The correlation of a linear trail for E satisfies the property that only the
sign of the correlation is influenced by the key.

Proof. Without loss of generality, assume that the highest s bits of F (x) are XORed with
the round key k, and we denote them as F1(x). The other (n − s) bits are denoted as
F2(x). In other words, G(x, k) = (F1(x)⊕ k)||F2(x). Given a linear trail (Γ,Λ = Λ1||Λ2)
of round function G, the correlation of this trail can be represented as

C =
∑
x

(−1)Γ·x⊕Λ·G(x,k) =
∑
x

(−1)Γ·x⊕Λ1·(F1(x)⊕k)⊕Λ2·F2(x)

=
∑
x

(−1)Γ·x⊕Λ1·F1(x)⊕Λ1·k⊕Λ2·F2(x)

=
∑
x

(−1)Γ·x⊕Λ·F (x)⊕Λ1·k

=(−1)Λ1·k
∑
x

(−1)Γ·x⊕Λ·F (x).

Hence, only the sign of the correlation is influenced by key.
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B Proof of Corollary 1
Proof. We use the same transformations provided by Song et al. [STSH20] when proving
Lemma 3.

(1) When n is odd, the following transformation is used:

y2j−1 = x2j−1, 1 ≤ j ≤ t,
y2j = x2j ⊕ x2(j+1), 0 ≤ j ≤ t− 2,
y2t−2 = x2t−2.

Then we can transform f into

g(y0, . . . , y2t−1) = y0&y1 ⊕ y2&y3 ⊕ · · · ⊕ y2(t−1)&y2t−1 ⊕ a′0y0 ⊕ · · · ⊕ a′2t−1y2t−1

satisfying Cor(f) = Cor(g). The coefficients of yi in g are

a′2i = ⊕ij=0a2j , a
′
2i+1 = a2i+1, 0 ≤ i ≤ t− 1.

Since the sign of Cor(x0&x1 ⊕ a0x0 ⊕ a1x1) is (−1)a0a1 , the sign of Cor(g) is

Sign(g) =
t−1∏
i=0

(−1)a
′
2ia
′
2i+1 =

t−1∏
i=0

(−1)
(⊕i

j=0
a2j
)
a2i+1 .

Therefore, we have Sign(f) = Sign(g).
(2) When n is even, another transformation can be used:

y2j−1 = x2j−1, 1 ≤ j ≤ t,
y2j = x2j ⊕ x2(j+1), 0 ≤ j ≤ t− 1,
y2t = x2t.

Then f can be transformed into

g(y0, . . . , y2t) = y0&y1 ⊕ y2&y3 ⊕ · · · ⊕ y2(t−1)&y2t−1 ⊕ a′0y0 ⊕ · · · ⊕ a′2ty2t

with coefficients

a′2i =
i⊕

j=0
a2j , 0 ≤ i ≤ t; a′2i+1 = a2i+1, 0 ≤ i ≤ t− 1.

Since y2t does not appear in any of these AND gates in g, we have Cor(g) = 0 if
a′2t =

⊕t
j=0 a2j = 1. If a′2t = 0, we have

Sign(f) = Sign(g) =
t−1∏
i=0

(−1)a
′
2ia
′
2i+1 =

t−1∏
i=0

(−1)
(⊕i

j=0
a2j
)
a2i+1 .

C Experimental Verification of the Assumption Adopted
in our Search Algorithm

In our searching algorithm introduced in Sect. 4.2, we made the assumption that “each
output of the AND gate affected by a key bit can be regarded as a fresh new bit”. Here, we
use the same round-reduced cipher adopted in Sect. 4.4, the 256-round keyed permutation
of TinyJAMBU, to verify this assumption. Specifically, we check whether the theoretical
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correlation of the 256-round linear hull evaluated under different keys using our search
algorithm fulfills corresponding empirical correlations.

Theoretical correlations of the linear hull have been introduced in Sect. 4.4, which are:

K(c0 = −2.5 · 2−10) = {7},K(c1 = −0.5 · 2−10) = {2, 3, 6},
K(c2 = +0.5 · 2−10) = {0, 1, 4},K(c3 = +2.5 · 2−10) = {5}.

In each experiment, we randomly choose N inputs and obtain its outputs under a fixed key.
After repeating this experiment 2000 times, we can obtain the empirical correlations ĉi.
To make it clear, we only take the case when N = 222.5 for an illustration in Fig. 11. Since
all ĉi is approximately equal to ci for i ∈ {0, 1, 2, 3}, we can conclude that the assumption
used in the search algorithm is reasonable.
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Figure 11: Experimental verification of the assumption adopted in our search algorithm.
Here, we only present the case when N = 222.5 for an illustration.

D Equivalent Key K̂ for 384-Round Hull
An equivalent key for the 384-round hull is given in Table 7.

E Key Differences Used in Basic Related-Key Attacks on
TinyJAMBU

In Table 8, we provide the key differences adopted in the basic related-key attacks for data
complexities Nα.
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Table 7: Equivalent key K̂ = (ek14, ek13, . . . , ek0) for 384-round hull.

index j of kj composing eki
κ = 128 κ = 192 κ = 256

ek14

0, 1, 7, 11, 14, 17, 21, 3, 14, 15, 20, 21, 25, 28, 34, 44 0, 4, 7, 11, 17, 24, 30, 42, 44,
24, 30, 41, 42, 48, 51, 48, 57, 58, 64, 68, 71, 75, 78, 48, 67, 75, 78, 79, 81, 82, 95,
52, 58, 61, 75, 81, 82, 79, 81, 82, 85, 88, 94, 95, 106, 125, 126, 129, 132, 142, 149,
84, 85, 89, 92, 95, 98, 108, 112, 125, 126, 129, 131, 169, 172, 179, 180, 186, 189,
108, 112, 121, 122, 132, 139, 142, 145, 169, 172, 195, 206, 207, 212, 213, 217,

125, 126 179, 180, 186, 189 220, 226, 236, 240, 249, 250
ek13 5, 89 7, 88, 155 5, 170, 217
ek12 20 10, 25, 165, 180 24, 155, 199
ek11 24, 71 25, 180 27, 42
ek10 27, 42 33, 48 42
ek9 35 48 148
ek8 36 51, 152 152, 243
ek7 37, 52, 74, 89 54, 155, 165 155, 202, 246
ek6 42 63 163
ek5 52, 89 69, 170, 180 164
ek4 71, 115 91, 106 165, 180, 202, 217
ek3 74, 118 106 180, 217
ek2 97, 112 148 225, 240
ek1 112 163 240
ek0 127 164 255

Table 8: Key differences used in basic related-key attacks on TinyJAMBU.

log2(Nα) κ = 128 κ = 192 κ = 256
93.6 0x4010 0x4100 0x4100

94.1, 94.6, 95.1 0x4012,0x4016 0x4300,0x4700 0x4102,0x4106

95.6 0x609A,0x609B, 0x5320,0x5360, 0x6192,0x6193,
0x609E,0x609F 0x5720,0x5760 0x6196,0x6197

96.1 0x7A0A,0x7A0B, 0x63A6,0x63E6, 0x73C2,0x73C3,
0x7A0E,0x7A0F 0x67A6,0x67E6 0x73C6,0x73C7

0x4B0A,0x4B0B, 0x6383,0x6385, 0x51E2,0x51E3,
96.6, 97.1, 97.6 0x4B0E,0x4B0F, 0x63C3,0x63C5, 0x51E6,0x51E7,

98.1, 98.6 0x590A,0x590B, 0x6783,0x6785, 0x53A2,0x53A3,
0x590F,0x590E 0x67C3,0x67C5 0x53A6,0x53A7
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F Comparison between Threshold-Based and MLE-Based
Statistical Models

To better understand the difference between the threshold-based and MLE-based models,
we compare the theoretical error probabilities predicted by these two models using the
same linear hull on the round-reduced cipher. Since the theoretical values under DKP
sampling are almost the same as those under KP sampling in both models, we only show
the comparison under KP sampling in Fig. 12. As the figure shows, the MLE-based models
have slightly higher success probabilities compared to the threshold-based models when
error probabilities are higher than 20%. A possible reason is that the prior probability of
each key class is considered in the decision making process of MLE-based models, but not
for the threshold-based models. However, taking prior probabilities into account seems to
be less important when the data complexity increases. Moreover, attacks usually involve
error probabilities less than 20%. Considering this, the threshold-based and MLE-based
models will have similar results, as shown in Fig. 12. The absolute distance between the
theoretical values of the two models in this case is at most 1.15%.
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Figure 12: Comparison of error probabilities predicted by the threshold-based model and
MLE-based model.

From Sect. 3.2, one can see that the evaluation of error probabilities Pij requires
computing and then intersecting all intervals obtained from inequalities ML(i) > ML(t)
for any t 6= i. Compared to the evaluation procedure in the threshold-based models, this
requires more computations and therefore a longer running time. We have applied these
MLE-based models on TinyJAMBU under the three attack settings, and confirmed that
the MLE-based models indeed have longer running times to evaluate the error probabilities.

A detailed comparison of the running times for the threshold-based models and MLE-
based models is shown in Table 9. The running time to evaluate the success probability
depends on the data complexity N ; in the table we show the longest running time. A total
of 215 key differences are traversed in the basic related-key setting, since we want to find
those leading to the highest achieved key information. All experiments were performed on
a server with an AMD EPYC 7302 16-core processor.

The success probabilities under the MLE-based models are illustrated in Figs. 13,
14, and 15, respectively. For comparison, we also include the success probabilities of
the threshold-based models in these figures. In the direct attack setting (Fig. 13), the
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Table 9: Comparison of the running times of the threshold-based and MLE-based models.

Setting Threshold-Based Model MLE-Based Model
Direct attack ≤ 10 seconds (1 thread) 40 minutes (64 threads)
Basic related-key one hour (64 threads) two days (64 threads)
Multiple related-key ≤ 1 minute (1 thread) ≤ 4 minutes (1 thread)

MLE-based models provide slight improvements of the success probabilities. For example,
the success probability increased by about 2% when N = 296.8. On the other hand, for
the basic related-key setting (Fig. 14), the achieved key information of these two models
is almost the same. However, under the multiple related-key setting (Fig. 15), these two
models behave differently as expected. According to our theoretical comparisons on the
reduced cipher in Fig. 12, the MLE-based model should provide a slightly higher success
probability than the threshold-based model. Nevertheless, the results in Fig. 15 show some
minor discrepancies that are within the range of rounding errors.
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Figure 13: Comparison between the MLE-based model and the threshold-based model of
the success probabilities of direct attacks on TinyJAMBU.
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Figure 14: Comparison between the MLE-based model and the threshold-based model of
the achieved key information of the basic related-key attacks on TinyJAMBU.
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Figure 15: Comparison between the MLE-based model and the threshold-based model of
the success probabilities of multiple related-key attacks on TinyJAMBU.
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