

イロト 不優 ト 不重 ト 不重 トー

 $2Q$

Revisiting the Extension of Matsui's Algorithm 1 to Linear Hulls: Application to TinyJAMBU

Muzhou Li^{1,2} Nicky Mouha³ Ling Sun^{1,2} Meigin Wang^{1,2,4, \boxtimes}

¹ Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan, China

> ² School of Cyber Science and Technology, Shandong University, Qingdao, China

> > ³Strativia, Largo, MD, USA

⁴Quan Cheng Shandong Laboratory, Jinan, China

March 24, 2023 @ Beijing

[Motivation and Contribution](#page-2-0)

- [Previous Extension of Matsui's Algorithm 1](#page-7-0)
- [New Methodology and Statistical Models](#page-11-0)
- [Application to TinyJAMBU](#page-20-0)
- [Conclusion and Future Work](#page-29-0)

4 0 8

1 [Motivation and Contribution](#page-2-0)

- 2 [Previous Extension of Matsui's Algorithm 1](#page-7-0)
- **[New Methodology and Statistical Models](#page-11-0)**
- [Application to TinyJAMBU](#page-20-0)
- 5 [Conclusion and Future Work](#page-29-0)

4 **D F**

Motivation

Linear Cryptanalysis [Matsui @ EUROCRYPT 1993]

 $u \cdot x \oplus w \cdot \mathcal{E}_K(x) = v \cdot K$ (high correlation Cor)

Motivation

Linear Hull Version of Algorithm 1 [Röck & Nyberg @ DCC]

Relation between N and P_e is not accurately described (Experiments)

 \triangle Inaccuracy comes from the methodology of deducing this relation.

 \triangle Algorithm 1 is more suitable than Algorithm 2: for ciphers where only part of the state can be obtained.

Contribution

New Statistical Models

Absolute Error $\max|P_e^{\rm theory} - P_e^{\rm expr.}| =$

- 1. Previous Methodology ⇒ 93.75% (MLE)
2. Our Methodology ⇒ 1.9% ∖. (MLE
- Our Methodology \Rightarrow 1.9% \diagdown (MLE), 2.19% \diagdown (Threshold)

Contribution

New Statistical Models

Absolute Error $\max|P_e^{\rm theory} - P_e^{\rm expr.}| =$

- 1. Previous Methodology \Rightarrow 93.75% (MLE)
2 Our Methodology \Rightarrow 1.9% \ (MLF
- Our Methodology \Rightarrow 1.9% \ (MLE), 2.19% \ (Threshold)

Key Recovery Attacks on TinyJAMBU [Wu & Huang]

First cryptanalysis results in the nonce-respecting setting on the full TinyJAMBU v1 and the round-reduced TinyJAMBU v2. (ロト (個) (ミト (重)

[Motivation and Contribution](#page-2-0)

2 [Previous Extension of Matsui's Algorithm 1](#page-7-0)

[New Methodology and Statistical Models](#page-11-0)

[Application to TinyJAMBU](#page-20-0)

5 [Conclusion and Future Work](#page-29-0)

4 **D F**

Previous Extension: Key Recovery Framework

 $P_e = \sum_i \pi_j P_j^e$ (average over all keys)

 \triangleright Relation between N and P_e should be depicted accurately.

Given desired P_e :

- $P_{ij} = \frac{P_e}{m-1}$ (assumption) with m being the number of all key classes
- N_{ij} : data needed in making decision between K_i and K_j
- Construct the relation between P_{ij} and N_{ij} with statistical models
- $N = max N_{ii}$ (upper bound)

Such methodology causes the inaccuracy.

Direct Attack:

$$
\mathcal{K}_i = \{K \in \mathbb{F}_2^\kappa \ | \ C(K) = c_i\}
$$

Basic RK: fixed key difference α

$$
\mathcal{K}^{\alpha}_i = \{K \in \mathbb{F}^{\kappa}_2 \mid C(K) - C(K \oplus \alpha) = c_i\}
$$

Multiple RK: t differences α_0 , α_1 , \dots , α_{t-1} (form a basis)

- Proceed basic rk attack under each $\alpha_{\rm j}$, and obtain guessed $\mathcal{K}_{\eta_{\rm j}}^{\alpha_{\rm j}}$
- If all these attacks succeed, K* must belong to $\bigcap_{0\leq j\leq t-1} \mathcal{K}_{\eta_j}^{\alpha_j}$

Key Information Obtained

Direct Attack < Basic RK < Multiple RK

[Motivation and Contribution](#page-2-0)

2 [Previous Extension of Matsui's Algorithm 1](#page-7-0)

3 [New Methodology and Statistical Models](#page-11-0)

- [Application to TinyJAMBU](#page-20-0)
- 5 [Conclusion and Future Work](#page-29-0)

4 **D F**

New Methodology

For each j:

- Depict clearly the distribution \mathcal{D}_j of T related to N when $\mathsf{K}^* \in \mathcal{K}_j$
- Compute P_{ij} with the CDF of \mathcal{D}_i and $\delta(T) = i$

Get $P_e = \sum_j \pi_j \sum_{i \neq j} P_{ij}$

Let N_0^K records how many x fulfill the linear hull given N known data x .

$$
T = 2\frac{N_0^K}{N} - 1 \sim \mathcal{D}_j = \mathcal{N}\left(c_j, \sigma^2 = \frac{1 - c_j^2}{N}B\right)
$$

when $K^* \in \mathcal{K}_j$, where $B = 1$ (KP sampling) or $\frac{2^n - N}{2^n - 1}$ $\frac{2^{n}-N}{2^{n}-1}$ (DKP sampling).

New Methodology

For each j:

- Depict clearly the distribution \mathcal{D}_j of T related to N when $\mathsf{K}^* \in \mathcal{K}_j$
- Compute P_{ij} with the CDF of \mathcal{D}_i and $\delta(T) = i$

Get $P_e = \sum_j \pi_j \sum_{i \neq j} P_{ij}$

Statistic & Distribution

Let N_0^K records how many x fulfill the linear hull given N known data x .

$$
T = 2\frac{N_0^K}{N} - 1 \sim \mathcal{D}_j = \mathcal{N}\left(c_j, \sigma^2 = \frac{1 - c_j^2}{N}B\right)
$$

when $\mathsf{K}^{*} \in \mathcal{K}_{\mathrm{j}}$, where $\mathrm{B}=1$ (KP sampling) or $\frac{2^{n}-\mathrm{N}}{2^{n}-1}$ $\frac{2^{n}-N}{2^{n}-1}$ (DKP sampling).

メロトメ 倒 トメ ミトメ ミト

$$
\begin{aligned} P_{ij} &= \Pr[\,\delta(T) = i \,|\, T \sim D_j\,] \\ &= \Pr\left[\,\frac{c_{i-1} + c_i}{2} < T \leq \frac{c_i + c_{i+1}}{2} \,|\, T \sim \mathcal{N}\left(c_j, \sigma^2\right) \right. \\ &= \Phi\left(\frac{\frac{c_i + c_{i+1}}{2} - c_j}{\sigma}\right) - \Phi\left(\frac{\frac{c_{i-1} + c_i}{2} - c_j}{\sigma}\right) \end{aligned}
$$

where $\Phi(\cdot)$ denotes the CDF of $\mathcal{N}(0, 1)$.

(□) (/ □)

$$
\begin{aligned} P_{ij} &= \Pr[\,\delta(T) = i \,|\, T \sim D_j\,] \\ &= \Pr\left[\,\frac{c_{i-1} + c_i}{2} < T \leq \frac{c_i + c_{i+1}}{2} \,|\, T \sim \mathcal{N}\left(c_j, \sigma^2\right)\,\right] \\ &= \Phi\left(\frac{\frac{c_i + c_{i+1}}{2} - c_j}{\sigma}\right) - \Phi\left(\frac{\frac{c_{i-1} + c_i}{2} - c_j}{\sigma}\right) \end{aligned}
$$

where $\Phi(\cdot)$ denotes the CDF of $\mathcal{N}(0, 1)$.

4 **E** F

Experimental Verification on Threshold-Based Models

Use 256-round keyed permutation of TinyJAMBU

Linear Hull: $\{7, 30, 37, 44, 54, 64, 77, 81, 84, 91, 98, 118, 121\} \rightarrow \{64\}$

- Trail 1: 7, 27, 30, 37, 44, 81, 111, 118 $(Cor = +2^{-10})$
- Trail 2: $\,$ 6, 7, 27, 30, 37, 44, 81, 111, 118 (Cor $=-2^{-11})$
- Trail 3: 7, 21, 27, 30, 37, 44, 81, 111, 118 $(\mathsf{Cor}=-2^{-11})$
- Trail 4: $\,6, 7, 21, 27, 30, 37, 44, 81, 111, 118 \; ({\sf Cor} = +2^{-11})$

Let $ek = k_7 \oplus k_{7} \oplus k_{30} \oplus k_{37} \oplus k_{44} \oplus k_{81} \oplus k_{111} \oplus k_{118}$. The whole key space $\mathrm{k}_{21} ||e\mathrm{k}|| \mathrm{k}_{6} \in \mathbb{F}_{2}^{3}$ is divided into four disjoint classes:

$$
\mathcal{K}(c_0 = -2.5 \cdot 2^{-10}) = \{7\}, \mathcal{K}(c_1 = -0.5 \cdot 2^{-10}) = \{2, 3, 6\},
$$

$$
\mathcal{K}(c_2 = +0.5 \cdot 2^{-10}) = \{0, 1, 4\}, \mathcal{K}(c_3 = +2.5 \cdot 2^{-10}) = \{5\}.
$$

Key information can be recovered using our statistical models.

Experimental Verification on Threshold-Based Models

Our Threshold-Based

2.19%

Previous MLE-Based

93.45%

4 0 F

Þ

Direct Attack (KP Sampling)

- $\delta(T) = i \iff ML(T, i) > ML(T, t)$ for $\forall t \neq i$
- For each t:
	- When $p_i > p_t$,

$$
\frac{\log_2 \pi_t - \log_2 \pi_i + N \log_2 (1-p_t) - N \log_2 (1-p_i)}{\log_2 \mathfrak{p}_i - \log_2 (1-\mathfrak{p}_i) - \log_2 \mathfrak{p}_t + \log_2 (1-\mathfrak{p}_t)} < T < N
$$

$$
\bullet \ \text{ When } p_i < p_t,
$$

$$
0 < T < \frac{\log_2 \pi_t - \log_2 \pi_i + N \log_2 (1-p_t) - N \log_2 (1-p_i)}{\log_2 p_i - \log_2 (1-p_i) - \log_2 p_t + \log_2 (1-p_t)}
$$

Intersection of above $(\mathfrak{m}-1)$ intervals: $\text{N}_{\min}^{\mathfrak{i}} < \text{T} < \text{N}_{\max}^{\mathfrak{i}}$ $\mathrm{P_{ij}} = \Phi_{\mathrm{N},\mathrm{p_{j}}}^{\mathrm{b}}\left(\mathrm{N}_{\mathrm{max}}^{\mathrm{i}}\right)-\Phi_{\mathrm{N},\mathrm{p_{j}}}^{\mathrm{b}}\left(\mathrm{N}_{\mathrm{min}}^{\mathrm{i}}\right)$. $\Phi_{\mathrm{N},\mathrm{p_{j}}}^{\mathrm{b}}$ is the CDF of T.

G.

イロメ イ部 メイミメ イミメー

Experimental Verification on MLE-Based Models

Our MLE-Based 1.9% slightly more precise

but much slower to compute

 \leftarrow \Box

∍

[Motivation and Contribution](#page-2-0)

- 2 [Previous Extension of Matsui's Algorithm 1](#page-7-0)
- **[New Methodology and Statistical Models](#page-11-0)**
- 4 [Application to TinyJAMBU](#page-20-0)
- 5 [Conclusion and Future Work](#page-29-0)

4 **D F**

Brief Introduction to TinyJAMBU

TinyJAMBU [Wu & Huang]:

- Key: 128-, 192-, 256-bit
- \bullet \mathcal{P}_{b} : $(s_{127}, s_{126}, \cdots, s_{0}) \rightarrow (z, s_{127}, \cdots, s_{1})$ $z = s_0 \oplus s_{47} \oplus (\sim (s_{70} \& s_{85})) \oplus s_{91} \oplus k_1$

•
$$
l_1 = 384
$$
 (v1); $l_1 = 640$ (v2)

For R-round trail:

$$
\lambda_0\cdot T_0\oplus \lambda_1\cdot T_1=\mathcal{X}^0\cdot x^0\oplus \mathcal{X}^R\cdot x^R=\bigoplus_{r=0}^{R-1}(\mathcal{X}^r\cdot x^r\oplus \mathcal{X}^{r+1}\cdot x^{r+1})=\bigoplus_{s=0}^{14}f_s
$$

4 **D F**

重

 \sim \prec э

$$
f_s = \mathcal{X}_0^s(x_{70}^s \& x_{85}^s) \oplus \mathcal{X}_0^{s+15}(x_{85}^s \& x_{85}^{s+15}) \oplus \mathcal{X}_0^{s+30}(x_{85}^{s+15} \& x_{85}^{s+30})
$$

$$
\oplus \cdots \oplus \mathcal{X}_0^{s+15t_s}(x_{85}^{s+15(t_s-1)} \& x_{85}^{s+15t_s})
$$

$$
\begin{aligned} &\oplus \mathcal{X}_{0}^{s} \mathcal{Y}_{0}^{s} x_{70}^{s} \\&\oplus \left[\mathcal{X}_{0}^{s} \mathcal{Y}_{1}^{s} \oplus \mathcal{X}_{0}^{s+15} \mathcal{Y}_{0}^{s+15}\right] x_{85}^{s} \\&\oplus \left[\mathcal{X}_{0}^{s+15} \mathcal{Y}_{1}^{s+15} \oplus \mathcal{X}_{0}^{s+30} \mathcal{Y}_{0}^{s+30}\right] x_{85}^{s+15} \oplus \cdots \\&\oplus \left[\mathcal{X}_{0}^{s+15\left(t_{s}-1\right)} \mathcal{Y}_{1}^{s+15\left(t_{s}-1\right)} \oplus \mathcal{X}_{0}^{s+15t_{s}} \mathcal{Y}_{0}^{s+15t_{s}}\right] x_{85}^{s+15\left(t_{s}-1\right)} \\&\oplus \mathcal{X}_{0}^{s+15t_{s}} \mathcal{Y}_{1}^{s+15t_{s}} x_{85}^{s+15t_{s}} \\&\oplus \bigoplus_{j=0}^{t_{s}} \mathcal{X}_{0}^{s+15j} (1 \oplus k_{s+15j \bmod \kappa}) \\&\longrightarrow \end{aligned}
$$

 f_s contains several Boolean functions with chained AND gates.

Correlation [ev](#page-22-0)a[lu](#page-24-0)[a](#page-22-0)tion of [t](#page-24-0)[h](#page-19-0)[e](#page-29-0) linear trail \iff \iff \iff evalua[te](#page-23-0) the[s](#page-20-0)e f_s

э

$$
f(x_0,...,x_n)=x_0\&x_1\oplus x_1\&x_2\oplus\cdots\oplus x_{n-1}\&x_n\oplus a_0x_0\oplus\cdots\oplus a_nx_n
$$

Absolute Correlation [Song et al.]

1. n Odd:
$$
|Cor(f)| = 2^{-(n+1)/2}
$$
.

2. n Even:
$$
|Cor(f)| = 2^{-n/2}
$$
 if $\bigoplus_{j=0}^{n/2} a_{2j} = 0$; otherwise, $|Cor(f)| = 0$.

$$
\mathsf{Sign}(f)=\prod_{i=0}^{t-1}(-1)^{\left(\bigoplus_{j=0}^{i}\alpha_{2j}\right)\alpha_{2i+1}}, t=\begin{cases}\frac{n+1}{2},&n\text{ Odd}\\ \frac{n}{2},&n\text{ Even and }\bigoplus_{j=0}^{t}\alpha_{2j}=0\end{cases}
$$

$$
\lambda_0 \cdot T_0 \oplus \lambda_1 \cdot T_1 \approx \bigoplus_{r=0}^{R-1} \mathcal{X}_0^r(1 \oplus k_{r \bmod \kappa})
$$

 k_j is involved in the trail if $\bigoplus_{r\in\mathcal J}\mathcal X_0^r=1,~\mathcal J=\{r\mid j=r\bmod k\}$

э

イロト 不優 トイ ヨ トイ ヨ トー

$$
f(x_0,...,x_n)=x_0\&x_1\oplus x_1\&x_2\oplus\cdots\oplus x_{n-1}\&x_n\oplus a_0x_0\oplus\cdots\oplus a_nx_n
$$

Absolute Correlation [Song et al.]

1. n Odd:
$$
|Cor(f)| = 2^{-(n+1)/2}
$$
.

2. n Even:
$$
|Cor(f)| = 2^{-n/2}
$$
 if $\bigoplus_{j=0}^{n/2} a_{2j} = 0$; otherwise, $|Cor(f)| = 0$.

$$
\mathsf{Sign}(f)=\prod_{i=0}^{t-1}(-1)^{\left(\bigoplus_{j=0}^{i}\alpha_{2j}\right)\alpha_{2i+1}}, t=\begin{cases}\frac{n+1}{2},&n\text{ Odd}\\ \frac{n}{2},&n\text{ Even and }\bigoplus_{j=0}^{t}\alpha_{2j}=0\end{cases}
$$

Key Bits Involved

$$
\lambda_0 \cdot T_0 \oplus \lambda_1 \cdot T_1 \approx \bigoplus_{r=0}^{R-1} \mathcal{X}_0^r(1 \oplus k_{r \bmod \kappa})
$$

 k_j is involved in the trail if $\bigoplus_{r\in\mathcal{J}}\mathcal{X}_0^r=1$, $\mathcal{J}=\{r\mid j=r\bmod k\}$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Searching All Linear Tails in a Given Hull for TinyJAMBU

384-Round Linear Hull $(\lambda_0 = 0 \times 8024000, \lambda_1 = 0 \times 00220808)$:

850 trails are composed in this hull.

4 0 8

Key Recovery Attacks on Full V1 (Threshold-Based)

Data limits: the number of tags collected per key should $\leq 2^{47}$.

Weak-key multi-user: each user has their own key but with some bits in common.

[Motivation and Contribution](#page-2-0)

- 2 [Previous Extension of Matsui's Algorithm 1](#page-7-0)
- **[New Methodology and Statistical Models](#page-11-0)**
- [Application to TinyJAMBU](#page-20-0)
- 5 [Conclusion and Future Work](#page-29-0)

4 **D F**

Conclusion and Future Work

Conclusion: New Statistical Models

Absolute Error $\max |P_e^{\text{theory}} - P_e^{\text{expr.}}|$:

- Threshold-based: 2.19% & MLE-based: 1.9%
- Röck and Nyberg: 93.45%

Improvements on accuracy are due to our new methodology.

Conclusion: Cryptanalysis of TinyJAMBU

Full v1 & Round-Reduced v2

Partial key bits are recovered in the nonce-respecting setting.

Future Work

- Further applications of our models
- Investigate whether different masks can recover more kev bits

イロト イ押ト イヨト イヨト

Thanks for Your Attention! Any Questions?

Backup Slides

重

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

イロト → ● →

Security margin of TinyJAMBU in the multi-user setting will drop from 2^d to 2^{d-m} when 2^m different values of keys are used.