

SCIENCE PASSION TECHNOLOGY

Integral Cryptanalysis of WARP based on Monomial Prediction

Hosein Hadipour Maria Eichlseder

FSE 2023 - Kobe, Japan

> hossein.hadipour@iaik.tugraz.at

Motivation and Our Contributions

Motivation

\odot Integral analysis of WARP

 \bigcirc Contributions

- Providing a generic SAT model for integral analysis based on monomial prediction
- Our model takes the key schedule into account.
- We proposed a tool for key-recovery taking the FFT technique into account
- \odot Thanks to our tools, we improved the integral attack of WARP by 11 rounds

Motivation and Our Contributions

💾 Motivation

 \odot Integral analysis of WARP

🛠 Contributions

- Providing a generic SAT model for integral analysis based on monomial prediction
- Our model takes the key schedule into account
- Solution We proposed a tool for key-recovery taking the FFT technique into account
- \odot Thanks to our tools, we improved the integral attack of WARP by 11 rounds

Outline

- 1 Boolean Functions and Integral Analysis
- 2 Monomial Prediction and Our SAT Model
- **3** Application of Our Modeling to Integral Analysis of WARP
- 4 Key-Recovery
- 5 Conclusion

Boolean Functions and Integral Analysis

- $\bigcirc \mathbb{C}_{\boldsymbol{u}} = \{ \boldsymbol{x} \in \mathbb{F}_2^n \, | \, \boldsymbol{x} \leq \boldsymbol{u} \}$
- $\bigcirc a_{u}(k) = \sum_{x \leq u} f(k, x)$
- Which monomial is key-independent in the ANF?

$$\bigotimes y = f(\mathbf{k}, \mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} \mathbf{a}_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{\mathbf{u}}$$

- $\bigcirc \mathbb{C}_{\boldsymbol{u}} = \{ \boldsymbol{x} \in \mathbb{F}_2^n \, | \, \boldsymbol{x} \leq \boldsymbol{u} \}$
- $\bigcirc a_{u}(\mathbf{k}) = \sum_{\mathbf{x} \leq u} f(\mathbf{k}, \mathbf{x})$
- Which monomial is key-independent in the ANF?

$$y = f(\boldsymbol{k}, \boldsymbol{x}) = \sum_{\boldsymbol{u} \in \mathbb{F}_2^n} a_{\boldsymbol{u}}(\boldsymbol{k}) \cdot \boldsymbol{x}^{\boldsymbol{u}}$$

- $\bigcirc \mathbb{C}_{\boldsymbol{u}} = \{ \boldsymbol{x} \in \mathbb{F}_2^n \, | \, \boldsymbol{x} \leq \boldsymbol{u} \}$
- $\label{eq:au} oldsymbol{a}_{u}({\pmb k}) = \sum_{{\pmb x} \leq {\pmb u}} f({\pmb k}, {\pmb x})$
- Which monomial is key-independent in the ANF?

Which monomial is key-independent in the ANF?

$$\bigotimes y = f(\mathbf{k}, \mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} \mathbf{a}_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{\mathbf{u}}$$

$$\widehat{\boldsymbol{\nabla}} \ \mathbb{C}_{\boldsymbol{u}} = \{ \boldsymbol{x} \in \mathbb{F}_2^n \, | \, \boldsymbol{x} \leq \boldsymbol{u} \}$$

 $\Theta a_{u}(\mathbf{k}) = \sum_{\mathbf{x} \leq u} f(\mathbf{k}, \mathbf{x})$

Which monomial is key-independent in the ANF?

$$\textcircled{}$$
 zero-sum: $\exists u, s.t. \forall k : a_u(k) = 0$

$$\textcircled{}$$
 one-sum: $\exists u, s.t. \forall k : a_u(k) = 1$

Monomial Prediction and Our SAT Model

Core Idea of Monomial Prediction [Hu+20]

Core Idea

The absence (or presence) of a monomial in the ANF of a composite function can be checked by tracking the propagation of the given monomial through the building blocks of composite functions.

 $k^w x^u
ightarrow y^v \Rightarrow k^w x^u
ightarrow y^v$

 $k^{w}x^{u} \not\rightarrow y^{v} \Rightarrow k^{w}x^{u} \not\rightarrow y^{v}$

From Monomial Trails to Integral Distinguisher

 \blacksquare^* If $\exists u$ s.t. $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k$ then $a_u(k) = 0$ (zero-sum)

 $igoplus^*$ If $\exists u$ s.t. $k^w x^u
ot \Rightarrow y^v$ for all $w \in \mathbb{F}_2^k \setminus \{0\}$ then $a_u(k) = ext{constant}$ (zero/one-sum)

8

From Monomial Trails to Integral Distinguisher

 $igoplus^*$ If $\exists u$ s.t. $k^w x^u
igotarrow y^v$ for all $w \in \mathbb{F}_2^k$ then $a_u(k) = 0$ (zero-sum)

 \textcircled{a}^{r} if $\exists u$ s.t. $k^{w}x^{u} \not\rightarrow y^{v}$ for all $w \in \mathbb{F}_{2}^{k} \setminus \{0\}$ then $a_{u}(k) = \texttt{constant}$ (zero/one-sum)

$$\mathbf{O}^{*}$$
 If $\exists \boldsymbol{u}$ s.t. $\boldsymbol{k}^{\boldsymbol{w}} \boldsymbol{x}^{\boldsymbol{u}} \not \rightarrow \boldsymbol{y}^{\boldsymbol{v}}$ for all $\boldsymbol{w} \in \mathbb{F}_{2}^{k}$ then $\boldsymbol{a}_{\boldsymbol{u}}(\boldsymbol{k}) = 0$ (zero-sum)

 $igoplus^*$ If $\exists u$ s.t. $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k \setminus \{0\}$ then $a_u(k) = \texttt{constant}$ (zero/one-sum)

onumber P Model the propagation of monomial trails through the building blocks by a CNF clause

📢 Main variables are the monomial exponents, i.e., u, w, v, \ldots not x, k, y, \ldots

 \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)

A Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v

 \blacksquare If the model is impossible, then $k^w x^u \not\rightarrow y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

 $onumber {P}$ Model the propagation of monomial trails through the building blocks by a CNF clause

A main variables are the monomial exponents, i.e., $\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v}, \dots$ not $\boldsymbol{x}, \boldsymbol{k}, \boldsymbol{y}, \dots$

 \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)

Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v

 \blacktriangleright If the model is impossible, then $k^w x^u \not\rightarrow y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = ext{constant}$

0

 $onumber {P}$ Model the propagation of monomial trails through the building blocks by a CNF clause

A Main variables are the monomial exponents, i.e., $\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v}, \dots$ not $\boldsymbol{x}, \boldsymbol{k}, \boldsymbol{y}, \dots$

 \mathbf{t} Fix **u** to a certain vector and set **v** to \mathbf{e}_i (**w** should be a free variable but non-zero)

A Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v

 \blacktriangleright If the model is impossible, then $k^w x^u
ightarrow y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = ext{constant}$

onumber P Model the propagation of monomial trails through the building blocks by a CNF clause

- A Main variables are the monomial exponents, i.e., $\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v}, \dots$ not $\boldsymbol{x}, \boldsymbol{k}, \boldsymbol{y}, \dots$
- \mathbf{t} Fix **u** to a certain vector and set **v** to \mathbf{e}_i (**w** should be a free variable but non-zero)
- **A** Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v

 \blacktriangleright If the model is impossible, then $k^w x^u
ightarrow y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = ext{constant}$

onumber P Model the propagation of monomial trails through the building blocks by a CNF clause

- A Main variables are the monomial exponents, i.e., $\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v}, \dots$ not $\boldsymbol{x}, \boldsymbol{k}, \boldsymbol{y}, \dots$
- \mathbf{t} Fix **u** to a certain vector and set **v** to \mathbf{e}_i (**w** should be a free variable but non-zero)
- **A** Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- \blacktriangleright If the model is impossible, then $k^w x^u \not\rightarrow y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

 $m{l}$ Model the propagation of monomial trails through the building blocks by a CNF clause

- A Main variables are the monomial exponents, i.e., $\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v}, \dots$ not $\boldsymbol{x}, \boldsymbol{k}, \boldsymbol{y}, \dots$
- \mathbf{t} Fix **u** to a certain vector and set **v** to \mathbf{e}_i (**w** should be a free variable but non-zero)
- **A** Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- \blacktriangleright If the model is impossible, then $k^w x^u \not\rightarrow y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

Example Let $\mathbf{y} = \mathbf{f}(\mathbf{x})$ be an *m*-bit to *n*-bit vectorial Boolean function. Then MPT $(\mathbf{u}, \mathbf{v}) = 1$ if $\mathbf{x}^{\mathbf{u}} \xrightarrow{f} \mathbf{y}^{\mathbf{v}}$, and MPT $(\mathbf{u}, \mathbf{v}) = 0$ otherwise.

Example Let $\mathbf{y} = \mathbf{f}(\mathbf{x})$ be an *m*-bit to *n*-bit vectorial Boolean function. Then $MPT(\mathbf{u}, \mathbf{v}) = 1$ if $\mathbf{x}^{\mathbf{u}} \xrightarrow{f} \mathbf{y}^{\mathbf{v}}$, and $MPT(\mathbf{u}, \mathbf{v}) = 0$ otherwise.

x	S(x)
0	с
1	a
2	d
3	3
4	е
5	b
6	f
7	7
8	8
9	9
a	1
ъ	5
с	0
d	2
е	4
f	6

Example Let $\mathbf{y} = \mathbf{f}(\mathbf{x})$ be an *m*-bit to *n*-bit vectorial Boolean function. Then $MPT(\mathbf{u}, \mathbf{v}) = 1$ if $\mathbf{x}^{\mathbf{u}} \xrightarrow{f} \mathbf{y}^{\mathbf{v}}$, and $MPT(\mathbf{u}, \mathbf{v}) = 0$ otherwise.

x	S(x)	u \ v	0	1	2	3	4	5	6	7	8	9	a	b	с	d	е	f
0	с	0	1				1				1				1			
1	a	1	1		1		1				1		1		1			
2	d	2		1	1		1	1				1	1		1	1		
3	3	2		т	·	1	•	1	·	·	1	1	1	·	·	1	·	·
4	e	3		·	1	т	•	т	1	•	T	т	1	·	·	T	1	•
5	b	4		1	1	1	•	·	1	•	·	1	1	1	·	·	1	·
6	f	5		T	T	1	•	·	T		·	T	T	1	·	•	T	
7	7	6	•		•	T		÷		T	•		•	T	·	•	·	1
6		7	•	1	·	·	1	1	1	·	·	1	·	•	·	·	·	1
8	8	8	•	·	·	·	1	·	·	·	·	·	·	·	1	·	·	·
9	9	9	•	1	1	·	1	·	·	·	·	1	1	·	1	·	·	·
a	1	a	•	·	·	·	·	1	·	·	1	1	·	•	·	1	·	·
b	5	b	•	1	·	1	1	·		·	1	·	1	•	·	1	·	·
с	0	с	•	•	1	·	•		1	·	1	•	1	·	·	·	1	
d	2	d	•	·	•	1			1	•			1	1	·	·	1	
e	4	е	•	1		1	1			1	1			1				1
f	6	f	•	·		•			·		·				•	•		1

Hosein Hadipour, Maria Eichlseder

FSE 2023 - Kobe, Japan

Example Let $\mathbf{y} = \mathbf{f}(\mathbf{x})$ be an *m*-bit to *n*-bit vectorial Boolean function. Then $MPT(\mathbf{u}, \mathbf{v}) = 1$ if $\mathbf{x}^{\mathbf{u}} \xrightarrow{f} \mathbf{y}^{\mathbf{v}}$, and $MPT(\mathbf{u}, \mathbf{v}) = 0$ otherwise.

0	с			
1	a	$(u_2 \lor \neg v_1 \lor \neg v_3)$	$\wedge (\neg u_1 \lor \neg v_0 \lor \neg v_1 \lor v_2)$	$\wedge (\neg u_0 \lor \neg u_1 \lor \neg u_2 \lor \neg v_2 \lor v_3)$
2	d	$\wedge (u_2 \vee u_3 \vee \neg v_3)$	$\wedge (\neg u_0 \vee \neg u_1 \vee \neg u_3 \vee v_2)$	$\wedge (\neg u_0 \lor \neg u_3 \lor v_0 \lor \neg v_1 \lor \neg v_3)$
3	3	$\wedge (u_1 \vee \neg v_1 \vee \neg v_2)$	$\wedge (\neg u_1 \lor u_2 \lor v_0 \lor v_2 \lor v_3)$	$\wedge (\neg u_0 \lor \neg u_1 \lor \neg u_3 \lor v_0 \lor v_1 \lor v_3)$
4	e	$\wedge (u_1 \vee u_3 \vee \neg v_2)$	$\wedge (u_2 \vee \neg u_3 \vee v_1 \vee v_2 \vee v_3)$	$\wedge (\neg u_0 \lor \neg u_2 \lor \neg u_3 \lor \neg v_0 \lor v_1 \lor \neg v_3)$
5	Ъ	(1 0 2)		
6	f	$\wedge (u_0 \vee \neg u_2 \vee u_3 \vee v_3)$	$\wedge (u_1 \vee \neg v_0 \vee \neg v_2 \vee \neg v_3)$	$\wedge (\neg u_1 \lor \neg u_2 \lor \neg u_3 \lor v_1 \lor \neg v_2)$
7	7	$\wedge (u_0 \vee \neg u_1 \vee u_3 \vee v_2)$	$\wedge (\neg u_0 \lor u_1 \lor u_3 \lor v_0 \lor v_1)$	$\wedge (\neg u_1 \lor \neg u_2 \lor \neg u_3 \lor v_1 \lor v_3)$
8	8	$\wedge (\neg u_2 \lor v_0 \lor v_1 \lor v_3)$	$\wedge (\neg u_1 \lor u_3 \lor \neg v_0 \lor v_2 \lor \neg v_3)$	$\wedge (u_0 \lor u_1 \lor \neg u_3 \lor v_0 \lor v_1 \lor v_2)$
9	9	(2 0 1 0)		(0 1 0 0 1 2)
a	1	$\wedge (u_0 \vee u_1 \vee u_2 \vee \neg v_3)$	$\wedge (u_0 \lor u_1 \lor \neg u_2 \lor \neg v_1 \lor v_3)$	$\wedge (\neg u_3 \lor v_0 \lor \neg v_1 \lor \neg v_2 \lor \neg v_3)$
b	5	$\wedge (u_1 \vee u_2 \vee \neg v_2 \vee \neg v_3)$	$\wedge (u_1 \vee \neg u_2 \vee u_3 \vee \neg v_1 \vee v_3)$	$\wedge (\neg u_0 \lor u_1 \lor u_2 \lor v_1 \lor v_2 \lor v_3)$
с	0	$\wedge (\neg u_2 \lor \neg v_0 \lor \neg v_1 \lor v_3)$	$\wedge (\neg u_1 \lor u_3 \lor \neg v_1 \lor v_2 \lor \neg v_3).$	
d	2	(2 0 1 0)		
е	4			
f	6			

x = S(x)

Application of Our Modeling to Integral Analysis of WARP

WARP[Ban+20]

- Proposed in SAC 2020 [Ban+20] as the lightweight alternative of AES-128
- 128-bit block/key size, and 41 rounds (40.5 rounds)
- Splits 128-bit K into two halves $K^{(0)} || K^{(1)}$ and uses $K^{(r-1 \mod 2)}$ in the rth round

The best previous integral distinguisher: 20 rounds [Ban+20]

(2)
$$\xrightarrow{\text{22 rounds}}$$
 (20, 21, 22, 23, 118, 60, 61, 62, 63)

The best previous integral distinguisher: 20 rounds [Ban+20]

(2)
$$\xrightarrow{22 \text{ rounds}}$$
 (20, 21, 22, 23, 118, 60, 61, 62, 63)

Hosein Hadipour, Maria Eichlseder FSE 2023 - Kobe, Japan

 $rac{1}{
m Any}$ Any *r*-round integral distinguisher of WARP can be extended by 1 round

 $\sum_{\mathbb{C}} X_4^{(22)} = \sum_{\mathbb{C}} X_1^{(23)}$ $\bigotimes \sum_{\mathbb{C}} X_{11}^{(22)} = \sum_{\mathbb{C}} \left(S(X_4^{(23)}) \oplus X_0^{(23)} \right) \oplus \sum_{\mathbb{C}} K_i^{(b)}$

 \checkmark Any *r*-round integral distinguisher of WARP can be extended by 1 round

 $\sum_{\mathbb{C}} X_4^{(22)} = \sum_{\mathbb{C}} X_1^{(23)}$ $\& \sum_{\mathbb{C}} X_{11}^{(22)} = \sum_{\mathbb{C}} \left(S(X_4^{(23)}) \oplus X_0^{(23)} \right) \oplus \sum_{\mathbb{C}} \mathcal{K}_i^{(b)}$

 \checkmark Any *r*-round integral distinguisher of WARP can be extended by 1 round

In $\sum_{\mathbb{C}} X_4^{(22)} = \sum_{\mathbb{C}} X_1^{(23)}$

$$\mathfrak{B} \sum_{\mathbb{C}} X_{11}^{(22)} = \sum_{\mathbb{C}} \left(\mathcal{S}(X_4^{(23)}) \oplus X_0^{(23)} \right) \oplus \sum_{\mathbb{C}} \mathcal{K}_i^{(b)}$$

Key-Recovery

Naive Approach v.s. FFT Technique [TA14]

- A Naive approach:
 - $\begin{aligned} & \bigodot \sum \mathbf{x} = \sum_{\mathbf{c} \in \mathbb{C}} f(\mathbf{k}, \mathbf{c}) \\ & \textcircled{O} \quad T_{tot} = 2^{|\mathbf{k}|} |\mathbb{C}|, \text{ where } \mathbb{C} = 2^{|\mathbf{k}|} \\ & \textcircled{O} \quad T_{tot} = 2^{2|\mathbf{k}|} \end{aligned}$

Naive Approach v.s. FFT Technique [TA14]

- A Naive approach:
 - $\begin{aligned} & \bigodot \sum \mathbf{x} = \sum_{\mathbf{c} \in \mathbb{C}} f(\mathbf{k}, \mathbf{c}) \\ & \bigodot \quad T_{tot} = 2^{|\mathbf{k}|} |\mathbb{C}|, \text{ where } \mathbb{C} = 2^{|\mathbf{k}|} \\ & \bigodot \quad T_{tot} = 2^{2|\mathbf{k}|} \end{aligned}$
- ✤ FFT technique:

A Naive approach:

 $\Theta \ \mathbf{x} = F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{c})$ $\Theta \ T = 2^{|\mathbf{k}_1 \cup \mathbf{k}_2|}$

► MitM:

◊ y = F(k₁, c), z = g(k₂, c)
 ◊ T = 2^{|k₁|} + 2^{|k₂|}

 $\sum \boldsymbol{x} = 0$

- A Naive approach:
- ✤ MitM:

$$\sum \mathbf{x} = 0 \iff \sum \mathbf{y} = \sum \mathbf{z}$$

Overall View of Our Key-Recovery Tool

- 1- Assume that $\mathbf{x} = \mathbf{y} \oplus \mathbf{z}$ and $\sum \mathbf{x} = 0$
- 2- For each path, i.e., **y**, and **z**:
 - Build the graph of dependencies: $\mathbf{y} = f(\mathbf{k}, \mathbf{c})$
 - Simplify the dependency graph: reform $f(\mathbf{k}, \mathbf{c})$ to $F(\tilde{\mathbf{k}} \oplus \tilde{\mathbf{c}})$
 - Use FFT to compute the list $[\sum m{y} \,|\, \tilde{m{k}} = 0, \dots, 2^{|m{k}|-1}]$
- 3- Compare the two lists to find candidates for the involved key bits
- 4- Brute force the remaining keys to find the correct key

Example: 3-Round Key Recovery

Example: Dependency Graph

Example: Dependency Graph

Hosein Hadipour, Maria Eichlseder FSE 2023 - Kobe, Japan

20

Example: Dependency Graph

Summary of Our Result

#R	Data	Time	Memory	Attack	Reference
32 21	2^{127} 2^{124}	2 ¹²⁷ -	2 ¹⁰⁸	Integral Integral	This paper [Ban+20]
18 21	$2^{104.62}$	-	-	Differential Impossible diff.	[TB22] [Ban+20]
21 23 24	$2^{113} \\ 2^{106.62} \\ 2^{126.06}$	$2^{113} \\ 2^{106.62} \\ 2^{125.18}$	2^{72} $2^{106.62}$ $2^{127.06}$	Differential Differential Rectangle	[KY21] [TB22] [TB22]

Conclusion

Contributions

Solution We provided a SAT model for integral analysis based on Monomial prediction

- Our modeling is generic and can be applied to other (binary field) block ciphers
- Solution We proposed a tool for key-recovery taking the FFT technique into account
- Overall, we improved the integral attack of WARP by 11 rounds

Thanks for your attention!

https://github.com/hadipourh/mpt

Bibliography I

[Ban+20] Subhadeep Banik et al. WARP: Revisiting GFN for Lightweight 128-Bit Block Cipher. SAC 2020. Vol. 12804. LNCS. Springer, 2020, pp. 535–564. DOI: 10.1007/978-3-030-81652-0_21.

- [Hu+20] Kai Hu et al. An Algebraic Formulation of the Division Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent Sums. ASIACRYPT 2020. Vol. 12491. LNCS. Springer, 2020, pp. 446–476. DOI: 10.1007/978-3-030-64837-4_15.
- [KY21] Manoj Kumar and Tarun Yadav. MILP Based Differential Attack on Round Reduced WARP. SPACE 2021. Vol. 13162. LNCS. Springer, 2021, pp. 42–59. DOI: 10.1007/978-3-030-95085-9_3.
- [SW12] Yu Sasaki and Lei Wang. Meet-in-the-Middle Technique for Integral Attacks against Feistel Ciphers. SAC 2012. Vol. 7707. LNCS. Springer, 2012, pp. 234–251. DOI: 10.1007/978-3-642-35999-6_16.
- [TA14]
 Yosuke Todo and Kazumaro Aoki. FFT Key Recovery for Integral Attack. CANS 2014. Vol. 8813. LNCS. Springer, 2014, pp. 64–81. DOI: 10.1007/978-3-319-12280-9_5.

Bibliography II

[TB22] Je Sen Teh and Alex Biryukov. Differential cryptanalysis of WARP. J. Inf. Secur. Appl. 70 (2022), p. 103316. DOI: 10.1016/j.jisa.2022.103316. URL: https://doi.org/10.1016/j.jisa.2022.103316.