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Abstract. We study quantum period finding algorithms such as Simon and Shor
(and its variant Ekerå-Håstad). For a periodic function f these algorithms produce –
via some quantum embedding of f – a quantum superposition

∑
x
|x〉 |f(x)〉, which

requires a certain amount of output qubits that represent |f(x)〉. We show that one
can lower this amount to a single output qubit by hashing f down to a single bit in
an oracle setting.
Namely, we replace the embedding of f in quantum period finding circuits by oracle
access to several embeddings of hashed versions of f . We show that on expectation
this modification only doubles the required amount of quantum measurements, while
significantly reducing the total number of qubits. For example, for Simon’s algorithm
that finds periods in f : Fn

2 → Fn
2 our hashing technique reduces the required output

qubits from n down to 1, and therefore the total amount of qubits from 2n to n + 1.
We also show that Simon’s algorithm admits real world applications with only n + 1
qubits by giving a concrete realization of a hashed version of the cryptographic Even-
Mansour construction. Moreover, for a variant of Simon’s algorithm on Even-Mansour
that requires only classical queries to Even-Mansour we save a factor of (roughly) 4
in the qubits.
Our oracle-based hashed version of the Ekerå-Håstad algorithm for factoring n-bit
RSA reduces the required qubits from ( 3

2 + o(1))n down to ( 1
2 + o(1))n.

Keywords: Quantum period finding · Fourier transform · Simon · Shor · cryptographic
applications

1 Introduction
Throughout this paper, we consider only logical qubits that are error-free. Although there
is steady progress in constructing larger quantum computers, within the next years the
number of qubits seems to be too limited for tackling problems of interesting size, e.g.
for period finding applications in cryptography [KM12, KLLN16, LM17, SS17, RNSL17,
HRS17, RS18].

Shor’s algorithm [Sho94] for polynomial time factorization of n-bit numbers computes
a superposition

∑
x |x〉 |f(x)〉 with 2n input qubits representing the input |x〉 to f and n

output qubits representing the output |f(x)〉 of the function.
However, it may not be necessary to implement a full-fledged 3n-qubit Shor algorithm

in order to factor numbers or compute discrete logarithms. Quantum computers with
a very limited number of qubits might still serve as a powerful oracle that assists us in
speeding up classical computations. For instance, Bernstein, Biasse and Mosca [BBM17]
developed an algorithm that factors n-bit numbers with the help of only a sublinear amount
of n 2

3 qubits in subexponential time that is (slightly) faster than the currently best known
purely classical factorization algorithm.

Several other algorithms saved on the number of qubits in Shor’s algorithm by shifting
some more work into a classical post-processing, while – in contrast to [BBM17] – still
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preserving polynomial run time. Interestingly, all these algorithms concentrate on reducing
the input qubits, while keeping n output qubits. Seifert [Sei01] showed that – using for
the classical post-process simultaneous Diophantine approximations instead of continued
fractions – the number of input qubits can be reduced from 2n to (1 + o(1))n. For n-bit
RSA numbers, which are a product of two n/2-bit primes, Ekerå and Håstad [EH17]
reduced the number of input qubits down to ( 1

2 + o(1))n, using some variant of the Hidden
Number Problem [BV97] in the post-process. Thus, the Ekerå-Håstad version of Shor’s
algorithm factors n-bit RSA with a total of ( 3

2 + o(1))n qubits.
Mosca and Ekert [ME98] showed that one can reduce the number of input qubits even

down to a single one, at the cost of an increased depth of Shor’s quantum circuit.

Our contribution. We hash f(x) in the output qubits down to t qubits, where t can
be as small as 1. This can be realized using quantum embeddings of h ◦ f for different
hash functions h, for which we assume oracle access. Our basic observation is that hashing
preserves the periodicity of f . Namely, if f(x) = f(x+ s) for some period s and all inputs
x then also

h(f(x)) = h(f(x+ s)) for the period s and all inputs x.

The drawback of hashing is that h certainly introduces many more undesirable collisions
h(f(x)) = h(f(x′)) where x, x′ are not a multiple of s apart. Surprisingly, even for 1-bit
range hash functions this plethora of undesirable collisions does not at all affect the
correctness of our hashed quantum period finding algorithms, and only insignificantly
increases the required number of measurements. Depending on the implementation of h ◦ f
we suffer from an increased circuit depth. In some of our applications in this paper we
double the circuit depth, while in other applications the circuit depth grows linearly in n.

More precisely, concerning correctness we show that a replacement of f by some hashed
version of f has the following effects.

Simon’s algorithm: In the input qubits, we still measure only vectors y that are orthogonal
to the period s. The amplitudes of all other inputs cancel out.

Shor’s algorithm: Let the period be d = 2r, and let us use q > r input qubits. Then
we still measure in the input qubits only numbers y that are multiples 2q−r. The
amplitudes of all other inputs cancel out. In the case of general (not only power of
two) periods we measure all inputs y 6= 0 with exactly half the probability as without
hashing.

Our correctness property immediately implies that the original post-processing in
Simon’s algorithm (Gaussian elimination) and in Shor’s algorithm (e.g. continued fractions)
can still be used in the hashed version of the algorithms for period recovery.

However, this does not automatically imply that we achieve similar runtimes. Namely,
in the original algorithms of Simon and Shor we measure all y having a non-zero amplitude
with a uniform probability distribution. In Simon’s algorithm for some period s ∈ Fn2 we
obtain each of the 2n−1 many y ∈ Fn2 orthogonal to s with probability 1

2n−1 . In Shor’s
algorithm with period d = 2r, we measure each of the d many possible multiples y of 2q−r
with probability 1

d .
These uniform probability distributions are destroyed by moving to the hashed version

of the algorithms. Since h(f(x)) = h(f(x′)) for x 6= x′ happens for universal 1-bit range
hash functions with probability 1

2 , the undesirable collisions put a probability weight of
(roughly) 1

2 on measuring y = 0 in the input qubits.
This seems to be bad news, since neither in Simon’s algorithm does the zero vector

y provide information about s, nor does in Shor’s algorithm the zero-multiple y of 2q−r
provide information about d. However as good news, we show that besides putting
probability weight 1

2 on y = 0, hashing does not destroy the probability distribution
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stemming from the amplitudes of quantum period finding algorithms. Namely, we show
that for the whole class of quantum period finding circuits that we consider – including
Simon, Shor (and its variant Ekerå-Håstad) – the following result holds: If the probability
to measure y is p(y) when using f , then we obtain probability p(y)/2 to measure y when
using h ◦ f , where the latter probability is taken over the random choice of h from a family
of 1-bit range universal hash functions.

Put differently, if we condition on the event that we do not measure y = 0 in the input
bits (which happens in roughly every second measurement) in both cases – using f itself
or its hashed version h ◦ f – we obtain exactly the same probability distribution for the
measurements of any y 6= 0. This implies that our hashing approach preserves not only
the correctness but also the runtime analysis of any processing of the measured data in a
classical post-process. Thus, at the cost of only twice as many quantum measurements
we save all but one of the output qubits. More generally, we show that at the cost of

1
1−2−t -times more measurements we may compression to t output qubits.

In particular, we show that the original Simon algorithm [Sim94] — that recovers for
a periodic function f : Fn2 → Fn2 its period in time polynomial in n with expected n+ 1
measurements using 2n qubits — admits an oracle-based hashed version with expected
2(n+ 1) measurements using only n+ 1 qubits. Moreover, we show that this leads to an
explicit (non-oracle, efficiently constructable) realization of the quantum Even-Mansour
attack [KM12, KLLN16] with only n+1 qubits , as well as an explicit distinguishing attack
on 3-round Feistel ciphers with a single output qubit. However, these attacks work only in
a quite strong attack model in which we have quantum access to Even-Mansour/Feistel
and their inverse functions. For the quantum attack [BHN+19] on Even-Mansour with
only classical access to the cipher, called Offline-Simon, we provide an explicit hashed
realization that saves even (roughly) a factor of 4 in the number of qubits.

The original Ekerå-Håstad version of Shor’s algorithm that computes discrete logarithms
d in some abelian group G in polynomial time using (1 + o(1)) log d + log(|G|) qubits
requires in its oracle-based hashed version only (1 + o(1)) log d qubits. Moreover, the
Ekerå-Håstad algorithm computes the factorization of an RSA modulus N = pq of bit-size
n in time polynomial in n using ( 3

2 +o(1))n qubits, whereas our oracle-based hashed version
reduces this to only ( 1

2 + o(1))n qubits. We leave it as an open problem whether there
exist an explicit hashed Ekerå-Håstad realization. For Ekerå-Håstad, one has to compute
hashed versions of the exponentiation function fa,N : x 7→ ax mod N . Notice that it is
of course not sufficient to compute fa,N first, and afterwards hash the result, since this
would require qubits for representing the full range of fa,N .

For proving our theorems, we make use of universal hash function families, but we
believe that this requirement is merely a proof artefact that guards against pathological
functions. In practice, we may usually relax the hash function requirement. We conjecture
that often a single h should still work. Even choosing h simply as the projection of f to a
single bit should work for most functions of interest. We believe that it is of theoretical and
practical interest to study in more generality, which classes of f admit a memory-efficient
computation of their hashed versions. Recently, a first explicit application of our hashed
Shor algorithm was given by Bonnetain, Leurent, Naya-Plasencia and Schrottenloher
[BLNS21] for the MAC Poly1305.

Our paper is organized as follows. In Section 3 we present our first main result that
Simon’s algorithm is compression robust. In Sections 4 and 5 we provide explicit hashed
Simon realizations of Even-Mansour and Feistel. In Section 6, we show how to explicitly
realize hashed Offline-Simon.

Subsequently, we generalize the hash concept to Shor’s algorithm and a more general
class of period-finding circuits. For didactic reasons, we study in Section 7 first the simple
case of Shor’s algorithm for periods that are a power of two. In Section 8, as our second
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main result we generalize to any quantum circuits that fall in our period finding class. As
a consequence, in Section 8 we obtain a hashed version of Shor’s algorithm with general
periods, and in Section 9 a hashed version of Ekerå-Håstad.

2 Preliminaries
Let us first recall some quantum notation. The reversible quantum embedding of a classical
function f is defined as

Uf : |x〉 |y〉 7→ |x〉 |y + f(x)〉 .
For any x, y ∈ Fn2 we write their inner product as 〈x, y〉 =

∑n
i=1 xiyi mod 2. The 1-qubit

Hadamard gate realizes the mapping H1 : |x〉 7→ 1√
2

∑
y∈F2

(−1)〈x,y〉 |y〉. Its n-qubit version
is defined as the n-fold tensor product Hn =

⊗n
i=1 H1. The n-qubit Quantum Fourier

Transform (QFT) is the mapping

QFTn : |x〉 7→ 1√
2n

∑
y∈F2n

e2πi x
2n y |y〉 .

Notice that QFT1 = H1.

Definition 1. A hash function family Ht := {h : D → {0, 1}t} is universal if for all
x, y ∈ D, x 6= y we have

Ph∈Ht [h(x) = h(y)] = 1
2t .

Efficient instantiations of (homomorphic) universal hash function families exist, e.g.

Ht = {hr : Fn2 → Ft2 | r ∈ (Fn2 )t , hr(x) = (〈x, r1〉, . . . , 〈x, rt〉)} . (1)

It is easy to see that strongly 2-universal hash function families as defined in [MU05] are
universal in the sense of Definition 1.

3 Hashed-Simon
Let us briefly recall Simon’s original algorithm. Let f : Fn2 → Fn2 be periodic with period
s ∈ Fn2 \ {0n}, that is f(x) = f(x + s) for all x ∈ Fn2 . We call f a Simon function if it
defines a (2 : 1)-mapping, i.e.

f(x) = f(y)⇔ (y = x) or (y = x+ s).

The use of Simon functions allows for a clean theoretical analysis, although Simon’s
algorithm works also for more general periodic functions as shown in [AMR07, CvD08,
LM17]. For ease of notation, we restrict ourselves to Simon functions.

The Simon circuit QSimon
f from Figure 1 uses n input and n output qubits for realizing

the embedding of f . It can easily be shown that in the n input qubits we measure only
y ∈ Fn2 such that y ⊥ s, i.e. ys = 0.

|0n〉 Hn
Uf

Hn

|0n〉

Figure 1: Quantum circuit QSimon
f

The Simon algorithm uses QSimon
f until we have collected n− 1 linearly independent

vectors, from which we compute the unique vector s that is orthogonal to all of them using
Gaussian elimination in time O(n3).
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Our Hashed-Simon (Algorithm 1) is identical to the Simon algorithm with the only
difference that QSimon

f is replaced by QSimon
h◦f , where in each iteration we instantiate QSimon

h◦f
with some hash function h freshly drawn from a universal t-bit range hash function family
Ht. Notice that Simon can be considered as special case of Hashed-Simon, where we
choose t = n and the identity function h = id. This slightly abuses notation, since
Hn = {id} is not universal. However, the following Lemma 1 holds without universality of
Hn. In Lemma 1 we show the correctness property of Hashed-Simon that by replacing
QSimon
f with QSimon

h◦f , we still measure only y orthogonal to s.

Algorithm 1: Hashed-Simon
Input : Simon function f : Fn2 → Fn2 , universal Ht := {h : Fn2 → Ft2}
Output : Period s of f

1 begin
2 Set Y = ∅.
3 repeat
4 Run QSimon

h◦f on |0n〉 |0t〉 for some freshly chosen h ∈R Ht.
5 Let y be the measurement of the n input qubits.
6 If y /∈ span(Y ), then include y in Y .
7 until Y contains n− 1 linear independent vectors
8 Compute {s} = Y ⊥ \ {0n} via Gaussian elimination.
9 return s.

10 end

Lemma 1 (Orthogonality). Let f : Fn2 → Fn2 be a Simon function with period s. Let
h : Fn2 → Ft2 and fh = h ◦ f : Fn2 → Ft2. Let us apply QSimon

h◦f on |0n〉 |0t〉. Then we obtain
superposition∑

fh(x)∈Im(fh)

∑
y∈Fn

2
y⊥s

wy,fh(x) |y〉 |fh(x)〉 where wy,fh(x) = 1
2n

∑
x∈f−1

h
(fh(x))

(−1)〈x,y〉 .

Proof. Since f is a Simon function we have f(x) = f(x+s) and therefore fh(x) = fh(x+s).
This implies x ∈ f−1

h (z) iff x+ s ∈ f−1
h (z).

An application of Qh◦f on input |0n〉 |0t〉 yields for the operations Hn ⊗ It and Ufh

|0n〉
∣∣0t〉 Hn⊗It→ 1

2n/2

∑
x∈Fn

2

|x〉
∣∣0t〉 Ufh→ 1

2n/2

∑
x∈Fn

2

|x〉 |fh(x)〉 .

Using x ∈ f−1
h (z) iff x+ s ∈ f−1

h (z), we obtain

1
2n/2

∑
x∈Fn

2

|x〉 |fh(x)〉= 1
2n/2

∑
x∈Fn

2

1
2 (|x〉+ |x+ s〉) |fh(x)〉

An application of Hn now yields
1
2n
∑
x∈Fn

2

∑
y∈Fn

2

1
2

(
(−1)〈x,y〉 + (−1)〈x+s,y〉

)
|y〉 |fh(x)〉

= 1
2n
∑
x∈Fn

2

∑
y∈Fn

2

1
2(−1)〈x,y〉

(
1 + (−1)〈s,y〉

)
|y〉 |fh(x)〉

= 1
2n
∑
x∈Fn

2

∑
y∈Fn

2
y⊥s

(−1)〈x,y〉 |y〉 |fh(x)〉 .
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The statement of the lemma follows.

From Lemma 1’s superposition∑
fh(x)∈Im(fh)

∑
y∈Fn

2
y⊥s

1
2n

∑
x∈f−1

h
(fh(x))

(−1)〈x,y〉

︸ ︷︷ ︸
wy,fh(x)

|y〉 |fh(x)〉 (2)

we see that only y ∈ Fn2 with y ⊥ s have a non-vanishing amplitude wy,fh(x).
Assume that we measure some fixed z = fh(x) ∈ {0, 1}t in the output qubits. Then an

easy calculation shows that Equation (2) collapses to∑
y∈Fn

2
y⊥s

1
(2n · |f−1

h (z)|)1/2

∑
x∈f−1

h
(z)

(−1)〈x,y〉

︸ ︷︷ ︸
wy,z

|y〉 |z〉 . (3)

Recall that Lemma 1 contains the analysis of Simon’s original algorithm as the special
case h = id. In this case, we know that by the definition of a Simon function |f−1

h (z)| = 2
for all z and

∑
x∈f−1

h
(z)(−1)〈x,y〉 ∈ {±2}. Thus, all y ⊥ s have amplitude ± 1

2(n−1)/2 . This
means that a measurement yields the uniform distribution over all y ⊥ s.

The following lemma will be useful, when we analyze superpositions over all z.

Lemma 2. Let f : Fn2 7→ F`2 be a Simon function. Then
∑
z∈F`

2
wy,z = 0 for all y 6= 0.

Proof. Fix y 6= 0n. If y 6⊥ s then all wy,z = 0 and thus the claim follows. Hence, in the
following let y ⊥ s. If z /∈ f(Fn2 ) then wy,z = 0. Therefore∑

z∈F`
2

wy,z =
∑

z∈f(Fn
2 )

wy,z.

Since f is a Simon function, f is a (2:1)-mapping. Thus∑
z∈f(Fn

2 )

wy,z = 1
2
∑
x∈Fn

2

wy,f(x).

Using the definition of wy,f(x) in Eq. (2) with h = id yields

1
2
∑
x∈Fn

2

wy,f(x) = 1
2n+1

∑
x∈Fn

2

(−1)〈x,y〉 .

Since for y 6= 0 we have
∑
x∈Fn

2
(−1)〈x,y〉 = 0, the claim follows.

Let us now develop some intuition for the amplitudes wy,z in Eq. (3) for 1-bit range
hash functions h : Fn2 → F2. We expect that |f−1

h (z)| ≈ 2n−1. We first look at the
amplitude w0n,z of |y〉 = |0n〉. Since for all x ∈ Fn2 we have (−1)〈x,y〉 = 1, the amplitude of

|0n〉 adds up to w0n,z =
(
|f−1

h
(z)|

2n

) 1
2
≈ 1√

2 . Hence, we expect to measure the zero-vector
0n with probability approximately 1

2 . This seems to be bad news, since the zero-vector is
the only one orthogonal to s that does not provide any information about s.

However, we show that all y ⊥ s with y 6= 0n still appear with significant amplitude.
Intuitively,

∑
x∈f−1

h
(z)(−1)〈x,y〉 describes for y 6= 0n a random walk with |f−1

h (z)| steps.
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Thus, this term should contribute on expectation roughly |f−1
h (z)| 12 to the amplitude of

|y〉. So we expect for all y ⊥ s with y 6= 0n an amplitude of

wy,z =
∑
x∈f−1

h
(z)(−1)〈x,y〉

(2n · |f−1
h (z)|)1/2 ≈ 1

2n/2 .

This in turn implies that conditioned on the event that we do not measure 0n (which
happens with probability roughly 1

2 ), we still obtain the uniform distribution over all
remaining y ⊥ s.

We make our intuition formal in the following theorem.

Theorem 1. Let Ht = {h : Fn2 → Ft2} be universal, and let f be a Simon function
with period s. Then we measure in Algorithm Hashed-Simon in the first n qubits any
y ⊥ s, y 6= 0 with probability 1−2−t

2n−1 , where the probability is taken over the random choice
of h ∈ Ht.

Proof. From Lemma 1 in the case h = id, we conclude that Simon gives us a superposition∑
f(x)∈Im(f)

∑
y∈Fn

2
y⊥s

wy,f(x) |y〉 |f(x)〉 where wy,f(x) = 1
2n

∑
x∈f−1(f(x))

(−1)〈x,y〉 .

For ease of notation let us denote z = f(x). In particular for z /∈ Im(f) we have wy,z = 0.
We measure any y with probability

∑
z∈Fn

2
|wy,z|2.

Let p(y) denote the probability to measure y in the first n qubits. Since wy,z ∈ R, we
obtain |wy,z|2 = w2

y,z and hence the identity

p(y) =
∑
z∈Fn

2

w2
y,z = 1

2n−1 . (4)

Let us now look at Hashed-Simon with a t-bit range hash function h ∈ Ht. From Lemma 1
we get

|Φh〉 =
∑
z′∈Ft

2

∑
y∈Fn

2
y⊥s

wy,z′ |y〉 |z′〉 .

With respect to the amplitudes wy,z of Simon the superposition of Hashed-Simon can
be written as

|Φh〉 =
∑
z′∈Ft

2

∑
y∈Fn

2
y⊥s

 ∑
z∈h−1(z′)

wy,z

 |y〉 |z′〉 ,
where ∑

z∈h−1(z′)

wy,z =
∑

z∈h−1(z′)

1
2n

∑
x∈f−1(z)

(−1)〈x,y〉 = 1
2n

∑
x∈f−1

h
(z′)

(−1)〈x,y〉 = wy,z′ .

Let us denote by ph(y) = Ph∈Ht [y] the probability that we measure y in the first n qubits
when applying QSimon

h◦f . Our goal is to show that ph(y) = (1− 2−t) · p(y) = 1−2−t

2n−1 .
For some h ∈ Ht we denote Ih,z′ = {z ∈ f(Fn2 ) | h(z) = z′}. Since

⋃̇
z′∈Ft

2
Ih,z′ = f(Fn2 )

and wy,z ∈ R, Hashed-Simon yields

ph(y) = 1
|Ht|

∑
h∈Ht

∑
z′∈Ft

2

∣∣∣∣∣∣
∑

z∈Ih,z′

wy,z

∣∣∣∣∣∣
2
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= 1
|Ht|

∑
h∈Ht

∑
z′∈Ft

2

 ∑
z∈Ih,z′

wy,z

2

. (5)

In Eq. (5) we obtain a cross-product wy,z1wy,z2 for z1 6= z2 iff z1, z2 are in the same set
Ih,z′ , i.e. iff h(z1) = h(z2). Using Definition 1 of a universal hash function family, we
obtain Ph∈Ht [h(z1) = h(z2)] = 2−t for any z1 6= z2. This implies that for exactly 2−t of all
h ∈ Ht we obtain h(z1) = h(z2).

Further using wy,z = 0 for z /∈ f(Fn2 ), we conclude that

ph(y) =
∑
z∈Fn

2

w2
y,z + 2−t

∑
z1 6=z2

wy,z1wy,z2 .

From Lemma 2 we know that

0 = 2−t
∑
z∈Fn

2

wy,z

2

= 2−t
∑
z∈Fn

2

w2
y,z + 2−t

∑
z1 6=z2

wy,z1wy,z2 .

An application of this identity together with Eq. (4) gives us

ph(y) = (1− 2−t)
∑
z∈Fn

2

w2
y,z = (1− 2−t) · p(y) = 1− 2−t

2n−1 .

Corollary 1. We measure in Algorithm Hashed-Simon in the first n qubits y = 0 with
probability 2−t + (1− 2−t) · 21−n.

Theorem 2. Let Ht = {h : Fn2 → Ft2} be universal, and let f : Fn2 → Fn2 be a Simon
function with period s ∈ Fn2 . Hashed-Simon recovers s with expected n+1

1−2−t applications
of quantum circuits QSimon

h◦f , h ∈R Ht, that use only n+ t qubits.

Proof. Let us define a random variable Xi, 1 ≤ i < n for the number of applications of
QSimon
h◦f until Hashed-Simon finds i linearly independent y1 . . . yi. Let Ei be the event

that we already have i− 1 linearly independent Y = {y1, . . . , yi−1} and we measure some
yi /∈ span(Y ). Define pi = P[Ei]. Using Theorem 1, we obtain

p1 = (1− 2−t) · 2n−1 − 1
2n−1 .

Since |span{y1 . . . , yi−1}| = 2i−1, we obtain from Theorem 1 more generally

pi = (1− 2−t) · 2n−1 − 2i−1

2n−1 .

Clearly, Xi is geometrically distributed with parameter pi. Let X = X1 + . . . + Xn−1
denote the number of required applications of QSimon

h◦f in Hashed-Simon. Then

E[X] =
n−1∑
i=1

E[Xi] =
n−1∑
i=1

1
(1− 2−t) ·

2n−1

2n−1 − 2i−1 =
n−1∑
i=1

1
(1− 2−t) ·

2n−1 − 2i−1 + 2i−1

2n−1 − 2i−1

= 1
(1− 2−t) · (n− 1) + 1

(1− 2−t) ·
n−1∑
i=1

2i−1

2n−1 − 2i−1 .

Since limn→∞
∑n−1
i=1

2i−1

2n−1−2i−1 ≤ 1.6067, the claim follows.

Remark 1. With a similar analysis as in the proof of Theorem 2, we obtain an upper bound
of n+ 1 for the expected number of applications of QSimon

f in Simon’s original algorithm.
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4 Simon Attack on the Even-Mansour Construction
The famous Even-Mansour construction [EM97, DKS12] is an appealingly simple way of
constructing a keyed pseudo-random permutation from an unkeyed public permutation
P : Fn2 → Fn2 via

EMk : Fn2 → Fn2 , x 7→ P (x+ k) + k .

As shown by Even, Mansour [EM97] and Dunkelman et al [DKS12], the function EMk

offers quite strong security guarantees against classical adversaries.
However, Kuwakado and Morii [KM12] and Kaplan et al [KLLN16] showed that

Even-Mansour is completely insecure against quantum superposition attacks. The key
observation is that the function

f : Fn2 → Fn2 , x 7→ P (x) + EMk(x) = P (x) + P (x+ k) + k

satisfies f(x) = f(x + k). Thus, an application of Simon’s algorithm reveals as period
the secret key k. This requires 2n qubits using Simon. Let UP and UEMk

be quantum
embeddings of P and EMk. The quantum circuit for the attack is depicted in Figure 2.

|0n〉 Hn

UP UEMk

Hn

|0n〉

Figure 2: Quantum circuit for Simon-attack on Even-Mansour.

4.1 Directly Realizing Hashed Even-Mansour: Simon Attack with n+1
qubits

From Theorem 2 we immediately conclude that we obtain a Simon-attack with n + 1
qubits using oracle access to hashed versions of f . In the following we show that we can
directly (without oracles) construct hashed versions from P and EMk.

First observe that P and EMk are reversible functions Fn2 → Fn2 , and thus may allow
for direct quantum circuits that compute the function values of P , EMk on the n input
qubits, without using the generic universal quantum embedding strategy. Let us assume
for the moment that we are able to construct for P an in-place quantum circuit QP , i.e. a
circuit that acts on the n input qubits only. We show in the following that some natural
choices for P in the Even-Mansour construction allow for such in-place realizations.

If P can be realized via QP in-place, then we can also realize EMk in-place via some
circuit QEMk

, where QEMk
just uses QP and adds in the key k (hardwired). Running the

implementations of QP , QEMk
backwards realizes the inverse functions P−1,EM−1

k . We
denote the corresponding circuits by Q−1

P and Q−1
EMk

. Notice that our hash method comes
at the cost of doubling the circuit depth.

We take the following universal hash family from Equation (1) with t = 1

H1 = {hr : Fn2 → F2 | r ∈ Fn2 , hr(x) = 〈x, r〉}.

Notice that H1 is homomorphic, i.e. for all hr ∈ H1 we have hr(x) + hr(y) = hr(x+ y) by
linearity of the inner product. As usual, we denote by Uhr the universal embedding of hr.

The n+ 1 qubit quantum circuit QHS in Figure 3 describes a Hashed-Simon attack
on Even-Mansour without the need for oracle access to hashed versions for f .
In Figure 3 we compute on the single output qubit of QHS

hr(P (x)) + hr(EMk(x)) = 〈P (x), r〉+ 〈EMk(x), r〉 = 〈P (x) + EMk(x), r〉
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|0n〉 Hn QP

Uhr

Q−1
P

QEMk

Uhr

Q−1
EMk

Hn

|0〉

Figure 3: Quantum circuit QHS for a Hashed-Simon-Attack on Even-Mansour

= hr(P (x) + EMk(x)) = hr(f(x)).

Thus, the correctness of our construction follows.
It remains to show that we can compute P in-place.

In-place realization of P . There exist many lightweight permutations such as Gimli
[BKL+17] that allow for (quantum) hardware-efficient implementations, for a list of
candidates see the current second round NIST competition [NIS] or the work of Bonnetain
and Jaques [BJ22]. For didactical reasons – since it is especially easy to describe and
implement in-place – we choose the SiMeck cipher [YZS+15], for which we fix the key
k′ ∈ Fn/2

2 to obtain a public permutation P , as also done in ACE [ATG+19].
SiMeck is a round-iterated Feistel cipher, see Figure 4 for one Feistel round Fk′ : Fn2 →

Fn2 .

Fk′

x0 . . . xn
2−1 xn

2
. . . xn−1

Fk′(x)0 . . .Fk′(x) n
2−1 Fk′(x) n

2
, . . . ,Fk′(x)n−1

Figure 4: One round of Fk′ of SiMeck, where Fk′ : F
n
2
2 → F

n
2
2 is the round function.

Let x = x0 . . . xn−1. Then the ith bit of Fk′(x) is

Fk′(x)i =
{
xi−n/2 if i ≥ n/2
Fk′(x0, . . . , xn/2−1)i + xi+n/2 if i < n/2

.

The round function Fk′ : Fn/2
2 → Fn/2

2 in SiMeck is defined as

Fk′(x)i = xi · xi+5 mod n/2 + xi+1 mod n/2 + k′i .

We implement Fk′ in-place as depicted in Figure 5. In our quantum circuit the AND-
operation is realized by a Toffoli gate. Conditioned on k′i = 1 we place a NOT-gate X (i.e.
we hardwire k′i).

Going from the public permutation P realized via SiMeck to Even-Mansour EMk, we
also hardwire the bits of k via NOT-gates, see Figure 6.
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|xi〉 • |xi〉
|xi+1〉 • |xi+1〉
|xi+5〉 • |xi+5〉

|xi+ n
2
〉 Xk′

i
|Fk′(x0, . . . , xn/2−1)i + xi+ n

2
〉

Figure 5: In-place realization of Fk′(x)i, i < n
2 . If k

′
i = 1 we place a NOT-gate X.

|x0〉 Xk0

QP

Xk0 |EM(x)0〉
...

...
...

...
|xn−1〉 Xkn−1 Xkn−1 |EM(x)n−1〉

Figure 6: Quantum circuit for Even-Mansour. We place a NOT-gate X if ki = 1.

5 Hashing 3-Round Feistel Distinguishers
In Section 4 via realized a hashed version of the Even-Mansour attack via splitting the peri-
odic function in reversible blocks that in turn either have in-place implementations or oracles.
More generally speaking, Hashed-Simon can be applied whenever the periodic function
can be written as a sum of reversible functions, and in-place oracles/implementations are
available for these functions and their inverses.

We will in the following showcase how this strategy can applied to mount a distinguishing
attack on 3-round Feistel. Other potential applications of the method are the LRW
construction, introduced by Liskov, Rivest and Wagner [LRW02], and 4-round Feistel
distinguishers [IHM+19].

Kuwakado-Morii 3-round Feistel Distinguisher. In our distinguishing attack we get
oracle access either to a realization of a 3-round Feistel (see Figure 7), or to a random
permutation. Let us first assume that we are in the Feistel case, for which we describe the
idea of the Kuwakado-Morii attack [KM10].

L

R

F1 F2 F3

L′

R′

Figure 7: 3-round Feistel E, with E(L,R) = (L′, R′).

From Figure 7 we see that
R′ = L+ F2(R+ F1(L)).

Let us define via

E : Fn/2
2 × Fn/2

2 → Fn/2
2 × Fn/2

2 , (L,R) 7→ (L′, R′)

the application of 3-round Feistel, and we denote by E(L,R)R′ = R′ the projection on the
last n/2 output bits. Moreover, we restrict L to only two input values α0, α1. We define

f : F2 × Fn/2
2 → Fn/2

2 , (b, x) 7→ F2(x+ F1(αb)) = E(αb, x)R′ + αb, (6)
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which satisfies

f(0, x) = F2(x+ F1(α0)) = f(1, x+ F1(α0) + F1(α1)).

Therefore, f is periodic with the (unknown) period (1, F1(α0) + F1(α1)).
In case our oracle E realizes a random permutation, the function f(b, x) is periodic

with negligible probability. Thus, via an application of Simon’s algorithm we can test
periodicity and thus distinguish both cases.

Let UE be the quantum embedding of E, and let α0 = 0n/2, α1 = 10n/2−1. Then the
quantum distinguishing circuit is depicted in Figure 8.

L : |0n/2〉 H

UE

• H

R : |0n/2〉 Hn/2 Hn/2

L′ : |0n/2〉 Hn/2

R′ : |0n/2〉

Figure 8: Quantum circuit QS for a Simon-distinguisher on 3-round Feistel. The H and
CNOT gate on the first register are applied only on the first qubit.

Notice that the H-gate on the first qubit generates a uniform superposition over
b ∈ {0, 1}, and thus over α0 = 0n/2 and α1 = 10n/2−1. The Hn/2-gate on the output-
register is used to hide the value of L′, which is necessary for the proper projection to R′,
see [HS18] for details.

5.1 Directly Realizing Hashed 3-round Feistel
Recall from Equation (6) that f(b, x) = E(αb, x)R′ + αb. Assume that we obtain oracle
access to in-place realizations UE of the oracle function E, as well as UE−1 for the inverse
E−1.

We use the universal homomorphic hash family from Equation (1) with t = 1 for n/2
bits

H1 = {hr : Fn/2
2 → F2 | r ∈ Fn/2

2 , hr(x) = 〈x, r〉}.
Analogous to Section 4, we first compute a hash of E(αb, x), uncompute E, and then

add a hash of αb.
The resulting n+ 1 qubit quantum circuit QHS is depicted in Figure 9. It provides an

explicit realization of a Hashed-Simon distinguishing attack on 3-round Feistel without
the need for oracle access to hashed versions of f .

L : |0n/2〉 H
UE UE−1

Uhr

H

R : |0n/2〉 Hn/2
Uhr

Hn/2

|0〉

Figure 9: Quantum circuit QHS for a Hashed-Simon-distinguisher on 3-round Feistel.

Notice that the second hash function in Figure 9 hashes the first n/2 qubits to the
output qubit. In total we compute on the output qubit of QHS

hr(E(αb, x)R′) + hr(αb) = 〈E(αb, x)R′ , r〉+ 〈αb, r〉 = 〈E(αb, x)R′ + αb, r〉
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= hr(E(αb, x)R′ + αb) = hr(f(x)).

Thus, the correctness of our construction follows.

6 Hashing Offline Even-Mansour to a Quarter of its Bits
While Simon’s attack on the Even-Mansour cipher

EMk : Fn2 → Fn2 , x 7→ P (x+ k) + k

from Section 4 with only O(n) queries nicely illustrates the power of quantum computations
on symmetric cryptography, it also uses a strong model giving an attacker full quantum
access to EMk.

Recently, Bonnetain et al [BHN+19] proposed an algorithm called Offline-Simon
that in a more realistic model, where an attacker gets only classical access to EMk, achieves
a polynomial speedup over classical attacks. More precisely, the Even-Mansour attack
with Offline-Simon runs in time Õ

(
2 n

3
)
using 4

3cn
2 + o(n2) qubits, for some constant c

(chosen as c = 5
3 in [BHN+19]). This qubit analysis uses the very mild assumption that

Even-Mansour’s public permutation P : Fn2 → Fn2 can be implemented with o(n2) qubits.
Efficiently computable P ’s are usually computable with O(n) qubits.

We show in the following that our hashing technique reduces the number of required
qubits to only 1

3cn
2 + o(n2), thereby saving roughly a factor of 4. Moreover, as opposed to

Section 4 we do neither require the realization of any inverse functions nor require in-place
realizations.

For simplicity of exposition we first explain the Offline-Simon technique when applied
to Even-Mansour. Moreover, we ignore the fact that Even-Mansour is not a perfect 2:1-
function, which only insignificantly affects the analysis as shown in [KLLN16, SS17, LM17].

In Theorem 4, we show how to apply Offline-Simon in combination with hashing
in a more general setting. As a direct corollary we obtain that the FX-construction
attack [LM17] admits a hashed version with only half the qubits.

Offline-Simon. Recall from Section 4 that the main observation of the quantum attack
on Even-Mansour is that the function EMk(x) + P (x) is periodic with period k. In
this function only EMk is key-dependent. The idea of Offline-Simon is to define a
key-dependent function

g : F
n
3
2 → Fn2 , x 7→ EMk(x||0 2n

3 ),

for which we only have classical access, and a key-independent function with quantum
access

fk′ : F
n
3
2 → Fn2 , x 7→ P (x||k′) for some k′ ∈ F

2n
3

2 .

We write the secret key as k = (k1||k2) ∈ F
n
3
2 × F

2n
3

2 . Notice that

g(x) + fk2(x) = EM(k1||k2)(x||0
2n
3 ) + P (x||k2)

= P (x+ k1||k2) + k + P (x||k2)

is periodic in k1 ∈ F
n
3
2 . As opposed to Section 4 instead of period k we obtain period k1,

thereby reducing the period length from n to n
3 bits. However, g + fk′ is periodic only for

the choice k′ = k2, otherwise it behaves like a random function (by the property of P ).
Therefore, Offline-Simon searches for k′ = k2 with a Grover search in time Õ(2 n

3 ), using
a Grover function that returns 1 iff g + fk′ is periodic. Such a function has been designed
by Leander and May [LM17] using Simon’s algorithm. In a nutshell, Offline-Simon
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proceeds as follows. Let c ≥ 1 be a small constant. Using 2n/3 classical queries to g we
determine g(x) for all x ∈ F

n
3
2 . We then build the uniform superposition

|Φg〉 :=
cn⊗
j=1

 ∑
xj∈F

n
3

2

|xj〉 |g(xj)〉

 ,

where for simplicity of exposition we omit amplitudes.
In addition, we take a uniform superposition over all key candidates k′, i.e., we obtain

∑
k′∈F

2n
3

2

|k′〉 |Φg〉 :=
∑

k′∈F
2n
3

2

|k′〉
cn⊗
j=1

 ∑
xj∈F

n
3

2

|xj〉 |g(xj)〉

 .

Using O(n) quantum queries to fk′ we construct the superposition

∑
k′∈F

2n
3

2

|k′〉 |Φg+fk′ 〉 :=
∑

k′∈F
2n
3

2

|k′〉
cn⊗
j=1

 ∑
xj∈F

n
3

2

|xj〉 |(g + fk′)(xj)〉

 .

Eventually, we use Hadamard on the |xj〉’s to obtain cn copies of a typical Simon
superposition

∑
k′∈F

2n
3

2

|k′〉 |Φ〉 :=
∑

k′∈F
2n
3

2

|k′〉 ⊗

 ∑
x1,y1∈F

n
3

2

(−1)〈x1,y1〉 |y1〉 |(g + fk′)(x1)〉

⊗ . . .

⊗

 ∑
xcn,ycn∈F

n
3

2

(−1)〈xcn,ycn〉 |ycn〉 |(g + fk′)(xcn)〉

 .

(7)

The state |Φ〉 is then used do check for periodicity of g + fk′ .
Let us for a moment assume that we measure |Φ〉. This measurement yields cn

independent Simon-samples y1, . . . , ycn with c ≥ 1. If g + fk′ is periodic, then the
y1, . . . , ycn span a subspace of dimension at most n − 1. In the case of a non-periodic
g + fk′ , with high probability (depending on c) the y1, . . . , ycn span a subspace of full
dimension n. Thus, we may decide whether g + fk′ is periodic by applying Gaussian
elimination to the basis vectors y1, . . . , ycn.

Instead of measuring |Φ〉, we use a quantum version of Gaussian elimination which can
be realized with o(n2) ancilla-qubits1 in polynomial depth. This dimension computation
procedure is then used as a Grover function for k′, which returns label 1 if g + fk′ is
periodic, and else with high probability label 0. A proper choice of c guarantees with
sufficiently large probability a correct label.

Notice that |Φ〉 in Equation (7) has cn copies of a state with n
3 input qubits for y and

n output qubits for (g + fk′)(x). Thus ignoring low order terms we need 4
3cn

2 qubits.

Hashed-Offline-Simon. Let us use our t-output bit homomorphic hash function family
from Equation (1)

Ht = {hr : Fn2 → Ft2 | r ∈ (Fn2 )t , hr(x) = (〈x, r1〉, . . . , 〈x, rt〉)} .
1To make the Gaussian dimension computation reversible, it suffices to add ancillary qubits to save the

position of the pivot element in each step. Thus only O(log(n) · n) ancilla bits are required.
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Let c′ be a small constant. In the following we see how c′ relates to c from Offline-Simon.
Choose hj ∈R Ht for 1 ≤ j ≤ c′n. As in Offline-Simon, we first classically query

on-the-fly for all xj the value g(xj) and compute hj(g(xj)) for every j to create

|Φh◦g〉 :=
c′n⊗
j=1

 ∑
xj∈F

n
3

2

|xj〉 |hj(g(xj))〉

 .

We then take the superposition over all key candidates k′

∑
k′∈F

2n
3

2

|k′〉 |Φh◦g〉 :=
∑

k′∈F
2n
3

2

|k′〉
c′n⊗
j=1

 ∑
xj∈F

n
3

2

|xj〉 |hj(g(xj))〉

 .

Second, using O(n) quantum queries to hj ◦ fk′(xj) = hj(P (xj ||k′)) (a combination of
each hj with the quantum circuit for fk′) we construct2 the superposition

∑
k′∈F

2n
3

2

|k′〉 |Φh◦(g+fk′ )〉 :=
∑

k′∈F
2n
3

2

|k′〉
c′n⊗
j=1

 ∑
xj∈F

n
3

2

|xj〉 |(hj ◦ g + hj ◦ fk′)(xj)〉

 .

By the homomorphic property of hj ∈ Ht we have hj ◦ g + hj ◦ fk′ = hj ◦ (g + fk′).
Eventually, Hadamard on |x〉 creates c′n copies of a Simon superposition

∑
k′∈F

2n
3

2

|k′〉 |Φh〉 :=
∑

k′∈F
2n
3

2

|k′〉 ⊗

 ∑
x1,y1∈F

n
3

2

(−1)〈x1,y1〉 |y1〉 |h1 ◦ (g + fk′)(x1)〉

⊗ . . .

⊗

 ∑
xc′n,yc′n∈F

n
3

2

(−1)〈xc′n,yc′n〉 |yc′n〉 |hc′n ◦ (g + fk′)(xc′n)〉

 .

(8)

The remaining steps following Equation (8) are the same as for Equation (7) above.
Thus, in contrast to Offline-Simon we hash the n output qubits to t output qubits.

However, we have to chose t with some care. On the one hand, taking t = 1 minimizes
the number of bits per copy from 4

3n to only 1
3n+ 1. On the other hand, by Theorem 1

the choice t = 1 results in (roughly) half the yi’s being zero, which in turn forces us to set
c′ ≥ 2c. Thus, in total we obtain at least 2cn( 1

3n+ 1) qubits instead of cn( 4
3n), saving at

most a factor of (roughly) 2.
We will show in Theorem 3 that the choice t = log2 n saves us a factor of (roughly) 4

by reducing the bits per copy to (the achievable minimum) 1
3n+ o(n) while increasing cn

insignificantly to only c′n = cn+ o(n).

Theorem 3. A Hashed-Offline-Simon attack with only classical access to the Even
Mansour cipher EMk computes k in time Õ

(
2 n

3
)
using 1

3cn
2 + o(n2) = 5

9n
2 + o(n2) qubits,

instead of 4
3cn

2 + o(n2) = 20
9 n

2 + o(n2) qubits for the non-hashed version.

Proof. We know from [BHN+19] and the above discussion that the non-hashed version
Offline-Simon works for the choice c = 5

3 in time Õ
(
2 n

3
)
using 4

3cn
2 + o(n2) = 20

9 n
2 +

2 This can be done by computing iteratively fk′ (xj), hashing it with hj , and uncomputing fk′ (xj) to
reuse the qubits for fk′ (xj+1). Using this iterative procedure instead of c′n times we only need once the
qubits for representing fk′ .
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o(n2) qubits, where o(n2) also accounts for the required ancilla qubits. The value c is
chosen so that the error of the Grover function is bounded by 2−2n/3 and the success
probability is bounded by Θ(1).

We choose t = log2(n) for the hash length of our family Ht. We measure each yj in |Φ〉
from Equation (7) with probability 1

2n/3−1 . By Theorem 1, we measure each yj 6= 0 in |Φh〉
from Equation (8) with probability 1−2−t

2n/3−1 . This implies that conditioned on measuring
yj 6= 0, the probability distribution of all yj is preserved.

Let Xi be a Bernoulli random variable that takes value 1 iff we measure yi = 0. We
have p := P[Xi = 1] = 1

n + n−1
n·2n/3−1 <

2
n for sufficiently large n. Let

n′ = n

ln(n) .

We choose c′n = cn+ n′ in Hashed-Offline-Simon.
Let BAD be the event that less than cn of our c′n measurements are non-zero vectors

yi 6= 0. Notice that in the event BAD we do not have sufficiently many non-zero vectors
for Hashed-Offline-Simon. Let X =

∑c′n
i=1 Xi be a random variable for the number of

0-measurements. Then µ := E[X] = pc′n < 2c+ 2n′
n = 2c+ 2

ln(n) < 4 for sufficiently large
n.

Application of a Chernoff bound yields

P[BAD] = P [X ≥ c′n− cn] = P [X ≥ n′] = P
[
X ≥

(
1 +

(
n′

µ
− 1
))
· µ
]

≤

(
en
′/µ−1

(n′/µ)n′/µ

)µ
= en

′−µ−ln(n′/µ)·n′ = e−n+o(n) < o(1) · 2−2n/3 ,

for sufficiently large n.
We see that by our choice of c′ in Hashed-Offline-Simon the error of the Grover

function increases by at most a factor of (1 + o(1)). Following the analysis from [BHN+19]
this implies that we still have a success-probability of Θ(1).

In |Φh〉 we obtain c′n copies of n/3 + t and therefore a total qubit amount of

c′n·
(n

3 + log2 n
)

+o(n2) = (cn+ o(n))
(n

3 + o(n)
)

+o(n2) = 1
3cn

2+o(n2) = 5
9n

2+o(n2) ,

where the term o(n2) also accounts for the qubits required to compute fk′ as well the
ancilla qubits for Gaussian elimination and the space for k′.

Remark 2. Our factor-4 save in qubits comes at a linear increase of the circuit depth. In
the following theorem we show that our iterative calculation of h ◦ fk′ increases the anyway
exponential (!) depth of Offline-Simon by at most a factor of 2cn(1 + o(1)).

Theorem 3 generalizes as follows.

Theorem 4. Given an Offline-Simon attack with fk′ , g : Fn2 → F`(n)
2 and k′ ∈ Fm2 ,

where fk′ can be computed in space o(n2) and depth ω(1). A Hashed-Offline-Simon
attack requires only cn2 + m + o(n2) instead of cn2 + cn`(n) + m + o(n2, n`(n)) qubits,
while increasing the (exponential) depth of the circuit by a factor of at most 2cn · (1 + o(1)).

Proof. In the proof of Theorem 3 we simply replace fk′ , g : F
n
3
2 → Fn2 by fk′ , g : Fn2 → F`(n)

2 ,
and take the memory requirement of k′ ∈ Fm2 into account. This yields a total qubit
amount of

(cn+ o(n)) · (n+ o(n)) +m+ o(n2) = cn2 +m+ o(n2) .
The depth of Hashed-Offline-Simon differs from that of Offline-Simon in the com-
putation of the following two functions.
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First, while Offline-Simon checks for periodicity of cn vectors, Hashed-Offline-
Simon checks for periodicity of c′n = cn(1 + o(1)) vectors. This increases the depth only
by a (1 + o(1))-factor.

Second and more important, in Offline-Simon we compute the cn values of fk′ ’s
in parallel, i.e. depth(f), while in Hashed-Offline-Simon the c′n values of h ◦ fk′ are
computed and uncomputed iteratively to save space. Since h’s depth is bounded by n, this
iterative procedure requires depth at most

c′n(2 · depth(f) + n) = depth(f)
(

2c′n+ n

depth(f)

)
= depth(f) (2cn(1 + o(1))) ,

proving our theorem.

Remark 3. An application of Theorem 4 with the setting of a linear `(n) = dn and
m = o(n2) shows that our hashing technique saves roughly a (d+ 1)-factor in the number
of qubits.

We obtain the following corollary for the FX-construction defined as

FXk0,k1,k2 : Fn2 → Fn2 , x 7→ Pk0(x+ k1) + k2,

where P is a key dependent permutation with k0 ∈ Fm2 , and k1, k2 ∈ Fn2 .
Corollary 2. For the FX-construction with fk′ , g : Fn2 → Fn2 , fk′ := Pk′ , g := FXk0,k1,k2 ,
and k0 ∈ Fo(n2)

2 , Hashed-Offline-Simon saves at least a factor of 2(1− o(1)) in qubits
in comparison to Offline-Simon.

7 Hashed Shor: Special Periods
Let us briefly recall Shor’s algorithm. Let f : Z→ Z be periodic with period d ∈ N, i.e.
d > 0 is minimal with the property f(x) = f(x+ d) for all x ∈ Z. For ease of notation, let
us first focus on applying Shor’s algorithm for factorization. In Section 9 we will also see
an application for discrete logarithms.

Let N ∈ N be a composite n-bit number of unknown factorization, and let a be chosen
uniformly at random from Z∗N , the multiplicative group modulo N . Let us define the
function f : Z→ ZN , x 7→ ax mod N . Notice that f is periodic with d = ordN (a), since
f(x + d) = ax+d = axaord(a) = ax = f(x). It is well-known that we can compute a
non-trivial factor of N in probabilistic polynomial time given d = ordN (a) [Sho97]. We
encode the inputs of f with q qubits.

In order to find d, Shor uses the quantum circuit QShor
f from Figure 10 with oracle-

access to f . In QShor
f we measure in the q input qubits with high probability y’s that are

close to some multiple of 2q

d . The original Shor algorithm then measures sufficiently many
y’s (a constant number is sufficient) to extract d in a classical post-process.

|0q〉 Hq

Uf

QFTq

|0n〉

Figure 10: Quantum circuit QShor
f

Our Hashed-Shor (Algorithm 2) simply replaces circuit QShor
f with its hashed version

QShor
h◦f , where we use oracle-access to hashed versions of f . Notice that Shor is a special

case of Hashed-Shor for the choice t = dlog2(N)e and Ht = {id}. For this choice Ht
is not universal, but we do not need universality in the following Lemma 3 about the
superposition produced by Qh◦f . From Lemma 3 we conclude correctness of Hashed-Shor
for any t-bit range hash function h.
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Algorithm 2: Hashed-Shor
Input : f : Z→ ZN , universal Ht := {h : ZN → {0, 1}t}
Output : Period d of f

1 begin
2 Set Y = ∅.
3 repeat
4 Run QShor

h◦f on |0q〉 |0t〉 for some freshly chosen h ∈R Ht.
5 Let y be the measurement of the q input qubits.
6 If y 6= 0, then include y in Y .
7 until |Y | is sufficiently large.
8 Compute d from Y in a classical post-process.
9 return d

10 end

Lemma 3. Let N ∈ N, a ∈ Z∗N with d = ordN (a) and f(x) = ax mod N . Let h : ZN →
{0, 1}t. Define Mz := {k ∈ Zd | h(ak mod N) = z}. An application of quantum circuit
QShor
h◦f on input |0q〉 |0t〉 yields a superposition

|Φh〉 =
2q−1∑
y=0

∑
z∈{0,1}t

1
2q

∑
k∈Mz

∑
c≥0:

cd+k<2q

e2πi cd+k
2q y |y〉 |z〉 . (9)

Proof. In QShor
h◦f , we apply on input |0q〉 |0t〉 first the operation Hq ⊗ It followed by Uh◦f .

This results in superposition

1√
2q

2q−1∑
x=0
|x〉 |h(ax mod N)〉 .

Let x = cd+ k with k ∈ Zd. Since ax = acd+k ≡ ak mod N , the value of f(x) depends
only on k = (x mod d). Therefore, we rewrite the above superposition as

1√
2q

∑
z∈{0,1}t

∑
k∈Mz

∑
c≥0:

cd+k<2q

|cd+ k〉 |z〉 ,

Eventually, an application of QFTq yields

|Φh〉 =
2q−1∑
y=0

∑
z∈{0,1}t

1
2q

∑
k∈Mz

∑
c≥0:

cd+k<2q

e2πi cd+k
2q y

︸ ︷︷ ︸
wy,z

|y〉 |z〉 .

Remark 4. For the choice h = id, Lemma 3 provides an analysis of Shor’s original quantum
circuit QShor

f . This choice implies Mz = {k ∈ Zd | ak = z mod N}. Therefore, we obtain
the superposition

|Φ〉 =
2q−1∑
y=0

d−1∑
k=0

1
2q

∑
c≥0:

cd+k<2q

e2πi cd+k
2q y |y〉 |ak mod N〉 . (10)
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and the amplitudes of |y〉 |zk〉 with zk = ak mod N are

wy,zk
= 1

2q
∑
c≥0:

cd+k<2q

e2πi cd+k
2q y .

For didactical reasons and ease of notation, let us look in the subsequent section at the
special case of periods d that are powers of two. In Section 8, we analyse the general d
case.

7.1 Periods that are a power of two
Let d = 2r for some r ∈ N with r ≤ q. Then max{c ∈ N | cd+k < 2q} = 2q

d −1 = 2q−r−1,
independent of k ∈ Zd. Hence, let us define m = 2q

d and zk = ak mod N . Using md = 2q,
this allows us to rewrite Eq. (10) and Eq. (9) as

|Φ〉 =
2q−1∑
y=0

d−1∑
k=0

(
1√
d
· e2πi k

2q y

)
·

(
1√
m · 2q

m−1∑
c=0

e2πi cd
2q y

)
|y〉 |zk〉 (11)

respectively for h : ZN → {0, 1}t as

|Φh〉 =
2q−1∑
y=0

∑
z∈{0,1}t

(
1√
d

∑
k∈Mz

e2πi k
2q y

)
·

(
1√
m · 2q

m−1∑
c=0

e2πi cd
2q y

)
|y〉 |z〉 . (12)

Notice that the factor
1√
m · 2q

m−1∑
c=0

e2πi cd
2q y

is identical in |Φ〉 and its hashed version |Φh〉. Further notice that the factor is independent
of zk and z. In the following lemma we show that for a measurement of any |y〉, where y
is a multiple of m, this factor contributes to the probability with 1

d .
Lemma 4. Let d = 2r ≤ 2q and y = `m for some 0 ≤ ` < d. Then we have∣∣∣∣∣ 1√

m · 2q

m−1∑
c=0

e2πi cd
2q y

∣∣∣∣∣
2

= 1
d
.

Proof. Since y = `m = ` 2q

d we obtain∣∣∣∣∣ 1√
m · 2q

m−1∑
c=0

e2πi cd
2q y

∣∣∣∣∣
2

= 1
m · 2q

∣∣∣∣∣
m−1∑
c=0

e2πic`

∣∣∣∣∣
2

= m2

m · 2q = m

2q = 1
d
.

We now show that the same common factor ensures that in both superpositions |Φ〉
and its hashed version |Φh〉 we never measure some |y〉 if y is not a multiple of m.
Lemma 5. Let d = 2r ≤ 2q and y ∈ {0, . . . , 2q − 1} with m - y. Then we measure |y〉 in
either |Φ〉 or |Φh〉 from Equation (11) or Equation (12) with probability 0.

Proof. Let y = m` + k with 0 < k < `. It suffices to show that
∣∣∣∑m−1

c=0 e2πi cd
2q y
∣∣∣2 = 0.

Using d
2q = 1

m , we obtain∣∣∣∣∣
m−1∑
c=0

e2πi cd
2q y

∣∣∣∣∣
2

=

∣∣∣∣∣
m−1∑
c=0

e2πi c
m (m`+k)

∣∣∣∣∣
2

=

∣∣∣∣∣
m−1∑
c=0

(
e2πi k

m

)c∣∣∣∣∣
2

= 0 .
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Hence, we conclude from Lemmata 3, 4 and 5 that in both |Φ〉 and its hashed version
|Φh〉 we always measure some |y〉 for which y = `m = `2q

d . Assume that gcd(`, d) = 1,
then we directly read off d from y. If ` is uniformly distributed in the interval [0, d) this
happens with sufficient probability to compute d in polynomial time.

Indeed, in Shor’s original algorithm ` is uniformly distributed since the first factor in
Eq. (11) satisfies for any y

d−1∑
k=0

∣∣∣∣ 1√
d
· e2πi k

2q y

∣∣∣∣2 = 1
d

d−1∑
k=0

∣∣∣e2πi k
2q y
∣∣∣2 = 1

d

d−1∑
k=0

1 = 1 .

Similar to the reasoning in Section 3, we show that in the case of the hashed version
|Φh〉 we obtain any |y〉 with y 6= 0 with probability of at least 1

2d , where the probability is
taken over the random choice of the hash function. This implies that we measure for |Φh〉
the useless y = 0 with at most probability 1− d−1

2d ≈
1
2 .

Theorem 5. Let N ∈ N, a ∈ Z∗N with d = ordN (a) a power of two and f(x) = ax mod N .
Let Ht = {h : ZN → {0, 1}t} be universal. Then we measure in Hashed-Shor in the q
input qubits any y = `m, 0 < ` < d with probability 1−2−t

d , where the probability is taken
over the random choice of h ∈ Ht.

Proof. Let us denote by ph = Ph∈Ht [y] the probability that we measure y in Hashed-
Shor in the q input qubits. By Lemma 3, Eq. (12) and Lemma 4 we know that for all
y = `m = ` 2q

d we have

ph = 1
|Ht|

∑
h∈Ht

∑
z∈{0,1}t

∣∣∣∣∣ 1√
d

∑
k∈Mz

e2πi k
2q y

∣∣∣∣∣
2

· 1
d

= 1
d2 ·

1
|Ht|

∑
h∈Ht

∑
z∈{0,1}t

∣∣∣∣∣ ∑
k∈Mz

e2πi k`
d

∣∣∣∣∣
2

.

Recall that Mz := {k ∈ Zd | h(ak mod N) = z}. Observe that for k1 6= k2 we obtain a
cross-product e2πi k1`

d ·e2πi k2`
d = e2πi (k1−k2)`

d iff k1, k2 are in the same setMz, z ∈ {0, 1}t, i.e.
iff h(ak1 mod N) = h(ak2 mod N). Using Definition 1 of a universal hash function family,
we obtain Ph∈Ht

[h(ak1 mod N) = h(ak2 mod N)] = 2−t for any k1 6= k2. This implies that
for exactly 2−t of all h ∈ Ht we obtain h(ak1 mod N) = h(ak2 mod N). Therefore,

ph = 1
d2 ·

d−1∑
k=0

∣∣∣e2πi k`
d

∣∣∣2 + 2−t
∑
k1∈Zd

∑
k2 6=k1∈Zd

e2πi (k1−k2)`
d

 .

Since k1 − k2 6= 0, we can rewrite as

ph = 1
d2 ·

d+ d

2t
∑

k∈Zd\{0}

e2πi k`
d

 = 1
d2 ·

(
d− d

2t

)
= 1− 2−t

d
.

From Theorem 5 we see that in the hashed version |Φh〉 we measure every y = m`, y 6= 0
with probability 1−2−t

d , whereas in comparison in |Φ〉 we measure every y = m` with
probability 1

d . It follows that in Eq. (12) the scaling factor

S =
∑

z∈{0,1}t

∣∣∣∣∣ 1√
d

∑
k∈Mz

e2πi k
2q y

∣∣∣∣∣
2

(13)

takes on expected value 1− 2−t for y = `m, 0 < ` < d taken over all h ∈ Ht. Notice that
S is a symmetric function in y, i.e. S(y) = S(2q − y).
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Let us look at an example to illustrate how the probabilities behave. We choose
N = 51 = 3 · 17, a = 2 and q = 12. This implies d = ordN (a) = 8 and m = 2q

d = 512. In
|Φ〉 we measure some y = m` = 512`, 0 ≤ ` < d = 8 with probability 1

8 each, as illustrated
in Figure 11a.

Let us assume we have in Hashed-Shor M0 = {2, 3, 4, 7} (using t = 1). This fully
specifies the scaling function S from Eq. (13). Thus, each amplitude from |Φ〉 is multiplied
by S, as illustrated in Figure 11b.
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(a) Shor with d = 8, m = 512. The probabili-
ties are independent of the measurement of the
output qubits zk.
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(b) Hashed-Shor with d = 8, m = 512, t = 1
and M0 = {2, 3, 4, 7}.

Figure 11: Probability distributions for Shor and Hashed-Shor

Theorem 6. Let N ∈ N, a ∈ Z∗N with d = ordN (a) a power of two and f(x) = ax mod N .
Let Ht = {h : ZN → {0, 1}t} be universal, and let x be represented by q input qubits in
QShor
h◦f . Then Hashed-Shor finds f ’s period d with expected 2

1−2−t ≤ 4 applications of
quantum circuits QShor

h◦f , h ∈R Ht, that use only q + t qubits.

Proof. In Shor we compute the fraction y
2q = `

d in reduced form. Since d is a power of
two, this fraction reveals d in its denominator iff ` is odd. Using Theorem 5, we measure
y = m` with an odd `, 0 < ` < d with probability d

2 ·
1−2−t

d = 1−2−t

2 . Thus, we need on
expectation 2

1−2−t ≤ 4 applications of QShor
h◦f to find f ’s period d.

Notice that we can check the validity of d via testing the identity ad ?= 1 mod N .

For comparison, we need in Shor’s original algorithm with the non-hashed version of
f on expectation 2 measurements until we find d.

8 Hashed Period-Finding Including Shor
Notice that we proved in Theorem 1 and Theorem 5 that when we move to the hashed
version of our quantum circuits all probabilities to measure some y 6= 0 decrease exactly
by a factor of (1− 2−t) (over the random choice of the t-bit hash function).

The same is true for finding arbitrary (non power of two) periods with circuit QShor
h◦f .

However, this does not immediately follow from the proof of Theorem 5, because the proof
builds on the special form of superposition |Φh〉 from Eq. (12) that only holds if d is a
power of two. Here we show a more general result for period finding algorithms that
applies for Shor’s original circuit as well as for its Ekerå-Håstad variant in the subsequent
section. To this end let us define a generic period finding quantum circuit QPeriod

f (see
Figure 12). In Figure 12 we denote by Q1, Q2 any quantum circuitry that acts on the q
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input qubits. For example, for Simon’s circuit we have Q1 = Q2 = Hq (see Figure 1). For
Shor’s circuit we have Q1 = Hq and Q2 = QFTq. In the following Theorem 7 we define
explicitly a cancellation criterion that this circuitry Q1, Q2 has to fulfill. An important
feature of QPeriod

f is however that we apply f only once.

|0q〉 Q1
Uf

Q2

|0n〉

Figure 12: Quantum circuit QPeriod
f

Now let us use our generic period finding circuit QPeriod
f inside a generic period finding

algorithm Period that uses a certain number of measurements of QPeriod
f and some

classical post-processing. If we replace in Period the circuit QPeriod
f by its hashed variant

QPeriod
h◦f then we call the resulting algorithm Hashed-Period (Algorithm 3).

Algorithm 3: Hashed-Period
Input : f : {0, 1}q → {0, 1}n, universal Ht := {h : {0, 1}n → {0, 1}t}
Output : Period d of f

1 begin
2 Set Y = ∅.
3 repeat
4 Run QPeriod

h◦f on |0q〉 |0t〉 for some freshly chosen h ∈R Ht.
5 Let y be the measurement of the q input qubits.
6 If y 6= 0q, then include y in Y .
7 until |Y | is sufficiently large.
8 Compute d from Y in a classical post-process.
9 return d

10 end

Notice that Period can be considered as special case of Hashed-Period, where
we choose t = n and the identity function h = id. This slightly abuses notation, since
Hn = {id} is not universal.

The proof of the following theorem closely follows the reasoning in the proof of
Theorem 1. Here we show that the probabilities decreases by exactly a factor of 1− 2−t in
the hashed version if a certain cancellation criterion (Equation (14)) is met.

Theorem 7. Let f : {0, 1}q → {0, 1}n and Ht = {h : {0, 1}n → {0, 1}t} be universal. Let
QPeriod
f be a quantum circuit that on input |0q〉 |0n〉 yields a superposition

|Φ〉 =
∑

y∈{0,1}q

∑
f(x)∈Im(f)

wy,f(x) |y〉 |f(x)〉 satisfying
∑

f(x)∈Im(f)

wy,f(x) = 0 for any y 6= 0.

(14)
Let us denote by p(y), respectively ph(y), the probability to measure some |y〉, y 6= 0
in the q input qubits when applying QPeriod

f , respectively QPeriod
h◦f with h ∈R Ht. Then

ph(y) = (1− 2−t) · p(y).

Proof. For ease of notation let us denote z = f(x). By definition, we have p(y) =∑
z∈Im(f) |wy,z|2.
Now let us find an expression for ph(y) when using QPeriod

h◦f . For h ∈ Ht we denote
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Ih,z′ = {z ∈ Im(f) | h(z) = z′}. Since
⋃̇
z′∈Ft

2
Ih,z′ = Im(f), we obtain

ph(y) = 1
|Ht|

∑
h∈Ht

∑
z′∈Im(h)

∣∣∣∣∣∣
∑

z∈Ih,z′

wy,z

∣∣∣∣∣∣
2

. (15)

In Eq. (15) we obtain a cross-product wy,z1wy,z2 for z1 6= z2 iff z1, z2 are in the same set
Ih,z′ , z′ ∈ Im(h), i.e. iff h(z1) = h(z2). Using Definition 1 of a universal hash function
family, we obtain Ph∈Ht

[h(z1) = h(z2)] = 2−t for any z1 6= z2. This implies that for exactly
2−t of all h ∈ Ht we obtain h(z1) = h(z2). We conclude that

ph(y) =
∑

z∈Im(f)

|wy,z|2 + 2−t ·
∑
z1 6=z2

wy,z1wy,z2 .

Our prerequisite
∑
z∈Im(f) wy,z = 0 for any y 6= 0 implies

0 = 2−t
∣∣∣∣∣∣
∑

z∈Im(f)

wy,z

∣∣∣∣∣∣
2

= 2−t
∑

z∈Im(f)

|wy,z|2 + 2−t
∑
z1 6=z2

wy,z1wy,z2

= ph(y)− (1− 2−t) ·
∑

z∈Im(f)

|wy,z|2.

Together with the definition of p(y) we conclude that

ph(y) = (1− 2−t) ·
∑

z∈Im(f)

|wy,z|2 = (1− 2−t) · p(y).

We already showed in Lemma 2 that Simon’s circuit QSimon
f fulfills the cancellation

criterion (Equation (14)) of Theorem 7. Thus, the statement of Theorem 1 directly follows
from Theorem 7. However, for an improved intelligibility we preferred to prove Theorem 1
directly.

In the following Lemma 6 we show that QShor
f also meets the cancellation criterion.

Thus, going to the hashed version in Shor’s algorithm immediately scales all probabilities
by a factor of 1− 2−t for y 6= 0.

Lemma 6. On input |0q〉 |0n〉 the quantum circuit QShor
f yields a superposition

|Φ〉 =
∑

y∈{0,1}q

∑
f(x)∈Im(f)

wy,f(x) |y〉 |f(x)〉 satisfying
∑

f(x)∈Im(f)

wy,f(x) = 0 for any y 6= 0.

Proof. From Equation (10) we know that QShor
f yields a superposition

|Φ〉 =
2q−1∑
y=0

∑
f(x)∈Im(f)

wy,f(x) |y〉 |f(x)〉 with
∑

f(x)∈Im(f)

wy,f(x) =
d−1∑
k=0

1
2q

∑
c≥0:

cd+k<2q

e2πi cd+k
2q y .

We conclude for y 6= 0 that

∑
f(x)∈Im(f)

wy,f(x) =
d−1∑
k=0

1
2q

∑
c≥0:

cd+k<2q

e2πi cd+k
2q y =

2q−1∑
r=0

1
2q e

2πi r
2q y = 1

2q
2q−1∑
r=0

(
e2πi y

2q

)r
= 0 .
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Since by Theorem 7 the use of hashed versions at most halves all probabilities for y 6= 0,
we expect that Hashed-Period requires at most twice as many measurements as Period.
This is more formally shown in the following Theorem 8.

Theorem 8. Let f : {0, 1}q → {0, 1}n have period d, and let Ht = {h : {0, 1}n → {0, 1}t}
be universal. Assume that Period succeeds to find d with probability ρ with an expected
number of m measurements, using some QPeriod

f with q + n qubits that satisfies the
cancellation criterion (Equation (14)) of Theorem 7. Then Hashed-Period succeeds to
find d with probability ρ using QPeriod

h◦f , h ∈R Ht, with only q + t qubits and an expected
number of m

1−2−t measurements.

Proof. We first show the factor of 1
1−2−t difference in the expected number of measurements.

In the case of QPeriod
f we measure some y 6= 0 with probability

∑2q−1
y=1 p(y), whereas for

QPeriod
h◦f we measure y 6= 0 with 1 − 2−t times the probability

∑2q−1
y=1 (1 − 2−t) · p(y) =

(1− 2−t) ·
∑2q−1
y=1 p(y) according to Theorem 7. This implies that on expectation we need

1
1−2−t as many measurements.

It remains to show that Hashed-Period has the same success probability ρ as Period
to compute the period d. To this end we show that conditioned on y 6= 0, both circuits
QPeriod
f and QPeriod

h◦f yield an identical probability distribution for the measured |y〉 in the
q input qubits.

Let p(y), respectively ph(y), be the probability that we measure |y〉 in the q input
qubits using QShor

f , respectively QShor
h◦f . Since Period conditions on measuring y 6= 0 we

obtain in the case of QShor
f the probabilities

p(y)∑2q−1
y=1 p(y)

for any y 6= 0.

In the case QShor
h◦f , we obtain using Theorem 7 the same probabilities

(1− 2−t) · p(y)∑2q−1
y=1 (1− 2−t) · p(y)

= p(y)∑2q−1
y=1 p(y)

for any y 6= 0.

Since both probability distributions are identical, the success probability ρ is identical as
well, independent of any specific post-process for computing d.

Since by Lemma 6 Shor’s circuit QShor
f satisfies the cancellation criterion of Theorem 7,

Theorem 8 implies that we can implement Shor’s algorithm oracle-based with q+ t instead
of q + n qubits at the cost of only 1

1−2−t times as many measurements. In other words, for
t = 1 we save all but one of the output qubits at the cost of twice as many measurements.

9 Oracle-Based Hashed Ekerå-Håstad
In 2017, Ekerå and Håstad [EH17] proposed a variant of Shor’s algorithm for computing
the discrete logarithms of x = gd in polynomial time with only (1 + o(1)) log d input qubits.
The Ekerå-Håstad algorithm saves input qubits in comparison to Shor’s original discrete
logarithm algorithm whenever d is significantly smaller than the group order.

An interesting application of such a small discrete logarithm algorithm is the factoriza-
tion of n-bit RSA moduli N = pq, where p, q are primes of the same bit-size. Let g ∈R Z∗N .
Then ordN (g) divides φ(N)/2 = (p− 1)(q − 1)/2 = N+1

2 − p+q
2 . Therefore

x := g
N+1

2 = g
p+q

2 mod N.
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Hence, we obtain a discrete logarithm instance in Z∗N where the desired logarithm d = p+q
2

is of size only roughly n
2 bits, whereas group elements have to be represented with n

bits. Notice that the knowledge of d = p+q
2 together with N = pq immediately yields the

factorization of N in polynomial time.
The Ekerå-Håstad algorithm computes d with ( 1

2 + 1
s )n input and n output qubits,

using a classical post-process that takes time polynomial in n and ss. Choosing s = logn
log logn ,

we obtain a polynomial time factoring algorithm with a total of ( 3
2 + o(1))n qubits.

In the following, we show that the Ekerå-Håstad algorithm is covered by our framework
of quantum period finding algorithms which fulfill the cancellation criterion of Equation (14)
from Theorem 7. Thus, by Theorem 8 we can save all but 1 of the n output qubits via
(oracle-based) hashing, at the cost of only doubling the number of quantum measurements.
This in turn leads to a polynomial time (oracle-based) factorization algorithm for n-bit
RSA numbers using only ( 1

2 + o(1))n qubits. Concerning discrete logarithms, with our
(oracle-based) hashing approach we can quantumly compute d from g and gd in polynomial
time using only (1 + o(1)) log d qubits.

Let (g, x = gd, S(G)) be a discrete logarithm instance with m = log d. Here S(G)
specifies how we compute in the group G generated by g, e.g. S(G) = N specifies that we
compute modulo N in the group G = Z∗N . Define

fg,x,S(G)(a, b) = ax · x−b = ga−bd.

The Ekerå-Håstad quantum circuit QEkerå-Håstad
f from Figure 13 computes on input

|0m+`〉 |0`〉 |0n〉, where ` := m
s , a superposition

|Φ〉 = 1
2m+2`

2m+`−1∑
a,j=0

2`−1∑
b,k=0

e2πi(aj+2mbk)/2m+`

|j, k, fg,x,S(G)(a, b)〉 . (16)

|0`+m〉 H`+m

Ufg,x,S(G)

QFTl+m

|0`〉 H` QFT`

|0n〉

Figure 13: Quantum circuit QEkerå-Håstad
f

The main step in the analysis of Ekerå-Håstad shows that we measure in the m+ 2` =
(1 + 2

s )m = (1 + 2
s ) log d input qubits with high probability so-called good pairs (j, k) that

help us in computing d via some lattice reduction technique.
In the following Lemma 7, we show that QEkerå-Håstad

f satisfies our cancellation criterion
of Theorem 7. Thus, we conclude from Theorem 7 that by moving to the 1-bit hashed
version QEkerå-Håstad

h◦f we lower the probabilities of measuring good (j, k) only by a factor
of 1

2 (averaged over all hash functions).

Lemma 7. Let (g, x, S(G)) be a discrete logarithm instance and
fg,x,S(G)(a, b) = gax−b. On input |02`+m〉 |0n〉 the quantum circuit QEkerå-Håstad

f yields a
superposition

|Φ〉 =
∑

y∈{0,1}m+2`

∑
f(x)∈Im(f)

wy,f(x) |y〉 |f(x)〉 satisfying
∑

f(x)∈Im(f)

wy,f(x) = 0 for any y 6= 0 .

https://orcid.org/0000-0001-5965-5675
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Proof. From Eq. (16) with y = (j, k) we know that QEkerå-Håstad
f yields a superposition

|Φ〉 =
2m+`−1∑
j=0

2m+`−1∑
k=0

∑
f(x)∈Im(f)

w(j,k),f(x) |j, k〉 |f(x)〉 with

∑
f(x)∈Im(f)

w(j,k),f(x) = 1
2m+2`

2m+`−1∑
a=0

2`−1∑
b=0

e2πi(aj+2mbk)/2m+`

.

Hence for y 6= 0 we obtain

∑
f(x)∈Im(f)

w(j,k),f(x) = 1
2m+2`

2m+`−1∑
a=0

e2πiaj/2m+`

 ·
2`−1∑

b=0
e2πibk/2`


= 1

2m+2`

2m+`−1∑
a=0

(
e2πij/2m+`

)a ·
2`−1∑

b=0

(
e2πik/2l

)b .

Since by prerequisite (j, k) 6= (0, 0) ∈ Z2m+`×Z2` , we have j 6= 0 mod 2m+` or k 6= 0 mod 2`.
This implies that at least one of the factors is identical 0.

By Theorem 8, replacing in the Ekerå-Håstad algorithm the quantum circuitQEkerå-Håstad
f

by single output bit circuits QEkerå-Håstad
h◦f comes at the cost of only twice the number of

measurements. Since the Ekerå-Håstad algorithm finds discrete logarithms d in polynomial
time using only m + 2` = (1 + o(1)) log d input qubits, we obtain from Theorem 8 the
following corollary.

Corollary 3. Ekerå-Håstad’s Shor variant admits an oracle-based hashed version that

1. computes discrete logarithms d from g, gd in polynomial time using
(1 + o(1)) log d qubits,

2. factors n-bit RSA numbers in time polynomial in n using ( 1
2 + o(1))n qubits.

Open Problem: Can we modify our oracle-based approach into a real-world application
similar to the results in Section 4 for the Simon algorithm? That is, can we define (not
necessary single bit) hashed versions of the exponentiation function without first computing
the full function value?
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