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Abstract. We consider SPN schemes, i.e., schemes whose non-linear layer is defined
as the parallel application of t ≥ 1 independent S-Boxes over F2n and whose linear
layer is defined by the multiplication with a (n · t) × (n · t) matrix over F2. Even
if the algebraic representation of a scheme depends on all its components, upper
bounds on the growth of the algebraic degree in the literature usually only consider
the details of the non-linear layer. Hence a natural question arises: (how) do the
details of the linear layer influence the growth of the algebraic degree? We show
that the linear layer plays a crucial role in the growth of the algebraic degree and
present a new upper bound on the algebraic degree in SP-networks. As main results,
we prove that in the case of low-degree round functions with large S-Boxes: (a) an
initial exponential growth of the algebraic degree can be followed by a linear growth
until the maximum algebraic degree is reached; (b) the rate of the linear growth is
proportional to the degree of the linear layer over Ft

2n . Besides providing a theoretical
insight, our analysis is particularly relevant for assessing the security of cryptographic
permutations designed to be competitive in applications like MPC, FHE, SNARKs,
and STARKs, including permutations based on the Hades design strategy. We have
verified our findings on small-scale instances and we have compared them against
the currently best results in the literature, showing a substantial improvement of
upper bounds on the algebraic degree in case of low-degree round functions with large
S-Boxes.
Keywords: Higher-Order Differential Cryptanalysis · Algebraic Degree · SPN · Linear
Layer

1 Introduction
Most modern block ciphers and cryptographic permutations over FN2 , forN = n·t, are based
on the iteration of a round function. In many cases, the round function is composed of two
main components, a non-linear layer S and a linear layerM (including the addition of round
constants). The non-linear layer S is defined as the parallel application of t independent
non-linear functions over Fn2 . The linear layer M is defined via the multiplication with a
(n · t)× (n · t) matrix over F2. This design strategy is called a Substitution-Permutation-
Network (SPN).
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The particular combination of these two building blocks, their details and the number
of rounds are chosen to guarantee security against all possible means of analysis present in
the literature, while at the same time achieving good performance in the target applications.
Regarding the security aspect, the analysis of symmetric schemes can be divided into statisti-
cal and algebraic cryptanalysis. Subsuming statistical analysis, we can identify all methods
that exploit statistical properties of the analyzed scheme, including differential [BS91, BS93]
and linear [Mat93] cryptanalysis, and all their variants, like truncated differential [Knu94],
impossible differential [Knu98, BBS99] and zero-correlation [BR11] analysis. In contrast,
algebraic analysis exploits algebraic properties of the analyzed schemes such as degrees
and/or the different algebraic representations. In this category, we include interpolation
cryptanalysis [JK97], higher-order differential analysis [Lai94, Knu94], cube attacks[DS09]
and methods employing Groebner bases [Buc76]. While the influence of the linear layer on
statistical analysis has been largely analyzed in the literature [DR01, DR02a, BDKA21],
the same is not true for the case of algebraic analysis.

Influence of the Linear Layer on Statistical Analysis. For statistical analysis, the impact
of the linear layer on the security against this means of analysis is well studied in the
literature. If the linear layer of a scheme is defined by the multplication with a t× t matrix
over F2n , an upper bound of the probability of differential trails can be found by considering
both the maximum differential probability of the involved S-Boxes (namely, the maximum
probability that a non-zero input difference is mapped into an output difference) and the
branch number of the linear layer (that is, the maximum number of active S-Boxes over
two consecutive rounds). This is known as the wide-trail design strategy [DR01, DR02a].
Analogous results hold for the case of linear trails. If the linear layer does not admit an
equivalent representation as a t× t matrix over F2n , statistical analysis that makes use of
this alignment is frustrated after a few rounds, but, e.g., the wide trail design strategy
does not apply anymore. In this scenario, differential/linear bounds are often obtained by
computer-aided proofs.

Influence of the Linear Layer on Algebraic Analysis. Contrary to statistical analysis,
the influence of the linear layer on the security against algebraic analysis is not well
researched in the literature. Focusing on schemes over FN2 , let’s consider, e.g., higher-order
differential cryptanalysis [Lai94, Knu94], probably one of the most powerful cryptanalytic
methods for symmetric primitives over FN2 with low-degree building blocks. Given an
instance of a (keyed or keyless) cryptographic permutation P : FN2 → FN2 , higher-order
differential cryptanalysis exploits the fact that if the algebraic degree of P is strictly smaller
than N − 1 then for any (proper) vector subspace V ⊆ FN2 with dimension strictly greater
than the algebraic degree of P and for any v ∈ FN2 , we have

⊕
x∈V⊕v P (x) = 0. Since the

same property does not, in general, hold for a permutation drawn at random, it is possible
to distinguish a given (keyed or keyless) permutation from a random permutation. The
idea was first introduced by Lai [Lai94], albeit without a concrete application. Knudsen
[Knu94] then used higher-order differentials to analyze low-degree ciphers which were
deemed secure against standard differential cryptanalysis.

The crucial problem in higher-order differential distinguishers against iterated construc-
tions is the analysis of the growth of the algebraic degree. Currently, the best generic
upper bound for the growth of the algebraic degree is given in [BCD11], where authors
upper bound the algebraic degree of the composition of two functions over Ft2n . More
recently, for the particular case in which the round function is defined as a low-degree
polynomial over F2N , a more accurate estimate on the minimum number of rounds to
reach maximum algebraic degree has been proposed in [EGL+20]. However, in all these
cases, the details of the linear layer are not taken into account.
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The Scope of our Results. We pick up this problem, and we show how the details of the
linear layer influence the growth of the algebraic degree in SPN schemes. As main results

• we generalize the upper bound given in [EGL+20] (only valid for Even–Mansour
schemes, a subset of all SPN schemes) to the whole class of SPN schemes and prove
a linear upper bound on the growth of the degree that improves the exponential one
proposed in [BCD11];

• we analyze the impact of the linear layer on the growth of the degree. That is, we
prove that the rate of the linear growth is proportional to the degree of the linear
layer when written as a linear function over Ft2n .

We point out that this is not only of theoretical interest. Indeed, motivated by new appli-
cations such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption
(FHE) and Zero-Knowledge proofs (ZKP), the need for symmetric encryption schemes
with a simple natural algebraic description has become ever more apparent. This is an
active area of research, and many dedicated symmetric encryption schemes that aim for
simple arithmetization or directly aim for a small number of multiplications in F2n or
Fp, for large n and prime p (usually, 2n, p ≈ 2128), have recently been proposed in the
literature. They include permutations, block ciphers, and hash functions such as MiMC
[AGR+16, GRR+16], GMiMC [AGP+19], HadesMiMC [GLR+20] (and its hash variant
Poseidon [GKR+21]), Jarvis & Friday [AD18], Vision & Rescue [AAB+20], and
Ciminion [DGGK21]. Many of these proposed schemes use “algebraically simple” S-Boxes,
e.g., based on a power mapping x 7→ xd for a small odd integer d ≥ 3. In these schemes,
our bounds are most competitive against other state-of-the-art bounds and, furthermore,
they help to establish a more accurate estimate for the number of rounds that guarantee
security in future MPC-/FHE-/ZKP-friendly designs.

Nomenclature. Since we do not make any assumption about the round-keys, our results
equally apply to keyed and keyless permutations. Thus in this paper we refer to both
by using the term “schemes”. In this nomenclature, e.g., an SPN scheme is a family of
permutations built from an SPN construction parametrized by secret keys or publicly
known constants.

1.1 Related Work in the Literature
We focus on the case of iterated schemes, that is, schemes consisting of several iterations of
the same round function. Algebraic analysis, like interpolation or higher-order differential
and integral distinguishers, is based on bounding the (algebraic) degree of the analyzed
scheme, which is in general a difficult task. Here, we recall the main results in the literature
that focus on this problem. For a more detailed discussion and comparison of different
approaches to bounding the algebraic degree we refer to [CXZZ21].

1.1.1 Theoretical Bounds on the Algebraic Degree

A naive bound for the algebraic degree of the composition of two functions F,G : FN2 → FN2
is given by deg(G ◦ F ) ≤ deg(G) · deg(F ). If iterated, this bound leads to an exponential
bound on the algebraic degree for the composition of more than two functions and a first
estimate about the minimum number of rounds to reach maximum algebraic degree in
SPN schemes. For an SPN scheme defined over Ft2n with S-Box layer of algebraic degree δ,
it follows that at least

logδ(n · t− 1) ≈ logδ(n) + logδ(t)

rounds are required to reach maximum degree (note that the affine layer does not increase
the algebraic degree).
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Result by Boura, Canteaut and De Cannière [BCD11]. The naive exponential bound,
however, does not reflect the real growth of the algebraic degree when considering iterated
schemes, and the problem of estimating the growth of the algebraic degree has therefore
been studied in the literature. After the initial work of Canteaut and Videau [CV02], a
tighter upper bound was presented by Boura, Canteaut, and De Cannière in [BCD11]. In
there, the authors deduce a new bound for the algebraic degree of iterated permutations
for SPN schemes over Ft2n , which includes functions that have a number of t ≥ 1 balanced
S-Boxes over F2n as their non-linear layer. The bound in [BCD11] only relies on the
algebraic degree of the S-Box, and no assumption on the linear layer is made. To apply the
result presented in [BCD11], one has to determine a particular parameter γ, that depends
on the details of the S-Box. As we discuss in Section 4.1, for an S-Box over F2n the cost
for computing γ is exponential in n. This means, for large S-Boxes (e.g., n ≥ 64) it is
infeasible to determine γ computationally and a further study of the analyzed scheme is
necessary. However, theoretically bounding γ is in general a difficult task. Apart from
the bound of Boura, Canteaut and De Cannière, in a follow-up work Boura and Canteaut
studied the influence of F−1 on the algebraic degree of deg(G ◦F ) [BC13]. As main result,
they discuss how the algebraic degrees of F−1 and F affect each other, which subsequently
allows them to bound the algebraic degree of G ◦F by means of the degrees of G and F−1.

Result by Carlet [Car20]. More recently, Carlet [Car20] presented a bound on the
algebraic degree of G ◦ F by working with the indicators of the graphs GF and GG (where
GF = {(x, F (x)) : x ∈ FN2 }). In this work, Carlet bounds the algebraic degree of G ◦ F via
the degree of G and the degree of the indicator function of GF . However, the bounds in
[Car20] require evaluating the degree of large quantities of products of coordinate functions
(see [Car20, Theorem 5]) and, to the best of our knowledge, it is unclear if the bounds
in [Car20] practically improve upon the ones in [BCD11] if the function F in G ◦ F is
bijective. In this scenario, the deduced bound on the algebraic degree of G◦F is essentially
the same as in [BC13] (see discussion after Corollary 5 in [Car20]).

Division Property. A generalization of integral and higher-order differential distinguishers
is the division property [Tod15], proposed by Todo at Eurocrypt 2015. Given u =
(u0, u1, ..., un−1) ∈ Fn2 , let xu :=

∏n−1
i=0 x

ui
i for each x ∈ Fn2 . The division property

generalizes integral cryptanalysis and higher-order differential distinguishers in the sense
that it is interested in the sum of this quantity taken over all vectors of X ⊆ Fn2 . To the best
of our knowledge and at the current state of the art, the division property can only provide
useful bounds on the algebraic degree for small n. Indeed, currently it is infeasible to apply
the two-/three-subset bit-based division property [TM16, FTIM17, WHT+18, HSWW20]
to large S-Boxes (i.e., of size bigger than 12 bits to the best of our knowledge). Hence,
such a tool does not seem to be useful in the case of schemes defined over Ft2n for large n
(as targeted in this paper), and a theoretical estimation is hence crucial.

Algebraic Degree in MiMC-Like Schemes. MiMC [AGR+16, GRR+16] is a scheme
natively defined over F2N , where the S-Box is given by the cube function x 7→ x3. Only
recently a new upper bound on the algebraic degree of MiMC-like schemes (that is, of
schemes defined over F2N via a round function of degree d ≥ 3) has been proposed in
[EGL+20] at Asiacrypt 2020. More precisely, the authors show that when the round
function can be described as a low-degree polynomial function over F2N of degree at
most d, the algebraic degree δ(r) of r iterations of the round function grows linearly with
the number of rounds, i.e., δ(r) ≤ log2(dr + 1). This observation implies that at least
logd(2N−1 − 1) rounds are required for reaching maximum algebraic degree. As a concrete
application, [EGL+20] shows that the number of rounds in MiMC needs to be increased by
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Table 1: Nomenclature and parameters in our results for SPN schemes over Ft2n
Parameter Explanation

F2n Finite field with 2n elements
Ft2n t-fold cartesian product of F2n

n S-Box size in bits
t Number of words in the SPN

N := n · t State size in bits
d Word-level degree (over F2n) of the S-Boxes
δ Algebraic degree (over F2) of the S-Boxes

l := 2l′ Degree of the linear layer (over F2n)
d Word-level degree (over F2n) of the round function

several percent to resist all known cryptanalysis. Nevertheless, the authors of [EGL+20]
do not provide any statements about how to generalize their findings to SPN schemes.

1.2 Our Contribution
As main contribution, we present a new theoretical upper bound on the algebraic degree
for SPN schemes over Ft2n in Theorem 1. In more detail, we consider SPN schemes over
Ft2n for n ≥ 3 and t ≥ 2, where

• the S-Boxes are defined via invertible non-linear polynomial functions over F2n of
univariate degree d ≥ 3 and algebraic degree δ ≥ 2;

• the linear layer is defined as the multiplication with an invertible matrix in Fn·t×n·t2 .
We denote by l = 2l′ the degree of the corresponding function over F2n .

In Section 2.2 we give more details about the definition of an SPN scheme and the involved
degrees δ, d, l and d. As a quick reference, Table 1 provides a more comprehensive overview
about the parameters in our results. In Theorem 1 we prove that the algebraic degree δ(r)
after r rounds is upper-bounded by

δ(r) ≤
{
δr if r ≤ Rexp = 1 + blogδ(t)c,
t · log2

(
d
r−1·d
t + 1

)
if Rexp < r ≤ RSPN.

(1)

It follows that at least

RSPN = 1 + dlogd
(
t · (2n − 1)− 2n−1)− logd(d)e ≈ logd (t · (2n − 1))

rounds are necessary to reach maximum algebraic degree n · t− 1, see Section 3.1. Our
results have been practically verified on small-scale schemes. Section 5 is devoted to a
more detailed discussion of our practical experiments. Moreover, our results match the
ones given in [EGL+20] for the particular case t = 1.

Comparison with Related Work. As discussed above, there are two possible approaches
for estimating the growth of the algebraic degree in SPN schemes: theoretical bounds, like
the one by Boura, Canteaut and De Cannière [BCD11] and tool-based bounds, like the
division property. However, both approaches have inherent limitations when applied to
SPN schemes defined over Ft2n for large n (as targeted in this paper and important for
MPC-/FHE-/ZKP-friendly schemes): in the first approach, the degree of the S-Box over
F2n and the alignment of the scheme (hence, the degree of the linear layer over F2n) are not
taken into account. While this could be an advantage in the sense that such results apply
to a large class of schemes, the resulting estimation of the growth of the algebraic degree
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Figure 1: Comparison between our new bound and the one proposed in [BCD11] for the
case of an SPN scheme instantiated over (F233)8 with a cube S-Box S(x) = x3 for several
values of l (where n = 33, t = 8, d = 3, δ = 2 and d = d · l = 3 · l, γ = (n+ 1)/2 = 17). γ is
a constant for the bound in [BCD11] that depends on the details of the S-Box function S.

is far from being optimal when applied to schemes over Ft2n with large and low-degree
S-Boxes; in the second approach, the tools cannot tackle large S-Boxes (i.e., n ≥ 12). Our
new results include both scenarios.

A concrete comparison between our new bound on the algebraic degree and the one
proposed in [BCD11] for an SPN scheme over F8

233 with cube S-Box S(x) = x3 for several
values of l is presented in Fig. 1.

2 Preliminaries
In this section, we recall the most important results about polynomial representations of
Boolean functions and we recall the definition of SPN and iterated Even–Mansour schemes.
We also introduce the classification of weak-arranged and strong-arranged SPN schemes.

2.1 Polynomial Representations over Binary Extension Fields
We denote addition (and subtraction) in binary extension fields and polynomial rings over
binary extension fields by the symbol ⊕. For n, t ∈ N, every function F : Ft2n → F2n can
be uniquely represented by a polynomial over F2n in t variables with maximum degree
2n − 1 in each variable, i.e., as

F (X1, . . . , Xt) =
⊕

v=(v1,...,vt)∈{0,1,...,2n−1}t
ϕ(v) ·Xv1

1 · . . . ·X
vt
t , (2)
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for certain ϕ(v) ∈ F2n . We refer to this representation as the word-level representation.
At the same time, the function F can be written as an n-tuple (F1, . . . , Fn) of functions
Fi : FN2 → F2 and thus admits a unique representation as an n-tuple (F1, . . . , Fn) of
polynomials over F2 in N := n · t variables with maximum degree 1 in each variable. Here,
Fi takes the form

Fi(Y1, . . . , YN ) =
⊕

u=(u1,...,uN )∈{0,1}N
ρi(u) · Y u1

1 · . . . · Y uNN , (3)

where the coefficients ρi(u) ∈ F2 can be computed by the Moebius transform with a
time complexity of O(N · 2N ) additive operations. We call this alternative description
the bit-level representation of F . Combining Equations (3), for 1 ≤ i ≤ n, into a single
polynomial representation leads to a description of F as a single polynomial in N = n · t
variables, but now with coefficients in Fn2 , instead of F2.

Whenever we refer to the degree of a single variable in F (or Fi), we shall speak of the
univariate degree. In contrast, the degree of F (or Fi) as a multivariate polynomial shall
be called its multivariate degree, or just its degree. We denote functions F : Fn2 → F2 as
Boolean functions and hence functions of the form F : Fn2 → Fn2 , for n ∈ N, as vectorial
Boolean functions. We only work with vectorial Boolean functions where n = m. The
unique polynomial representation of a Boolean function is called its algebraic normal form
(ANF), which we emphasize with the following definition.

Definition 1. Let F : Fn2 → F2 be a Boolean function. The algebraic normal form (ANF)
of F is the unique representation as a polynomial over F2 in n variables and with maximum
univariate degree 1, as given in Eq. (3). The algebraic degree δ(F ) of F is the degree of
this representation as a multivariate polynomial over F2.

When the function F is clear from the context, we also write δ instead of δ(F ). If
G : Fn2 → Fn2 is a vectorial Boolean function and (G1, . . . , Gn) is its representation as an
n-tuple of multivariate polynomials over F2, then its algebraic degree δ(G) is defined as the
maximal algebraic degree of its coordinate functions Gi, i.e., as δ(G) = max1≤i≤n δ(Gi).
The link between the algebraic degree and the univariate degree of a vectorial Boolean
function is well-known, e.g., it is established in [CCZ98, Sect. 2.2]: due to the isomorphism
of F2-vector spaces F2n ∼= Fn2 , every function over Fn2 can be considered as a function
over F2n and thus admits a representation as a univariate polynomial over F2n . Hence,
the algebraic degree of a vectorial Boolean function can be computed from its univariate
representation. Eq. (4) makes this link explicit: Let F : F2n → F2n be a function over F2n

and let F (X) =
∑2n−1
i=0 ϕi ·Xi denote the corresponding univariate polynomial description

over F2n . The algebraic degree δ(F ) of F as a vectorial Boolean function is the maximum
over all Hamming weights1 of exponents of non-vanishing monomials, that is

δ(F ) = max
0≤i≤2n−1

{hw(i) |ϕi 6= 0} . (4)

Lastly, we recall that the algebraic degree of an invertible function F over Fn2 is at most
n− 1, while the univariate polynomial representation of F over F2n has degree at most
2n − 2.

2.2 SPN Schemes
Here we recall the concept of SPN schemes, and we fix the notation used in the rest of the
article. Let Erk : Ft2n → Ft2n denote the application of r rounds of an SPN scheme under a

1Given x =
∑s

i=0 xi · 2i ∈ N, for xi ∈ {0, 1}, then hw(x) =
∑s

i=0 xi.
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fixed (secret or publicly known) key k ∈ Ft2n with n ≥ 3, t ≥ 2, and N := n · t. For every
x = (x1, . . . , xt) ∈ Ft2n we write

Erk(x) := (Fr ◦ · · · ◦ F1) (x⊕ k0), (5)

where each Fi : Ft2n → Ft2n is defined as Fi(x) := R(x)⊕ ki. The subkeys k0, . . . , kr ∈ Ft2n
may be derived from the master key k ∈ Ft2n by means of a key schedule, or they may just
as well be randomly chosen elements. Here, R denotes the composition of the S-Box and
the linear layer, i.e., we have R : Ft2n → Ft2n with

R(x) := (M ◦ S)(x) := M(S1(x1), . . . , St(xt)), (6)

where all Si : F2n → F2n are assumed to be invertible non-linear polynomial S-Boxes of
degree d ≥ 3 defined as

Si(x) :=
d⊕
j=0

c
(i)
j · x

j , (7)

for c(i)
j ∈ F2n and c(i)

d 6= 0. Finally, M denotes an invertible linear layer M : Fn·t2 → Fn·t2
defined by the multiplication with an invertible (n · t)× (n · t) matrix M with coefficients in
F2. We remark, every (n · t)× (n · t) matrix M over F2 gives rise to an F2n -linear function
over Ft2n . Moreover, every F2n -linear function over Ft2n can be written as a function

M(x) = (M1(x),M2(x), . . . ,Mt(x)),

where Mi : Ft2n → F2n , for i ∈ {1, 2, . . . , t}, is a function of the form

Mi(x) =
t⊕

j=1
Mi,j(xj) =

l′⊕
h=0

Mi,j;h · x2h
j , (8)

with Mi,j;h ∈ F2n for each i, j, h. In other words, each Mi,j is a linearized polynomial over
F2n with respect to the variable xj , and Mi is a sum of linearized polynomials over F2n .
In the following, we denote by l := 2l′ the degree of M as a function over Ft2n , i.e.,

l := degM := max
1≤i≤t

deg(Mi) = max
1≤i,j≤t

deg(Mi,j),

and by d the degree of the round function satisfying 2δ − 1 ≤ d := min{d · l, 2n − 2}.
We always assume that the linear layer M ensures full diffusion after a finite number

of rounds, in the sense that there exists an r ∈ N such that every output word after r
rounds depends on every input word x1, . . . , xt. E.g., the smallest integer r that satisfies
the previous condition for an MDS matrix is 1, for the AES MixLayer it is 2, while it does
not exist for a diagonal matrix. We refer to [BJK+16a, BJK+16b] for a more detailed
analysis of this concept. A particular subclass of SPN schemes are iterated Even–Mansour
schemes. An iterated Even–Mansour (EM) scheme is an SPN scheme with only one word,
i.e., with t = 1.

Under above definition, examples of SPN schemes include SHARK [RDP+96], AES [DR02b]
and AES-like schemes in general, SHA-3/Keccak [BDPA11, BDPA13], Present [BKL+07],
MiMC [AGR+16], LowMC [ARS+15], and so on. Examples of non-SPN schemes include
Feistel and Lai-Massey [LM90] schemes.

2.2.1 Classification: Strong-Arranged vs. Weak-Arranged SPN Schemes

We recall that for each n, t ≥ 1, every matrix in Ft×t2n admits an equivalent representation
as a matrix in Fn·t×n·t2 , while the opposite does not hold in general. Let us introduce the
following definition.



118 Influence of the Linear Layer on the Algebraic Degree in SP-Networks

Definition 2. Let t ≥ 2 and let n ≥ 3, and let M : Ft2n → Ft2n be an invertible F2n -linear
function, represented as in Eq. (8). We say thatM is (n, t)-reducible if there exist invertible
F2n-linear functions M ′, L1, L2 : Ft2n → Ft2n with L1, L2 6= M , deg(M ′) < deg(M) such
that for i = 1, 2 it holds

Li(x1, . . . , xt) = (Li,1(x1), . . . , Li,t(xt))

and
M = L1 ◦M ′ ◦ L2. (9)

We note, deg(L1),deg(L2) are the degrees of L1, L2 when represented as in Eq. (8). If M
is not (n, t)-reducible, we call it (n, t)-irreducible.

With the requirement deg(M ′) < deg(M) we want to exclude trivial decompositions
with M ′ = L−1

1 ◦M ◦ L
−1
2 , for any linear functions L1, L2 : Ft2n → Ft2n . The same remark

applies for the condition L1, L2 6= M . Thereby, we exclude decompositions with L1 = M
and M ′ = Id (Id being the identity function). We often just say that M is (ir)reducible
instead of (n, t)-(ir)reducible, the context will provide enough clarification. Every SPN
scheme admits an equivalent representation in which the defining matrix M for the linear
layer is irreducible. Indeed, if this is not the case, it is sufficient to incorporate L1 and L2
from Eq. (9) into the non-linear layer S, that is

S ← L2 ◦ S ◦ L1, (10)

and to adjust the round constants. We point out that this procedure may change the
degrees d and l, but not the degree d of the round function.

As a concrete example, consider the AES. Its S-Box over F28 is defined as

x 7→ c+ L̂ ◦ x−1 = c+ L̂ ◦ (x127)2,

for a certain linear function L̂ over F28 of degree strictly bigger than 1. In the equivalent
representation in which L̂ and x 7→ x2 would be incorporated in the linear layer of AES
(and so the AES S-Box would be x 7→ x127 over F28), the obtained linear layer would not be
irreducible anymore with respect to the definition just given. Motivated by above discussion,
we can assume that the linear layer M in an SPN scheme over Ft2n is (n, t)-irreducible.
Definition 3. Let Er : Ft2n → Ft2n be an r-round SPN scheme with (n, t)-irreducible
linear layer M (otherwise, consider an equivalent representation of Er in which M is
irreducible). The SPN scheme is called strong-arranged if the linear layer M has degree 1
over Ft2n ; weak-arranged otherwise.

Among the previous examples, AES, MiMC, HadesMiMC, and Vision are strong-
arranged SPNs, while Keccak, Present and LowMC are weak-arranged SPNs.

On the Degree of the Linearized Polynomial. Given a matrixM ∈ F(n·t)×(n·t)
2 , the naive

way to find its polynomial representation over F2n is by interpolation. The polynomial
Mi,j contains only n different monomials (see Eq. (8)). Hence, t · n + 1 input/output
pairs suffice to recover the polynomial representation of each Mi, and thus M . Moreover,
given the polynomial representation of an F2n -linear function over Ft2n (as in Eq. (8)), the
simplest possible way to check if it is invertible or not is by finding the corresponding
matrix over F(n·t)×(n·t)

2 , and check if its determinant is non-zero.

3 Growth of the Algebraic Degree in SPN Schemes
In this section we prove a new upper bound on the growth of the algebraic degree in SPN
schemes. Our proof proceeds analogously for SPN-derived block ciphers and permutations,
respectively, by assuming fixed and publicly known constants in the latter case and fixed
secret keys in the former one.
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3.1 Minimum Number of Rounds for Preventing Higher-Order Differ-
ential Distinguishers

Here, we provide a minimum number of rounds to reach maximum algebraic degree in
SPN schemes. We show that this number matches the minimum number of rounds needed
to provide security against the interpolation analysis [JK97].

Proposition 1. Let n ≥ 3. Consider r rounds of an SPN scheme Erk over Ft2n as defined
in Eq. (5), where l = 2l′ ≥ 1 is the degree of the linear layer and with the additional
assumption that all S-Boxes S1, . . . , St are defined via non-linear polynomial functions with
equal univariate degree d ≥ 3. Let d be the degree of the round function.

A lower bound on the number of rounds to prevent higher-order differential distinguishers
is given by

RSPN := 1 + dlogd
(
t · (2n − 1)− 2n−1)− logd(d)e, (11)

independent of the (secret or publicly known) key k.

Note that
RSPN ≈ logd(2n − 1) + logd(t), (12)

especially for t, n � 1 and small d ≥ 3 (where logd(d) = 1 if l = 1 and 0 < logd(d) < 1
otherwise).

Proof. To reach maximum algebraic degree n · t− 1 the polynomial representation of Erk
over F2n must contain a monomial with algebraic degree n in t− 1 variables and algebraic
degree n − 1 in one variable. This happens if Erk contains a word-level monomial with
univariate degree 2n − 1 in t− 1 variables and univariate degree 2n−1 − 1 in one variable.
Since the multivariate degree of Erk after r ≥ 1 rounds is upper bounded by dr−1 · d (we
note, the final linear layer does not affect the algebraic degree), we obtain

d
r−1 · d ≥ (t− 1) · (2n − 1) + 2n−1 − 1 = t · (2n − 1)− 2n−1

as a necessary condition on the number of rounds to reach maximum algebraic degree
n · t− 1. Rearranging for r yields r ≥ 1 + logd

(
t · (2n − 1)− 2n−1)− logd(d).

3.2 Algebraic Degree of SPN Schemes
As main result of this paper, we prove the following upper bound on the growth of the
degree for SPN schemes.

Theorem 1. Let n ≥ 3 and t ≥ 1. Consider r rounds of an SPN scheme Erk over
Ft2n as defined in Eq. (5), where l = 2l′ ≥ 1 is the degree of the linear layer and with
the additional assumption that all S-Boxes S1, . . . , St are defined via the same invertible
non-linear function S of univariate degree d ≥ 3 and algebraic degree δ ≥ 2. Let d be the
degree of the round function.

Let Rexp := 1 + blogδ(t)c. Then, the algebraic degree of Erk after r rounds, denoted by
δ(r), is upper-bounded by

δ(r) ≤
{
δr if r ≤ Rexp ,

min
{
δr, t · log2

(
d
r−1·d
t + 1

)}
if r > Rexp,

(13)

independent of the (secret or publicly known) key k and until the maximum algebraic degree
n · t− 1 is reached.
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This means that after an initial exponential growth for the first Rexp := 1 + blogδ(t)c
rounds, the growth of the degree is upper bounded by a linear growth of the form

t · log2

(
d
r−1 · d
t

+ 1
)
≈ r · t · log2(d) + t · log2

(
d

d · t

)
,

where the linear rate t · log2(d) is proportional to the number of words t and to the degree
d of the round function, which is related to the degrees d and l of the S-Boxes and of the
linear layer over F2n .

Idea of the proof. The roadmap for the proof of Theorem 1 reads as follows:

1. Lemma 1 makes a statement about which monomials can occur in the polynomial
representation of the encryption function;

2. In Lemma 2 we prove that the algebraic degree grows as fast as δr in the first
Rexp := 1 + blogδ(t)c rounds; this shows that the naive exponential bound can indeed
be achieved;

3. Lemma 3 provides the linear growth for the latter rounds by involving the loga-
rithmic function instead of the hamming weights, resulting in the bound δ(r) ≤
t · log2

(
d
r−1·d
t + 1

)
.

3.3 Proof of Theorem 1
3.3.1 About the (Initial) Exponential Growth

Lemma 1. Let t ≥ 1 and let d′ ≥ 3 be an integer and let d′ =
∑δ
i=1 2di be the base-

2 expansion of d for certain di ∈ N. Given a polynomial P =
⊕

i∈{1,...,u} ci · mi ∈
F2n [X1, . . . , Xt] that contains the monomials m1,m2, . . . ,mu ∈ F2n [X1, . . . , Xt] for a
certain u ≥ 1, the monomials in P d′ are of the form

m2d1
i1 ·m

2d2
i2 · . . . ·m

2dδ
iδ

(14)

where i1, i2, . . . , iδ ∈ {1, 2, . . . , u}.

Proof. We obtain

P d
′

=

 ⊕
i∈{1,...,u}

ci ·mi

2d1 +···+2dδ

=
δ∏
j=1

 ⊕
i∈{1,...,u}

c2dj
i ·m2dj

i


=

⊕
i1,i2,...,iδ∈{1,2,...,u}

 δ∏
j=1

c2dj
ij ·m

2dj
ij

 .

where the second equality holds since (x⊕ y)2k = x2k ⊕ y2k for each x, y ∈ F2n and each
k ∈ N. Hence, we conclude that only monomial products of the form

m2d1
i1 ·m

2d2
i2 · . . . ·m

2dδ
iδ

may occur in P d, where i1, i2, . . . , iδ ∈ {1, 2, . . . , u}. The monomials mi1 , . . . ,miδ are not
necessarily different, therefore the exponents in Eq. (14) are either powers of 2 or sums of
powers of 2.

The next lemma shows that the naive exponential bound δr for the algebraic degree is
not only a trivial bound but can indeed be achieved.
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Lemma 2. Let the same conditions as in Theorem 1 hold. Furthermore, let S(x) =∑d
i=0 ci · xi for ci ∈ F2n , and let d′ be a degree for which hw(d′) = δ and cd′ 6= 0.

Let d′ =
∑δ
i=1 2di be the base-2 expansion of d′ for appropriate di ∈ N. In the first

Rexp = 1 + blogδ(t)c rounds the algebraic degree grows as fast as δr.

Proof. The idea is to observe the growth of the algebraic degree with the help of Lemma 1.
After the first round, all monomials Xd′

1 , . . . , X
d′

t are present in the polynomial representa-
tion of Erk and have algebraic degree δ.

According to Lemma 1, after one more round all monomials of the form (i1, . . . , iδ ∈
{1, . . . , t})

(Xd′

i1 )2d1 · (Xd′

i2 )2d2 · · · · · (Xd′

iδ
)2dδ ,

are present in the encryption polynomial and have algebraic degree δ2 if i1, . . . , iδ are
pairwise different. To see why they have algebraic degree δ2, we note that: (a) raising a
(word-level) monomial of Erk to the power of 2k, k ∈ N, does not change its algebraic degree,
and (b) if two (word-level) monomials mα1 ,mα2 of Erk do not contain any shared variable,
the algebraic degree of the product mα1 ·mα2 is the sum of the respective algebraic degrees.

In the same way as before, after another round, all monomials of the form (i1, . . . , iδ2 ∈
{1, . . . , t})

(Xd′·2d1
i1 · · ·Xd′·2dδ

iδ
)2d1 (Xd′·2d1

iδ+1
· · ·Xd′·2dδ

i2δ
)2d2 · · · (Xd′·2d1

iδ2−(δ−1)
· · ·Xd′·2dδ

iδ2 )2dδ

appear in the encryption polynomial and have algebraic degree δ3 if i1, . . . , iδ2 are pairwise
different. Continuing this way, we conclude that the algebraic degree grows as fast as
δr until all t variables are exhausted, i.e., until δr = δ · t, or equivalently, for the first
blogδ(δ · t)c = 1 + blogδ(t)c rounds.

3.3.2 About the Linear Growth

Lemma 3. Let the same conditions as in Theorem 1 hold. Then, the algebraic degree of
Erk after r rounds, denoted by δ(r), is upper-bounded by

δ(r) ≤ t · log2

(
d
r−1 · d
t

+ 1
)
. (15)

Proof. Since the word-level degree of a single output word of Erk after r rounds is upper
bounded by dr−1 · d (we note, the final linear layer does not affect the algebraic degree)
the algebraic degree δ(r) of Erk after r rounds can be upper bounded by

δ(r) ≤ max
{(e1,...,et)∈Nt :

∑t

i=1
ei≤dr−1·d}

t∑
i=1

hw(ei),

where we use the fact that the algebraic degree of a monomial Xe1
1 · . . . ·X

et
t is given by∑t

i=1 hw(ei).
Let (e1, . . . , et) ∈ Nt be arbitrary with

∑t
i=1 ei ≤ dr−1 · d. We observe that 2w − 1 is

the smallest number with hamming weight w ∈ N. This means that 2hw(ei)− 1 ≤ ei, hence
hw(ei) ≤ log2(ei + 1) and

t∑
i=1

hw(ei) ≤
t∑
i=1

log2(ei + 1).

Let (e1, . . . , et) ∈ Nt such that
∑t
i=1 ei ≤ dr−1 · d. The logarithm is concave, which means

that
a · log2(x) + (1− a) · log2(y) ≤ log2(a · x+ (1− a) · y)
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for a ∈ [0, 1]. This is commonly generalized by induction to

t∑
i=1

ai · log2(xi) ≤ log2

(
t∑
i=1

ai · xi

)

whenever
∑t
i=1 ai = 1 and ai ∈ [0, 1] for all i. Therefore

t∑
i=1

log2(ei + 1) = t ·
t∑
i=1

1
t

log2(ei + 1)

≤ t · log2

(
t∑
i=1

ei + 1
t

)
≤ t · log2

(
d
r−1 · d
t

+ 1
)
,

where the last inequality holds because
∑t
i=1 ei ≤ dr−1 · d and the fact that the logarithm

is an increasing function. Combining this with the initial equation results in the desired

δ(r) ≤ t · log2

(
d
r−1 · d
t

+ 1
)
.

3.4 Discussion of Theorem 1
Forward versus Backward Direction. As originally proved in Corollary 3 of [BC13], given
a fixed key k, the algebraic degrees of Erk and its compositional inverse E−rk are related in
a particular way: the algebraic degree of Erk is maximal (i.e. n · t− 1) if and only if the
algebraic degree of E−rk is maximal. As an immediate consequence we state the following
observation: the number of rounds to reach maximal algebraic degree in the forward and
in the backward direction is the same. This fact is particularly surprising if one direction
of an SPN scheme is defined via low-degree S-Boxes, while the inverse direction is built
from S-Boxes of high degree. For example, for the S-Box function S(x) = x3 over F2n the
inverse function is given by S−1(x) = x(2n+1−1)/3. Here, S has algebraic degree 2, while
S−1 has algebraic degree (n+ 1)/2.

Remarks on implicit assumptions. According to the remark about the connection of
forward and backward direction below, it suffices to focus only on one direction of the
scheme when attempting to reach maximal algebraic degree. We focus on the forward
direction. Furthermore, our analysis is independent of the concrete instantiation of the
linear layer, besides assuming it is invertible and it ensures full diffusion after a finite
number of rounds. Implicitly, our proof assumes the strongest possible linear layer, i.e.,
a linear layer that guarantees full diffusion after one round and whose corresponding
linearized polynomial is full. Therefore, depending on the instantiation of the linear layer,
the algebraic degree might grow slower than we predict, but never faster. Theorem 1 can
easily be generalized to the case in which the S-Boxes are defined via different invertible
functions, under the assumption that they all have the same univariate degree d and the
same algebraic degree δ.

Relation to Iterated Even–Mansour Schemes. The authors of [EGL+20] state in Section
3.3 that for an iterated Even–Mansour scheme whose round function can be described by
a low-degree polynomial that

“[...] if the round function can be described by a polynomial of low univariate
degree d over F2n , we expect a linear behavior in [the algebraic degree] δlin(r):
δlin(r) ≤ blog2(dr + 1)c ≈ r · log2(d)”.
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However, no formal proof of this expectation is given in [EGL+20]. Our Theorem 1
comprises this situation as special case t = 1 and l = 1; thus we not only prove but also
generalize the result in [EGL+20]. Indeed, in Theorem 1 the case t = l = 1 corresponds
to iterated Even–Mansour schemes and hence the algebraic degree δ(r) after r rounds is
upper bounded by log2(dr + 1).

Comparison with Interpolation Analysis. The previous bound on the necessary number
of rounds matches the number of rounds needed to guarantee security against the inter-
polation analysis [JK97] introduced by Jakobsen and Knudsen at FSE 1997. The goal of
an interpolation analysis is to construct the polynomial that describes the encryption or
decryption function. Hence, if the number of monomials is too large, such a polynomial
cannot be constructed faster than via a brute force search. Since the number of monomials
can be estimated by means of the given the degree of the function, the designers must
guarantee that the polynomial that represents the scheme is of maximum degree and full
(or at least dense) to guarantee security against this type of cryptanalysis.

4 Comparison of Theorem 1 with the Results in [BCD11]
4.1 Iterative Application of the Bound in [BCD11]
The bounds on the algebraic degree in [BCD11] are stated for the composition of two
functions which means that the application to iterated SPN schemes (which often comprise
the composition of several dozen functions) requires an ad-hoc analysis of the analyzed
scheme. Here, we first provide a closed formuala for the bound in [BCD11, Theorem 2]
when extended to the composition of more than two functions, which provides the basis
for our comparisons in Section 5.

The bound given by Boura, Canteaut, and De Cannière in [BCD11, Theorem 2] states
the following: Let F be a function from FN2 to FN2 corresponding to the concatenation of t
smaller balanced2 S-Boxes S1, . . . , St defined over Fn2 . Then, for any function G from FN2
to FN2 , it holds

deg(G ◦ F ) ≤ N − N − deg(G)
γ

, (16)

where
γ := max

i=1,...,n−1

n− i
n− δi

≤ n− 1, (17)

and δi is defined as the maximal algebraic degree of the product of any i coordinates of
any of the smaller S-Boxes.

We emphasize that γ and δi depend on the details of the S-Box. Namely, two S-Boxes
with the same algebraic degree can have in general different γ. The result in [BC13,
Theorem 2] uses the algebraic degree of the compositional inverses S−1

j , 1 ≤ j ≤ t, for a
bound on the algebraic degree of G ◦ F . Under the same assumptions as above this result
leads to the same bound as stated in Eq. (16), with the additional upper bound on γ

γ ≤ max
1≤j≤t

max
{

n− 1
n− deg(Sj)

,
n

2 − 1, deg
(
S−1
j

)}
. (18)

Using an upper bound on γ for bounding the algebraic degree of G ◦ F in Eq. (16) could
lead to a less tight bound on deg(G ◦F ) than using the exact value of γ. However, Eq. (18)
has the advantage that it only uses known facts about the involved functions and thus a
bound on deg(G ◦F ) can be computed straight away. The same remark applies to another

2A function f : Fn
2 → Fm

2 is said to be balanced if each element in Fm
2 has exactly 2n−m preimages.

For n = m, an S-Box is balanced iff it is invertible.
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bound in [BC13, Corollary 2], which works with the algebraic degree of F−1 and is given
by

deg(G ◦ F ) < N −
⌊
N − 1− deg(G)

deg (F−1)

⌋
.

In Proposition 2, we derive a direct upper bound of the algebraic degree of SPN schemes
in the simple but most common case where all S-Boxes are equal. With “direct” upper
bound we mean that we iteratively apply (16) to the round functions of an SPN scheme
and thus obtain a closed-form statement about the algebraic degree after a certain number
of rounds (and not only for the composition of two functions as stated in [BCD11]).

Proposition 2. Let F be a function from FN2 to FN2 corresponding to the concatenation
of t copies of a balanced S-Box S over F2n with algebraic degree δ ≥ 2. For any affine
functions L1, L2, . . . , Lr from FN2 to FN2 and any integer r ≥ 1 consider the SPN scheme
Er from FN2 to FN2 defined as

Er := Lr ◦ F ◦ Lr−1 ◦ F ◦ · · · ◦ L1 ◦ F.

Then the algebraic degree δ(r) of E after r rounds is upper-bounded by

δ(r) ≤

δ
r if r ≤ R0 :=

⌊
logδ

(
N · γ−1

γ·δ−1

)⌋
,

δR0

γr−R0 +N ·
(

1− 1
γr−R0

)
if R0 < r ≤ R[BCD11],

(19)

independent of the (secret or publicly known) key k, where

R[BCD11] :=
⌊

logδ
(
N · γ − 1

γ · δ − 1

)⌋
︸ ︷︷ ︸

=R0

+
⌈
logγ

(
N − δR0

)⌉
(20)

is the minimum number of rounds for security against higher-order differential distinguishers
and where γ is defined as in Eq. (17).

The proof of Proposition 2 can be found in Appendix A. The strategy we adopt to
prove Proposition 2 is similar to the one proposed by Biryukov, Khovratovich, and Perrin
[BKP16]. In there, authors focused on the case in which all S-Boxes have maximum
algebraic degree δ = n − 1, while here we do not need this restriction. We point out
one more time that the details of the linear layer are not taken into account and do not
influence the bound just given.

Cost of Computing γ. The growth of the degree predicted in (16) depends on the value
of γ. Computing γ can be very expensive for large S-Boxes. Indeed, one has to consider
all possible combinations of the product of any i coordinates of the given S-Boxes, which
implies a lower bound on the cost of order

Ω
(

n∑
i=1

(
n

i

))
≈ Ω(2n).

In the case in which t different S-Boxes are used, the previous cost must be multiplied
by t. This means that for large S-Boxes (e.g., n ≥ 64) it is infeasible to determine γ
computationally and a further analysis of the scheme is necessary. Our results in Section 3
do not have this limitation. They depend on known parameters of the scheme and can be
computed straight away.



C. Cid, L. Grassi, A. Gunsing, R. Lüftenegger, C. Rechberger and M. Schofnegger 125

4.2 Comparison and Impact of the Linear Layer
Comparison. For a better insight when the bound RSPN improves upon the one given
by R[BCD11] we ask the following question: For which values of n, t, d, l and δ is

RSPN ≥ R[BCD11]

satisfied? Substituting the corresponding expressions we obtain the following inequality

1 + logd (t · (2n − 1))− logd(d) ≥
⌊

logδ
(
N · γ − 1

γ · δ − 1

)⌋
+
⌈

logγ
(
N · γ · (δ − 1)

γ · δ − 1

)⌉
.

Using the relations γ · δ − 1 ≥ γ − 1 and γ · δ − 1 ≥ δ − 1 (note that δ ≥ 2), an upper
bound for R[BCD11] is given by

R[BCD11] ≤ 1 + blogδ(N)c+ dlogγ(N)e ≤ 1 + dlogδ(N)e+ dlog2(N)e.

Focusing on the case n� 1, the condition RSPN ≥ R[BCD11] is satisfied if (approximately)

1 + logd (t · (2n − 1))− logd(d) ≈ n · logd(2) + logd(t) ≥ 1 + logδ(n · t) + log2(n · t),

or to put it another way, if

n · logd(2) + logd(t)︸ ︷︷ ︸
∈O(n)

≥ (log2(n) + log2(t)) · (1 + logδ(2)) + 1︸ ︷︷ ︸
∈O(log2(n))

. (21)

It is easy to see that for any fixed values of d, δ, l and t, the previous inequality can be
satisfied if n is large enough.

Impact of the Linear Layer. According to Theorem 1, after an exponential growth, the
algebraic degree grows at most linearly with a rate equal to t · log2(d). If l = 1 (and thus
d = d) the degree l of the linear layer does not infuence the algebraic degree. However, if
l ≥ 2, the initial exponential growth can take place for more than Rexp; as an extreme
case, if l is close to its maximum possible value 2n−1, the linear growth may never occur.
A concrete example of these facts is given in Fig. 1. Concluding, the details of the linear
layer play a crucial role in the growth of the (algebraic) degree.

5 Practical Results
In this section, we present our practical results on SPN schemes over (F2n)t (defined as in
Section 3) with low-degree and large S-Boxes. Assuming d = d · l, we focus on the two
cases (1) l = 1, t ≥ 2; and (2) l ≥ 2, t = 1. This allows us to emphasize the impact of t
and l independently. Since the approach we take is the same for all of our tests, we will
first describe it.

5.1 Test Methodology
Instead of computing the ANF of a (keyed or keyless) permutation (which is quite expensive
already for small field sizes3), we evaluate the zero-sum property for multiple random
input vector spaces. For this purpose, we wrote a custom program in C++. 4 For random
keys and constants, given an input subspace of dimension D ≤ N − 1, where N = n · t, we
look for the minimum number of rounds r for which the corresponding sum of the outputs
is different from zero. Such a number corresponds to

3For example, the computation of the Möbius transform is exponential in the bit size [BCB20], and
other methods (like the symbolic evaluation of the multiplication) are only feasible for small n or large n
with small d (i.e., a small number of multiplications).

4The code we used for the practical tests can be found on GitHub: https://github.com/IAIK/
higher-order-differential

https://github.com/IAIK/higher-order-differential
https://github.com/IAIK/higher-order-differential
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Algorithm 1: Evaluating the zero sum property of an SPN scheme Erk over
(F2n)t using different input subspaces.
Data: SPN scheme Erk using r rounds, with S-Box size n and t words, dimension

D of the subspace, number of tests nT .
Result: True if a zero sum is found in all tests, False otherwise.

1 for i← 1 to nT do
2 Randomly distribute D active bits among the N = n · t possible positions,

resulting in the input vector space V ⊆ FN2 .
3 Randomly sample round constants c1, . . . , cr and v.
4 Randomly sample key k.
5 Fix Erk using c1, . . . , cr and k.
6 s← 0.
7 foreach x ∈ V ⊕ v do
8 s← s⊕ E(x).
9 if s 6= 0 then

10 return False.
11 return True.

(1) the minimum number of rounds for reaching algebraic degree δ = D + 1, and

(2) the minimum number of rounds for preventing higher-order differential distinguishers
for D = N − 1.

To avoid a bias by weak keys or “bad” round constants, we have repeated the tests multiple
times (with new random keys, round constants, and input subspaces).

We illustrate the approach in Algorithm 1 using a keyed permutation.

Number of Subspaces of Dimension D. We emphasize, if the algebraic degree of an
SPN scheme Erk after r rounds is δ(r), then summing over all evaluations from any vector
space of dimension D ≥ δ(r) + 1 always results in a zero sum, i.e.,

⊕
x∈V E

r
k(x⊕ v) = 0

for a generic (fixed) v. However, the converse is not true in general. That is, having a
zero sum over a vector space of dimension D, does in general not imply that the algebraic
degree is δ(r) = D− 1. Indeed, δ(r) could be higher, and the zero sum could occur merely
due to the specific structure of the vector space and the analyzed function.

Evaluating the zero sum property for all affine subspaces of dimension D is actually
infeasible. Indeed, when working over (Fp)N , for any prime p and N ∈ N, the number of
different subspaces of dimension D ≤ N is

(pN − 1) · (pN − p) · (pt − p2) · · · · · (pN − pD−1)
(pD − 1) · (pD − p) · (pD − p2) · · · · · (pD − pD−1) ∈ O

(
pD·(N−D)

)
as shown, e.g., in [Hog16], which is out of practical range even for small values of p,N,D.
For this reason, we have to limit ourselves to evaluate the zero sum property for a limited
number of subspaces only. However, in our practical tests we observed that a small number
of tests for each of the possible combinations of active bits is sufficient to derive a stable
number (e.g., around 10 tests for each combination). Indeed, for example, we observed no
differences when using an input subspace of dimension N − 1 and changing the position of
the single inactive bit in multiple tests.

The practical number of rounds to prevent higher-order differential distinguishers we
report is the smallest number of rounds among all tested keys and round constants. This
means that potentially a higher number of rounds can be cryptanalyzed by choosing the
keys and round constants in a particular way.
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Table 2: Theoretical lower bound and practical number of rounds for preventing higher-
order differential distinguishers on SPN schemes over (F2n)t for several values of n and
t ≥ 2 (where N = n · t). The chosen S-Box is the cube function S(x) = x3. For the
practical number of rounds, we consider both the case of an MDS matrix and the case of a
matrix that provides the “worst” possible diffusion (e.g., a sparse matrix as in Eq. (23)).
R[BCD11] is computed assuming γ = (n+ 1)/2.

Parameters Theoretical # of Rounds Practical # of Rounds
N n t RSPN R[BCD11] MDS matrix Sparse matrix
35 5 7 5 6 8 15
35 7 5 6 6 8 12
36 9 4 7 6 9 11
33 11 3 8 5 10 10
39 13 3 10 6 11 12
34 17 2 12 6 12 12
38 19 2 13 6 14 14
66 11 6 9 7 - -
65 13 5 10 6 - -
60 15 4 11 6 - -
66 17 4 12 7 - -
63 21 3 15 6 - -
66 33 2 22 7 - -
132 11 12 10 8 - -
135 15 9 12 8 - -
133 19 7 14 7 - -
132 33 4 22 8 - -
129 43 3 28 7 - -
130 65 2 42 8 - -

Randomization of Active Bits. Depending on the position of the active bits, the final
results may be very different. For example, significant differences arisewhen considering
a fixed number of active bits in a single word and the same number of active bits split
over multiple words. In order to counteract this problem, we choose the input subspaces
randomly such that the position of active bits is also randomized. As a concrete example,
consider t = 2 with d = 3 and arbitrary n. Clearly, after one round the algebraic degree is
upper-bounded by δ = 2, and indeed, when activating 2 bits in the same word, we do not
get a zero sum. However, if we activate one bit in each of the two words (i.e., in total also
2 bits), we do get a zero sum, since only products of at most δ = hw(d) = 2 bit variables
from the same word occur in the polynomial representation. Hence, we randomize the
input subspaces in our tests.

Computational Cost in Practice. In our practical tests we observed that with very few
trials we already reach a stable number for the algebraic degree after a certain number
of rounds. It is however crucial to test every possible combination of active words, since
this has a significant impact on the final result. Concretely, we fix the number of tests
to 100 for “feasible” numbers of active bits (i.e., around 30). For the larger tests, we fix
the number to 10. While this may seem like a small sample size, we could not observe
any differences when testing more often with lower numbers of bits. As for the concrete
runtime, it largely depends on the number of active bits, but also on additional properties
like the tested degree. E.g., x3 can be evaluated faster than x7 for a given S-Box input
x. Practically, a test with 30 active bits can thus take several hours depending on the
concrete tested construction.
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Figure 2: Degree growth for an SPN scheme over (F233)4 instantiated with the S-Box
f(x) = x3.

5.2 Results for SPN Schemes with t ≥ 2, l = 1 and S-Boxes of the
form S(x) = xd

In our experiments, we focus on a SHARK-like scheme [RDP+96] with power maps as
S-Box functions. More specifically, we focus on SPN schemes over (F2n)t where the S-Box
function S : F2n → F2n is given by S(x) = xd and the mixing layer is defined as the
multiplication of the t state words with an invertible t× t matrix over F2n . The choice of
n and d is governed by the requirement gcd(d, 2n − 1) = 1, ensuring that S(x) = xd is a
permutation of F2n .

For the S-Box S(x) = x3, we report our results on the minimum number of rounds to
prevent higher-order differential distinguishers in Table 2. We observe that the number
of rounds that can be covered by a higher-order differential distinguisher is always close
to the one predicted by our formula (in some cases a little higher, but never smaller).
Moreover, especially when the size of the S-Box is not too small, the round number RSPN
predicted by our formula is significantly larger than R[BCD11]. Furthermore, our results
of small-scale experiments on the growth of the algebraic degree (according to the test
methodology in Section 5.1) for S(x) = x3 and S(x) = x7 are depicted in Fig. 2 and Fig. 3,
respectively.

Note that the tests made for Table 2 and, e.g., Fig. 2 use different approaches: in
the former case we maximize the number of active bits and see how many rounds we can
distinguish, whereas in the latter case we want to estimate the algebraic degree via the
number of active bits. For this reason, more test runs are needed to determine the degree
growth, especially in order to take care of the different positions of the active bits (where
the number of choices is lower for Table 2, since N − 1 bits are active in all tests).

Determining γ. To use the results from [BCD11] for our comparisons we need to deter-
mine the parameter γ (see also Eq. (17)). Since an exact computation of γ is too expensive
for most instances we use, we derive an upper bound on γ and use this upper bound as a
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Figure 3: Degree growth for an SPN scheme over (F233)3 instantiated with the S-Box
S(x) = x7.

benchmark. By definition of γ, it holds

γ = max
1≤i≤n−1

n− i
n− δi

= max
{

max
1≤i≤q

n− i
n− δi

, max
q+1≤i≤n−1

n− i
n− δi

}
≤ max

{
max

1≤i≤q

n− i
n− i · δ

, max
q+1≤i≤n−1

n− i
n− (n− 1)

}
= max

{
n− q
n− q · δ

, n− (q + 1)
}
.

where q = b(n−1)/δc and δ = hw(d) is the algebraic degree of the S-Box. For the particular
case S(x) = x3 only odd values for n are allowed (to guarantee gcd(2n − 1, 3) = 1) and
thus we obtain n− 1 = q · 2. Hence,

γ ≤ max
{

n− n−1
2

n− 2 · n−1
2
, n− n− 1

2 − 1
}

= n+ 1
2 . (22)

We assume γ = (n+ 1)/2 to compute the theoretical values for R[BCD11]. We also refer to
[EGL+20, Lemma 3], where authors support this assumption by practical experiments for
each odd n ≤ 33.

Influence of the Linear Layer. To understand how the linear layer influences the minimum
number of rounds to prevent higher-order differential distinguishers, in our practical tests
we consider two extreme cases: (1) we evaluate the case in which the linear layer is defined
as the multiplication with an MDS matrix (for parameters n and t that allow us to do so5),
which corresponds to the case of the “strongest” linear layer from a diffusion point of view;
(2) we also evaluate the case in which the linear layer is “weak”, which could happen if it is
defined by the multiplication with a matrix containing a large number of zero coefficients.
For this second case, we used a t× t matrix M with coefficients Mr,c given by

Mr,c =
{

1 if r = 0 or c ≡ r + 1 mod t,
0 otherwise.

(23)

5An MDS matrix over Ft×t
2n exists if the condition log2(2t + 1) ≤ n (i.e., t ≤ 2n−1 − 1) is satisfied.
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Table 3: Theoretical lower bound and practical number of rounds for preventing higher-
order differential distinguishers on iterated Even–Mansour schemes over F2n for several
values of n and l ≥ 1. The chosen S-Box is the cube function S(x) = x3. For the practical
number of rounds, we consider two cases regarding the linearized polynomial M , namely,
M dense and M sparse. R[BCD11] is computed assuming γ = (n+ 1)/2.

Parameters Theoretical # of Rounds Practical # of Rounds
n l RSPN R[BCD11] Dense M Sparse M
33 1 21 5 21 21
33 2 13 5 13 13
33 4 10 5 10 10
33 8 8 5 8 8
33 16 7 5 7 7
33 32 6 5 6 7
65 1 41 6 - -
65 2 26 6 - -
65 4 19 6 - -
65 8 15 6 - -
65 16 13 6 - -
65 32 11 6 - -
129 1 81 7 - -
129 2 50 7 - -
129 4 37 7 - -
129 8 29 7 - -
129 16 24 7 - -
129 32 21 7 - -

We note, using M from Eq. (23) we need t rounds to have full diffusion (at word level),
instead of just one round as for the MDS case. Hence, especially for large t, we expect that
more rounds than previously predicted may be necessary to guarantee security against
higher-order differential distinguishers. In Table 2 we report empirical evidence for this
expectation: the gap between the number of rounds predicted by our formula and the one
found by practical tests in the case of a sparse matrix is close to zero for “small” t, and
grows for “large” t.

5.3 Results for Iterated Even–Mansour Schemes (t = 1) with l ≥ 2
and S-Boxes of the form x 7→ xd

We focus on an iterated Even-Mansour scheme with a power map as S-Box function. More
specifically, we focus on a scheme over F2n where the S-Box function S : F2n → F2n is
given by S(x) = xd and the linear layer is defined as a linearized permutation polynomial of
degree l := 2l′ . As in Section 5.2, n and d are chosen such that S(x) = xd is a permutation
of F2n .

We consider two different cases for the linearized polynomial:

• A dense linearized polynomial. In this case our polynomial is equal to M(x) =∑l′

i=0 λi · x2i for λi ∈ F2n \ {0} that guarantee invertibility;

• A sparse linearized polynomial. In this case our polynomial is equal to M(x) =
λ ·xl +λ′ ·xl0 for small l0 = 2l̃0 (usually, l0 = 1) and λ, λ′ ∈ F2n \ {0} that guarantee
invertibility.

For the S-Box S(x) = x3, we report our results on the minimum number of rounds to
prevent higher-order differential distinguishers in Table 3 and depict the growth of the
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Figure 4: Degree growth for an iterated Even–Mansour scheme over F233 with a linearized
polynomial of degree l = 23 as linear layer and instantiated with the S-Box S(x) = x3.

algebraic degree for smaller number of rounds in Fig. 4. We observe that the algebraic
degree grows close to our bound for both the sparse and dense cases, where the sparse
case grows slightly slower than the dense case. In fact, when only looking at the minimum
number of rounds required to prevent higher-order differential distinguishers as in Table 3,
almost all results coincide: the only exception is the case of n = 33, l = 32 where a sparse
linear polynomial requires one extra round. A more substantial difference is found between
the round number RSPN predicted by our formula and R[BCD11], where the latter does
not depend on l and is significantly smaller.

For the difference in test methodology regarding Table 3 and the graph in Fig. 4 the
same remark as in Section 5.2 applies.

Special Case: M(x) = µ · xl. Finally, we discuss the case in which the linearized
polynomial is of the form M(x) = µ · xl for l = 2l′ and µ ∈ F2n \ {0}. We remember
that this function is always invertible over F2n (x 7→ x2 is always invertible, due to
gcd(2, 2n − 1) = 1). Here, the value of l does not have any influence on the tests and the
results are the same as for strong-arranged SPN schemes (i.e., for l = 1). This becomes
evident when having a look at the relation between word-level degree and algebraic degree
in Eq. (4). Exponentiating a monomial me = Xe1

1 · . . . ·X
et
t to the power of 2l′ is in fact

only an l′-shift of all (non-zero) digits in the base-2 expansion of e, hence

δ (me) =
t∑
i=1

hw(ei) =
t∑
i=1

hw
(
ei · 2l

′
)

= δ
(

(me)2l
′)
.

This means, the word-level degree is increased by a factor of l = 2l′ , but the algebraic
degree remains the same. While the case M(x) = µ · xl, for l = 2l′ , can be considered
a degenerate case of a linear layer, the results of our experiments for this case do not
contradict Theorem 1. We emphasize once more, the statement in Theorem 1 is an upper
bound, and that the growth of the degree can be slower than predicted (which is true for
every upper bound in the literature).
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6 Possible Applications of Theorem 1
After the last advances in [BCD11], [BC13], and in [Car20], our findings extend the canon
of theoretical bounds for the growth of the algebraic degree in SPN schemes by an improved
bound, see Theorem 1. While the currently best bounds are more generic than our bound,
our results substantially improve existing state-of-the-art bounds when considering SPN
schemes with large S-Boxes and for which the degrees of both the non-linear layer and the
linear layer are low, as is often the case in schemes for MPC-/FHE-/ZKP-applications.
In these domain specific schemes, it is most often algebraic cryptanalysis, in particular
higher-order differential distinguishers, that dominates the overall security arguments.
Thus, a better understanding of the growth of the algebraic degree is not only vital for the
security assessment of schemes for MPC-/FHE-/ZKP-applications but also for navigating
design choices towards a more solid theoretical foundation.

HadesMiMC, Poseidon and Starkad. As a concrete application, HadesMiMC [GLR+20]
is probably the most suitable candidate to apply our results. In particular, even if both
HadesMiMC and Poseidon are designed over (Fp)t, there is no reason why a scheme
based on the Hades strategy cannot be designed over (F2n)t. As a concrete example, we
refer to Starkad [GKR+21], a variant of Poseidon defined over (F2n)t.

Moreover, our upper bound for the growth of the algebraic degree plays an important
role in higher-order differential distinguishers of SPN schemes over Ft2n that do not exploit
the largest non-trivial vector subspace (i.e., Fn·t−1

2 ), but subspaces of smaller dimension
than the state size n · t. This is not only of theoretical interest, but it applies to all cases
in which the security level is smaller than the size of the full scheme, a scenario that is
common for schemes recently proposed for MPC/FHE/ZKP-applications.

Schemes for MPC-/FHE-/ZKP-Applications. As we have seen in Section 2.2.1, the
degree of a generic invertible (n · t) × (n · t) matrix with coefficients in F2 is in general
very high when represented as a linearized polynomial over F2n . In this case (namely,
l ≈ 2n−1), our bound does not improve the naive exponential bound.

However, the situation is different for schemes used in MPC-/FHE-/ZKP-applications.
In such applications, both the linear layer and the non-linear one are naturally defined
over F2n . One performance metric of schemes for MPC-/FHE-/ZKP-applications is, e.g.,
a minimal number of multiplications in F2n , which is why usually linearized polynomials
of low degree over F2n are used as linear layers. Concrete examples are Jarvis, and
more recently the follow-up design Vision. Jarvis is an EM scheme over F2n (analyzed
in [ACG+19]) with a linearized polynomial of degree 4 as linear layer. Compared to the
possible maximum degree 2127, the degree of this linearized polynomial is low. In a similar
way, the linear layer of Vision is defined.

Consequently, in the case of SPN schemes with l ≥ 2 designed for MPC-/FHE-/ZKP-
applications , we expect that our results provide a better estimation of the algebraic degree
than the naive exponential bound and the bound in [BC13], since in this scenario the
linear layer usually has low degree when represented as a linearized polynomial over F2n .
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A Proof of Proposition 2
Proof. Applying the naive exponential bound and the bound from [BCD11, Theorem 2]
(see Eq. (16)) to E1 = L1 ◦ F yields

deg(L1 ◦ F ) ≤ min
{
δ,N ·

(
1− 1

γ

)
+ 1
γ

}
= δ.

The last equality is justified as follows: for t = 1, this is obvious (δ is exactly the degree of
1 round). For t ≥ 2, this follows from the fact that the non-linear layer has degree δ (since
we have parallel independent S-Boxes with algebraic δ) and that the linear layer does not
change the algebraic degree.

In other words, for at least one round the naive exponential bound for the growth of
the algebraic degree is better than the bound in [BCD11]. Therefore, we now look for
the maximum number of rounds R0 with this behavior. This corresponds to solving the
following equation for R0

δR0 = N ·
(

1− 1
γ

)
+ δR0−1

γ
,

which gives

R0 = logδ
(
N · γ − 1

γ · δ − 1

)
.

To put it another way, for any number of rounds r ≤ R0, the degree of Er is upper-bounded
by δr. As a next step, we find the minimum additional number of rounds to prevent
higher-order differential distinguishers, i.e., the minimum additional number of rounds
R1 such that the algebraic degree after R0 +R1 rounds is N − 1 (the biggest non-trivial
subspace of FN2 has dimension N − 1).

For r > R0, the bound in [BCD11] is better than the naive bound, hence, the algebraic
degree of Er after r = R0 + 1 rounds is upper-bounded by

deg (ER0+1) ≤ N ·
(

1− 1
γ

)
︸ ︷︷ ︸

=:C

+δR0

γ
= C + δR0

γ
,

and after r = R0 + 2 rounds by

deg (ER0+2) ≤ C + 1
γ
·
(
C + δR0

γ

)
= C + C

γ
+ δR0

γ2 .

Continuing this way, we conclude that after r = R0 + s rounds, for an integer s ≥ 1, the
algebraic degree is upper bounded by

deg (ER0+s) ≤
δR0

γs
+ C ·

s−1∑
i=0

1
γi

= δR0

γs
+ C ·

1− 1
γs

1− 1
γ

= δR0

γs
+N · γ

s − 1
γs

.
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This means, the minimum additional number of rounds R1 to prevent higher-order differ-
ential distinguishers is given by the implicit condition

δR0

γR1
+ N · (γR1 − 1)

γR1
= N − 1,

which gives
R1 = logγ

(
N − δR0

)
.

We conclude, the minimum number of rounds R[BCD11] to prevent higher-order differential
distinguishers is given by

R[BCD11] =
⌊

logδ
(
N · γ − 1

γ · δ − 1

)⌋
+
⌈
logγ

(
N − δR0

)⌉
.
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