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Abstract. In the past 20 years since their conception, boomerang attacks have
become an important tool in the cryptanalysis of block ciphers. In the classical
estimate of their success probability, assumptions are made about the independence
of the underlying differential trails that are not well-founded. We underline the
problems inherent in these independence assumptions by using them to prove that
for any boomerang there exists a differential trail over the entire cipher with a higher
probability than the boomerang.
While cryptanalysts today have a clear understanding that the trails can be dependent,
the focus of previous research has mostly gone into using these dependencies to
improve attacks but little effort has been put into giving boomerangs and their
success probabilities a stronger theoretical underpinning. With this publication, we
provide such a formalization.
We provide a framework which allows us to formulate and prove rigorous statements
about the probabilities involved in boomerang attacks without relying on indepen-
dence assumptions of the trails. Among these statements is a proof that two-round
boomerangs on SPNs with differentially 4-uniform S-boxes always deviate from the
classical probability estimate to the largest degree possible.
We applied the results of this formalization to analyze the validity of some of the
first boomerang attacks. We show that the boomerang constructed in the amplified
boomerang attack on Serpent by Kelsey, Kohno, and Schneier has probability zero. For
the rectangle attack on Serpent by Dunkelman, Biham, and Keller, we demonstrate
that a minuscule fraction of only 2−43.4 of all differential trail combinations used in
the original attack have a non-zero probability. In spite of this, the probability of
the boomerang is in fact a little higher than the original estimate suggests as the
non-zero trails have a vastly higher probability than the classical estimate predicts.
Keywords: boomerang attack · cryptanalysis · independence · Serpent

1 Introduction
One of the most important developments in block cipher cryptanalysis was the invention of
differential cryptanalysis by Biham and Shamir [BS91]. Any block cipher proposed today
must be argued secure against differential attacks. Several ways to do this have been tried
over the years, mainly focused on bounding the maximal probability of a single differential
trail. The idea was that if the maximal probability was p then at least p−1 texts would be
needed. Several ciphers with guaranteed security against simple differential attacks were
proposed and later broken by more sophisticated methods.

One example is the KN-cipher [NK95], which is a 6-round Feistel cipher that uses x3

as the nonlinear part of the round function,. The authors had proven this construction
secure against ordinary differentials. However, the low degree meant it could be broken by
higher-order differentials [JK97] with very low complexity.

Another example is COCONUT98 [Vau98] which used a decorrelation technique to
separate the upper and lower halves of the cipher. The upper and lower halves are weak
4-round Feistel networks and the decorrelation module is an addition and a multiplication
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with key material in a finite field. The multiplication with a secret value makes it impossible
to push a difference through the module.

This design caused Wagner [Wag99] to propose the boomerang attack as a clever way
to connect unrelated high-probability differentials for the top and bottom half. The basic
idea is to “throw” a pair of plaintexts through the cipher, add a difference to the resulting
ciphertexts, and observe how they return (see Figure 1). A second-order differential in the
middle of the cipher connects the differentials for the upper and lower halves causing the
boomerang to return. The classical analysis of the probability of the boomerang returning
(see Subsection 2.1) assumes the differentials act independently.

This attack worked exceptionally well on the COCONUT98 cipher since the 4-round
Feistel cipher admit differentials with probability of 4−4.3. The important observation is
that for a fixed key the decorrelation module is affine. This means there is a probability-one
transition, however, predicting the output difference is impossible without knowledge of the
key. Knowing the exact difference is not needed for the attack, only that any second-order
derivative is zero with probability one.

Some variants to the basic boomerang attack have been proposed over the years.
The idea of the amplified boomerang attack by Kohnu et al. [KKS00] is to turn the
boomerang attack into a chosen-plaintext attack instead the original adaptively chosen-
plaintext/ciphertext attack. The rectangle attack by Biham et al. [BDK01] builds up on
the amplified boomerang by making use of the fact that the differences in the middle
need not be fixed but can take any value, as long as the sum is 0. The sandwich attack
by Dunkelman et al. [DKS10, DKS14] proposes a framework where the two differentials
are separated in the middle, like two pieces of bread with a thin slice of meat hence the
name. The differentials for the upper and lower halves are then connected via ad-hoc
methods through the middle round. As a framework it has proven to be a good basis for
investigating the dependencies of the differentials involved in a boomerang attack.

The boomerang attack and its variants have proven themselves to be effective on a
wide variety of ciphers. Notable examples include the attack on AES by Biryukov and
Khovratovich [BK09], and on KASUMI by Dunkelman et al. [DKS10]. More recently the
retracing boomerang attack was introduced by Dunkelman et al. [DKRS20], which improved
the best attack on 5-round AES by discarding some data and forcing the boomerang back
along the same trajectory.

Related work
The differentials in a boomerang attack were usually assumed to be independent, however
there is no a priori justification for that assumption. Several techniques, commonly known
as boomerang switches, have been proposed to take advantage of dependencies to boost
the probability of the boomerang. The Feistel switch, which bypasses a round for free,
was already implemented by Wagner in [Wag99] in the attack on Khufu. The ladder
switch and the S-box switch were introduced by Biryukov and Khovratovich [BK09]. In
the ladder switch the attacker chooses the boundary of the two differentials such that it
does not necessarily align with the rounds of the cipher. When putting an S-box in a
differential where it is inactive, instead of active, it does not add to the probability. The
S-box switch is the fact that, if the output difference for the upper differential matches the
difference from the lower differential, then the pairs are just swapped and we only pay for
the probability in one direction.

While the switches were used to aid the attacker, Murphy [Mur11] pointed out that
the differentials might in fact be incompatible. In the middle of the boomerang, where the
upper and lower differentials meet, we have a pair of pairs. The upper differential defines
the distance between the pairs and the lower defines the difference for the differential
transition. It may be the case that there are several pairs that follow the transition for the
lower differential but none with the distance dictated by the upper differential. Murphy in
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particular showed an example for DES, where the required transition over S2 in round 4 is
impossible, and therefore that particular boomerang never comes back.

Cid et al. [CHP+18] proposed the boomerang connectivity table (BCT) as a unified
approach to calculate the boomerang switching probability in SPN-ciphers when the middle
part is one S-box layer. It includes the previously mentioned switches and as well as a new
switching property they discovered, and it can be used to show when two differentials are
incompatible.

The BCT depends on the inverse S-box, however since the inverse S-box is not used in
a Feistel cipher, a different approach is needed here. The FBCT, for Feistel boomerang
connectivity table, was introduced by Boukerrou et al. [BHL+20] to solve this issue. The
authors also show the invalidity of the related-key boomerang attack on LBlock by Liu et
al. [LGW12].

The BCT and FBCT work at the S-box level and as such only consider one round;
the dependency can, however, span many rounds. Two concurrent papers looked at this
problem with different approaches. Wang and Peyrin [WP19] took a table-based approach,
where the DDT and BCT are combined in a table which they call the boomerang difference
table (BDT). This table can be used to evaluate the probability of a boomerang switch
over 2 rounds. Song et al. [SQH19] instead proposed a way to determine the length of the
middle part, where the dependency exists.

The classical way to find a good boomerang distinguisher would be to choose the best
differentials for the upper and lower part separately, and then just hope that they are
compatible. The problem is that the best differentials might not have a high probability of
connecting in the middle, and therefore choosing a lower probability differential might result
in a higher probability boomerang. Recently several MILP models have been proposed
to search for boomerang distinguishers, e.g., [DDV20] and [HBS21], which will take the
switching probability into account for multiple rounds.

Motivation
Since the inception of the boomerang attack, we have come to appreciate some of the
difficulties involved in estimating the probabilities of boomerang distinguishers. While there
is a general understanding that the naive method of estimating boomerang probabilities as
the product of the individual involved trails is incorrect, and while dependencies between
the trails have been put to good use in attacks such as the sandwich attack, we still lack a
consistent model of describing boomerang probabilities.

With this work, we want to fill this gap by creating a mathematical model that allows
us to precisely formulate the probabilities of boomerang attacks. The only assumptions
that we want to rely on are those commonly made in differential cryptanalysis.

Our contribution
In this paper, we take a close look at the probability estimates classically made in boomerang
attacks and which assumptions are being made. We show that using these assumptions
we can prove that for any boomerang there would necessarily exists a differential over
the entire cipher with higher probability than the boomerang. While this is clearly not
the case, it underlines the need for a better formal underpinning of boomerang success
probabilities.

Building up on a notation that extends the notions from differential cryptanalysis to
take a quartet of messages into account, we are able to rigorously prove several results
regarding the probability of boomerang attacks. Among these are compact expressions of
the boomerang probabilities as well as results on the applicability and limitation of the
classical estimates of boomerang probabilities. In particular we are able to prove that
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Figure 1: Outline of a basic boomerang attack.

two-round boomerangs on SPNs with differentially 4-uniform S-boxes never adhere to the
classical probability estimate.

We furthermore apply our results to two classic boomerang attacks on the block cipher
Serpent. The first one, the amplified boomerang attack on Serpent [KKS00], is shown to
be invalid as stated. For the second one, the rectangle attack [BDK05], we show that of
all boomerang trails considered in the attack only a fraction of 2−43.4 have a non-zero
probability. For the remaining boomerang trails we demonstrate that their probability is
much higher than a classical estimate would suggest, leaving the total combined probability
of all boomerang trails close to the original estimate. By including even more trails in a
refined analysis we are able to improve this original estimate by a factor of 24.3.

Outline
In Section 2 we introduce the basic boomerang attack. In Section 3 we prove that the
independence assumption is an inherently flawed assumption. In Section 4 we introduce
d-differences which will be used in Section 5 to prove some statements about boomerang
probabilities. In Section 7 we look at two boomerang attacks on Serpent, and finally
Section 8 concludes the paper.

2 Boomerang attacks
Before we can start our investigation into formalizing the boomerang attack probabilities,
we need a proper exposition of this attack and its variants.

2.1 Basic boomerangs
Let us start by properly introducing boomerang attacks, developed by David Wag-
ner [Wag99] and set the notation which is used throughout this paper.

Let Enc denote a block cipher that maps n-bit plaintexts bijectively to n-bit ciphertexts.
For the purpose of the attack, we assume that the cipher can be decomposed into two
parts E0 and E1 such that

Enc = E1 ◦ E0 . (1)

We are now interested in the scenario where we have a good differential α E0−−→ β over
E0 that holds with probability p, as well as a good differential γ E1−−→ δ over E1 that holds
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with probability q. These two differentials can now be used to construct a distinguisher
over the whole cipher as follows.

To construct the distinguisher, we start with a pair of plaintexts x0 and x1 with
a difference α. When encrypting these two plaintexts, we expect the corresponding
intermediate texts y0 := E0(x0) and y1 := E0(x1) to have a difference β with probability
p (at least according to the standard assumptions of differential cryptanalysis). For
orientation, see also Fig. 1.

With z0 := E1(y0) and z1 := E1(y1) being the respective ciphertexts, we now construct
two more ciphertexts z2 := z0 ⊕ δ and z3 := z1 ⊕ δ by adding the difference δ to each of
z0 and z1. Then the pairs (z0, z2) and (z1, z3) both have a difference of δ, the ciphertext
difference in the second differential.

Decrypting these two ciphertexts, provides us with two more intermediate texts,
y2 := E−1

1 (z2) and y3 := E−1
1 (z3), and two more plaintexts, x2 := E−1

0 (y2) and x3 :=
E−1

0 (y3). Assuming independence of the two ciphertext pairs (z0, z2) and (z1, z3), both of
their respective intermediate pairs (y0, y2) and (y1, y3) will have a differences of γ with
probability q2.1

Combining this with the probability that (x0, x1) follows the first differential, we have
with probability pq2 that y0 ⊕ y1 = β, y0 ⊕ y2 = γ, and y1 ⊕ y3 = γ. This forces the
difference between y2 and y3 to be β. Again assuming independence from the other pairs,
the pair (y2, y3) will follow the first differential with probability p, resulting in a plaintext
difference of α between x2 and x3.

Taking all of these steps together, we estimate that the probability to see a difference
α between x2 and x3 is equal to p2q2.

Over a random permutation, the probability for x2 and x3 to have a difference of α is
(2n − 1)−1. We therefore expect such a boomerang distinguisher to be successful as long
as p2q2 is sufficiently larger than (2n − 1)−1, since we can then use the above technique to
distinguish the cipher from a random permutation in a chosen plaintext/chosen ciphertext
attack.

In accordance with the above notation, we make the following definition:

Definition 1. We call a tuple of four plaintexts (x0, x1, x2, x3) ∈ F4n
2 a right quartet

with respect to the input difference α ∈ Fn2 and the output difference δ ∈ Fn2 and a
fixed key if and only if x0 ⊕ x1 = α, x2 ⊕ x3 = α, and Enc(x0) ⊕ Enc(x2) = δ and
Enc(x1)⊕ Enc(x3) = δ.

Since the only non-deterministic part of the method is our initial choice of x0, it is
straightforward to see that the probability to detect the output difference α between x2
and x3 using the boomerang attack is equal to the number of right quartets divided by 2n.

As described above, classically this probability is estimated to be p2q2 by making
mentioned independence assumptions. A focal point of this paper is to shed light upon
how and why these independence assumptions fail and what the consequences are for the
estimate of the boomerang probability.

2.1.1 Taking more differentials into consideration

When estimating the number of expected right quartets with the classical assumptions as
2np2q2, we clearly are estimating a lower bound as we are only considering two particular
differentials. To get a more accurate classical estimate of the boomerang probability we
need to consider all possible values for the differences β and γ in the middle of the cipher:∑

β∈Fn
2 ,γ∈Fn

2

Pr
(
α

E0−−→ β
)2

Pr
(
γ

E1−−→ δ
)2
. (2)

1The probability of a differential is the same both in the forward and backward direction for any
bijective function. Note that this is not true for truncated differentials.
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As a matter of fact, there is no reason to restrict the differences y0 ⊕ y1 and y2 ⊕ y3 to be
the same, and likewise the differences y0 ⊕ y2 and y1 ⊕ y3 to be the same. Thus an even
better classical approximation of the boomerang probability is thus∑

β0,β1,γ0,γ1∈Fn
2 ,

β0⊕β1⊕γ0⊕γ1=0

Pr
(
α

E0−−→ β0

)
Pr
(
α

E0−−→ β1

)
Pr
(
γ0

E1−−→ δ
)

Pr
(
γ1

E1−−→ δ
)
. (3)

For references of these classical estimates, see for example Wagner [Wag99, Section 6] or
Biham et al. [BDK01, Section 4].

2.1.2 Practical restrictions

To find a good approximation of the boomerang probability, one would ideally like to
determine the expressions in Eq. (3) or Eq. (2). This is in most cases impossible in
practice. As a matter of fact, even when we only work with two differentials for each
cipher part, it is usually computationally infeasible to determine the probabilities of just
these differentials. What we tend to do in practice then, is to restrict ourselves to the
most promising differential trails for the upper and lower parts of the cipher and take their
probabilities to determine a good approximation for the boomerang probability.

2.2 Amplified boomerangs
One inherent limitation of the original boomerang attack is that it requires both chosen
plaintexts and adaptively-chosen ciphertexts. The attack can be adapted to only requiring
chosen plaintexts albeit with a much higher data complexity. This method was developed
by Kelsey, Kohno, and Schneier [KKS00]. The complexity of this method also inherently
depends on the number of expected right quartets, i.e., the boomerang probability.

The idea is to choose two values x0, x2 and generate x1 = x0 ⊕ α and x3 = x2 ⊕ α.
Then like in the standard boomerang attack the differences in the middle will be β for
both pairs with probability p2, that is, y0 ⊕ y1 = y2 ⊕ y3 = β. The distance will be γ with
a probability of 2−n since if y0 ⊕ y2 = γ then so is y1 ⊕ y3 = γ. Finally the transition
for the lower half is again q2 and therefore the probability that z0 ⊕ z2 = z1 ⊕ z3 = δ is
p2q22−n. By creating a large set of pairs of input texts with difference α, the large number
of possible combinations of input pairs allows the success probability to be higher than
2−n then.

3 Independence assumptions in boomerang attacks
3.1 Independence of rounds and trails
The assumptions used in boomerang attacks can generally be put into two categories: those
assumptions that stem from the theory of differential cryptanalysis and those assumptions
that are specific to the boomerang attack.

The most important assumption from differential cryptanalysis is the assumption that
the rounds of a cipher can be treated independently when determining differential proba-
bilities, thereby allowing us to multiply the probabilities of differential round transitions
to obtain the probability of a trail. We will briefly discuss this assumption when creating
our model for calculating boomerang probabilities, so for now let us leave it by saying that
this assumption works sufficiently well in practice.

The additional assumption made in the classical estimate of the boomerang probability
though is about the independence of trails and cannot be derived from the standard
assumptions of differential cryptanalysis. In the classical estimate of the boomerang prob-
ability, we simply multiply the probabilities of the four individual differential transitions.
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To be able to do this, we implicitly assume that these four differentials can be regarded as
independent. We can state this assumption as follows:

Assumption 1. For any two text pairs (x0, x1) and (x2, x3) that both have a difference
α, i.e., x0 ⊕ x1 = x2 ⊕ x3 = α, the probability that both pairs are mapped to a difference
β is the same as the square of the probability of the differential α −→ β for any choice of α
and β.

Clearly this assumption does not hold when the text pairs coincide as the second pair
then always follows the same differential as the first. In the following, we show that even
assuming that this assumption holds closely for the case where the text pairs are distinct
leads to contradictions.

3.2 An inherent problem

The idea and purpose of boomerang attacks is to provide an attack in scenarios where we
might not find a good differential that covers the entire cipher. There seems to be little
reason to use a boomerang attack if we already have a differential of higher probability
over the entire cipher. The more surprising it might be that we can prove that there always
exists a differential with probability higher than the boomerang probability when we rely
on the assumption that we can treat the trail probabilities independently, as we do in the
classical estimate.

Using the notation for the boomerang attack established in Section 2.1, we thus would
expect that no differentials β E1−−→ ε or η E0−−→ γ exist for which

Pr
(
β

E1−−→ ε
)
≥ q2 or Pr

(
η

E0−−→ γ
)
≥ p2. (4)

If this were not the case, at least one of the differential trails α E0−−→ β
E1−−→ ε and

η
E0−−→ γ

E1−−→ δ would have a probability higher than p2q2 and thus would be better suited
as a distinguisher than the boomerang distinguisher.

Theorem 1. Assume that we have a boomerang as described above of probability p2q2

and assume that the assumption of the independence of differentials holds (Assumption 1).
Then there exist differentials α Enc−−→ ε and η Enc−−→ δ over the whole cipher with probabilities
at least pq2 and qp2, respectively.

Proof. We only prove here that there exists a differential α Enc−−→ ε of probability at least
pq2. To show that a differential η Enc−−→ δ of probability at least p2q exists goes analogously.

We start by showing that if Assumption 1 holds for E1, then

∑
ε

Pr
(
β

E1−−→ ε
)2

=
∑
δ

Pr
(
γ

E1−−→ δ
)2
. (5)
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By choosing some arbitrary fixed γ, we get that∑
ε

Pr
(
β

E1−−→ ε
)2

=
∑
ε

Pr
(
E1(x0 ⊕ β)⊕ E1(x0) = ε and E1(x0 ⊕ γ ⊕ β)⊕ E1(x0 ⊕ γ) = ε

)
= Pr

(
E1(x0 ⊕ β)⊕ E1(x0) = E1(x0 ⊕ γ ⊕ β)⊕ E1(x0 ⊕ γ)

)
= Pr

(
E1(x0 ⊕ γ)⊕ E1(x0) = E1(x0 ⊕ γ ⊕ β)⊕ E1(x0 ⊕ β)

)
=
∑
δ

Pr
(
E1(x0 ⊕ γ)⊕ E1(x0) = δ and E1(x0 ⊕ γ ⊕ β)⊕ E1(x0 ⊕ β) = δ

)
=
∑
δ

Pr
(
γ

E1−−→ δ
)2
,

where we used Assumption 1 in the first and last steps of the derivation. This concludes
the proof of Eq. (5).

The probability that both these β differences are mapped to the same value thus gives
us an upper bound for the probability that both δ differences are mapped to γ differences:∑

ε∈Fn
2

Pr
(
β

E1−−→ ε
)2
≥ Pr

(
γ

E1−−→ δ
)2

= q2. (6)

Let s now be the maximal value for any of the differentials β E1−−→ ε:

s := max
ε∈Fn

2

Pr
(
β

E1−−→ ε
)
. (7)

Using the fact that the trail probabilities sum to one
(∑

ε∈Fn
2

Pr
(
β

E1−−→ ε
)

= 1
)
, we then

have that

q2 ≤
∑
ε∈Fn

2

Pr
(
β

E1−−→ ε
)2
≤
∑
ε∈Fn

2

s · Pr
(
β

E1−−→ ε
)

= s ·
∑
ε∈Fn

2

Pr
(
β

E1−−→ ε
)

= s (8)

Thus there exists a differential β E1−−→ ε with probability at least q2 and thus there
exists a differential α Enc−−→ ε of probability at least pq2.

Can we conclude from this that there always exist differentials that beat boomerang
distinguishers and that we only need to find them? Certainly not (see for example Corol-
lary 1). It much rather demonstrates that we must be very careful when unconditionally
assuming independence of differentials as done in the classical estimate of the boomerang
probability.

4 Generalized differences and their transitions
Before we look in more detail into the probabilities of boomerangs, let us introduce some
notation and a model that allows us to formally discuss boomerang attacks. Parts of the
notation that we are using are taken from [Tie16].

In differential cryptanalysis, we are usually not interested in the absolute position of
texts in the state space but only in their relative positions, i.e., their relative differences.
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The relative positions of a tuple of d+ 1 texts are uniquely defined by the differences of
the d last texts with respect to the first text. To capture this notion, we define:

Definition 2 (d-difference). For a tuple of (d+1) texts (m0,m1,m2, . . . ,md), we describe
their relative differences by the d-tuple

(m1 ⊕m0,m2 ⊕m0, . . . ,mn ⊕m0). (9)

We refer to such a d-tuple as the d-difference of the (d+ 1)-tuple of messages. We refer to
the first text of the (d+ 1)-tuple of messages as the anchor of the d-difference.

Note that d-differences thus describe the translation-invariant equivalence class of
(d + 1)-tuples in the state space. Thus a (d + 1)-tuple is uniquely identified by its d-
difference together with its anchor. For the remainder, we will refer to a (d+ 1)-tuple only
as a tuple if the value d is clear from the context.

Extending the notion of differentials to d-differences, we make the following definition:

Definition 3 (Transition with fixed anchor). Let f : Fn2 → Fn2 . Let α = (α1, . . . , αd) and
β = (β1, . . . , βd) be two d-differences over Fn2 . By the transition α

f−→
x

β, we denote the
event that f maps the tuple of messages corresponding to the d-difference α with anchor
x to a tuple of messages with d-difference β. More precisely, we say that α

f−→
x

β holds if
and only if

f(x⊕ α1)⊕ f(x) = β1,

f(x⊕ α2)⊕ f(x) = β2,

. . .

f(x⊕ αd)⊕ f(x) = βd.

Example 1. Let (m0,m1,m2,m3) be a plaintext tuple and let (c0, c1, c2, c3) be the
corresponding tuple of ciphertexts. Set α = (m1 ⊕m0,m2 ⊕m0,m3 ⊕m0) and let β be
some 3-difference. Then α

f−−→
m0

β holds if and only if β = (c0 ⊕ c1, c0 ⊕ c2, c0 ⊕ c3).

To define the probability of such transitions where the anchor is not fixed, we take the
same route as standard differential cryptanalysis and assume that the first text is chosen
uniformly at random.

Definition 4 (Probability of transitions). Let f , α, and β again be as in Definition 3.
The probability of the transition α

f−→ β is then defined as:

Pr
(

α
f−→ β

)
:= Pr

X

(
α

f−→
X

β
)

(10)

where X is a random variable, distributed uniformly on Fn2 .

For simple differences (1-differences) this definition coincides with the definition of
differentials.

Example 2. Let f be the AES S-box, and consider the 3-difference transition (α1, α2, α3) f−→
(β1, β2, β3), where α1 = 7, α2 = 25, and α3 = α1 ⊕ α2 and β1 = 166, β2 = 183, and
β3 = β1 ⊕ β2. To calculate the probability we simple count all values of x for which
f(x⊕ α1)⊕ f(x) = β1 and f(x⊕ α2)⊕ f(x) = β2 and f(x⊕ α3)⊕ f(x) = β3. There are
exactly 4 values (0, 7, 25, and 30) which means that the probability is 22 · 2−8 = 2−6. If we
instead change β2 = 1, then there are no values for x for which it holds and the probability
is therefore 0. Note that this also illustrates Lemma 2.
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To allow us to lower bound the probability of a transition over several rounds of a
cipher, we need the ability to split transition into a collection of trails. To this end, we
define what a trail is in this context.

Definition 5 (A d-difference trail). Let f = fl ◦ · · · ◦ f2 ◦ f1 be a composition of n-bit to
n-bit functions, let α0, . . . ,αl ∈ Fdn2 be a sequence of d-differences, and let x ∈ Fn2 . We
refer to the sequence (α0, . . . ,αl) as a trail over f and denote the event that this trail is
followed as α0

f0−→
x

α1
f1−−−→

f0(x)
α2 · · ·

fl−−−−−−−−−→
fl−1◦···◦f0(x)

αl. That is, we say that the (d+ 1)-tuple

corresponding to α0 with the anchor x follows the trail (α0, . . . ,αl) if and only if all the
transitions

α0
f0−→
x

α1,

α1
f1−−−→

f0(x)
α2,

. . .

αl−1
fl−−−−−−−−−→

fl−1◦···◦f0(x)
αl

are adhered to.

To be able to efficiently determine the probability of these trails, we run into the same
problem that one encounters when formalizing the probability of differentials trails, namely
that the transitions that make up a trail are generally not independent. To solve this issue
we make the same assumption that is conventionally made in differential cryptanalysis,
namely that we can reasonably well approximate the probability of a trail by considering
the individual transitions as independent. This independence is achieved by assuming that
the anchor used in each of the transitions is distributed uniformly randomly. This can for
example be modelled by saying that a uniformly random constant is added onto the state
after every found/round (for the classic example see [LMM91]).

Assumption 2 (Hypothesis of stochastic equivalence). We assume that treating the
individual transitions of a trail as independent gives a reasonably good approximation of
the real trail probability. Using the previously established notation, we write this as

Pr
X

(
α0

f0−→
X

α1
f1−−−−→

f0(X)
α2 · · ·

fl−−−−−−−−−→
fl−1◦···◦f0(X)

αl

)
≈ Pr

(
α0

f0−→ α1

)
· · ·Pr

(
αl−1

fl−→ αl

)
.

Note that for the case of d = 2, this corresponds exactly to the standard assumption
made in differential cryptanalysis.

We will now state some rules without proof that are useful when working with these
transitions (or when working with standard differentials for that matter). For the purpose
of readability, and as we are mostly concerned with quartets of messages here, we fix d = 3.
Let now α = (α1, α2, α3) and β = (β1, β2, β3) be two 3-differences and let f be a bijective
function from Fn2 to Fn2 .

Rule 1. α
f−−→
x

β ⇐⇒ β
f−1

−−−→
f(x)

α

Rule 2.

(α1, α2, α3) f−−→
x

(β1, β2, β3)

⇐⇒ (α1, α1 ⊕ α2, α1 ⊕ α3) f−−−→
x⊕α1

(β1, β1 ⊕ β2, β1 ⊕ β3) (11)

In accordance with the common definition of truncated differentials, we also define:
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E0

E1

x0

x1

x2

x3

α η ⊕ α
η

y0

y1

y2

y3

β

γ

β ⊕ γ

z0

z1

z2

z3

ε

δ

ε⊕ δ

Figure 2: Outline of a simple boomerang attack in the d-difference view. The differences
v and w are allowed to take any value here.

Definition 6 (Transitions of truncated d-differences). A truncated d-difference is an affine
subspace in the linear space of d-differences. A truncated d-difference transition is a pair
(A,B) of truncated d-differences denoted as A f−→ B. The probability of such a truncated
d-difference transition A f−→ B is then defined as the probability that an input d-difference
chosen uniformly at random from A maps to a d-difference in B:

Pr
(
A

f−→ B
)

:= |A|−1 ∑
α∈A
β∈B

Pr
(

α
f−→ β

)
. (12)

From this definition and Rule 1 follows immediately the following rule:
Rule 3.

|A|Pr
(
A

f−−→ B
)

= |B|Pr
(
B

f−1

−−→ A

)
. (13)

5 Rigorous statements for boomerang probabilties
As we will see in the following, d-differences and truncated d-difference transitions provide
a notation that allows us to formalize statements about the probability of boomerangs in
a consistent model.

Let us start by looking at a tuple of four texts (x0, x1, x2, x3) where the differences
of the pairs (x0, x1) and (x2, x3) are α each. Using 3-differences, we can say that this
4-tuple (x0, x1, x2, x3) corresponds to a 3-difference (α, η, α⊕ η) for some η ∈ Fn2 . With
this view, we can think of the relationships between the texts in the boomerang attack as
3-differences. This alternative view is depicted in Fig. 2 (see also Fig. 1 for comparison).

Looking at the boomerang attack from this 3-difference perspective, we can state the
probability of the return of the boomerang:

Theorem 2. Let A be the affine subspace of all 3-differences which correspond to an input
quartet:

A :=
{

(α, η, α⊕ η) ∈ F3n
2
∣∣ η ∈ Fn2

}
. (14)

Let B be the set of all 3-differences which correspond to a right ciphertext quartet:

B :=
{

(ε, δ, ε⊕ δ) ∈ F3n
2
∣∣ ε ∈ Fn2

}
. (15)
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The probability of the return of the boomerang is then equal to the probability of the truncated
3-difference transition A Enc−−→ B multiplied by 2n:

Pr (Boomerang returns) = 2n · Pr
(
A

Enc−−→ B
)
. (16)

Proof. In this proof X denotes a random variable which is uniformly distributed over Fn2 .
The random variable Y denotes the image of X under Enc. We know that the boomerang
returns if and only if both δ differences are mapped to the same difference in the decryption
direction. Using this in the second step and rules 1 and 2 in subsequent steps, we get:

Pr (Boomerang returns) (17)

= Pr
X

(
Enc−1(Enc(X)⊕ δ

)
⊕ Enc−1(Enc(X⊕ α)⊕ δ

)
= α

)
(18)

=
∑
η∈Fn

2

Pr
X

(
δ

Enc−1

−−−−−→
Enc(X)

η and δ
Enc−1

−−−−−−−→
Enc(X⊕α)

η

)
(19)

Using the fact that Enc(X⊕ α) = Y⊕ ε whenever ε Enc−1

−−−−→
Y

α, we continue with

=
∑
η∈Fn

2
ε∈Fn

2

Pr
Y

(
δ

Enc−1

−−−−→
Y

η and δ
Enc−1

−−−−→
Y⊕ε

η and ε
Enc−1

−−−−→
Y

α

)
(20)

Using the third expression, we can now simplify the second by changing the anchor

=
∑
η∈Fn

2
ε∈Fn

2

Pr
Y

(
δ

Enc−1

−−−−→
Y

η and δ ⊕ ε Enc−1

−−−−→
Y

η ⊕ α and ε
Enc−1

−−−−→
Y

α

)
(21)

Applying Rule 1 to all three subexpressions

=
∑
η∈Fn

2
ε∈Fn

2

Pr
X

(
η

Enc−−→
X

δ and η ⊕ α Enc−−→
X

δ ⊕ ε and α
Enc−−→
X

ε
)

(22)

Collecting everything into 3-differences

=
∑
η∈Fn

2
ε∈Fn

2

Pr
X

(
(α, η, η ⊕ α) Enc−−→

X
(ε, δ, δ ⊕ ε)

)
(23)

=
∑
η∈Fn

2

Pr
X

(
(α, η, η ⊕ α) Enc−−→

X
B
)

(24)

= 2n · Pr
(
A

Enc−−→ B
)

(25)

which concludes the proof.

The sum (23) contains a single term where ε = δ and η = α which corresponds to the
probability of the ordinary differential α Enc−−→ δ. This yields the following:

Corollary 1. The probability of the return of the boomerang defined in Theorem 2 is
greater than or equal to the probability of the ordinary differential with input difference α
and output difference δ.
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We would like to point out that we did not need to use the Assumption 2 for the proof
of Theorem 2. Using that assumption now though, we can make statements about the
case where we split the encryption function into two parts E0 and E1.

Theorem 3. Let A and B be again as in Eqs. (14) and (15). The probability of the
boomerang to follow the differentials α E0−−→ β and γ E1−−→ δ for the respective text pairs in
the upper and lower halves is then equal to

Pr
(

(β, γ, β ⊕ γ)
E−1

0−−−→ A

)
· Pr

(
(β, γ, β ⊕ γ) E1−−→ B

)
. (26)

Proof. Along similar lines as the proof for Theorem 2.

Comparing with the classical estimate of the boomerang probability, we see that we
classically estimate that the 3-difference (β, γ, β ⊕ γ) is mapped by E−1

0 to a 3-difference
in A as p2 and likewise estimate the probability for this 3-difference to be mapped by E1
into B as q2.

How well do these approximations hold? The following lemma sheds some light on
that:

Lemma 1. The average of the probability for a 3-difference (β, γ, β ⊕ γ) to be mapped by
a function f to a 3-difference of type (α, η, α⊕ η) for some η ∈ Fn2 over all γ ∈ Fn2 is equal
to the square of the probability of the differential β f−→ α:

2−n
∑

γ,η∈Fn
2

Pr
(

(β, γ, β ⊕ γ) f−→ (α, η, α⊕ η)
)

=
(

Pr
(
β

f−→ α
))2

. (27)

Proof. Let X and Y denote two independent, uniformly distributed random variables on
Fn2 . We then have

2−n
∑

γ,η∈Fn
2

Pr
(

(β, γ, β ⊕ γ) f−→ (α, η, α⊕ η)
)

(28)

= 2−n
∑

γ,η∈Fn
2

Pr
X

(
β

f−→
X

α and γ f−→
X

η and β ⊕ γ f−→
X

α⊕ η
)

(29)

= 2−n
∑
γ∈Fn

2

Pr
X

(
β

f−→
X

α and β f−−−→
X⊕γ

α

)
(30)

= Pr
X,Y

(
β

f−→
X

α and β f−→
Y

α
)

(31)

=
(

Pr
(
β

f−→ α
))2

(32)

which concludes the proof.

This lemma could be described as stating that Assumption 1 holds on average over the
possible differences in the middle of the boomerang. It should be stressed though that
the actual differences used in the middle layer of a boomerang attack are fixed; the actual
probability of a boomerang can thus deviate strongly from this average.

A direct consequence of Lemma 1 is the following theorem, which also appears as
Proposition 1 in [Nyb19].

Theorem 4. Let a boomerang be given as defined in Theorem 2. The average probability of
the return of the boomerang taken over the ciphertext differences δ is equal to the probability
that two randomly chosen plaintext pairs with difference α have equal ciphertext differences.
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The probability of two random pairs of texts, both having the same difference α, to
be mapped to same differences is closely related to the non-uniformity of the probability
distributions of the ciphertext differences resulting from the plaintext difference α. The
extreme examples are the APN functions which have the most uniform possible distribution
of ciphertext differences with half of the probabilities Pr

(
α

Enc−−→ w
)
equal to 21−n and the

other half equal to zero. It is easy to see that for APN functions the average probability
of a boomerang to return is equal to 21−n. Due to a lack of suitable APN bijections,
practical constructions use differentially 4-uniform S-boxes instead. Interestingly, they
have two-valued probabilities for propagation of 3-differences as shown in the following
lemma, which also follows from the proof of Proposition 4 in [BC18]:

Lemma 2. Let f : Fn2 → Fn2 be a differentially 4-uniform bijection. Let α f−→ β be a
differential of probability p over f and let A =

{
(α, η, α⊕ η) ∈ F3n

2
∣∣ η ∈ Fn2

}
. Then the

probability that (β, γ, β ⊕ γ) f−1

−−→
y

A is either p or 0 for any γ, y ∈ Fn2 .

Proof. As f is differentially 4-uniform, we know that there are at most four different values
of y such that β f−1

−−→
y

α holds. Let y0, y1, y2, and y3 be such four values and let us assume
without loss of generality that y0 ⊕ y1 = y2 ⊕ y3 = β. Now for some fixed y, let us look at
the probability that (β, γ, β ⊕ γ) f−1

−−→
y

A holds. This is then equivalent to both β f−1

−−→
y

α

and β f−1

−−−→
y⊕γ

α holding simultaneously. Now let us suppose that γ is one of the values 0, β,
y0 ⊕ y2, or y0 ⊕ y2 ⊕ β. Then clearly both differentials hold if and only if y is one of y0,
y1, y2, and y3. On the converse if γ is not equal to any of the above values, then both
differentials can never hold simultaneously. Thus the probability that both hold is either 0
or p.

In words, the probability that two randomly chosen data pairs of the same difference
follow the same differential strongly depends on the difference between the pairs. We
now consider SPNs, that is, a cipher where the round function consists of a non-linear
substitution layer comprised of S-boxes applied in parallel, a linear permutation layer, and
a key addition. Lemma 2 then allows us to make the following statement:

Theorem 5. Let Enc be a 2-round SPN using 4-uniform S-boxes in the substitution layer.
Let Enc = E1 ◦ E0 be such that E0 and E1 correspond to one round of the cipher each.
Let further α E0−−→ β and γ E1−−→ δ be two differentials with probabilities p and q respectively.
Then the probability of the boomerang constructed from these differentials is either 0 or pq.

Proof. We determine the probability using Eq. (26). Let us evaluate the first factor. As
E0 consist only of an S-box layer and an affine layer, it is straightforward to see that
(β, γ, β ⊕ γ) f−1

−−→
y

A holds if and only if the respective 3-difference transitions over all
single S-boxes hold. But as the S-boxes are 4-uniform, we know from Lemma 2 that the
probabilities of the transitions over the S-boxes are either 0 or correspond to the probability
of a single differential over the S-box. This property is thus lifted to the complete round
and we thus know that the first factor in Eq. (26) thus evaluates either to 0 or p. The
argument for the second factor is analogous.

We should note that it is enough for the boomerang to have a probability-zero transition
in one S-box to set the total probability to zero. As a consequence any randomly chosen
simple boomerang over such a cipher has a high probability of having a probability of zero.
We give examples of this behavior on some well-known boomerang attacks in Section 7.
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6 Comparison to the boomerang connectivity table (BCT)
The boomerang connectivity table (BCT) [CHP+18] is a tool that has been applied
successfully in recent years. We would thus like to give a quick comparison between the
techniques used in this paper and the BCT.

A BCT allows us to determine the probability that two trails connect successfully over
an S-box when this S-box corresponds to the middle layer of a sandwich attack. The BCT
for a given input difference α and output difference δ is defined as the number of right
quartets over one n-bit S-box S:

BCT(α, δ) :=
∣∣{x ∈ Fn2

∣∣ S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ α)⊕ δ) = α
}∣∣

Using Theorem 2, we can formulate this with our framework.

Theorem 6. Given an S-box S, an input difference α and output difference δ, we can
state the BCT entry as

BCT(α, δ) =
∑
η∈Fn

2
ε∈Fn

2

(α, η, α⊕ η) S−−→ (ε, δ, ε⊕ δ)

We would like to point out that in contrast to Lemma 2, we need to sum over both
η and ε. Thus the probabilities in the BCT are not limited by the highest entries in the
difference distribution table (DDT). Thus ensuring that the trails do not connect directly
in the middle but leave a middle round as in the sandwich attack can have a positive effect
on the probability of the attack.

7 Boomerang attacks on Serpent
In this section, we will take a closer look at two of the most well-known applications of
boomerang attacks, namely the amplified boomerang attack [KKS00] and the rectangle
attack [BDK01] on the block cipher Serpent.

As an SPN with differentially 4-uniform S-boxes, Serpent is a prime test candidate for
Theorem 5. Before we go into more detail into the specific boomerang attacks, let us first
make one observation. Any simple boomerang constructed from a differential trail for the
top part and another trail for the bottom part contains a 2-round boomerang at its core.
This makes it necessary to take Theorem 5 into consideration also when the boomerang
covers more than two rounds.

7.1 Short overview on Serpent
The block cipher Serpent [BAK98] was an AES candidate and ranked second in the final
evaluation. Serpent is constructed as a 32-round substitution-permutation network (SPN)
and has been designed to offer a very effective bit-sliced implementation. One round of
Serpent consists of an S-box layer in which the same four-bit S-box is applied to all four-bit
nibbles of the state followed by an affine layer and a round key addition. We provide a full
description of Serpent in Appendix A to make the paper self-contained.

7.2 Amplified boomerang attack [KKS00]
In the amplified boomerang attack on Serpent [KKS00], a simple boomerang distinguisher
on seven rounds (rounds one to seven) with a single differential trail for the top and a
single differential trail for the bottom is used. The top part (E0 in the paper) consists
of rounds one to four while the bottom part (E1 in the paper) consists of rounds five to
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B′5 lower differential

Y ′5 lower differential

B′5 upper differential

Figure 3: Differences involved in our analysis of the amplified boomerang attack on
Serpent [KKS00]. Black bits are active, and the green and blue column marks S-box 24 in
the upper and lower differential respectively.

seven. When taking a closer look at the probability of the inner two-round boomerang
over rounds four and five, it is straightforward to see that there are several probability-zero
transitions over the S-boxes.

Our approach here is to look at the first S-box transition of the lower differential,
B′5 → Y ′5 (see Fig. 3). We then look at the pairs that follow the differences for each S-box
and check if two pairs have the difference from the upper B′5. If there are no pairs with this
requirement then the transition for that S-box is impossible and therefore the boomerang
has probability 0. A similar analysis can be done using the BCT by checking the entry for
upper B′5 to lower Y ′5 . In this case the lower B′5 is disregarded as the boomerang is turned
into a sandwich.

As an example consider S-box 24 in round 5 for which the attack requires two pairs
such that S(x)⊕ S(x⊕ c) = 4 with a distance of 1. The only values for x are {4, 7, 8, b},
but since none of these have a distance of 1, the transition for this S-box is impossible. Any
one of these is sufficient to give the inner and thus the complete boomerang a probability
of zero. We can also see this from the BCT (Table 2) as BCT(1,4) = 0. This renders the
attack invalid.

7.3 Rectangle attack [BDK01]
Let us now have a look at a more refined boomerang attack on Serpent, namely the
rectangle attack [BDK01]. In this attack, a boomerang distinguisher is used on rounds
one to eight and these rounds are split into two parts of four rounds each. Instead of using
only one differential trail for each part, a set of different trails for both parts are used that
share the same input or output difference (see Eq. (2) for the classical estimate). For the
upper part 213.4 trails are used. While the number of trails for the lower part is unspecified
in the paper, the probability estimate from these is given. By considering the best 240.0

trails of the trail type used in the paper, we get a classical estimate that is slightly higher
than the one stated in the paper and we thus assume that these trails are a superset of the
trails used in the original paper.2 In total this leaves us with 253.3 combinations of trails
for the lower and upper part, giving us a classical estimate of 2−119.3 for the boomerang
probability (this is slightly higher than the original estimate of 2−120.6 in [BDK01]).

For all of these trail combinations, we calculated the accurate transition probabilities
2For this estimate we consider all trails from round five to eight of the type specified in the Appendix

of [BDK01] which activate at most 12 S-boxes in round five.
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of the two-round inner boomerangs (rounds four and five). For the vast majority of trail
combinations, the inner boomerang has a probability of zero, such that only 972 of the
253.3 trail combinations are left with a non-zero probability. While this would leave the
attack completely invalid if we stuck with the classical estimate (an estimate of 2−164.3

to be precise), we can apply the results of Theorem 5 positively on these remaining 972
trail combinations: as their inner boomerang has a non-zero probability, it has a much
higher probability than the classical estimate would suggest. Interestingly combining the
accurate probability for the inner boomerang with the classical estimates for the outer
rounds of the boomerang, leaves us not only with a probability estimate that is close to
the classical one, it even gives us a slightly higher one, namely 2−118.6.

Unfortunately when we try to correctly determine the probability of a boomerang
that exceeds two rounds, we are faced with the problem of the exponential growth in the
number of trails that need to be considered. This is particularly true for the rectangle
attack on Serpent where we were not able to apply our methodology to more than the
inner two rounds. However, Lemma 1 gives us reason to assume that it is justified to
apply the classical estimate for the outer rounds, in particular when the diffusion of the
cipher is prohibitively large for more accurate methods. As we are in that case considering
a large number of distances between the text pairs, it seems acceptable to assume that
they reasonably closely estimate the average probability. And this average (as in Eq. (27))
corresponds exactly to the classical estimate.

To improve the quality of the boomerang, we also evaluated the effect of considering
more trails for the lower part. We found that when we allowed all trails of the type used
in the original attack that activate at most 15 S-boxes in round five, the probability of
the boomerang distinguisher improved to 2−116.3 (as opposed to 2−119.0 for the classical
estimate with the same number of trails). This improves the estimate of the boomerang
probability in comparison to the original estimate by a factor of 24.3.

8 Summary and conclusion
In this paper, we took a close look at boomerang attacks and the classical estimate of
their probability. We explicitly stated the assumption underlying the classical estimates
of boomerang probabilities and showed that an inherent contradiction arises when we
take this assumption for granted. Using the notion of d-differences and their transitions,
a generalization of differential cryptanalysis, we were able to express the probability of
boomerang distinguishers precisely in a model that only relies on the independence of
rounds instead of the independence of differentials. We then used this formalization to
prove a number of results.

One of the most important results is that we could rigorously prove that two-round
boomerangs on SPN ciphers with differentially 4-uniform S-boxes—including ciphers such
as AES, Serpent, or PRESENT—deviate strongly from their expected classical probability
estimate. This results in a very high likelihood for boomerangs that only make use of two
differentials to have probability zero, even when covering more than two rounds. On the
other hand, this also allows cleverly constructed boomerangs to beat the classical estimate
by a large margin.

As an application of these results, we took a closer look at two classical applications
of boomerangs on Serpent. For the first attack [KKS00], we found that the boomerang,
as constructed from two differentials, has in fact probability zero. For the second at-
tack [BDK05], we found that although only a fraction of 2−43.4 of all possible considered
trail combinations had a non-zero probability, the total estimate of the boomerang was
hardly altered as the remaining trails showed a much higher probability than the classical
estimate would suggest. As a matter of fact by including some more trails, we were able
to improve the classical estimate of the boomerang by a factor of 24.3.
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How come that the probability estimate for the rectangle attack was so little influenced
by the vast amount of probability-zero trail combinations? The explanation lies in the
very large number of trails with comparable probabilities used in the attack. This allowed
the classical estimate which only holds on average (as proven in Lemma 1) to describe the
probability quite accurately.

From all this we conclude the following: probability estimates in boomerang attacks
must be handled with the care. Simply combining two differentials to construct a boomerang
can easily lead to the boomerang probability being zero, rendering the attack invalid.
Detailed arguments and computer validations of the probability, where possible, should be
a minimal requirement for all future boomerang attacks.
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A Description of Serpent
Here we give a description of the parts of Serpent needed to follow the analysis in Section 7.
Serpent has a state of 128 bits split into 4 words of 32 bits to allow for an efficient bit-sliced
implementation. The convention for Serpent is to use Bi as the state before round i, so
B0 is the plaintext and B32 is the ciphertext. Encryption then proceeds as follows:

Yi = Si(Bi ⊕Ki)
Bi+1 = L(Yi) i = 0, . . . , 30
Bi+1 = Yi ⊕Ki+1 i = 31

Here L is the linear layer which in the bit sliced version is described as follows. If we
call the state words for X0, X1, X2, X3 after the key addition and the S-box layer then the
linear layer can be described as:
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X0, X1, X2, X3 = Si(Bi ⊕Ki)
X0 = X0 <<< 13
X2 = X2 <<< 3
X1 = X1 ⊕X0 ⊕X2

X3 = X3 ⊕X2 ⊕ (X0 << 3)
X1 = X1 <<< 1
X3 = X3 <<< 7
X0 = X0 ⊕X1 ⊕X3

X2 = X2 ⊕X3 ⊕ (X1 << 7)
X0 = X0 <<< 5
X2 = X2 <<< 22

Bi+1 = X0, X1, X2, X3

Here <<< is a left rotation and << is a left shift.

Serpent uses 8 different S-boxes such that round i uses S-box i mod 8. The S-boxes
are applied to 1 bit from each word and the same S-box is used for all bits. The bit from
X0 is the least significant and X3 is the most significant bit. This allows them to be
applied in a bit-sliced fashion. The S-boxes are provided in Table 1 and Table 2 gives the
BCT of S5 which is used in out analysis in Section 7.

The keyschedule is not relevant for the analysis so we will leave out the description.

Table 1: S-boxes used in Serpent

S0: 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12
S1: 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4
S2: 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2
S3: 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14
S4: 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S5: 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S6: 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S7: 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6
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Table 2: BCT of S5

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 00 00 02 00 02 04 00 00 06 02 02 00 00 02 04
2 16 00 00 00 00 04 06 02 00 00 02 10 00 04 04 00
3 16 02 00 02 06 00 00 02 04 00 00 00 06 02 00 00
4 16 00 00 00 00 02 08 02 00 04 00 04 00 06 00 06
5 16 06 02 00 00 02 06 00 00 04 00 00 00 00 04 08
6 16 02 02 02 00 00 04 02 00 02 00 04 00 04 02 00
7 16 02 00 02 06 02 00 00 04 00 00 00 06 00 00 02
8 16 00 00 02 04 00 02 00 04 02 00 00 04 02 02 02
9 16 00 02 00 00 04 00 02 02 00 02 06 02 00 04 00
a 16 02 02 02 02 00 00 00 02 00 02 02 00 02 00 00
b 16 04 00 00 00 06 00 02 00 00 00 04 00 02 08 06
c 16 00 02 02 04 02 00 02 04 02 02 00 04 00 00 00
d 16 02 02 02 00 00 00 02 02 02 02 00 02 00 00 00
e 16 04 02 00 02 00 00 00 02 02 02 00 00 02 04 04
f 16 00 02 00 08 00 02 00 08 00 02 00 08 00 02 00
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