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Abstract. The NIST Lightweight Cryptography project aims to standardize symmetric
cryptographic designs, including authenticated encryption and hashing, suitable for
constrained devices. One essential criterion for the evaluation of the 10 finalists is the
evidence for their security against attacks like linear and differential cryptanalysis.
For Ascon, one of the finalists and previous winner of the CAESAR competition in
the ‘lightweight’ category, there is a large gap between the proven bounds and the
best known characteristics found with heuristic tools: The bounds only cover up to 3
rounds with 15 differentially and 13 linearly active S-boxes, insufficient for proving a
level of security for the full constructions.
In this paper, we propose a new modeling strategy for SAT solvers and derive
strong bounds for the round-reduced Ascon permutation. We prove that 4 rounds
already ensure that any single characteristic has a differential probability or squared
correlation of at most 2−72, and 6 rounds at most 2−108. This is significantly below
the bound that could be exploited within the query limit for keyed Ascon modes.
These bounds are probably not tight. To achieve this result, we propose a new search
strategy of dividing the search space into a large number of subproblems based on
‘girdle patterns’, and show how to exploit the rotational symmetry of Ascon using
necklace theory. Additionally, we evaluate and optimize several aspects of the pure
SAT model, including the counter implementation and parallelizability, which we
expect to be useful for future applications to other models.
Keywords: No keywords given.

1 Introduction
The NIST Lightweight Cryptography (LWC) project [Nat18] aims to standardize symmetric
cryptographic designs suitable for constrained devices. After the CAESAR competition
for authenticated encryption [CAE14], which introduced its category for lightweight use-
cases in round 3, this is the second competitive effort aiming to fill this gap in the
current cryptographic standard landscape. The NIST LWC project aims to standardize
a lightweight authenticated encryption algorithm, plus potentially a lightweight hash
function. Started in 2019 with 56 first-round candidates, the candidate designs have since
been narrowed down to 10 finalists. In the final round, the remaining candidates are
evaluated by several criteria, including their performance on different platforms and in
different scenarios, as well as the level of trust in their security.

Ascon is one of the 10 NIST LWC finalists [DEMS21a] and the ‘first choice’ for
lightweight authenticated encryption in the portfolio of the CAESAR competition [DEMS16,
DEMS21b]. The Ascon suite includes authenticated ciphers and hash functions, all based
on the same 320-bit Ascon permutation in different sponge [BDPV07, BDPV08] and
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duplex [BDPV11] constructions. The permutation is also used in another finalist of the
NIST LWC competition, Isap [DEM+21, DEM+20]. The permutation and its use in these
schemes have been subject to extensive cryptanalysis, particularly algebraic and differential
attacks. The results confirm the security claim and a comfortable security margin.

However, for differential and linear cryptanalysis, there is a noteworthy discrepancy
between the best known characteristics and attacks on the one hand, and provable
bounds on the other hand: The best bounds only reach up to 3 rounds and show at
least 15 differentially or 13 linearly active S-boxes [DEMS15], insufficient for proving a
level of security for the full constructions, which use the 6-round, 8-round, and 12-round
permutation. On the other hand, heuristic results indicate a high number of active S-boxes
starting at 4 rounds [DEMS15, DEM15b]. We summarize the results in Table 1. The
substantial gap can partly be attributed to the weak alignment and large state size of the
Ascon permutation, which results in a very large search space for automated solvers and
makes exhausting this space very costly. This may explain why the only known bounds
for 3 rounds from 2015 [DEMS15] have not been extended since, nor have the best known
characteristics improved significantly.

In this paper, we show how to manually partition the search space efficiently and
thus derive new bounds for the Ascon permutation. We prove that 4 rounds already
ensure that any single characteristic has at least 36 active S-boxes and thus a differential
probability or squared correlation of at most 2−72. This is significantly below the bound
that could be exploited within the query limit for keyed Ascon modes, for example for
collisions during message processing to construct forgeries. We show how to reuse partial
results to prove a bound of at least 54 active S-boxes for 6 rounds. The bound also implies
at least 108 active S-boxes or a probability of at most 2−216 for any single characteristic
for the full 12-round permutation.

This bound is most likely not tight; we found no matching characteristic. We provide a
runtime estimate for checking the bound of at least 40 active S-boxes, which is feasible but
beyond our own computational budget. Of course, the bounds need to be interpreted with
a grain of salt. Clustering effects may lead to differentials with a higher overall probability
[AK18]. Furthermore, the probability assumes independence between rounds as given
under independent round keys; however, permutations have no round keys [DEM16]. So far,
there are no indications that these effects significantly change the differential probability.

To achieve this result, we propose a new search strategy of dividing the search space
into a large number of subproblems based on ‘girdle patterns’. This approach addresses
the main problems found with previous models: the large search space and the lack
of parallelizability. From the SAT solver’s perspective, the search space appears much
larger than it actually is. Our experiments show that the solver cannot exploit the strong
rotational symmetry of the Ascon permutation and its characteristics. We show how
to take advantage of this symmetry by applying necklace theory to our girdle patterns.
This also allows us to reuse the computational efforts spent on the 4-round bound for
proving the 6-round bound. Additionally, we evaluate and optimize several aspects of
the pure SAT model, including a pre-filtering strategy for patterns, tailoring the counter
implementation, and optimizing the parallelization strategy, which we expect to be useful
for future applications to other models.

We provide the source code of our SAT model framework and the intermediate filtered 3-
round patterns on https://extgit.iaik.tugraz.at/castle/tool/ascon_sat_bounds.

Outline. In Section 2, we recall the specification of Ascon and previous results on
its differential and linear properties obtained with automated tools. In Section 3, we
describe our basic SAT model. We introduce our new search strategy and the underlying
combinatorial details in Section 4 and present the resulting bounds for 4-round Ascon in
Section 5. Finally, we conclude in Section 6.

https://extgit.iaik.tugraz.at/castle/tool/ascon_sat_bounds
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Table 1: Bounds for differential cryptanalysis of the reduced R-round Ascon permutation.
“Min/Max” refers to provable bounds on the minimum number of active S-boxes and
maximum probability, where “≥/≤” indicates not necessarily tight bounds without a
matching characteristic. “Best” (wrt. either the number of S-boxes #S, probability p,
or squared correlation c2) refers to best characteristics found using heuristic search tools.
DDT = Differential distribution table of the S-box, LAT = Linear approximation table, B
= Branch number of the linear layer, SAT = Satisfiability, SMT = Satisfiability modulo
theories, CP = Constraint programming, MILP = Mixed-integer linear programming,
nldtool is a dedicated guess-and-determine tool for differential cryptanalysis [MNS11].

(a) Differential characteristics

R Min # S-boxes, max probability Best found characteristics
#S p Reference Method #S p Reference Method

1 1 2−2 DDT 1 2−2 DDT
2 4 2−8 DDT, B 4 2−8 DDT, B
3 15 ≤ 2−30 [DEMS15] SMT 15 2−40 [DEMS15] nldtool
4 ≥ 36 ≤ 2−72 Section 5 SAT 44 2−107 [DEMS15] nldtool
5 – 78 2−190 [DEMS15, GPT21] CP
6 ≥ 54 ≤ 2−108 Section 5 SAT –

(b) Linear characteristics

R Min # S-boxes, max correlation Best found characteristics
#S c2 Reference Method #S c2 Reference Method

1 1 2−2 LAT 1 2−2 LAT
2 4 2−8 LAT, B 4 2−8 LAT, B
3 13 ≤ 2−26 [DEMS15] SMT 13 2−28 [DEM15b] lineartrails
4 ≥ 36 ≤ 2−72 Section 5 SAT 43 2−98 [DEM15b] lineartrails
5 – 67 2−186 [DEM15b] lineartrails
6 ≥ 54 ≤ 2−108 Section 5 SAT –

2 Background

2.1 Specification of the Ascon Family
Ascon was first published as a candidate and eventual ‘first choice’ for lightweight scenarios
in the final portfolio of the CAESAR competition for authenticated encryption [DEMS16].
Since then, the family has been extended by hashing schemes and is now a finalist in the
NIST LWC lightweight cryptography standardization process [DEMS21a, DEMS21b]. The
Ascon permutation underlying all these schemes of the Ascon family is also used in a
second LWC finalist, Isap [DEM+21, DEM+20].

The Ascon permutation works on 320-bit blocks, represented as a state of five 64-bit
words illustrated in Figure 1 and denoted as S = x0 ‖ x1 ‖ x2 ‖ x3 ‖ x4.

x0x1x2x3x4

Figure 1: The Ascon state of 320 = 5× 64 bits.
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Table 2: Number of rounds and rate used in the Ascon and Isap family members
[DEMS21a, DEM+21]. In the initialization and finalization phases, the rate refers to the
absorbing rate of the nonce N and the squeezing rate of the tag T or hash H, respectively.

Type Variant Initialization Data processing Finalization
rounds rate rounds rate rounds rate
a |N | b r a r or k

Hash Ascon-Hash – – 12 64 12 64Ascon-Xof
Ascon-HashA – – 8 64 12 64Ascon-XofA

AEAD
Ascon-128 12 128 6 64 12 128Ascon-80pq
Ascon-128a 12 128 8 128 12 128

Re-key Isap-A-128a – – 1 1 12 128
Isap-A-128 – – 12 1 12 128

The permutation is used in different variants with a different number of rounds, denoted
pa for a rounds and pb for b rounds, where a, b ∈ {6, 8, 12} for Ascon, while Isap also uses
a single-round variant. In all family members, the permutation is used in sponge or duplex
constructions with different rates. Table 2 provides an overview of the number of rounds
and rate used in the different Ascon variants. Additionally, we list the IsapRk re-keying
phase of Isap, though we emphasize that the attacker has limited control over the processed
128-bit input hash value Y and cannot directly observe the output nor collisions therein. We
omit the IsapMac authentication/hashing and IsapEnc encryption/keystream phases, as
they share the parameters of Ascon-Hash and Ascon-128 data processing, respectively.

Each round p of the permutation consists of two main layers, the substitution layer pS

followed by the linear layer pL, as well as a round constant addition pC at the beginning of
each round. The round constant addition Xors an 8-bit constant to state word x2. Since
it plays no further role for us, we refer to the design for a full specification [DEMS21b].

The substitution layer pS applies a 5-bit S-box S in parallel 64 times in a bitsliced
fashion across the state words x0, . . . , x4, i.e., to each column in Figure 1. The circuit
representation of the S-box is illustrated in Figure 2a. We refer to the design document
[DEMS21b] for alternative representations, including the lookup table.

The linear diffusion layer pL provides diffusion within each 64-bit word xi. It
applies the linear function Σi(xi) = x′i in Figure 2b to word xi, i.e., row i in Figure 1.

x0

x1

x2

x3

x4

1

1

1

1

1

1

x′0

x′1

x′2

x′3

x′4

(a) Ascon’s 5-bit S-box S(x)

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)→ x′0

Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)→ x′1

Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)→ x′2

Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)→ x′3

Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)→ x′4

(b) Ascon’s linear layer with 64-bit functions Σi(xi)

Figure 2: Ascon’s substitution layer and linear diffusion layer.
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2.2 Bounds for Differential and Linear Cryptanalysis
Differential Cryptanalysis. Biham and Shamir’s differential cryptanalysis [BS90] is one
of the main two statistical cryptanalysis techniques. It considers pairs of related inputs
to a primitive, i.e., similar input message blocks a and a′ to a block cipher EK with a
fixed Xor difference α = a⊕ a′. This difference is then tracked throughout the cipher to
the output difference β = b⊕ b′ = EK(a)⊕EK(a′) based on a differential characteristic,
which tracks the difference after each round and holds with a certain probability (averaged
over all inputs and keys, assuming independent round keys). The probability depends
on the active S-boxes, i.e., those S-boxes whose input has a nonzero difference in the
characteristic: it is the product of all S-box transition probabilities, which are 1 for
inactive S-boxes and at most the S-box’s maximum differential probability (MDP) for
active S-boxes. The differential distribution table (DDT) lists the transition probability
P[α S→ β] = P[S(x)⊕ S(x⊕ α) = β] (or number of solutions) for the differential transition
of each input difference α to each output difference β of the S-box. The true probability
of a block cipher differential, P[α EK→ β] for a fixed secret key K, may vary due to (1)
trail clustering, i.e., multiple characteristics contributing to the same differential, and
(2) dependencies between rounds due to the fixed key and key schedule. The cost of a
differential attack is inversely proportional to this differential probability.

Ascon’s 5-bit S-box has an MDP of 2−2: 5 of its 32 input differences permit such
high-probability transitions; conversely, 20 of its output differences can be reached with the
MDP. Additionally, the S-box has a differential branch number of 3, i.e., there is no valid
transition from an input difference with a single active bit to an output difference with
a single active bit, so it contributes to the diffusion. Ascon’s linear layer has a branch
number of B = 4. Its diffusion in the backward direction is much stronger than forward.

Linear Cryptanalysis. Matsui’s linear cryptanalysis [Mat93] is the second important
statistical attack and shares many concepts with differential cryptanalysis. It considers
masks α for inputs and β for outputs instead of differences, and evaluates the bias
ε = P[α · a = β · b] − 1

2 , or equivalently, the squared correlation c2 = (2ε)2, where α · a
denotes the inner product of vectors α and a. The squared correlation of a characteristic
is the product of the squared correlation of its S-boxes. Similarly, the true squared
correlation of the linear hull over the entire cipher may differ from the product due to
multiple characteristics: the linear hull effect. The cost of a linear attack is inversely
proportional to this squared correlation of the linear hull. Ascon’s properties are very
similar between differential and linear cryptanalysis: Its S-box has a maximum squared
correlation of 2−2 and a branch number of 3; its linear layer has a branch number of B = 4.

Automated Tools. To argue resistance against differential and linear analysis, designers
aim to lower-bound the minimum number of (differentially or linearly) active S-boxes in
any characteristic, thus upper-bounding the maximum probability or squared correlation of
the characteristic. For some strongly aligned designs such as AES, bounds on the minimum
number of active S-boxes can be determined using pen-and-paper arguments based on the
wide-trail design strategy [DR01]. Where this is not possible, automated solvers can be used
to exhaust the search space of valid characteristics and thus prove lower bounds. The most
popular types of general-purpose solvers include Boolean satisfiability (SAT) or Satisfiability
Modulo Theories (SMT), Mixed-Integer Linear Programming (MILP) [BFL10, MWGP11,
WW11, ZHWW20, SHW+14], and the very general category of Constraint Programming
(CP) [SGL+17, ENP19]. Each of these strategies has its advantages; for example, Boolean
satisfiability is well-suited for bitwise descriptions of differential behaviour, but is less
convenient for counting and bounding the probability. MILP is based on integers and
floating-point numbers and thus perfect for counting, but inconvenient for binary circuits.
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The Boolean Satisfiability Problem (SAT). Boolean satisfiability is defined by a Boolean
formula, consisting of a set of variables X = {x1, x2, . . . , xn} combined via the operators
O = {∧,∨,¬} (And, Or, Not). The problem is satisfiable if and only if there exists a
truth assignment to each variable such that the Boolean formula evaluates to true (>).
Modern (pure) SAT solvers operate on a problem description in Conjunctive Normal Form
(CNF). Many frameworks, such as the STP solver for Satisfiability Modulo Theories (SMT),
accept a higher-level, more human-readable input language.

In this paper, we focus on pure SAT models, so we derive clauses of form (x0∨x1∨. . . xn),
with x0, . . . , xn negated or unnegated variables. Most SAT solvers accept input CNFs in
the DIMACS format. The number of variables (#V) and clauses (#C) has a significant
impact on the solver runtime, so we aim to minimize both.

SAT for Bounding Differential and Linear Characteristics. Most previous work related
to the automatic search for linear and differential characteristics is based on Mixed Integer
Linear Programming (MILP) and Satisfiability Modulo Theories (SMT) [MP13, Köl15,
AK18]. SMT-based models are often also termed ‘SAT-based’, as SMT solvers often
internally run a SAT solver, but the modelling language is different.

There are few pure SAT results with model descriptions written directly as CNF, since
this can be cumbersome to work with, but also very efficient to solve. First attempts
with SAT-based cryptanalysis, such as logical cryptanalysis [MM00], focus on a direct
encoding of the algorithm to solve search problems such as key recovery. With CryptoSAT,
Lafitte [Laf18] provides a framework to describe cryptographic problems in SAT, offering a
higher-level crypto-oriented interface. More recently, several authors have applied pure SAT
models to differential cryptanalysis. Efficient, pure SAT encodings of several commonly
used operations are described by Sun et al. [SWW21], including the encoding of additional
bounding conditions as already proposed by Matsui [Mat94] for other search strategies. The
resulting models are used to provide bounds for GIFT, SIMON and SPECK. Furthermore,
Sun et al. [SWW18] use the efficient SAT models to derive differentials for LED64 and
Midori64.

2.3 Previous Bounds for the Ascon Permutation

Several works have investigated the security of Ascon with automated tools and solvers.
The known bounds and the best known characteristics are summarized in Table 1.

For bounds against differential cryptanalysis, Dobraunig et al. [DEMS15] proposed a
MILP as well as an SMT model and used the latter to prove a minimum of 15 differentially
active S-boxes for 3 rounds. Additionally, they used a custom heuristic tool to find
characteristics for 4 and 5 rounds, which indicate a significant increase in the number
of active S-boxes starting at 4 rounds [DEMS15], as well as constrained characteristics
suitable for AEAD forgeries. The corresponding characteristics are illustrated in the NIST
design document [DEMS21a]. Gerault et al. [GPT21] propose a CP model and provide
a 5-round characteristic with slightly improved probability, as well as characteristics for
AEAD forgeries. Udovenko [Udo21] showed how to model the differential distribution table
using MILP. For linear cryptanalysis, the minimum number of linearly active S-boxes for
3 rounds is 13 [DEMS15]. Dobraunig et al. [DEM15b] introduced a heuristic search tool
and found linear characteristics for up to 5 rounds, showing a roughly similar behaviour as
in the differential case.

Automated tools were also used for additional properties, including CP for the bit-based
division property [GD21] and MILP for the 3-subset bit-based division property [RHSS21].
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3 SAT Model of Characteristics and Counters
Building on recent developments in the field of Boolean satisfiability (SAT) solvers and
the respective encoding of cryptographic problem instances [SWW21], we derive efficient
models representing the propagation of linear and differential trails through the Ascon
permutation, to provide improved bounds on the minimum number of active S-boxes. For
our purposes, we optimize the models to distinguish if a differential or linear trail with up
to S active S-boxes exists. Compared to the model by Sun et al. [SWW21], we describe
and evaluate different counter approaches.

3.1 SAT Model of Ascon’s Differential and Linear Characteristics
Modeling the Internal State The Ascon permutation updates an internal state of five
64-bit words (320 bits) S = x0 ‖ x1 ‖ x2 ‖ x3 ‖ x4 by applying a substitution layer pS and
linear diffusion layer pL over a total of R rounds. In terms of the SAT model, each round
r ∈ {1, . . . , R} requires two sets x(r)

S , x
(r)
L of 320 Boolean variables, with x(r)

L = pS(x(r)
S )

and x
(r+1)
S = pL(x(r)

L ). Here, pS and pL denote the action of the respective operation
on the difference or linear mask modelled by the 320-bit variable. Each pS additionally
requires 64 variables to represent if an S-box is active in a given round.

Furthermore, we observe that the output of pL in the penultimate round defines the
active S-boxes in the last round, and we can therefore omit the variables and encoding of
the last round. A similar argument holds for the active S-boxes in the initial round, where
the input to the first pL defines the active S-boxes in the first round. An encoding of R
rounds therefore requires R · (64 + 320)− 320 variables for the state representations.

Modeling the Substitution Layer. pS requires deriving a set of clauses limiting the truth
assignments to the state variables with respect to the Differential Distribution Table (DDT)
or the Linear Approximation Table (LAT) of the S-box. In this section, we follow the
approach of [SWW21] to derive a differential model of the Ascon S-box.

Given the input difference (a0, . . . , a4) and output difference (b0, . . . , b4) of Ascon’s
S-box as Boolean variables and w as the representation of the differential weight, a sound
differential model inhibits invalid assignments to ai, bi and w with respect to the DDT. In
this model, we only count the number s of active S-boxes rather than the actual probability
or bias, so we consider only transitions with weight w = s either 0 (for the 0→ 0 transition)
or 1 (for any valid transition). Let α = (α0, . . . , α4) and β = (β0, . . . , β4) represent a
specific input and output difference pair in the DDT and σ ∈ {0, 1} its differential activity
(weight). Using all combinations of (α0, . . . , α4, β0, . . . , β4, σ), the set of all invalid truth
assignments can be represented as(α0, . . . , α4, β0, . . . , β4, σ) ∈ F11

2

∣∣∣∣∣∣
P (α→ β) = 0 or
P (α→ β) = 1 ∧ σ = 1 or
P (α→ β) > 0 ∧ σ = 0

 .

To build a differential model of the S-box, for each invalid assignment, we derive a clause
of the form

4∨
i=0

(ai ⊕ αi) ∨
4∨

i=0
(bi ⊕ βi) ∨ (s⊕ σ).

Hereby, each clause requires the truth assignment of at least one variable to diverge from an
invalid assignment, with the complete set of clauses enforcing that no invalid assignments
are possible.

The encoding represents a linear model of the S-box by replacing the DDT with the
LAT and modifying the conditions for the invalid assignments accordingly. Furthermore,
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we can extend the idea to a probabilistic model using multiple variables to represent the
weight of an S-box [SWW21]. We use the logical minimization tool Espresso to reduce the
set of invalid combinations. In our case, this reduces the number of clauses per S-box to
64 in the differential case (4096 per round) and 90 in the linear case (5760 per round).

Modeling the Permutation Layer. pL requires the encoding of a 3-input bitwise Xor
(Xor3) operation a0 = a1⊕ a2⊕ a3 with respect to the individual rotation constants. The
differential model of the linear function is identical to the linear function itself. We follow
[SWW21] to derive a model of the Ascon linear layer.

Given (a0, . . . , a3) as the Boolean variables representing the input and output of an
Xor3 operation, there are 24 possible truth assignments. By the definition of the Xor3
operation, a truth assignment (α0, . . . , α3) is invalid if

∑3
i=0 αi 6= 0 (mod 2). Therefore,

the model of an Xor3 is defined by a clause

3∨
i=0

ai ⊕ αi

for each of the 8 invalid assignments where
∑3

i=0 αi 6= 0 (mod 2). Thus, a full differential
model of pL is given by encoding 64 Xor3 equations for each 64-bit word with respect to
the rotation constants. This results in 5 · 64 · 8 = 2560 clauses per round.

The linear model is almost identical: for a linear operation written as a matrix b = L ·a,
a linear mask (α, β) is valid if and only if α = L> · β. Since the Ascon matrix L for
Σj in word j is zero except for 3 diagonals corresponding to the 3 rotation constants of
word j, the transposed matrix has exactly the same format, but with the negated rotation
constants, and can thus also be modelled with one Xor3 per bit.

3.2 Counting
Modeling a SAT-based distinguisher for differential and linear trails over R rounds requires
encoding a bound B on the maximum number of active S-boxes. More specifically, it must
hold that

R∑
r=1

63∑
i=0

s
(r)
i ≤ B, (1)

with sr
i representing whether the i-th S-box in round r is active (1) or not (0). Encoding

a limit on the maximum number of active variables in a given set is commonly referred
to as a cardinality constraint [BCN+21]. To show a lower bound of at least B + 1 active
S-boxes over R rounds, we need to prove that a model of the Ascon primitive bounded
to ≤ B active S-boxes is unsatisfiable. For a tight bound, we would additionally need to
show satisfiability when bounded to ≤ B + 1.

Sun et al. [SWW21] propose the use of an encoding based on a Sequential Counter
[Sin05]. We evaluate the performance of the Sequential Counter encoding, compared to al-
ternatives based on Sorting Networks [Bat68, ANOC09] and Totalizers [MJML14, OLH+13,
BB03], using implementations by the PySAT project [IMMS18]. Table 3 summarizes our
results.

We observe that the performance of the different encodings depends on the satisfiability
and complexity of the general problem. The Sequential Counter performs well for satisfiable
and unsatisfiable instances with low bounds, while requiring a large number of auxiliary
variables and clauses to encode larger bounds, potentially increasing the overall search
space and therefore the runtime. The results indicate that alternative can encodings
perform significantly better on satisfiable instances with larger bounds. In the case of the
Ascon permutation, it is hard to evaluate the performance for an unsatisfiable problem
with large bounds in a reasonable runtime (inconclusive experiments with a runtime > 20
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Table 3: Runtime comparison of cardinality encodings of models with #C clauses and #V
variables for R-round differential characteristics with #S ≤ B active S-boxes. Sequential
Ctr is our implementation of [SWW21], other encodings are from PySAT [IMMS18].
Results were acquired with SAT solver Kissat [BFFH20] on an Intel i9-9900K @ 3.60GHz.

Encoding R=3, B=14: unsat R=3, B=15: sat R=4, B=44: sat
#C #V Time #C #V Time #C #V Time

Seq. Ctr. [Sin05] 15510 4146 2:28:11 15891 4337 0:00.17 39292 13396 18:12:32
Sorting Net [Bat68] 21504 9151 3:01:37 21504 9151 0:00.01 28159 9854 2:00:37
Card. Net [ANOC09] 13838 4040 2:48:00 13838 4040 0:01.42 25462 8056 0:15:42
Totalizer [BB03] 29794 2944 2:05:43 29794 2944 0:00.29 51330 4224 0:52.49
mTotalizer [OLH+13] 14514 2419 2:59:09 14513 2419 0:00.12 23826 3520 1:38:59
kmTotalizer [MJML14] 12296 2233 3:44:02 12452 2248 0:01.84 20338 3219 1:04:16

days). We conclude that different encodings can significantly impact the runtime depending
on the problem instance. For a dedicated analysis with our target problem, we refer to
Table 7 in Section 5.

4 Search Strategy and Partitioning
In this section, we discuss the limitations of the straightforward SAT model and propose a
new search strategy based on partitioning the search space efficiently. This allows us to
eliminate redundant parts of the search space.

4.1 Parallelizing the Search
The main issue with finding bounds for weakly aligned ciphers with medium-sized or
large states such as Ascon is their large search space, even for few rounds. Furthermore,
the search complexity increases dramatically from round to round, making it difficult to
estimate the runtime for target coordinates. For the case of 4-round Ascon, we obtained
no results for bounds of at most 43 differentially active S-boxes after running the model
for up to 40 days. This refers to wall-clock runtime in a single-threaded solver – still the
“standard” setup for most SAT solvers. Clearly, good parallelization would significantly
increase the problem space explorable with reasonable wall-clock runtimes. There are two
basic approaches to parallelization in SAT solving: Either the parallelization is done by
the solver and thus happens transparently for the user; or the user manually partitions
the search and starts solvers in parallel for the subproblems.

Solver-based Parallelization. The two general approaches to parallelized SAT solving
are Cube-and-Conquer and Portfolio solvers.

Cube-and-Conquer solvers use the heuristics of Lookahead solvers to efficiently
partition a problem instance into many independent subproblems (Cubes). Heuristics
determine at which point branches within the search tree of the Lookahead solver are cut off,
generating a reduced instance of the problem with partially assigned variables. Multiple
Conflict Driven Clause Learning (CDCL) solvers can then run in parallel solving the
individual cubes [HKWB11, HvM09, SLM09]. We evaluate the performance of the Cube
and Conquer solver Paracooba in terms of runtime, using March for the cube generation
and multiple CaDiCal instances as the CDCL solvers [HFB20]. We observe that running
6, 8, or 12 solver instances in default configuration, solving 370 cubes, does not improve
performance as shown in Table 4a. With this small degree of parallelization, the search
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actually performs worse than single-threaded solvers like Kissat, a close relative of CaDiCal.
The reason is that in all cases, a single cube dominates the overall runtime, while the other
cubes are trivial, thus not balancing well. We conclude that the approach only provides a
significant performance improvement if a problem can be partitioned into many equally
hard subproblems. Further work is required to evaluate good cube generation possibilities
for the encoding of the Ascon permutation and cryptographic problems in general.

The Portfolio approach achieves scalability by providing an interface to efficiently
exchange learned clauses for a set of CDCL solver instances. We evaluate the implementa-
tion of Mallob [SS21] based on HordeSAT [BSS15], providing interfaces to several different
solvers. They instantiate a set of diversified solver instances using different configurations,
variable polarities, and random seeds to learn different sets of clauses. The clauses can be
exchanged between the different instances efficiently using the Message Passing Interface
(MPI) [GLDS96], accelerating learning new clauses. [SS21] present performance data for
highly scalable environments with up to 2500 CPUs. We observe that for smaller numbers
of solver instances, the runtime is very dependent on the diversifications, as shown in
Table 4b. We conclude that the approach needs further evaluation and optimization
within a highly scalable environment to get conclusive performance results and useful
improvements for cryptographic problems.

Table 4: Runtime of the parallelized SAT solvers Paracooba [HFB20] and Mallob [SS21]
on the 3-round problem with at most 14 differentially active S-boxes, proven unsat by
Kissat in 31 minutes. All results acquired running on an Intel i7-8750H @ 2.20GHz.

(a) Paracooba with #T CaDiCal instances, 370
cubes

#T Time
6 1:10:00
8 1:08:23

12 1:00:00

(b) Mallob with #T Lingeling instances.

#T Time
8 1:54:45

12 1:00:34
16 1:08:15

Manual Parallelization by Partitioning. Since the automated tool-based parallelization
does not achieve the desired reduction in wall-clock runtime for our application, we can
consider a manual parallelization approach. By partitioning the search space into partitions
that cover the entire original search space and showing that each of the partition problems
is unsatisfiable, we can prove that the original problem is unsatisfiable, as discussed next.
This can be considered a manual, optimized variant of the cube-and-conquer approach.

4.2 Partitioning the Search Space using Girdle Patterns
Due to the less-than-optimal parallelization gain with the solver-based approach, we instead
focus on a manual approach. The most important advantage of this approach is that
we can partition in a way that exploits symmetries in the cipher definition to eliminate
redundant, equivalent parts of the search space by design.

We partition the search space of all possible characteristics for round-reduced Ascon
based on S-box activity patterns. Unlike classical pattern-based approaches [OMA95], we
do not just restrict the number of active S-boxes in each round. Instead, we partition
characteristics based on their precise S-box activity pattern in their round with the fewest
active S-boxes. We refer to this pattern in the round with the fewest active S-boxes as the
girdle pattern of the characteristic, and to its Hamming weight as the girdle weight S.

For example, the best known differential 4-round characteristic for Ascon with 44
active S-boxes [DEMS15, DEMS21a] is illustrated in Figure 3 and would be classified by its
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second-round girdle pattern 8040000000040000 with 3 active S-boxes in bit positions 63,
54, 18, or equivalently by its third-round girdle pattern with the same weight. Note that in
this representation, each 320-bit difference α = (α0, α1, α2, α3, α4) in the round input state
is represented by a 64-bit pattern σ of S-boxes, where σi = α0,i ∨ α1,i ∨ α2,i ∨ α3,i ∨ α4,i

for each bit position 0 ≤ i < 64.

R1: 23 active (p = 2−47)
R2: 3 active (p = 2−12)
R3: 3 active (p = 2− 6)
R4: 15 active (p = 2−42)

Figure 3: Best known differential 4-round characteristic with 44 active S-boxes [DEMS21a].

For a characteristic with ≤ B active S-boxes for R rounds, the maximum possible
girdle weight is Smax = bB/Rc. Thus, the total number of potential girdle patterns is

#G =
bB/Rc∑

S=1
R×

(
64
S

)
.

For R = 4 and B = 31 (for proving pmax ≤ 2−64), this already gives more than 231.3

potential girdle patterns; for B = 35 (for proving pmax ≤ 2−72), 234.3 girdle patterns.
We can now start a separate SAT task for each possible girdle pattern (in each possible

round) where the girdled round is restricted to exactly this pattern, whereas all other
rounds are restricted to at least S active S-boxes, where S is the girdle weight. Together,
these tasks cover the entire search space, i.e., each candidate R-round characteristic with
at most B active S-boxes.

Pre-Filtering Girdle Patterns. To speed up the search time per girdle pattern, when
aiming for an R-round bound, we can first test each pattern for R′ = R− 1 rounds. Only
for those few patterns that pass the much faster R′-round test, i.e., where an R′-round
characteristic with at most B′ active S-boxes exists, we start the slower R-round test.
Here, we can take advantage of the girdle pattern definition, which requires that each
round has ≥ S active S-boxes. Thus, we can test each pattern with girdle weight S first
for R′ = R− 1 rounds with bound B′ = B − S.

Then, the original task with bound B for a girdle pattern in round r of R is only
started if it succeded in both round r and round r − 1 of R′ (if applicable, i.e., in the first
round only r and in the last round only r − 1 is relevant).

This is faster for three reasons: (a) the R′-round search space is much smaller; (b) the
smaller bound B′ additionally reduces the cost of counting; and (c) the necessary number
of tasks is R′ rather than R. Additionally, different tradeoffs are possible here, depending
on the relative cost and number of R′-round tasks compared to R-round tasks. We refer
to Subsection 5.1 for more details and an example.

4.3 Exploiting Rotational Symmetries in the Search Space
Rotational Symmetry and Necklaces. We observe that differential and linear charac-
teristics for Ascon are rotation-invariant, in the sense that rotating each word of a
characteristic by a fixed number of bit positions yields another equivalent valid charac-
teristic with the same number of active S-boxes and probability. This implies that girdle
patterns are similarly rotation-invariant, and allows us to significantly reduce the number
of considered patterns in our partitioning. In particular, we only need to consider one
representative pattern among all up to 64 equivalent, rotated variants.
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In combinatorial terms, instead of fixed patterns, we are considering necklaces with 64
beads in 2 colors [Mor72]. An example for 4-bead necklaces, corresponding to a toy cipher
with 4-bit words, is illustrated in Figure 4.

weight 4 weight 3 weight 2 weight 1 weight 0

Figure 4: Necklaces with n = 4 beads in 2 colors, each corresponding to up to n equivalent
patterns of active S-boxes for n-bit words; fewer in case of rotation-symmetric patterns.

Pólya Counting and Enumerating Necklaces. Based on the Redfield-Pólya theorem
[Red27, Pól37], the number of k-ary necklaces of length n is

Nk(n) = 1
n

∑
d|n

ϕ(d) · k n
d ,

where ϕ is the Euler totient function and the sum iterates over all divisors d of n. The
number of 2-ary necklaces of length n with density (weight) w is

1
n

∑
j|gcd(n,w)

ϕ(j)
(
n/j

d/j

)
.

These necklaces, including necklaces with fixed density, can be enumerated efficiently with
amortized cost O(1) [FK86, SR99].

We provide an overview of the number of 64-bead necklaces with fixed weight in Table 5.
The total number of necklaces with 64 beads in 2 colors is 258 + 226 + 211 + 24 + 22 and
thus very close to 264/64, indicating that almost all necklaces correspond to exactly 64
equivalent patterns. Thus, by enumerating girdle patterns based on necklaces, we reduce
the search space by a factor of 26.

Table 5: Number of 64-bead necklaces with fixed weight. The numbers for weights
33, . . . , 64 equal weights 31, . . . , 0. The total number of 64-bead 2-color necklaces is 258.0.

Weight Number of patterns
1 1 = 20.00

2 32 = 25.00

3 651 = 29.35

4 9 936 = 213.28

5 119 133 = 216.86

6 1 171 552 = 220.16

7 9 706 503 = 223.21

8 69 159 400 = 226.04

Weight Number
9 228.68

10 231.14

11 233.44

12 235.58

13 237.58

14 239.44

15 241.18

16 242.80

Weight Number
17 244.29

18 245.68

19 246.95

20 248.12

21 249.19

22 250.16

23 251.03

24 251.80

Weight Number
25 252.48

26 253.06

27 253.55

28 253.96

29 254.27

30 254.49

31 254.62

32 254.67
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5 Bounds for 4-Round Ascon
In this section, we apply the ideas of Section 3 and Section 4 to obtain a parallelizable,
symmetry-aware model of 4-round Ascon. We first summarize the overall strategy and
then discuss further optimizations to decrease the overall runtime.

5.1 Optimized Strategy for 4 Rounds
For 4 rounds, the best known result is a differential characteristic with 44 active S-boxes
and probability 2−107 as well as a linear characteristic with 43 active S-boxes and squared
correlation 2−98, both obtained with heuristic tools [DEMS15, DEM15b]. On the other
hand, no bounds have been proven so far; thus, the only currently known bound is by
combining those for 1 + 3 rounds, resulting in a total of 1 + 15 = 16 differentially or
1 + 13 = 14 linearly active S-boxes. In our pattern-based strategy of Section 4, the target
bound B has a strong impact on the overall runtime, as it defines the maximum girdle
weight of S ≤ bB/Rc for R rounds and thus the number of patterns to enumerate. We thus
focus on proving ≥ B active S-boxes where B is a multiple of R = 4, which is equivalent to
the unsatisfiability of B − 1 S-boxes and a maximum girdle weight of bB/Rc − 1. Within
our computational budget, the maximum bound we can cover is 36 active S-boxes with
S ≤ 8; we refer to Subsection 5.4 for a runtime estimate for bound 40 with S ≤ 9.

Using the girdle necklace patterns of Section 4, we partition the search into subproblems
as follows to prove ≥ 36 differentially or linearly active S-boxes over 4 rounds of Ascon:

1. Girdle weight S: For a 4-round characteristic with less than 36 active S-boxes, the
girdle weight can be at most b35/4c = 8, so we consider weights S ∈ {1, 2, . . . , 8}.

2. Girdle necklace patterns: These girdle weights correspond to a total of more
than 226 necklaces of weight ≤ 8 (see Table 5). For example, the 32 necklace patterns
representing

(64
2
)

= 2016 girdle patterns for S = 2 are

...

3. Pooled pre-filtering of patterns based on 3 rounds: Before testing each
pattern for bound B over 4 rounds, we perform a faster pre-filtering test for bound
B − S over 3 rounds. We only test each pattern for the first or last round (see next
step):

ä ä

To reduce the overhead further, we do not test each pattern individually, but combine
them in small pools of 4 patterns in one SAT task. Here, we combine patterns that
share most active bit positions and only differ in a few. For example, we can combine
the first 4 patterns for S = 2 and require that exactly 1 of the 4 gray bits is active:

4. Girdle rounds: Taking only the successful patterns for 3 rounds with the reduced
bound, we start the test for 4 rounds. Since the number of surviving patterns is very
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small (see Subsection 5.2), we slightly adapt the strategy described at the end of
Subsection 4.2: Instead of testing the pattern for each of the 3 rounds and then only
starting the 4-round test for round r if both r and r− 1 were successful for 3 rounds,
we trade more 4-round tests for fewer 3-round tests and only test every second round
r out of the 3 rounds, taking successful results for round r and r+ 1 out of 4 rounds:

Í → ä ä and Í → ä ä

5.2 Results for 4 Rounds
We successfully proved the differential and linear models unsat for R = 4 and B = 35,
thus proving a maximum probability or squared correlation for characteristics of ≤ 2−72.
The total runtime for the differential model was over 600 CPU days executed in half a week
of wall-clock time on up to 176 Intel Xeon cores. The linear model has a similar runtime.
Table 6 provides a runtime overview. The runtime is dominated by the round-reduced
search for R′ = 3, since only very few patterns satisfy the reduced bound of B′ = B − S.

Table 6: Runtime overview for the R′ = 3-round tests over all girdle patterns of weight S
in round 1 or 3 with ≤ B′ active S-boxes, P = 4. #T is the number of CPU cores used in
parallel for the Kissat solver, mostly Intel Xeon E5-2669 or E5-4669 v4 @ 2.20GHz.

S B′ #T Differential Linear
tmax tmin t tmax tmin t

1 34 1 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2 33 1 00:00:28 00:00:28 00:00:28 00:00:07 00:00:07 00:00:07
3 32 4 00:06:06 00:05:53 00:06:00 00:01:06 00:00:52 00:00:57
4 31 24 00:09:27 00:07:40 00:08:34 00:04:46 00:03:31 00:04:23
5 30 72 00:26:09 00:21:42 00:26:09 00:21:44 00:12:23 00:19:23
6 29 72 03:39:16 03:12:08 03:22:10 03:30:45 02:52:25 03:11:25
7 28 176 11:21:01 09:35:43 10:24:31 11:06:31 05:55:59 09:25:24
8 27 176 64:31:08 61:13:50 62:26:36 62:43:03 59:15:14 60:31:35

Counting model and pool size. In order to reduce the number of solver invocations, we
combine multiple girdle patterns into pools of size P . Each pool encodes a problem instance
which is satisfiable if at least one of the girdle patterns is part of a valid characteristic for
the given bound. We encode a given pool by building a truth table of size 2x, where x is
the number of differing S-box activities across the given patterns. Similar to the encoding
of the permutation layer in Subsection 3.1, we can exclude invalid assignments by adding
complementary clauses while fixing the truth assignments for S-boxes with equal activity.
In Table 7, we summarize the performance of the pooling approach using different counter
implementations, showing that pooling several solutions reduces the runtime. While our
final runtimes in Table 6 are based on pools of size 4 using the sequential counter, the
totalizer-based encodings might reduce the runtime further.

Filtered results for 3 rounds. In Table 8, we give an overview of the number of surviving
patterns after the filter for R′ = 3 rounds with bound B′ = B − S. We note that in our
experiments, characteristics are not only counted when the round with the girdle pattern is
the actual girdle round with the fewest S-boxes, but also when there is another round with
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fewer S-boxes, marked in Table 8 as All. We also included the count of actual surviving
girdle patterns marked as Girdle. The numbers are very similar for the differential case
(8464 in total with 6083 girdle patterns) and linear case (8112 in total with 6161 girdle
patterns). Clearly, differential characteristics favor a lower weight in the first round, while
linear characteristics favor a lower weight in the last round. This is to be expected due to
the linear layer, which has a much stronger diffusion in backward than in forward direction.

5.3 Strategy and Results for 6 Rounds
We can build on the 3-round and 4-round results to derive bounds for 6 rounds. With
our patterns up to weight S ≤ 8, we can prove at least 6 · 9 = 54 active S-boxes for
6 rounds. For this purpose, we can reuse the small set of filtered patterns for R′ = 3
rounds, according to similar arguments as in Subsection 4.2 – another big advantage of
the partitioning and pre-filtering approach. However, we need to extend the current set
of patterns for r ∈ {1, 3} to also cover r = 2. A 6-round characteristic with < 54 active
S-boxes would need < 27 either in its first 3 or its last 3 rounds and thus a girdle weight
of ≤ 8 in that half, so it must have appeared among our pre-filtered candidate list. A
preliminary test of some patterns for 6 rounds shows runtimes of less than 30 minutes, in
some cases only seconds, so we can expect a feasible runtime.

In summary, using the girdle necklace patterns of Section 4, we partition the search as
follows to prove ≥ 54 differentially or linearly active S-boxes over 6 rounds of Ascon:

1. Girdle weight S and necklace patterns: For a 6-round characteristic with less
than 54 active S-boxes, the girdle weight can be at most b53/6c = 8, so we consider
weights S ∈ {1, 2, . . . , 8}. The girdle necklace patterns are the same as for 4 rounds.

2. Pooled pre-filtering of patterns based on 3 rounds: Either the first 3 or the
last 3 of the 6 rounds must contain < 27 S-boxes and a girdle pattern. We thus re-use
our previous 3-round patterns, but add a test for r = 2 to the existing r ∈ {1, 3}:

ä ä ä

3. Girdle rounds: We take each successful pattern for 3 rounds with the reduced
bound of < 27 active S-boxes as a candidate for either the last or first 3 out of 6
rounds. Instead of testing the full 6 rounds with bound 54, we test only 5 rounds
with bound 53, which is a necessary condition. If no such 5-round solution exists,
then any 6-round characteristic has at least 54 active S-boxes:

Table 7: Runtime comparison of cardinality encodings for R′ = 3 rounds with ≤ 27 active
S-boxes, fixing the S-box activity in round r ∈ {1, 3} to one of P different pooled necklaces
of weight 8, as described in Section 4. Results with Kissat on an Intel E5-4669 @ 2.20GHz.

Encoding Pool size P = 1 Pool size P = 4
Time (r = 1) Time (r = 3) Time (r = 1) Time (r = 3)

Seq. Ctr. [Sin05] 1:14:08 1:18:40 0:58:04 0:37:55
Sort. Net [Bat68] 1:30:24 1:26:50 1:19:47 0:43:25
Card. Net [ANOC09] 1:10:25 1:13:30 0:57:31 0:37:53
Totalizer [BB03] 0:52:46 1:10:36 0:43:12 0:34:10
mTotalizer [OLH+13] 0:48:28 1:23:08 0:39:45 0:38:20
kmTotalizer [MJML14] 0:47:13 1:26:55 0:38:37 0:44:39
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Table 8: Overview of filtered results after 3 rounds for the differential and linear model
with girdle weight S ≤ 8 in round r ∈ {1, 2, 3}.
S Differential Linear

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3
All Girdle All Girdle All Girdle All Girdle All Girdle All Girdle

1 1 1 0 0 0 0 0 0 0 0 1 1
2 32 32 6 6 0 0 0 0 5 5 32 32
3 574 574 50 48 1 1 2 2 51 49 603 603
4 1388 1388 283 272 0 0 0 0 257 248 1293 1293
5 1175 1175 1037 753 1 1 7 3 867 603 1084 1084
6 660 627 1822 737 3 2 19 16 1687 815 650 615
7 258 156 901 219 20 15 43 29 861 340 303 208
8 86 16 106 17 60 43 80 42 154 38 113 35

Total 4174 3969 4205 2052 85 62 151 92 3882 2098 4079 3871

Í Í Í

ä ä ä ä ä ä

Results. Table 8 already lists the number of girdle patterns with weight S ≤ 8 in
r ∈ {1, 2, 3} that permit 3-round characteristics with B′ = B − S = 35 − S ≥ 27 active
S-boxes. Thus, either the first 3 or last 3 rounds of any 6-round characteristic with < 54
active S-boxes must appear in this list.

We denote the check of any pattern (either fixed for the first or second half) as an
individual task. To avoid unbalanced work distribution, the tasks are not pre-batched as
for the 4-round experiment, but rather each task is scheduled individually. Once a core
has finished its task, it will be assigned the next one from the queue. This ensures that all
CPU cores are used within a margin of the maximum runtime of an individual task.

The totel runtime for all 5-round checks was about 2 CPU months each for the
differential and linear checks, where the most expensive tasks are those with the pattern in
round r = 1 in the differential case and r = 5 in the linear case (almost 2 CPU hours per
pattern on average), while the cheapest tasks are in r = 4 for the differential and r = 2 for
the linear case (about 20 seconds per pattern on average). All 5-round tasks are unsat, so
6-round characteristics must have at least 54 active S-boxes or a probability ≤ 2−108. We
expect that this bound is by far not tight.

5.4 Extending the Bounds
Higher bounds. The bound of at least 36 active S-boxes, corresponding to a differential
probability or squared correlation of at most 2−72, is likely not tight. The best known
solution has 44 differentially or 43 linearly active S-boxes. Based on the considerations
in Subsection 5.1, the next interesting bound for our model is 40 active S-boxes, based
on a maximum girdle weight of S ≤ 9. Based on Table 5, this number is more than 6
times higher than for S ≤ 8. Additionally, the counter circuit is more complex and the
runtime per subproblem is also higher. We evaluated the runtime based on 218 patterns



80 Bounds for the Security of Ascon against Differential and Linear Cryptanalysis

with Totalizer [BB03] encoding and estimate that this bound takes 38 · 176 = 6688 CPU
days (perfectly parallelizable) to prove, which is feasible but beyond our computational
budget. Of course, in case the bound is actually satisfiable, the runtime may be lower.

Constrained characteristics. Referring to Table 2, when the Ascon permutation is used
in any of the keyed or unkeyed schemes of the Ascon family, the attacker has only very
limited access to the input and output state. They can only introduce differences through
the 64 or 128 bits of the outer part, corresponding to the first one or two state words
for the different variants, or via the nonce in initialization in the two bottom words. For
example, a 64-bit rate limits the possible transitions in the first S-box to either 00→ 00
or 10 → {09, 0b, 18, 1a} and thus further restricts the search space. However, these
constraints are only of limited use for improving the runtime of our model and it is thus not
clear whether they can be used to achieve higher bounds. One advantage when using the
results for a 6-round bound could be the potentially smaller number of surviving solutions.

Probability. As we expect that our current bounds are not tight, we did not evaluate
the more expensive probabilistic model to bound the maximum probability instead of the
number of active S-boxes. In the currently best known characteristics, there is a significant
gap between the S-box-bound and the probability bound; for example, for 3 rounds, the
best known characteristic has 15 active S-boxes and a probability of 2−40 [DEMS15], which
we can prove to be optimal using the probabilistic version of the SAT model by Sun et al.
[SWW21].

Other cipher designs. Our partitioning approach is generally useful for primitives with
large states and weak alignment. Such designs are growing increasingly popular and
include the permutations of prominent lightweight sponge-based designs (e.g., Xoodyak
and Keccak/Ketje/Keyak), LS-designs as proposed for side-channel resistence (e.g.,
Robin/Fantomas), or recent designs like the low-latency cipher Speedy. Most of these are
also rotation-invariant and can thus apply the necklace technique; for higher-dimensional
state layouts, this could be represented using multi-color necklaces.

5.5 Implications for the Ascon AEAD and Hashing Family
Our bounds of ≥ 36 active S-boxes for 4 rounds and ≥ 54 for 6 rounds imply at least
72 active S-boxes for 8 rounds and 108 for 12 rounds. This is more than enough to
conclude the resistance of the initialization, data processing, and finalization phases against
differential and linear attacks for most keyed and unkeyed modes based on Table 2.

Ascon-128 and Ascon-128a. Potential differential attack vectors for these authenticated
ciphers include introducing a difference via the nonce N (e.g., to determine the key based
on the partially observed output difference after the initialization) or via the message blocks
(e.g., to cancel the difference with the next block and produce a collision-based forgery, or
to predict the partial output difference after the finalization for a difference-based forgery).
The initialization and finalization with our bound of ≥ 108 active S-boxes and a probability
≤ 2−216 for their 12 rounds provide ample security margin for 128-bit security against these
attack vectors. For the message processing phase, our bounds imply ≥ 54 active S-boxes
or probability ≤ 2−108 for the 6 rounds in Ascon-128 and ≥ 72 or probability ≤ 2−144

for the 8 rounds of Ascon-128a. This means there are no characteristics that could be
exploited within the message limit of at most 264 blocks per key. We emphasize again
that the 6-round bound is almost certainly not tight; we expect no collision-producing
characteristics with probability ≥ 2−128.
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Ascon-Hash and Ascon-Xof. Unkeyed modes are difficult to evaluate based on proba-
bilities, since the attacker sees the internal state and can manipulate message blocks to
satisfy some of the differential conditions directly. For this reason, they might potentially
be able to find solutions for characteristics with probability < 2−128 with sufficiently low
computational complexity to create collisions faster than brute force. As an approximation,
we can assume that an attacker can use one degree of freedom (i.e., one input bit in the
outer part) to deterministically satisfy a differential condition with probability 2−1. Note
that this is a pessimistic simplified assumption – likely, the attacker will not be able to
fully use all degrees of freedom in practice, as this is more difficult in sponges than, say, in
Davies-Meyer Merkle-Damgård hash functions like MD5 [WY05], SHA-1 [SBK+17], and
SHA-2 [MNS13, DEM15a]. Under this assumption, an attacker could use the freedom of
the 64-bit rate plus < 2128 probabilistic tries to find a message that satisfies a characteristic
of probability > 2−192. Our bound of at least 108 active S-boxes for 12 rounds, while
almost certainly very far from tight, already implies a probability of ≤ 2−216, which gives
confidence in the resistance of Ascon-Hash and Ascon-Xof against this attack vector.
Currently, the best known attacks only cover up to 2 rounds [ZDW19, GPT21].

6 Conclusion
Gaining trust based on provable bounds as well as heuristic results is important for the 10
finalists in the NIST Lightweight Cryptography standardization project. Like several of
the finalists, Ascon is based on a large, weakly aligned permutation, which contributes to
its lightweight implementation cost and is well-suited for both authenticated encryption
and hashing. On the downside, proving bounds for such designs is more difficult than
for smaller AES-like block cipher designs and requires substantial effort to optimize the
model or proof strategy. For this reason, so far, there have been no satisfactory bounds
to support the security of Ascon against differential and linear attacks – instead, this
trust is primarily built on results from custom heuristic search tools, which suggest a much
better resistance than could be proven to date.

In this paper, we proved that any single differential or linear characteristic over 4
rounds has at least 36 active S-boxes (compared to a weak bound of only 16 that could be
derived based on previous results). This implies at least 54 active S-boxes for 6 rounds
(with our extended model, compared to previous bounds of 30 differentially or 26 linearly),
72 for 8 rounds, and 108 for 12 rounds – more than enough to conclude the resistance of
the initialization, data processing, and finalization phases against differential and linear
attacks for the keyed and unkeyed modes.

To achieve this result, we proposed a new search strategy of dividing the search space
into a large number of subproblems based on ‘girdle patterns’, and show how to exploit the
rotational symmetry of Ascon using necklace theory to reduce the search space drastically.
One of the advantages of this approach is the predictable total runtime, which permits to
precisely evaluate the impact of different variations and optimize the model accordingly.
Among others, we evaluated different variants of integer counters and observed that the
best choice depends strongly on the target sum. We also showed that optimizations like
pre-filtering and pooling reduce the overall runtime.

We emphasize that these bounds are almost certainly not tight. Furthermore, an
attacker is limited to constrained characteristics with potentially even higher bounds in the
sponge and duplex constructions of the Ascon family. Still, even these non-tight bounds
are sufficient to support trust in the used permutation variants. The usual caveats for
provable bounds with respect to potential trail clustering and independence assumptions
apply, but there is currently no indication that these significantly impact the results. For
the hashing modes, a detailed evaluation of the unkeyed setting could help shed light on
the question to which extent an attacker can exploit message-modification-style techniques
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based on the few degrees of freedom available with the 64-bit rate.
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