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Abstract. The goal of this work is to propose a related-key model for linear cryptanaly-
sis. We start by giving the mean and variance of the difference of sampled correlations
of two Boolean functions when using the same sample of inputs to compute both
correlations. This result is further extended to determine the mean and variance
of the difference of correlations of a pair of Boolean functions taken over a random
data sample of fixed size and over a random pair of Boolean functions. We use the
properties of the multinomial distribution to achieve these results without indepen-
dence assumptions. Using multivariate normal approximation of the multinomial
distribution we obtain that the distribution of the difference of related-key correla-
tions is approximately normal. This result is then applied to existing related-key
cryptanalyses. We obtain more accurate right-key and wrong-key distributions and
remove artificial assumptions about independence of sampled correlations. We extend
this study to using multiple linear approximations and propose a χ2-type statistic,
which is proven to be χ2 distributed if the linear approximations are independent. We
further examine this statistic for multidimensional linear approximation and discuss
why removing the assumption about independence of linear approximations does not
work in the related-key setting the same way as in the single-key setting.
Keywords: block cipher · linear cryptanalysis · related-key attack · statistical model.

1 Introduction
Linear cryptanalysis is one of the main standard statistical methods for analysing the
strength of a symmetric-key block cipher. It is mostly used in the single-key setting.
Applications to related-key setting are much more rare in comparison, for example, with
differential cryptanalysis. The only works so far seem to be [RN13] and [BBR+13]. They
consider difference of correlations under a fixed difference in related key pairs.

Linear cryptanalysis exploits biased linear expressions computed from cipher data called
as linear approximations. Given a sample of plaintext-ciphertext pairs, the cryptanalyst
computes the sampled correlation of the linear approximation. Statistical modelling of
sampled correlations are needed to determine the data requirements of the attack.

Statistical distributions of sampled correlations of linear approximations of block ciphers
are well established in the single-key setting, see e.g. [BN17]. The goal of this paper is
to derive statistical distributions of the difference of the sampled correlations of Boolean
functions. Such differences of correlations emerge in related-key linear cryptanalysis when
the correlation of a linear approximation of a block cipher is analysed for two different keys.
In previous works mentioned above, the distributions are modelled under the assumption
that the sampled correlations computed for two different keys are statistically independent.
Considering the fact that the related-key cryptanalysis exploits some nonrandom behaviour
of a block cipher that becomes observable when analysing data obtained from the cipher with
two different keys, the assumption about statistical independence is somewhat contradictory.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-09-01 Accepted: 2021-11-01 Published: 2021-12-03

https://doi.org/10.46586/tosc.v2021.i4.124-137
mailto:kaisa.nyberg@aalto.fi
http://creativecommons.org/licenses/by/4.0/


Kaisa Nyberg 125

Another approach to argue for independency has been to use two independent data samples
to compute the correlations [RN13]. In this paper we establish the distribution of the
correlation difference where the two correlations are computed for the same set of known
plaintexts.

Our contributions. The main technical result of this paper gives the mean and the
variance of the difference of sampled correlations of a given pair of Boolean functions
when using the same sample of inputs to compute both correlations. This result is further
extended to determine the mean and variance of the difference of correlations of a pair
of Boolean functions taken over a random data sample of fixed size and over a random
pair of Boolean functions. We use properties of multinomial distribution to achieve these
results without independence assumptions on the pair of functions. Using multivariate
normal approximation of the multinomial distribution we obtain that the distribution of
the correlation difference is approximately normal.

We then discuss the impact of this result on the existing works on related-key cryptanal-
ysis [RN13] and [BBR+13]. We propose a statistic for analysing the difference of sampled
correlations of a set of linear approximations applied to the cipher with two different keys.
In particular, we establish the distributions of this statistic for KDIB cryptanalysis for
both right and wrong keys without assuming independence of the sampled correlations
computed for related keys.

While the new wrong-key model is essentially the same as the one derived under the
independence assumption, the right-key model is more detailed and may potentially lead
to improvements in practical applications.

2 Sampling of the Difference of Correlations
Let f and f ′ be two Boolean functions from Fn2 to F2 with correlations cor(f) = 2p− 1
and cor(f ′) = 2p′ − 1, respectively, where we denoted by p and p′ the probabilities that f
and f ′ take the value 0.

A random sample S ⊂ Fn2 of size N is composed of triplets (x, f(x), f ′(x)) where each
x ∈ S is picked equiprobably from Fn2 . The sampling is done either with or without
replacement. The difference between these sampling methods in our applications is well
captured by using the finite population correction factor given by

2n −N
2n − 1 ,

see e.g. [RT89]. The variances of the binomial and hypergeometric distributions differ by
this factor. When considering these two alternative sampling methods in parallel we will
use the following constant

B =
{ 2n−N

2n−1 , if the sample is drawn without replacement, or
1, if the sample is drawn with replacement. (1)

Let S ⊂ Fn2 be a sample of inputs to f and f ′ of size N . We denote by

Xγ,δ = |{x ∈ S | f(x) = γ, f ′(x) = δ }, where γ, δ ∈ {0, 1},

the value distribution of the pairs (f(x), f ′(x)), x ∈ S, and by

ĉor(f) = 1
N

(X0,0 +X0,1 −X1,0 −X1,1) and

ĉor(f ′) = 1
N

(X0,0 +X1,0 −X0,1 −X1,1)
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the sampled correlations of f and f ′. The next theorem gives the parameters of the
probability distribution of the difference of the sampled correlations over a random sample.
We denote by ĉ the difference ĉor(f)− ĉor(f ′).

Theorem 1. Taken over a random sample of size N , the mean of ĉ is equal to 2(p− p′) =
cor(f)− cor(f ′) and the variance is equal to

4B
N

(
q − (p− p′)2) , (2)

where q is the probability that f(x) 6= f ′(x) over x ∈ Fn2 , and B is the constant (1)
determined by the sampling method.

Proof. With the notation defined above we have

Nĉ = 2 (X0,1 −X1,0) .

If sampling is with replacement, then (X0,0, X0,1, X1,0, X1,1) follows the multinomial
distribution with sample size N , where N = X0,0 +X0,1 +X1,0 +X1,1, and probabilities
(p0,0, p0,1, p1,0, p1,1) where

pγ,δ = 2−n|{x ∈ Fn2 | f(x) = γ, f ′(x) = δ }|, γ, δ ∈ {0, 1}. (3)

Thus p0,0 + p0,1 = p, p0,0 + p1,0 = p′, and q = p0,1 + p1,0. It follows that the mean of ĉ is
equal to

2(p0,1 − p1,0) = 2(p− p′).

To compute the variance of ĉ, let us first compute the expected value of (N2 ĉ)
2 = (X0,1 −

X1,0)2. We get

Exp
(

(X0,1 −X1,0)2
)

= Exp
(
X2

0,1
)

+ Exp
(
X2

1,0
)
− 2Exp (X0,1X1,0)

= Np0,1 +N(N − 1)p2
0,1 +Np1,0 +N(N − 1)p2

1,0 − 2N(N − 1)p0,1p1,0

= Np0,1 +Np1,0 +N(N − 1) (p0,1 − p1,0)2

using the properties of the multinomial distribution, see Appendix A.
From this we get that the variance of ĉ is equal to

Exp
(
ĉ2
)
− (Exp (ĉ))2

= 4
N2

(
Np0,1 +Np1,0 +N(N − 1) (p0,1 − p1,0)2

)
− 4 (p0,1 − p1,0)2

= 4
N

(
p0,1 + p1,0 − (p0,1 − p1,0)2

)
,

which was the claim in case the sampling is done with replacement. If sampling is done
without replacement, then (X0,0, X0,1, X1,0, X1,1) follows the multivariate hypergeometric
distribution, which means that the variance must be multiplied by the finite population
correction factor.

In models where ĉor(f) and ĉor(f ′) are assumed to be independent, the variance of ĉ is
two times the variance of one sampled correlation, that is, approximately equal to 2B/N
using the binomial or hypergeometric distribution, see e.g. [BN17]. This is only a rough
estimate of the actual value given by Theorem 1 which hides the cases where q 6= 1

2 and
p 6= p′. In particular, assuming independence, it is not possible to distinguish between the
cases where just cor(f) = cor(f ′), or actually f = f ′. If f = f ′ the variance given by (2)
is equal to zero for all N .



Kaisa Nyberg 127

Independence of ĉor(f) and ĉor(f ′) can be formally established if two independently
drawn sets S and S′ of inputs and ĉor(f) is computed from pairs (x, f(x)), x ∈ S, and
ĉor(f ′) is computed from pairs (x, f ′(x)), x ∈ S′, repectively. Assuming q = 1

2 and
(p− p′)2 ≈ 0 we get that the variance of ĉ is equal to 2B/N independently of whether one
sample of N inputs or two samples, each one consisting of N inputs, is used. Given N
inputs x it takes 2N oracle calls to get f(x) and f ′(x), while the corresponding numbers
in the two-sample case are 2N inputs and 2N oracle calls.

In the next section, we will consider the distribution of ĉ by randomizing, in addition
to the data sample, also over a pair (f, f ′) of Boolean functions, where the functions f
and f ′ cannot, in general, be considered independent. In our applications, the pair (f, f ′)
originates from a linear approximation formed for a cipher and a pair of related keys, see
Section 4. Theorem 5 gives an example of the distribution of ĉ in such a situation without
assuming independence of f and f ′.

3 Difference of Correlations of Random Boolean Functions
Given two Boolean functions f and f ′, let us denote by c the difference of their correlations,
that is, c = cor(f)− cor(f ′). Let us now examine the probability distribution of c for a
random pair of Boolean functions drawn equiprobably among all pairs of Boolean functions.
Using the notation pγ,δ given by (3), let us denote

Nγ,δ = 2npγ,δ, for γ, δ ∈ {0, 1}.

Then the 4-tuple (N0,0, N0,1, N1,0, N1,1) follows the multinomial distribution such that
N0,0 +N0,1 +N1,0 +N1,1 = 2n with probabilities ( 1

4 ,
1
4 ,

1
4 ,

1
4 ). Then c = 21−n(N0,1−N1,0).

By using the same arguments as in the proof of Theorem 1 we can prove the following
result.

Theorem 2. The mean of c taken over a random pair (f, f ′) of Boolean functions from
Fn2 to F2 is equal to zero. The variance of c is equal to 21−n.

Proof. We substitute N = 2n, q = p = p′ = 1
2 , and B = 1 to the expression (2).

Now, we can derive the parameters of the probability distribution of the difference ĉ of
the sampled correlations taken over a random sample S ⊂ Fn2 of size N and a random pair
(f, f ′) of Boolean functions from Fn2 to F2. This is achieved by combining the results of
Theorems 1 and 2.

Theorem 3. The mean of the difference of the sampled correlations of two Boolean
functions taken over a random sample of size N and a random pair of Boolean functions
from Fn2 to F2 is equal to zero. Its variance is equal to 2

N

(
1 + N−1

2n
)
if sampling is with

replacement. For sampling without replacement, the variance is equal to 2
N .

Proof. We get the variance of ĉ taken over the samples and pairs of Boolean functions
by taking the expected value of the variance of ĉ from Theorem 1 and adding to it the
variance of the mean c of ĉ as given by Theorem 2. We get

Exp
(

4B
N

(
q − c2

4

))
+ Var (c) = 4B

N

(
1
2 −

21−n

4

)
+ 21−n.

For sampling with replacement, we take B = 1 to get

4
N

(
1
2 −

21−n

4

)
+ 21−n = 2

N

(
1− 1

2n + N

2n

)
= 2
N

(
1 + N − 1

2n

)
.
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For sampling without replacemet, we substitute B = 2n−N
2n−1 to obtain

2B
N

(
1− 1

2n

)
+ 21−n = 2

N

2n −N
2n − 1

2n − 1
2n + 21−n = 2

N

(
2n −N

2n + N

2n

)
= 2
N
.

Let us recall the corresponding result for the sampled correlation ĉor(f) of a random
Boolean function f from [BN17]: the variance of ĉor(f) is equal to 1

N (1 +N2−n) for
sampling with replacement and equal to 1

N for sampling without replacement. Hence
for the difference of correlations of two equiprobably and independently drawn Boolean
functions, these values are twice as large, that is, equal to the variances given by Theorem 3.
While it is straightforward to derive these results by assuming independence of f and
f ′, we have obtained them without any independence assumptions on the randomly and
equiprobably chosen pair (f, f ′) by exploiting the properties of the multinomial distribution.

4 Applications to Linear Cryptanalysis
4.1 Linear trails
Let Eκ be the encryption function of an n-bit block cipher with n-bit plaintext x =
(x1, . . . , xn) ∈ {0, 1}n. A linear approximation 〈a, x〉 ⊕ 〈b, Eκ(x)〉 of Eκ is a single bit
computed as a1x1 ⊕ · · · ⊕ anxn ⊕ b1y1 ⊕ · · · ⊕ bnyn, where y = (y1, . . . , yn) = Eκ(x).
The n-bit vectors a = (a1 . . . an) and b = (b1 . . . bn) are called input and output masks,
respectively. The correlation of the linear approximation is defined as

corEκ(a, b) = 2−n
∑

x∈{0,1}n
(−1)〈a,x〉⊕〈b,Eκ(x)〉. (4)

It takes values between 1 and −1 included, and is a function of the key variable κ ∈ Fk2 ,
where k is the key length in bits.

An iterative key-alternating block cipher with block size n processes plaintexts x ∈ Fn2
and round keys κ0, κ1, . . . , κr by iterating key-independent round functions gi, i = 1, . . . , r,
round by round to obtain a ciphertext. Let us denote the sequence of round keys κ0, . . . , κr
by κ ∈ F(r+1)n

2 and denote the encryption function of the block cipher by Eκ. The round
keys are added to the data between rounds using XOR addition:

-
κ0
⊕ -

κ1
⊕

κ2
⊕ - -

κr−1
⊕ -

κr
⊕g1 g2 gr−1 gr

Then the correlation of a linear approximation over Eκ can be expressed as

corEκ(a, b) =
∑
τ

τ0=a, τr=b

(−1)〈τ,κ〉
r∏
i=1

corgi (τi−1, τi) , (5)

where the sum is taken over all (r + 1)-tuples τ = (τ0, τ1, . . . , τr′) such that τ0 = a and
τr = b [DGV94]. The sequence τ is called a linear trail of the linear approximation
〈a, x〉 ⊕ 〈b, Eκ〉. The quantity

∏r
i=1 corgi (τi−1, τi) is called the trail correlation of trail τ

and is independent of the key. The term 〈τ, κ〉 = 〈τ0, κ0〉⊕ 〈τ1, κ1〉⊕ · · · ⊕ 〈τr, κr〉 depends
solely on the key schedule.

The existing works on related-key linear cryptanalysis [RN13] and [BBR+13] consider
the difference of correlations corEK (a, b) and corEK⊕∆(a, b) for two keys (sequences of
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round keys) with a fixed difference ∆. For an iterative block cipher, this difference can be
written as follows

corEK (a, b)− corEK⊕∆(a, b)

=
∑
τ

τ0=a, τr=b

(
1− (−1)〈τ,∆〉

)
(−1)〈τ,K〉

r∏
i=1

corgi (τi−1, τi) .

All terms with 〈τ,∆〉 = 0 cancel out, meaning that the number of the possible values of
the correlation difference is smaller than the number of the values of the correlation. If
moreover,

r∏
i=1

corgi (τi−1, τi) = 0

for all τ with 〈τ,∆〉 = 1, then the difference of the related-key correlations is equal to zero.
This property, named as key difference invariant bias (KDIB), was identified in the block
ciphers LBlock and TWINE in [BBR+13].

4.2 Approximate continuous distributions
In the context of linear cryptanalysis the Boolean functions f considered in Section 2 are
linear approximations of a keyed block cipher Eκ defined as follows

fκ(x) = 〈a,Eκ(x)〉 ⊕ 〈b, x〉, x ∈ Fn2 ,

where a, b ∈ Fn2 are some fixed linear masks and n is the block size of the cipher. It is
practical to use continuous approximations of the discrete binomial and hypergeometric
distributions for statistical analysis of the attacks. Similarly, the multinomial distribution
and the multivariate hypergeometric distributions are approximated using the multivariate
normal distribution. Further, it is well known that any linear (or affine) transformation of
a multivariate normal deviate is again a multivariate normal deviate. This means that the
distribution of the difference X0,1 −X1,0 considered in Theorem 1 can be approximated
using a normal distribution. From this we get the following corollary.

Corollary 1. The difference ĉ of the sampled correlations of a linear approximation
〈a,Eκ(x)〉 ⊕ 〈b, x〉 of an n-bit block cipher Eκ computed for two different keys κ = K
and κ = K ′ is approximately normally distributed with mean c = cor(fK)− cor(fK′) and
variance equal to

4B
N

(
q − c2

4

)
, (6)

where N is the size of the sample of data triplets (x,EK(x), EK′(x) and

q = 2−n |{x ∈ Fn2 | 〈a,EK(x)〉 6= 〈a,EK′(x)〉}| . (7)

The constant B is defined by (1).

4.3 Cryptanalysis of Röck and Nyberg
By Equation [5], the correlation corEK (a, b) is the sum of signed trail correlations, where
the signs depend on the key, so the correlation takes different values as the key varies.
Matsui’s Algorithm 1 type attacks are possible for ciphers for which, for a significant
proportion of the keys, the number of different values of corE′

K
(a, b) is small and they are

sufficiently apart from each other.
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In Matsui’s original attack of the DES algorithm, the linear approximation is composed
of only one trail meaning that the correlation has only two possible values ±ρ, where ρ is
the trail correlation [Mat93]. To thwart this attack, modern ciphers are designed so that
a single trail cannot determine the correlation of a linear approximation. In an attempt
to reduce the number of trails, Röck and Nyberg presented a generalisation of Matsui’s
Algorithm 1 to the related key setting [RN13]. They divided the keys K into key classes
K(c) as follows: a key K belongs to K(c) if cor(fK)− cor(fK⊕∆) = c, where c is a possible
value of the correlation difference.

To recover the key the cryptanalyst computes the sampled correlation difference. To
determine the success and error probabilities of the solution the cryptanalyst needs to
know the probability distribution of the sampled correlation difference. In [RN13], it
was assumed that the sampled correlations of the two related keys are independent, by
arguing that this is at least the case if for each key the sample is drawn separately and
independently. Since the sampled correlation for a fixed key is normally distributed with
variance 1/N by the approximation of the binomial distribution (assuming sampling with
replacement), the difference of two such sampled correlations is then normally distributed
with the mean cor(fK)− cor(fK⊕∆) and variance 2/N .

Using Corollary 1 we can remove the assumption about independence of the sampled
correlations and get a more detailed understanding of the statistical behaviour of ĉ as
given by the following result.

Theorem 4. In the setting of [RN13], let us denote by Q(c) the average of q, defined by
Equation (7) taken over all keys in K(c). Then the distribution of ĉ over a random sample
of size N and a random key in K(c) is approximately normal with the mean c and variance
equal to

4B
N

(
Q(c)− c2

4

)
.

Proof. Since the expected value of ĉ is constant for all key pairs in K(c), the variance is
the mean of the variance (6).

If Q(c) = 1
2 and c2 � 1

2 and B = 1 we obtain the same distribution parameters as
in [RN13] but now without the assumption about independence of the sampled correlations.
For ciphers with Q(c) < 1

2 , if any, the variance could be smaller than estimated, which
may lead to improvements of the attack.

4.4 Key difference invariant bias
The KDIB cryptanalysis proposed by Bogdanov et al. [BBR+13] is a key-recovery attack
similar to Matsui’s Algorithm 2 [Mat93]. The distinguisher is based on the difference
between the statistical distributions of some test statistic computed for the wrong key
and the right key. While in Matsui’s linear cryptanalysis this test statistic is the sampled
correlation, Bogdanov et al. used the (squared) difference of correlations computed for
two keys with a fixed difference in their corresponding sequences of round keys. In
statistical cryptanalysis, the wrong-key behaviour of the statistic is modelled according to
the behaviour of the corresponding statistic computed for a random permutation. The
right-key behaviour, which should be different, is based on some non-randomness property,
which in this case, is the KDIB property.

By the KDIB property there is a linear approximation with input mask a and output
mask b and key difference ∆ of the sequences of round keys such that the difference of
correlations corEK (a, b)− corEK⊕∆(a, b) is equal to zero for all keys [BBR+13]. Hence the
difference of sampled correlations computed for a data sample obtained from the cipher
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with a KDIB property can be expected to have a smaller variance compared to the one in
the random case.

Using Corollary 1 we get the following result.

Theorem 5. Suppose a key-alternating block cipher has the KDIB property with input
mask a and output mask b and a key difference ∆. Then the probability distribution of the
difference of the sampled correlations

ĉ = ĉorEK (a, b)− ĉorEK⊕∆(a, b)

taken over a random sample of N plaintexts and over a random key K is approximately
normal with the mean equal to zero and the variance equal to

4BQ
N

,

where Q is the average of the probability Pr (EK(a, b) 6= EK⊕∆(a, b)) taken over a random
key K.

Proof. By the KDIB property we set c = 0, for all keys, in Corollary 1. It follows that the
variance of c taken over a random key is equal to zero. Hence the variance of ĉ is equal to
the mean of the variance given in (6) over a random key.

By setting Q = 1
2 and B = 1 for sampling with replacement, we obtain that N

2 ĉ
2 is a

χ2 deviate with one degree of freedom. If we take λ such variables, where λ is high enough,
assume their independence, and use their sum as a statistic as done in [BBR+13], we get
the result of their Proposition 2 after approximating the χ2 distribution with a normal
distribution. Proposition 2 of [BBR+13] makes an additional assumption that, for each
linear approximation, the two sampled correlations (or the counters) computed for the
related key pair are statistically independent.

In general, the related-key linear cryptanalysis of a block cipher is based on some
non-randomness property of the difference of the expected values of the correlations, or
equivalently, of the data distributions, which holds for all related key pairs. The success of
the attack depends on how well the related-key behaviour of the cipher can be distinguished
from the random behavior of the difference of correlations and data distributions.

For an example how to set up a linear related-key distinguisher for key recovery and
establish a connection between the error probabilities and the data requirement we refer
to [BBR+13]. In the next subsection, we will determine the wrong-key distribution of the
correlation difference.

4.5 Wrong-key distribution for related-key linear distinguisher
The distribution of the correlation of a linear approximation taken over a random permuta-
tion can be approximated by the distribution of the correlation of a random Boolean func-
tion [DR07]. This property was later established also for the sampled correlation [AKN21].
Key-recovery attacks on block ciphers (key-dependent permutations), which exploit a
statistical distinguisher between the right-key and wrong-key behaviours of the cipher,
typically model the wrong-key behaviour according to the random case.

Analogically, a practical model of the wrong-key behaviour of the (sampled) difference
of related-key correlations of a linear approximation is obtained by imitating the behaviour
of the difference of the (sampled) correlations of two random Boolean functions. By
Theorem 3 we get the following result.

Corollary 2. The difference of sampled related-key correlations

ĉ = ĉor (〈a,EK〉 ⊕ 〈b, x〉)− ĉor (〈a,EK′〉 ⊕ 〈b, x〉)
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taken over a random wrong related-key pair (K,K ′) and over a random sample of size N
is approximately normally distributed with mean equal to zero. The variance is equal to

2
N

(
1 + N − 1

2n

)
if sampling is with replacement. If sampling is without replacement, the variance is equal
to

2
N
.

Proposition 3 [BBR+13] gives an approximate probability distribution of the sum
of squares of correlation differences for λ linear approximations under the following
assumptions

1. λ is high enough,

2. all 2λ sampled correlations are statistically independent, and

3. the sample of N known plaintexts may contain repetitions.
Using Corollary 2 we can remove assumption 1 and give the result without normal

approximation of χ2 distribution (which required λ to be high enough). In addition to
the case defined by assumption 3 we also consider sampling without replacement. We
can relax assumption 2 and allow the two counters for each linear approximation to be
dependent. Yet we still need statistical dependence of the linear approximations. For the
formulation of this result, see Corollary 3 in the next section.

5 Multiple and Multidimensional Linear Approximations
5.1 Definition of the statistic
Let

〈aα, Eκ(x)〉 ⊕ 〈bα, x〉, α = 1, . . . ,M, (8)
be a set of M nonzero linear approximations of an n-bit block cipher Eκ. Let (K,K ′) be
a pair of related keys and fα and f ′α denote these linear approximations applied to EK
and EK′ , respectively. Further, we denote

cα = cor(fα)− cor(f ′α) and
ĉα = ĉor(fα)− ĉor(f ′α),

where the sampled correlations ĉor(fα), and ĉor(f ′α), α = 1, . . . ,M , are computed for
a random set of N plaintexts drawn either with or without replacement. Further, we
denote by qα the probability that fα(x) 6= f ′α(x) taken over a random plaintext x ∈ Fn2 .
By Corollary 2 we have that

N

2 (1 + (N − 1)2−n) ĉ or N

2 ĉ,

if sampling is with or without replacement, respectively, follows the χ2 distribution with
one degree of freedom. In statistical cryptanalysis we can assume that N and 2n are large
and make the following approximations N ≈ N − 1 and 2n ≈ 2n − 1.

In the analysis of the sampled related-key correlation difference ĉα we propose to use
the following statistic

T = N

2 (B +N2−n)

M∑
α=1

ĉ2α, (9)

where B is the constant defined in (1).
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5.2 Wrong-key distribution of the statistic
Corollary 2 gives the distribution of a sampled related-key correlation difference over wrong
key pairs. Using it we obtain the following information about the distribution of T for a
family of M linear approximations.

Corollary 3. The mean of the statistic

T = N

2 (B +N2−n)

M∑
α=1

ĉ2α,

taken over a random sample of size N and a random wrong related-key pair is equal to
M . Suppose, moreover, that the linear approximations are independent, in the sense that
ĉα, α = 1, . . . ,M , are statistically independent over a random sample of size N and over
a random pair of permutations. Then the statistic T follows the χ2 distribution with M
degrees of freedom.

The shape of the distribution of T must be considered separately for different kinds
of families of linear approximations. It can be argued that if the linear approximations
〈aα, Eκ(x)〉 ⊕ 〈bα, x〉, α = 1, . . . ,M , are linearly independent, that is, the mask pairs
(aα, bα) are linearly independent, then they are also essentially statistically independent. In
practice, χ2 distribution may work well also for other kinds of sets of linear approximations
even if the prerequisites of Pearson’s χ2 test are not fully satisfied [BTV18, FN20].

It might be possible, although elaborate, to use the properties of the multinomial
distribution in the similar way it was done in [AKN21] for the single-key setting to
compute the variance of the capacity of a multidimensional linear approximation. In this
way, one could obtain the variance of T , while the form of the distribution still would
remain an open problem.

5.3 The statistic without independence of linear approximations
We start by examining the statistic T for a fixed pair of permutations, either random or
cipher, with related keys identified by a key pair (K,K ′). We determine the expected
value of T over a random sample of N plaintexts.

Theorem 6. For any given pair of keys (K,K ′) with cα = cor(fα)− cor(f ′α) the statistic
T defined by (9) has the following mean over a random sample of size N

Exp (T ) = 2B
B +N2−n

M∑
α=1

qα + N

2 (B +N2−n)

M∑
α=1

c2α, (10)

where B is the constant defined in (1).
If the set of linear approximations satisfies

1
2t − 1

2t−1∑
α=1

qα = Q

then the mean of T taken over a random data sample of size N is equal to

2(2t − 1)B
B +N2−nQ+ N

2 (B +N2−n)

M∑
α=1

c2α.

Proof. For each α = 1, . . . ,M , the expected value of ĉα is equal to cα. By applying the
expression (6) of the variance we get

Exp
(
ĉ2α
)

= 4B
N

(
qα −

c2α
4

)
+ c2α = 4B

N
qα +

(
1− B

N

)
c2α.
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By summing over α = 1, . . . ,M and using N −B ≈ N we get the claim.

We leave it as an open task to investigate the distribution of T . In practical applications
the χ2 distribution may often give a sufficiently accurate approximation. For example, in
the case where Q = 1

2 the distribution of (1 + (N/B)2−n)T could be close to the noncentral
χ2 distribution with M degrees of freedom and noncentrality parameter approximately
equal to

N

2B

M∑
α=1

c2α.

5.4 The distribution view
In single-key multidimensional linear cryptanalysis, the χ2 distribution of the statistic
computed from the squared correlations of the linear approximations arises naturally
from the related multinomial distribution using Pearson’s χ2 test [HCN19, AKN21]. In
related-key multidimensional linear cryptanalysis this is not clear. Let us have a closer
look.

A multidimensional linear approximation is a linear space where the nonzero elements
are given by the mask pairs (aα, bα), α = 1, . . . ,M . If the dimension is t, then M = 2t − 1.
Then the multidimensional linear approximation can also be given by a vectorial Boolean
function. For example, when applied to the cipher Eκ with key κ, the nonzero components
of this vectorial Boolean function are the Boolean functions defined by the expression
(8). Moreover, we can assume that the indexing is such that α ∈ Ft2 and the mapping
α 7→ (aα, bα) is a linear isomorphism.

If we denote by F this vectorial Boolean function for κ = K then we can assume that

〈α, F (x)〉 = 〈aα, EK(x)〉 ⊕ 〈bα, x〉, for all α ∈ Ft2.

Similarly, we define the vectorial Boolean function F ′ to correspond this multidimensional
linear approximation applied to EK′ . For each η ∈ Ft2 we define the probabilities

pη = Pr (F (x) = η) = 2−n|{x ∈ Fn2 |F (x) = η}|, and
p′η = Pr (F ′(x) = η) = 2−n|{x ∈ Fn2 |F ′(x) = η}|.

To observe the difference of the distibutions pη and p′η we draw a random sample S of N
plaintexts x from Fn2 . We denote

X(η) = N−1|{x ∈ S |F (x) = η}|
X ′(η) = N−1|{x ∈ S |F ′(x) = η}|.

Then the values F (x) and F ′(x) computed for a single x and a single key pair (K,K ′)
typically increment counters for two different values of η, which means that the categories
(labelled by η) are not sampled independently thus violating the prerequisites of Pearson’s
χ2 test.

Based on the connections

pη = 2−t
2t−1∑
α=0

(−1)〈α,η〉cα, and

X(η) = N2−t
2t−1∑
α=0

(−1)〈α,η〉ĉα, η ∈ Ft2,
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we get that the statistic T can also be expressed in the following form

T = 2t

2N (B +N2−n)
∑
η∈Ft2

(X(η)−X ′(η))2
.

The form of T given above is applicable to the analysis of different types of distributions
of cipher data obtained using linear projections. Such distributions occur for example
in statistical saturation attack. The relation between the statistical saturation attack
and multidimensional linear cryptanalysis (in the single-key setting) has been studied by
Blondeau and Nyberg [BN14].

6 Conclusions
In this work, we studied the probability distribution of the difference of sampled correlations
of two Boolean functions over a random sample of their inputs and showed that it is
approximately normal and gave its parameters. Further, we established this distribution
also over a random pair of Boolean functions. These results were then applied to related-key
linear cryptanalysis. By modelling the wrong-key behaviour of the correlation of a linear
approximation according to random behaviour, we obtain the wrong-key distribution. For
the right key, the cryptanalyst exploits some non-random property of the cipher. We
revisited the KDIB cryptanalysis and established the right-key distribution for a single
linear approximation without any independence assumption about the sampled correlations
computed for related keys. The variance of this distribution depends on the probability q
that the linear approximations take different values when computed for the cipher with
two related keys. This probability may not always equal to 1

2 . It would be interesting
to determine the probability q and study its impact to the variance of the correlation
difference for LBlock and TWINE. Another line of work, for related-key linear cryptanalysis
more generally, would be its applications to tweaked block ciphers.

We also discuss the previously proposed solution to obtain independence of the sampled
related-key correlations by using two independent samples to compute the correlations.
While this would work for distributions taken over the data, it does not help when the
distributions are taken over a random (right or wrong) key. In related-key cryptanalysis,
in particular, it is not realistic to assume that the sampled related-key correlations are
independent.

For related-key applications involving multiple linear approximations we proposed a
χ2-type statistic, which indeed has a χ2 distribution under the additional assumption that
the linear approximations are independent. When trying to remove this assumption by
considering linear or affine spaces of linear approximations, as it is done in the single-key
setting, we encountered problems, which were left for future work.
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A Properties of the Multinomial Distribution
The set of k integers (Z1, . . . , Zk) is said to follow a multinomial distribution with parame-
ters m and p1, . . . , pk, where m is a positive integer and pη, η = 1, . . . , k are positive and
p1 + · · ·+ pk = 1, if Z1 + · · ·+ Zk = m and

Pr(Z1 = z1, . . . , Zk = zk) = m!
z1! · · · zk!p

z1
1 · · · p

zk
k ,

for any k-tuple of nonnegative integers (z1, . . . , zk) with z1 + · · ·+ zk = m.
The following properites are needed in the proof of Theorem 1:

Exp(Zη) = mpη,

Exp(ZηZζ) = m(m− 1)pηpζ , η 6= ζ,

Exp(Z2
η) = mpη +m(m− 1)p2

η.
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