
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 4, pp. 100–123. DOI:10.46586/tosc.v2021.i4.100-123

Automatic Search of Cubes for Attacking
Stream Ciphers

Yao Sun

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China.

School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China.
sunyao@iie.ac.cn

Abstract. Cube attack was proposed by Dinur and Shamir, and it has become an
important tool for analyzing stream ciphers. As the problem that how to recover the
superpolys accurately was resolved by Hao et al. in EUROCRYPT 2020, another
important problem is how to find “good” superpolys, which is equivalent to finding
“good” cubes. However, there are two difficulties in finding “good” cubes. Firstly,
the number of candidate cubes is enormous and most of the cubes are not “good”.
Secondly, it is costly to evaluate whether a cube is “good”.
In this paper, we present a new algorithm to search for a kind of “good” cubes, called
valuable cubes. A cube is called valuable, if its superpoly has (at least) a balanced
secret variable. A valuable cube is “good”, because its superpoly brings in 1 bit
of information about the key. More importantly, the superpolys of valuable cubes
could be used in both theoretical and practical analyses. To search for valuable
cubes, instead of testing a set of cubes one by one, the new algorithm deals with the
set of cubes together, such that the common computations can be done only once
for all candidate cubes and duplicated computations are avoided. Besides, the new
algorithm uses a heuristic method to reject useless cubes efficiently. This heuristic
method is based on the divide-and-conquer strategy as well as an observation.
For verifications of this new algorithm, we applied it to Trivium and Kreyvium,
and obtained three improvements. Firstly, we found two valuable cubes for 843-
round Trivium, such that we proposed, as far as we know, the first theoretical
key-recovery attack against 843-round Trivium, while the previous highest round of
Trivium that can be attacked was 842, given by Hao et al. in EUROCRYPT 2020.
Secondly, by finding many small valuable cubes, we presented practical attacks against
806- and 808-round Trivium for the first time, while the previous highest round of
Trivium that can be attacked practically was 805. Thirdly, based on the cube used
to attack 892-round Kreyvium in EUROCRYPT 2020, we found more valuable cubes
and mounted the key-recovery attacks against Kreyvium to 893-round.
Keywords: stream cipher · cube attack · division property · monomial prediction ·
MILP · Trivium · Kreyvium.

1 Introduction
Cube Attack: Dinur and Shamir proposed cube attack in EUROCRYPT 2009 [DS09],
and the cube attack has been successfully used to attack various stream ciphers [ADMS09,
DS11, FV14, DMP+15, SBD+16]. With the help of Mix Integer Linear Programming
(MILP) approach, cube attack is able to attack stream ciphers using large cubes. Todo et al.
proposed the division property in [Tod15, TM16], and by combining with the cube attack,
they were able to significantly improve the attacks against Trivium, Grain128a, ACORN
in [TIHM17]. Cube attack utilizes a large amount of data to build special relations between

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-06-01 Revised: 2021-09-01 Accepted: 2021-11-01 Published: 2021-12-03

https://doi.org/10.46586/tosc.v2021.i4.100-123
mailto:sunyao@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Yao Sun 101

secret variables. Specifically, let k and v be secret and public variables. The output bit of
a stream cipher can be represented as a Boolean polynomial f(k,v). Generally, although
a relation of secret variables can be obtained directly through the specialization of v in
f(k,v), this relation has a high algebraic degree and is hard to be analyzed. Alternatively,
instead of using a single value of v, cube attack takes advantage of enormous values. A
cube consists of many values of v’s. Some bits of v are set as active, and this means, they
take all possible combinations of values, while the other bits of v are set inactive and
remain unchanged. By taking the values of f(k,v) over all values in the cube, the sum
leads to a relation of secret variables. This relation is called the superpoly of the cube,
and it is much simpler than f(k,v). By analyzing superpolys, some information about the
secret variables can be achieved.

However, due to the complex structure of f(k,v), recovering the superpoly of given a
cube used to be very difficult. In the original paper [DS09], a linearity test was proposed
to verify linear superpolys. If the superpoly is tested to be linear, then the algebraic
normal form (ANF) of this superpoly can be recovered. Later, a quadraticity test was
introduced [PJ12], and was used to mount the attacks against Trivium in [FV14]. But
since all these attacks were experimental cryptanalysis, there is a probability that the
linearity and quadraticity tests fail.

Division Property: A breakthrough came after the division property was proposed
in [Tod15, TM16]. Todo et al. revealed the relation between integral cryptanalysis [KW02]
and the division property, while integral cryptanalysis was also assumed to be equivalent to
square attacks [DKR97] or higher-order differential attacks [Lai94]. Division property is an
effective tool to analyze the monomials in f(k,v), but the computation is very expensive.
Firstly, breadth-first search algorithms were used, but these algorithms often required
unacceptable time and space. Consequently, Mixed Integer Linear Programming (MILP)
approach was introduced to model the propagations of the bit-based division property
[XZBL16]. Thanks to the efficiency of MILP tools, the bit-based division property for
six lightweight block ciphers was shown. Since then, more improvements were given in
[SWW17, TIHM17, WHT+18]. However, traditional division property often suffers from
the accuracy problem.

Taking the method proposed in [TIHM17] for example, if there is no division trail such
that the output is 1, one can confirm that some specific monomial must not appear in the
superpoly with absolute confidence. But if there is such a division trail, the corresponding
monomial may or may not appear. The inaccuracy of the division trail method makes
many previous key-recovery attacks, e.g., [FWDM18, WHT+18, YT19, WHG+19, YLL19],
degenerated to distinguishing attacks [HLM+20]. To solve this inaccuracy problem, three-
subset division property was used. The first try was a variant of the three-subset division
property [HW19], and later, Wang et al. proposed a new MILP based method to model
the propagations of three-subset division property [WHG+19]. But their methods were
still inaccurate. This inaccuracy problem was finally resolved by Hao et al. in [HLM+20],
where the model for three-subset division property without unknown subset was proposed.

Trivium : Trivium is a bit oriented synchronous stream cipher based on NLSFR
[DCP08]. It is one of the eSTREAM hardware-oriented finalists and an International
Standard under ISO/IEC 29192-3:2012. Trivium has attracted many attentions due to
its simple structure and high level security. Trivium uses a 80-bit key and a 80-bit IV,
so the complexity of exhaustive search for the key is 280 evaluations, and any attack of
Triviummust has a lower complexity than 280.

For practical attacks against Trivium, a key-recovery attack on 784-round Triviumwas
given in [FV14]. Recently, a practical attack against 805-round Triviumwas proposed in
[YT20], and many linear superpolys were found in practical time. Attacks against higher
rounds of Trivium are still theoretical. An attack on 855-round Triviumwas reported
in [FWDM18], but some flaws were proposed later after this paper was published. The

102 Automatic Search of Cubes for Attacking Stream Ciphers

doubt was finally verified in [HLM+20], where the authors showed this attack did not work.
Before this paper, the key-recovery attack against the highest round Triviumwas given in
[HLM+20]. By using three-subset division property without unknown subset, Hao et al.
presented key-recovery attacks on 840-, 841-, and 842-round Trivium. Consequently, Hu
et al. pointed out in ASIACRYPT 2020 that computing three-subset division property
without unknown subset was equivalent to calculating the appearing monomials in the
superpolys. They used a divide-and-conquer strategy to speed up their computations, and
hence, obtained more key-recovery attacks on 840-, 841-, and 842-round Triviumwith
even lower complexities [HSWW20]. An early version of this paper presented, as far as we
know, the first key-recovery attack against 843-round Trivium in [Sun21].

Kreyvium: Kreyvium is designed for the use of fully Homomorphic encryption
[CCF+16]. It has a similar structure to Trivium but consists of more registers. The
sizes of its key and IV are both 128. The previous highest round of Kreyvium that can be
attacked is 892, which was proposed in [HLM+20].

Motivation: The key step of the cube attack is to recover the superpoly of a given
cube. As this problem was finally settled in [HLM+20], the next crucial problem is how to
find “good” superpolys. Since the superpolys are determined by the cubes, this problem
becomes how to find “good” cubes. Our goal is to develop an efficient algorithm to search
for “good” cubes such that we can improve current cube attacks.

A straightforward way of searching for “good” cubes is as follows. A cube is selected
first, and its superpoly is then recovered. If this superpoly is “good”, then it is done;
otherwise, another cube is chosen and the above procedure is repeated. Clearly, this
straightforward method is not efficient. Firstly, there are enormous cubes, but not all of
them are “good”; secondly, it is very costly to verify whether a cube is “good”, particularly
when the number of rounds of a stream cipher is large.

To improve this straightforward method, on one hand, we realized that, when many
cubes are to be tested, most computations for recovering their superpolys are duplicated.
However, if we deal with a set of cubes together, then the common computations will
be done just once, which will save much computing time. On the other hand, to verify
“good” cubes efficiently, we define a special kind of “good” cubes first. We say a cube
is valuable if the superpoly of this cube has a balanced secret variable, where we say a
variable xi is balanced in a polynomial, if xi appears as a 1-degree monomial and any
other monomials of this polynomial do not involve xi, i.e., the superpoly p has the form
p(x0, x1, . . . , xn−1) = xi + p′(x0, . . . , xi−1, xi+1, . . . , xn−1). A valuable cube is a “good”
cube, because its superpoly brings in 1 bit of information about the key. More importantly,
the superpolys of valuable cubes can not only improve theoretically attacks, but also
improve the practical analyses. To pick up valuable cubes from enormous candidate cubes,
we observed that it may be very costly to prove a cube is valuable, which usually needs
to recover most monomials of its superpoly, but there are many ways of showing that a
cube is not valuable. For example, if we know some high degree monomial appears in
the superpoly of a cube, then the secret variables involved in this monomial cannot be
balanced. Moreover, the cube is not valuable if all secret variables are not balanced in the
superpoly of this cube. Note that it is also very expensive to check whether a monomial
appears in the superpoly. Fortunately, we have enormous cubes and we only need to find
a few valuable ones. This means we can reject useless cubes in a more aggressive way, i.e.,
we can regard a secret variable as not balanced in the superpoly of a cube, if a high degree
monomial involving this secret variable probably appears in the superpoly. Although this
aggressive approach may reject many valuable cubes, the un-rejected cubes tend to be
valuable ones with high probabilities.

Our contribution: We proposed a heuristic method of rejecting useless cubes. This
method is based on the divide-and-conquer strategy and an important observation. We
observed that if the whole system, which is constructed to recover a superpoly, can be

Yao Sun 103

split into several subsystems through the divide-and-conquer strategy, characteristics of
the subsystems are likely to coincide with those of the whole system, if the number of
subsystems that have solutions is not large. Thus, we can reject many useless cubes
only via the information obtained from subsystems. With the method, we devised a new
efficient algorithm to search for valuable cubes. Instead of testing cubes one by one, the
new algorithm deals with a set of cubes together. Although many useless cubes will be
rejected during the computation, the remaining ones are likely to be valuable cubes. To
verify the effectiveness of the proposed algorithm, we applied it to two famous stream
ciphers, Trivium and Kreyvium, and obtained three improvements.

1. We obtained the first key-recovery attack against 843-round Trivium, while the
previous highest round that can be attacked was 842, given in [HLM+20].
The new algorithm successfully found many valuable cubes for 840-, 841-, and 842-
round Trivium. Particularly, we got two valuable cubes for 843-round Trivium. A
summary of the results is shown in Table 1, and the details are presented in Section
4.1. In this table, the data in the first row means that, for 840-round Trivium, we
found 222 valuable cubes. The dimensions of these cubes are all 78, and the secret
variable k0 is balanced in all the corresponding superpolys.

Table 1: The numbers of valuable cubes for 840-, 841-, 842-, and 843-round Trivium.

Round Balanced secret variable #Valuable cubes Dim of cubes

840
k0 222 78
k1 215 78
k2 134 78

841 k0 2 78
k1 42 78

842 k1 5 78
843 k2 2 78

The superpoly of a valuable cube for 843-round Triviumwas recovered, and it
consists of 16 561 monomials. For a key-recovery attack against 843-round Trivium,
we need 278 evaluations of 843-round Trivium to gain the specific value of the
superpoly. Using this superpoly, we can filter out 279 impossible keys, and the
complexity of exhaustive search becomes 279. In this way, the overall complexity of
our approach is lower than 280.

2. We found many new small valuable cubes to perform practical key-recovery attacks
against 808-round Trivium, while the previous highest round of Trivium that can
be attacked practically was 805, given in [YT20].
To do practical attacks, we need many valuable cubes instead of one. To reduce the
number of requests in the online phase, like done in [YT20], we preset a set of indexes
of public variables, say S, and we only searched for valuables cubes that are from the
subsets of S. The new algorithm successfully found many small valuable cubes for
806- and 808-round Trivium, and we also recovered all their superpolys. Although
these superpolys are mostly nonlinear, we can still perform practical key-recovery
attacks by delicately selecting the variables for enumeration.
As shown in Table 2, the data in the first row means that, for 806-round Trivium,
we preset a set Sa, which contains indexes of 39 public variables. We totally found
29 valuable cubes, and the dimensions of these cubes are 34 ∼ 37. Details about the
cubes and {Sa, Sb} are presented in Section 4.2.

104 Automatic Search of Cubes for Attacking Stream Ciphers

Table 2: The numbers of small valuable cubes for 806- and 808-round Trivium.

Round Preset Set Size of preset set #valuable cubes Dim of cubes
806 Sa 39 29 34 ∼ 37
808 Sb 44 37 39 ∼ 41

For 806-round Trivium, the authors of [YT20] found 16 linear superpolys, and hence,
they could recover 16 key bits with 238.64 requests. They used a brute-force attack
to recover the remaining 64 key bits, so the overall online complexity is 264 + 238.64,
which cannot be done practically. We used the preset set Sa, whose size is 39. By
the new algorithm, we found 29 new valuable cubes, which are all from the subsets of
Sa. The values of the corresponding 29 superpolys can be obtained with 239 requests.
Thus, by using the 16 key bits from [YT20] and selecting another 35 variables for
enumeration delicately, we could recover the remaining 29 key bits directly. The
overall complexity reduces to 239 + 238.64 + 235, which can be done practically.
For 808-round Trivium, we preset a set Sb, whose size is 44. We searched for
valuable cubes from the subsets of Sb, and finally got 37 valuable ones. By delicately
selecting 43 variables for enumeration, we can deduce the values of the remaining
37 secret variables within constant time. The total online complexity for attacking
808-round Trivium is 244 + 243, which can be done practically as well.

3. Based on the cube used to attack 892-round Kreyvium in [HLM+20], we found more
valuable cubes and mounted the key-recovery attacks against Kreyvium to 893-round.
For 892-round Kreyvium, Hao et al. used a cube of dimension 115 and obtained a
linear superpoly. The secret k26 is balanced in this superpoly. We enlarged their cube
to a set with 117 indexes, and set it as a preset set. We searched for valuable cubes
from the subsets of this preset set, requiring k26 being balanced in the superpolys.
We finally obtained 476 valuable cubes, including the one used by Hao et al. Besides,
one superpoly of these valuable cubes can also be used to lower the complexity for
attacking 892-round Kreyvium. Details come in Section 4.3.
For 893-round Kreyvium, we used the same preset set as that for attacking 892-round
Kreyvium, and searched for valuable cubes whose balanced variables include k26.
Finally, we obtained 1 valuable cube and recovered its superpoly. Thus, the overall
complexity of the key-recovery attack is 2127 + 2115, which is a bit smaller than the
exhaustive search complexity 2128. We believe this complexity can be further lowered
by searching for more valuable cubes, and we also think valuable cubes can be found
in high rounds of Kreyviumas well.

The source codes of the proposed algorithm, including those searching for valu-
able cubes and retrieving superpolys, were released at https://github.com/ysun0102/
searchforcubes.

This paper is organized as follows. Section 2 introduces necessary notations and some
preliminaries. The new search algorithm is reported in Section 3, and its applications to
Trivium and Kreyviumare in Section 4. We conclude this paper in Section 5.

2 Preliminaries
2.1 Notations
Let F2[x] be the polynomial ring over the field F2 = {0, 1} in variables x = (x0, x1, . . . , xn−1).
Given a bit-vector u = (u0, u1, . . . , un−1) ∈ Fn

2 , xu =
∏n−1

i=0 x
ui
i is called a monomial in

https://github.com/ysun0102/searchforcubes
https://github.com/ysun0102/searchforcubes

Yao Sun 105

F2[x], and auxu is called a term where au ∈ F2. A polynomial is a sum of finite terms.
To avoid confusion, we use bold letters to represent bit-vectors in this paper. Besides, we
always use x to represent unknowns or inputs to a function, and use y to represent the
outputs of a vectorial function. Secret and public variables are denoted by k and v. And
u and w are always used as the powers of monomials.

The support of a bit-vector u = (u0, u1, . . . , un−1) ∈ Fn
2 is defined as the set Supp(u) =

{i | ui = 1}, and the weight of u is defined as wt(u) = |Supp(u)|, where |{·}| is the
cardinality of the set {·}. Given a monomial xu, its degree is defined by wt(u).

Let f : Fn
2 → F2 be a Boolean function, then its algebraic normal form (ANF) can be

represented as a polynomial in the ring F2[x]: f̂ =
∑

u∈Fn
2
auxu, where au ∈ F2. For an

ANF f̂ , we say a monomial xu appears in f̂ , if the coefficient of xu in f̂ is 1, i.e., au = 1,
and we denote xu → f̂ ; otherwise, we denote xu 6→ f̂ .

In Section 3, we will use an algebraic manner to describe the search algorithm, and
we will recover the superpolys by solving a system of constraints, where the constraints
could be algebraic equations, conjunctive normal forms, or integer inequalities. Let F (x)
be a set of constraints, where x are unknowns. We use F (x | constraints) to denote the
system after adding some new constraints to F (x). The solutions to the system F (x) and
F (x | constraints) are represented by Sol(F) and Sol(F | constraints) respectively. For
example, Sol(F | wt(x) = 2) is the set of x such that x is a solution to F (x) and wt(x) = 2.
Note that we always have Sol(F | constraints) ⊆ Sol(F).

2.2 Cube attack
Cube attack was proposed in EUROCRYPT 2009 [DS09]. For a cipher with n secret
variables and m public variables, each output bit of this cipher can be represented as
a polynomial in secret and public variables. Denote k = (k0, k1, . . . , kn−1) and v =
(v0, v1, . . . , vm−1) as the secret and public variables respectively, where ki, vj ∈ F2 for
0 ≤ i < n and 0 ≤ j < m. Thus, one output bit can be written as f , where f is a
polynomial in the ring F2[k,v] for 0 ≤ i < n and 0 ≤ j < m.

Let I ⊆ {0, 1, . . . ,m− 1} be a set of indices of public variables. A cube determined
by I is denoted as CI , and contains all 2|I| possible combinations of the values of vj ’s for
j ∈ I, while the value of vj′ remains unchanged for j′ ∈ {0, 1, . . . ,m − 1} \ I. Then we
have the following equation:∑

CI

f =
∑
CI

(tI · p+ q) =
∑
CI

tI · p+
∑
CI

q = p,

where tI represents the product
∏

i∈I vi, and there is no term of q divisible by tI . The
polynomial p is called the superpoly of the cube CI . By the above definitions, the
superpoly of CI only involves the inactive public variables vj′ where j′ ∈ {0, 1, . . . ,m−1}\I,
and the values of these variables are often preset to constants in cube attacks. So the
superpoly p is actually a polynomial in F2[k].

For a polynomial p ∈ F2[k], we say p has a balanced variable ki where 0 ≤ i < n, if the
coefficient of ki in f is 1, and the other monomials in f do not involve ki. If a polynomial f
has a balanced variable, then f is balanced, i.e., |{k | f(k) = 0}| = |{k | f(k) = 1}| = 2n−1.
We say a cube is valuable if its superpoly has a balanced variable.

A valuable cube CI may lead to a key-recovery attack against the cipher system
represented by f . In the offline phase of cube attack, attackers recover the superpoly p of
CI . Next, in the online phase, attackers get the value a of p by querying the encryption
oracle 2|I| times. Since the superpoly is balanced, 2n−1 illegal keys will be filtered out by
the equation p = a. To recover the whole key, it suffices to query the encryption oracle
another 2n−1 times. And the overall complexity of this attack is 2|I| + 2n−1.

106 Automatic Search of Cubes for Attacking Stream Ciphers

Note that more balanced superpolys may filter out more illegal keys, but the complexity
of obtaining the values of these superpolys increases. However, the costs of calculating
these values may be lowered in a special case. That is, if there are several cubes and their
indexes are all from the subsets of a set S, then it only needs 2|S| requests to calculate all
the values of the superpolys. This technique was used in [YT20] to obtain practical cube
attacks against round-reduced Trivium. We also use this technique in Section 4.2.

2.3 Trivium

Modeling for Three-Subset Division Property without Unknown Subset 13

Algorithm 2 Algorithm to recover the superpoly

1: procedure attackFramework(M, I, (C0))
2: Let xi be an MILP variable of M corresponding to the ith secret variable.
3: Let vi be an MILP variable of M corresponding to the ith public variable.
4: M.con← vi = 1 for all i ∈ I
5: M.con← vi = 0 for all i ∈ C0

6: prepare a hash table J whose key is (n+m)-bit string and value is counter.
7: solve MILP model M and enumerate all feasible solutions
8: for all feasible solutions do
9: get u = (x1, x2, . . . , xn, v1, v2, . . . , vm) in every found solution

10: increase J [u] by 1
11: end for
12: prepare a polynomial p = 0
13: for all u whose J [u] is an odd number do
14: p = p+ (x‖v)u.
15: end for
16: return p/tI
17: end procedure

5 Improved Cube Attacks against Trivium

5.1 Specification of Trivium and Its MILP Model

zi

Fig. 3. Structure of Trivium

Trivium [CP06] is an NFSR-based stream cipher, and the internal state is represented by a 288-
bit state (s1, s2, . . . , s288). Figure 3 shows the state update function of Trivium. The 80-bit secret
key K is loaded to the first register, and the 80-bit initialization vector IV is loaded to the second
register. The other state bits are set to 0 except the last three bits in the third register. Namely, the
initial state bits are represented as

(s1, s2, . . . , s93) = (K[1],K[2], . . . ,K[80], 0, . . . , 0),

(s94, s95, . . . , s177) = (IV [1], IV [2], . . . , IV [80], 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93, t2 ← s162 ⊕ s177, t3 ← s243 ⊕ s288,
z ← t1 ⊕ t2 ⊕ t3,
t1 ← t1 ⊕ s91s92 ⊕ s171, t2 ← t2 ⊕ s175s176 ⊕ s264, t3 ← t3 ⊕ s286s287 ⊕ s69,

Figure 1: Structure of Trivium

Trivium is an NLFSR-based stream cipher [DCP08]. As shown in Figure 1, Triv-
ium has a 288-bit internal state (s1, s2, . . . , s288) which is divided into three registers. The
80-bit secret key k = (k0, k1, . . . , k79) is loaded into the first register, and the 80-bit
initialization vector v = (v0, v1, . . . , v79) is loaded into the second register. The other bits
of the state are set to 0 except the last three bits in the third register. That is, we have

(s1, s2, . . . , s93) ← (k0, k1, . . . , k79, 0, . . . , 0),
(s94, s95, . . . , s177) ← (v0, v1, . . . , v79, 0, . . . , 0),

(s178, s179, . . . , s288) ← (0, 0, . . . , 0, 1, 1, 1).

The state of Trivium is updated in the following way:

t1 ← s66 + s93,
t2 ← s162 + s177,
t3 ← s243 + s288,
z ← t1 + t2 + t3,
t1 ← t1 + s91 · s92 + s171,
t2 ← t2 + s175 · s176 + s264,
t3 ← t3 + s286 · s287 + s69,

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92),
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176),

(s178, s179, . . . , s288) ← (t2, s178, . . . , s287),

where z denotes the 1-bit key stream. The state is updated 1 152 times without producing
an output. After the key initialization is done, one bit key stream is produced by every
update function.

Yao Sun 107

2.4 Monomial prediction
The concept of monomial prediction was proposed in [HSWW20], to resolve the problem
of determining the presence or absence of a monomial in the algebraic normal form of a
Boolean function. In our opinion, the monomial prediction technique is in fact an algebraic
representation of the three-subset division property without unknown subset technique
proposed in [HLM+20], because the codes provided by both authors are identical. We
prefer the concept of monomial prediction, as we would like to describe our search algorithm
in an algebraic manner. So we rewrite the monomial prediction technique below.

Let f : Fn
2 → Fm

2 be a vectorial Boolean function, mapping x = (x0, x1, . . . , xn−1) ∈ Fn
2

to y = (y0, y1, . . . , ym−1) ∈ Fm
2 . Then yw can be represented as a Boolean polynomial

with respect to x, and we are interested in whether xu → yw, where u ∈ Fn
2 and w ∈ Fm

2 .
Generally, a vectorial Boolean function equals to a composition of basic vectorial Boolean
functions. We present the propagation rules of the copy, AND, and XOR functions below.
Rule 1 (copy): Let fcopy : Fn

2 → Fn+1
2 be a copy function, s.t.

(y0, y1, . . . , yn) = fcopy(x0, x1, . . . , xn−1) = (x0, x0, x1, . . . , xn−1).

For a given bit-vector u ∈ Fn
2 , we define that u propagates to w ∈ Fn+1

2 under the copy
function, or equivalently u⇒copy w, by the following rule:{

(0, u1, . . . , un−1)⇒copy (0, 0, u1, . . . , un−1),
(1, u1, . . . , un−1)⇒copy (1, 0, u1, . . . , un−1) or (0, 1, u1, . . . , un−1) or (1, 1, u1, . . . , un−1).

It is easy to check that if u⇒copy w, we have xu → yw.
Rule 2 (AND): Let fAND : Fn

2 → Fn−1
2 be an AND function, s.t.

(y0, y1, . . . , yn−2) = fAND(x0, x1, . . . , xn−1) = (x0 · x1, . . . , xn−1).

For a given bit-vector u ∈ Fn
2 , we define that u propagates to w ∈ Fn−1

2 under the AND
function, or equivalently u⇒AND w, by the following rule:{

(0, 0, u2, . . . , un−1)⇒AND (0, u2, . . . , un−1),
(1, 1, u2, . . . , un−1)⇒AND (1, u2, . . . , un−1).

Again, if u⇒AND w, we have xu → yw.
Rule 3 (XOR): Let fXOR : Fn

2 → Fn−1
2 be an XOR function, s.t.

(y0, y1, . . . , yn−2) = fXOR(x0, x1, . . . , xn−1) = (x0 +x1, . . . , xn−1).

For a given bit-vector u ∈ Fn
2 , we define that u propagates to w ∈ Fn−1

2 under the XOR
function, or equivalently u⇒XOR w, by the following rule: (0, 0, u2, . . . , un−1)⇒XOR (0, u2, . . . , un−1),

(0, 1, u2, . . . , un−1)⇒XOR (1, u2, . . . , un−1),
(1, 0, u2, . . . , un−1)⇒XOR (1, u2, . . . , un−1).

Similarly, u⇒XOR w implies xu → yw.
If a vectorial Boolean function, say f , can be represented as a composition of the copy,

AND, and XOR functions, for a given xu, we can theoretically obtain the set of all possible
yw such that f(x) = y and u⇒f w by applying the above rules repeatedly. However, the
set of all possible w is often too large to be computed. Fortunately, it is not necessary
to compute the whole set, and instead, we are only interested in finding the bit-vectors
u ∈ Fn

2 , such that u⇒f w̄ where w̄ is a pre-given specific bit-vector in Fm
2 . For this goal,

the bit-vector u is set as unknowns, and a system of the (in)equations can be built with
respect to f and w̄. Finally, we can obtain all desired u by solving this system.

108 Automatic Search of Cubes for Attacking Stream Ciphers

Example 1. Let x = (x0, x1) and y = f(x) = (x0x1 + x1, x0), then f can be decomposed
into the following procedure

(x0, x1)⇒copy (x0, x1, x0)⇒copy (x0, x1, x1, x0)⇒XOR (x0+x1, x1, x0)⇒AND (x0x1+x1, x0).

Consider u = (0, 1), then we have xu = x1 and (0, 1) propagates in the following way

(0, 1)⇒copy {(0, 1, 0)} ⇒copy {(0, 1, 0, 0), (0, 0, 1, 0), (0, 1, 1, 0)}

⇒XOR {(1, 0, 0), (0, 1, 0), (1, 1, 0)} ⇒AND {(1, 0)}. (1)
Then we have (0, 1)⇒f (1, 0). However, the propagations of (1, 1) are more complicated
because of the two copy rules.

Note that we have yw̄ in F2, so yw̄ represents a Boolean function with respect to x.
We denote this function by f which is from Fn

2 to F2. We are interested in which monomial
appears in the ANF of f , i.e., the set of xu such that xu → f̂ , where f̂ is the ANF of f and
f̂ = yw̄. But please remark that, u⇒f w does not always imply xu → yw, if the function
y = f(x) is not one of the basic copy, AND, and XOR functions. This is because there are
more than one possible propagating ways in the copy rule, such that u can propagate to w
through several different ways. To get a definite answer to whether xu → f̂ holds, like
division trails, Hu et al. defined the concept of monomial trails.

Definition 1. Let x(i+1) = f (i)(x(i)) for 0 ≤ i < r, and denote πu(x) = xu for sim-
plification. A sequence of monomials (πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r)) is called an
r-round monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the composite
function f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0), if

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)).

If there is at least one monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)), we write
πu(0)(x(0)) πu(r)(x(r)); otherwise, πu(0)(x(0)) 6 πu(r)(x(r)).

Definition 2. For f with a specific composition sequence, the monomial hull of πu(0)(x(0))
and πu(r)(x(r)), denoted by πu(0)(x(0)) ./ πu(r)(x(r)), is the set of all monomial trails
connecting them. The number of trails in the monomial hull is called the size of the hull
and is denoted by |πu(0)(x(0)) ./ πu(r)(x(r))|.

Using the concepts of monomial trail and monomial hull, we can determine the presence
or the absence of a monomial by the following proposition.

Proposition 1 (Proposition 1 in [HSWW20]). πu(0)(x(0)) → πu(r)(x(r)) if and only if
|πu(0)(x(0)) ./ πu(r)(x(r))| is odd.

In Example 1, Equation (1) implies a monomial trail connecting x(0,1) and y(1,0), and it
is not difficult to see that this is the only one monomial trail in the monomial hull of x(0,1)

and y(1,0), so by Proposition 1, we must have x1 = x(0,1) → y(1,0) = x0x1 +x1. For another
example, if we want to check whether x(1,1) = x0x1 appears in y(1,1) = (x0x1 + x1)x0 = 0,
we need to compute all monomial trails connecting x(1,1) and y(1,1), and the monomial
hull of x(1,1) and y(1,1) consists of the following trails

(x0, x1)(1,1) → (x0, x1, x0)(0,1,1) → (x0, x1, x1, x0)(0,1,1,1) → (x0+x1, x1, x0)(1,1,1) → (x0x1+x1, x0)(1,1),

(x0, x1)(1,1) → (x0, x1, x0)(1,1,1) → (x0, x1, x1, x0)(1,0,1,1) → (x0+x1, x1, x0)(1,1,1) → (x0x1+x1, x0)(1,1).

Since the size of the hull is 2, by Definition 1, we have x0x1 = x(1,1) 6→ y(1,1) = (x0x1 +
x1)x0 = 0.

Thus, to check where xu appears in f̂ , we only need to compute all monomial trials
connecting xu and f̂ . Only if the number of these monomial trails is odd, we have xu → f̂ .
For computing monomial trails, an MILP model can be built and solved by Gurobi [GO21].
Each feasible solution to this model corresponds exactly to one monomial trail.

Yao Sun 109

3 A search algorithm for valuable cubes
The search algorithm is based on the divide-and-conquer strategy and an observation,
so we introduce these two parts in Section 3.1 and 3.2, respectively. Then the search
algorithm comes in Section 3.3.

3.1 A divide-and-conquer algorithm for recovering superpolys
The divide-and-conquer strategy has been used for recovering superpolys in [HLM+20,
HSWW20]. Bigger systems were divided into smaller subsystems to speed up the compu-
tations. Our algorithm also needs the divide-and-conquer strategy, because we hope to
obtain the characteristics from the small subsystems instead of the whole large system.
We first present an algebraic description of the divide-and-conquer algorithm, and then
give a specialization of this algorithm for recovering superpolys for Trivium.

A stream cipher is usually constructed in an iterative manner. Let x ∈ Fn
2 be the initial

state and y ∈ Fm
2 be the final state, then we have y = f (r−1)◦f (r−2)◦· · ·◦f (0)(x), where f (i)

are the copy, AND, or XOR functions for i = 0, 1, . . . , r−1. Thus, denote x(i+1) = f (i)(x(i))
for 0 ≤ i < r, if we have u(i) ⇒f (i) u(i+1), then we have πu(i)(x(i)) → πu(i+1)(x(i+1)),
where πu(x) = xu. Thus, we have the following two sequences,

πu(0)(x) = πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)) = πu(r)(y), (2)

and
u(0) ⇒f (0) u(1) ⇒f (1) · · · ⇒f (r) u(r).

For a stream cipher, the output is often one bit, and can be represented as yw̄ for
a constant bit-vector w̄ ∈ Fm

2 . The bit yw̄ represents a Boolean function of x, and its
algebraic normal form f̂ can be calculated by expanding yw̄ with respect to x. The
complete form of f̂ is often too complicated to obtain, but it is possible to pry into parts
of f̂ . Given a cube CI , let tI be the product of active public variables whose indexes are
in I. To recover the superpoly of CI , it suffices to find out all monomials xu appearing in
f̂ such that tI divides xu, or equivalently I ⊆ Supp(u). So to recover the superpoly of CI

we build the following system:

F (u) := F0,r(u | I ⊆ Supp(u(0)),u(r) = w̄), (3)

where

Fa,b(u) =


u(a) ⇒f (a) u(a+1),

u(a+1) ⇒f (a+1) u(a+2),
· · ·
· · ·

u(r−1) ⇒f (b−1) u(b),

is a set of constraints, and I ⊆ Supp(u(0)), u(r) = w̄ are two new constraints added to the
system Fa,b(u). The set of all solutions to Fa,b(u) is denoted by Sol(Fa,b), and similarly,
Sol(Fa,b | constraints) represents the set of solutions to the system Sol(Fa,b | constraints).

If a solution in Sol(F0,r | I ⊆ Supp(u(0)),u(r) = w̄,u(0) = ū) is found, we obtain a
monomial trail πū(x) πw̄(y) by Equation (2). For convenience, we say this solution
is related to the monomial πū(x). Then Sol(F0,r | I ⊆ Supp(u(0)),u(r) = w̄,u(0) = ū)
is the set of solutions related to the monomial πū(x). According to Proposition 1, we
have that the monomial xū appears in f̂ , or xū → f̂ , if the cardinality of the set
Sol(F0,r | I ⊆ Supp(u(0)),u(r) = w̄,u(0) = ū) is odd. Moreover, if all solutions to System
(3) are found, the superpoly of CI can be recovered by collecting all appearing monomials.

110 Automatic Search of Cubes for Attacking Stream Ciphers

Systems are often easier to be solved if the systems have fewer unknowns and constraints.
Note that System (3) can be divided into two smaller systems:

Fbottom(u) := F0,i(u | I ⊆ Supp(u(0))), (4)

and
Ftop(u) := Fi,r(u | u(r) = w̄). (5)

For System (4), because there is no constraints on u(i), the system has a huge number of
solutions and is usually hard to be solved. Fortunately, System (5) can be solved with
lower complexity than solving System (3). If a solution to Ftop(u) is found and u(i) = v̄,
where v̄ is a bit-vector, we can add the constraint “u(i) = v̄” to System (4), such that the
revised system can be solved easier.

Clearly, every solution to system Fbottom(u | u(i) = v̄) can be extended to a solution to
System (3) by appending a solution in Sol(Ftop | u(i) = v̄). Thus, to determine whether
xū appears in f̂ , we can deduce the following equation:

|Sol(F | u(0) = ū)| =
∑

v̄ |Sol(Fbottom | u(i) = v̄,u(0) = ū)| · |Sol(Ftop | u(i) = v̄)|. (6)

Then xū appears in f̂ if and only if |Sol(F | u(0) = ū)| is odd. Note that |Sol(Ftop | u(i) =
v̄)| contributes nothing if it is even.

By Equation (6), solving a large system F (u) is converted to solving several small
subsystems like Fbottom(u | u(i) = v̄). The number of subsystems is number of different
v̄’s that |Sol(Ftop | u(i) = v̄)| is odd.

Generally, the complexity of solving System (5) can be controlled by choosing the
position of i. Particularly, if the system Fbottom(u | u(i) = v̄) is still too complicated to be
solved quickly, we can divide this system to even smaller subsystems.

In all, we have the following divide-and-conquer algorithm for recovering superpolys.

Algorithm 1: SuperPoly()
Input :A system F (u) := F0,r(u | I ⊆ Supp(u(0)),u(r) = w̄).
Output :The set of monomials that appear in πw̄(x(r)).

1 begin
2 S ←−∅
3 Choose i and solve Ftop(u) := Fi,r(u | u(r) = w̄)
4 for each v̄ such that |Sol(Ftop | u(i) = v̄)| is odd do
5 if F0,i(u | I ⊆ Supp(u(0)),u(i) = v̄) can be solved quickly then
6 S ←−S ∪ Sol(F0,i | I ⊆ Supp(u(0)),u(i) = v̄)
7 else
8 S ←−S ∪ SuperPoly(F0,i(u | I ⊆ Supp(u(0)),u(i) = v̄))

9 return {xū | u(0) = ū appears for odd times in S}

Algorithm 1 presents the framework of the divide-and-conquer algorithm. To practically
recover a superpoly, some details should be clarified. We take Trivium for an example,
and Gurobi [GO21] is used for solving the systems.
Recovering the superpoly for round-reduced Trivium

Algorithm 2 is a specialization of Algorithm 1 for Trivium. To recover the superpoly
of CI for an r-round Trivium, it suffices to call SuperPolyTrivium(r, CI , ∅). Necessary
procedures used in Algorithm 2 are presented in Algorithm 3, whereM stands for a model
of Gurobi,M.var andM.con refer to the variables and constraints ofM.

Yao Sun 111

Algorithm 2: SuperPolyTrivium()
Input :Round R; the set I of cube CI ; last is empty or a state of 288 bits.
Output :A set of monomials.

1 begin
2 S ←−∅
3 Choose i and V ←− Expand(R− i, last)
4 for each v̄ ∈ V such that v̄ appears for odd times in V do
5 if Solve(i, I, v̄) terminates within some time limit then
6 S ←−S ∪ Solve(i, I, v̄)
7 else
8 S ←−S ∪ SuperPolyTrivium(i, I, v̄)

9 return {xū | ū appears for odd times in S}

3.2 An observation
Our goal is to search for valuable cubes efficiently. An important step of the search
algorithm is to verify whether a given cube CI is valuable. The direct way is to recover the
whole superpoly, but this is very expensive if the cipher system is very complicated, e.g.,
843-round Trivium. An alternative way is to only test whether a specific secret variable ki

is balanced. This method only needs to compute the monomials that involve the variable
ki, and is more efficient. However, for sake of security, the number of secret variables in
stream ciphers is at least 80, and this means we need to repeat this method many times,
since most secret variables are not balanced.

Instead of using a verification mode, we realized the exclusive mode would be more
efficient. For example, if we know that a monomial k0k2k4 appears in the superpoly of a
cube CI , then we are sure that the secret variables k0, k2, and k4 are not balanced. But
this exclusive method raises another crucial problem: how to confirm a monomial appears
in the superpoly?

The direct and precise way of checking whether a monomial, say xū, appears in the
superpoly, is to solve System (3) by adding an additional constraint “Supp(ū) ∪ I =
Supp(u(0))”. The complexity of this approach is much lower than that of recovering the
whole or parts of the superpoly. But it is still not endurable, because there are lots
of monomials to be confirmed. For sake of efficiency, we used a probabilistic method
for this verification based on Observation 2, before which we introduce the following
straightforward observation first.

Observation 1: Let F (u) be a (sub)system like System (3) or (4). Among all monomials
related to the solutions of F (u), most of them are related to EVEN numbers of solutions.

In our experiments, this ratio (number of monomials that are related to even numbers
of solutions / number of all monomials) usually went over 90%, particularly when F (u)
was complex. This means, if a monomial xū is related to N solutions, the probability of
N being odd is low.
Observation 2: In the last subsection, we get the following relation:

|Sol(F | u(0) = ū)| =
∑

v̄
|Sol(Fbottom | u(i) = v̄,u(0) = ū)| · |Sol(Ftop | u(i) = v̄)|.

When the number of subsystems that have solutions is not too large, we observed that, for
a given monomial xū, if the cardinality of the set Sol(Fbottom | u(i) = v̄,u(0) = ū) is odd
in a subsystem, then the number |Sol(F | u(0) = ū)| tends to be odd with a relative high
probability. The probability increases when the weight of ū increases.

112 Automatic Search of Cubes for Attacking Stream Ciphers

Algorithm 3: Gurobi Model for Trivium
procedure TriviumCore(M, state, i1, i2, i3, i4, i5)
M.var←− y1, y2, y3, y4, y5, z1, z2, a as binary variables
M.con←− state[i1] = y1 ∨ z1
M.con←− state[i2] = y2 ∨ z2
M.con←− state[i3] = y3 ∨ a
M.con←− state[i4] = y4 ∨ a
M.con←− y5 = state[i5] + a+ z1 + z2
state[ij]←− yj for j ∈ {1, 2, 3, 4, 5}

procedure TriviumBody(R)
Prepare an empty MILP ModelM
M.var←− si as binary variable for i ∈ {1, 2, . . . , 288}
init←− (s1, s2, . . . , s288)
state←− init
for r = 1 to R do

TriviumCore(M, state, 66, 171, 91, 92, 93)
TriviumCore(M, state, 162, 264, 175, 176, 177)
TriviumCore(M, state, 243, 69, 286, 287, 288)
state←− (state[288], state[1], . . . , state[287])

return (M, init, state)
procedure Expand(R, last)

(M, init, st)←− TriviumBody(R)
if last is ∅
M.con←− st[i] = 0 for i ∈ {1, 2, . . . , 288} \ {66, 93, 162, 177, 243, 288}
M.con←− st[66] + st[93] + st[162] + st[177] + st[243] + st[288] = 1

else
M.con←− st[i] = last[i] for i ∈ {1, 2, . . . , 288}

M.optimize()
return {v̄ | v̄ is the solution to the 288 variables in init}

procedure Solve(R, I, last)
(M, init, st)←− TriviumBody(R)
M←− init[i] = 0 for i ∈ {81, 82, . . . , 285}
M←− init[94 + i] = 1 for i ∈ I, where I ⊆ {0, 1, . . . , 79}
if last is ∅
M.con←− st[i] = 0 for i ∈ {1, 2, . . . , 288} \ {66, 93, 162, 177, 243, 288}
M.con←− st[66] + st[93] + st[162] + st[177] + st[243] + st[288] = 1

else
M.con←− st[i] = last[i] for i ∈ {1, 2, . . . , 288}

M.optimize()
return {ū | ū is the solution to the 80 variables init[1], . . . , init[80]}

The condition that “the number of subsystems that have solutions is not too large”
is important to the above observation. Because in this case, the monomial xū has a low
probability of relating to solutions in other subsystems, and moreover, even if xū relates
to solutions in another subsystem, the probability of its related number being odd is also
low by Observation 1.

Discussion about the success rate of Observation 2

As it is very hard to provide theoretical proofs supporting Observation 2, we only
discuss about the success rate from the experimental way.

Yao Sun 113

For an evidence of Observation 2, we studied the probabilities of the monomials obtained
when recovering the superpolys of 841- and 842-round Trivium. For example, to recover
the superpoly of the cube where the indexes of active variables are {0, . . . , 79}\{18, 34} for
842-round Trivium, the divide-and-conquer algorithm is used, and 5 034 subsystems are
constructed and solved. Among these subsystems, 48 have solutions. We finally obtained
4 917 raw monomials and 975 of them are confirmed to appear in the superpoly. For each
raw monomial xū, its related solutions may be obtained from several subsystems. We
are interested in whether its solution number in some subsystem is odd, and whether the
overall solution number is odd. Table 3 shows the statistics according to the weights of
monomials in the superpolys. The numbers “3, 458, 373, 81.44%” in the fourth line of
842-round Triviummeans that, among all 3-degree monomials that were computed from
subsystems, there are 458 raw monomials such that their related solution numbers are odd
in some subsystems. The overall solution numbers of 373 raw monomials are still odd, i.e.,
these 373 monomials are confirmed to appear in the superpoly. “81.44 %” is the ratio of
373 divided by 458.

Table 3: Statistics of monomials obtained by recovering the superpolys for 841- and
842-round Trivium.

Round Cube indexes I Degree Odd in subsystems Odd in final Probability

841

{0, . . . , 79} \ {8, 78}

0 1 0 0 %
1 18 15 83.33 %
2 23 22 95.65 %
3 14 14 100.0 %
4 2 2 100.0 %

{0, . . . , 79} \ {59, 61}

0 1 0 0 %
1 46 33 71.74 %
2 147 136 92.52 %
3 111 107 96.40 %
4 57 57 100.0 %
5 39 39 100.0 %
6 17 17 100.0 %
7 3 3 100.0 %

{0, . . . , 79} \ {64, 72}

0 1 0 0 %
1 65 37 56.92 %
2 455 393 86.37 %
3 635 604 95.12 %
4 492 490 99.59 %
5 218 218 100.0 %
6 74 74 100.0 %
7 12 12 100.0 %
8 1 1 100.0 %

842 {0, . . . , 79} \ {18, 34}

0 1 0 0 %
1 57 38 66.67 %
2 375 294 78.40 %
3 458 373 81.44 %
4 255 209 81.96 %
5 66 55 83.33 %
6 6 6 100.0 %

Table 3 provides an experimental proof for Observation 2. As the degrees of monomials
increase, the probabilities that Observation 2 holds increase as well. However, degree-
2 monomials always have lower probabilities in Table 3, it is natural to worry about

114 Automatic Search of Cubes for Attacking Stream Ciphers

Observation 2 will fail for these monomials. Note that monomials with degree 0 and 1 will
not be used to reject useless cubes, so we do not consider them here.

To check the probabilities for degree-2 monomials, we did more experiments. Using the
three cubes of 841-round Trivium in Table 3, by back-expanding (150, 200, 250, 300, 320,
340) rounds, we obtained (48, 120, 869, 4 147, 15 584, 37 371) subsystems. For the first
cube, the numbers of subsystems that have solutions related to degree-2 monomials, are (2,
5, 5, 6, 8, 8). The probabilities (odd in final / odd in subsystems in Table 3) of degree-2
monomials are always 95.65%. For the other two cubes, related numbers of subsystems
are (2, 4, 4, 5, 7, 7) and (2, 5, 5, 8, 10, 10). The corresponding probabilities are (98.55%,
93.79%, 93.79%, 93.15%, 92.52%, 92.52%) and (96.32%, 90.76%, 90.76%, 90.76%, 90.55%,
90.55%). We can see the numbers of subsystems that have solutions are much less than
the numbers of all subsystems, and the increase of these numbers leads to the decrease of
related probabilities. But in all, the probabilities are relatively high. During our practical
searches of valuable cubes, we handled thousands of cubes together and generated lots of
subsystems, but the monomials that related to a specific cube usually appeared in only a
small number of subsystems, e.g., for 841-round Trivium, the number is 8 ∼ 27 generally.
Thus, Observation 2 held with a relatively high probability in our experiments, and helped
us find many valuable cubes.

Since it is hard to calculate the precise success rates of Observation 2, we have a
remedy if the actual success rates of Observation 2 are really very low. We noted that,
the larger the subsystems are, the higher the probabilities that Observation 2 hold will
be. Particularly, if the subsystems are large enough to be the whole system, Observation
2 surely holds. So if we thought the practical success rates of Observation 2 was very
low and no valuable cubes were found, we could increase the sizes of the subsystems and
compute again. If there really exist some valuable cubes among the candidate ones, we
eventually find some when the subsystems are large enough.
Discussion about Observation 2 and Todo et al.’s assumptions

In [TIHM17], Todo et al.’s made the strong and weak assumptions: “for a cube CI , there
are many values in the constant part of IV whose corresponding superpoly is balanced”, or
“is not a constant function”. Todo et al.’s assumptions provided a possible way to search
for lots of balanced superpolys together, i.e., considering one cube with different values in
the constant part of IV. But these two assumptions were later proved wrong in [YT19].

However, Observation 2 as well as the new search algorithm use the monomial prediction
technique proposed in [HSWW20], which only considers the case that the values in the
constant part of IV are all 0’s. So the new search algorithm handles many cubes together in
a different way from that in above paragraph, i.e., it handles many different sets of active
bits in IV, e.g., the set of cubes whose dimensions are 78, while the values of inactive bits
are always set as 0’s. So Observation 2 has no direct relations to Todo et al.’s assumptions.

3.3 A search algorithm for valuable cubes
Based on Observation 2, we devised a new algorithm to search for valuable cubes. In
this algorithm, we consider a set of cubes together instead of a single one, because many
duplicated computations of these cubes can be avoided when we deal with them together.
Let C be a set of candidate cubes. For example, C is the set of cubes whose dimensions
are 34, 40, or 78.

First of all, we need to select a secret variable to perform further searches. This
selection can be done based on some heuristic computations, or just done randomly.

For a selected secret variable, say ki, we use a table to record the status of each cube in
C. The status of every cube CI ∈ C could be not appear, linear, and excluded. Initially, the
status of all cubes is set as not appear. For the status linear, we also record the number of
solutions that are related to the monomial tIki where tI is the product of public variables

Yao Sun 115

with indexes in I.
Next, we use the divide-and-conquer algorithm to compute all monomials that probably

appear in the superpolys of cubes in C. As there are many cubes in C instead of one,
we change the condition “I ⊆ Supp(u(0))” in System (3) to “there exists CI ∈ C such
that I ⊆ Supp(u(0))”. And we also need to add the condition “ki divides πu(0)(x)” to the
system, i.e., we only consider the monomials involving ki.

When the computation starts, the divide-and-conquer strategy will divide the large
system into several small subsystems. Once a subsystem is solved, we collect the solutions,
and deal with the monomials related to these solutions. Please note that, by the first
constraint added in the last paragraph, every monomial corresponds to a cube CI ∈ C.
If solutions related to the monomial tIki are found and the status of CI is not excluded,
we record/add the number of solutions and mark the status of CI as linear. If solutions
related to some monomial with higher degree than tIki are found, we have three criteria
to deal with this monomial. If a cube CI is excluded by a criterion, we update the status
of CI to excluded, and add a constraint to the other subsystems to exclude the solutions
related to the cube CI .

Based on Observation 2, there are two criteria for dealing with the monomials with
higher degrees than tIki.

First Criterion: If there are solutions related to a monomial xū, such that xū 6= tIki,
then ki is supposed to be unbalanced in the superpoly of CI , and hence, we exclude
the cube CI from C.

Second Criterion: If the number of solutions related to a monomial xū is odd,
where xū 6= tIki, then ki is supposed to be unbalanced in the superpoly of CI , and
hence, we exclude the cube CI from C.

By the above definitions, we can see that First Criterion is more aggressive but also more
efficient. A brief comparison is shown in Table 4. So First Criterion can be used for simple
systems, while Second Criterion is usually applied to more complicated systems.

After the search algorithm terminates, i.e., all subsystems are solved, we check the
status of the cubes in C. If a cube has the status linear, and the number of related solutions
is odd, then we successfully find a valuable cube; otherwise, if no valuable cubes are found,
we change the set C or change the secret variable ki, and try again. The search algorithm
is given by Algorithm 4.

In practical applications, the above search algorithm may not terminate within endurable
time due to the complicated structures of the ciphers. In this case, if most of the candidate
cubes have been excluded, we can check the remaining cubes one by one, via the direct
way. It usually does not take much time to find a valuable cube, and we found the valuable
cubes for 843-round Trivium and 893-round Kreyvium in this way.

4 Applications to Trivium and Kreyvium
We applied the search algorithm to Trivium and Kreyvium, and obtained three main
improvements. Due to the page limit, superpolys used in this section can be found at
https://github.com/ysun0102/searchforcubes/tree/main/results.

4.1 Theoretical cube attacks against round-reduced Trivium
To obtain theoretical cube attacks, we searched for valuable cubes whose dimensions are
78. As there are 80 secret variables in Trivium, a valuable cube with dimension 78 could
lead to a theoretical attack with the complexity 279 + 278. So the candidate set C is set as
all the cubes with 78 public variables and the size of C is 3 160.

https://github.com/ysun0102/searchforcubes/tree/main/results

116 Automatic Search of Cubes for Attacking Stream Ciphers

Algorithm 4: SearchValuableCubes(F , C, ki)
Input : The system F (u) := F0,r(u | u(r) = w̄, ki divides πu(0)(x), and there

exists CI ∈ C s.t. I ⊆ Supp(u(0)));
A set of candidate cubes C;
A secret variable ki.

Output :The set of valuable cubes.
1 begin
2 for each cube CI ∈ C do
3 Status[CI]←−not appear
4 Count[CI]←− 0
5 for each subsystem F ′ in SuperPoly(F (u)) do
6 if ∃CI ∈ C s.t. Sol(F ′ | πu(0)(x) = tIki) 6= ∅ and Status[CI] 6= excluded

then
7 Status[CI]←− linear
8 Count[CI]←−Count[CI] + |Sol(F ′ | πu(0)(x) = tIki)|
9 for each monomial xū s.t. Sol(F ′ | u(0) = ū) 6= ∅ and xū 6= tIki do

10 if the related cube CI is rejected by a criterion then
11 Status[CI]←− excluded
12 C←−C \ {CI}
13 Excludes solutions related to CI in other un-computed subsystems

14 return {CI | Status[CI] = linear and Count[CI] is odd}

Cube attacks against 840-, 841-, and 842-round Trivium
For 840-round Trivium, we chose k0, k1, k2 as candidate secret variables, and performed

brief comparisons between these secret variables as well as the two criteria. Our platform
is: AMD Threadripper 3970X with 32 cores, 256 GB memory, Ubuntu 20.04.

Table 4: Comparisons between secret variables and criteria for 840-round Trivium.

Balanced secret variable Criterion #rejected cubes #valuable cubes time (sec.)

k0
1 2 237 98 35 137.49
2 1607 222 60 039.48

k1
1 1 730 76 21 985.85
2 851 215 49 280.23

k2
1 758 81 21 173.94
2 331 134 40 863.25

In Table 4, we can see that Criterion 1 is more efficient, but more possible valuable
cubes were rejected aggressively. We recovered 9 superpolys for the founded valuable
cubes, i.e., the first 3 valuable cubes for each ki. The computing time is shown in Table 5.
Although the time differs significantly for different cubes, it is always more than 1 hour.
Thus, compared with the proposed search algorithm, it takes much more time to search
for valuable cubes by retrieving all superpolys for (3 160) candidate cubes.

As the algebraic structures of 841- and 842-round Trivium are not very complicated,
we used First Criterion to reject useless cubes. For 841-round Trivium, we found 2
valuable cubes for k0, and 42 valuable ones for k1. For 842-round Trivium, we directly
chose k1 as the candidate secret variable. We found 28 cubes whose status is linear, and

Yao Sun 117

Table 5: Time for retrieving superpolys of the founded valuable cubes. “{10, 26}” refers
to the cube indexes {0, 1, . . . , 79} \ {10, 26}, and the time is given in seconds.

k0 k1 k2
{10, 26} {10, 32} {0, 33} {6, 9} {7, 46} {7, 61} {0, 21} {0, 22} {0, 23}
6 256.86 6 445.33 5 090.17 3 858.84 5 567.27 5 418.30 11 265.39 12 098.60 15 929.83

there are 5 cubes having odd numbers of solutions.
Cube attacks against 843-round Trivium

To search for valuable cubes for 843-round Trivium, Second Criterion is used to reject
useless cubes. We selected k2 as the candidate secret variable. However, the computations
were slowed down after using Second Criterion, so we cut down the program when about
3 140 cubes were excluded. For the remaining 20 cubes, we tested them directly by
recovering the monomials that only involve k2. It took about 10 000 seconds for each test.
Finally, we found two valuable cubes whose inactive public variables are:

{v30, v50} and {v30, v76}.

For recovering the superoly of the cube CI where I = {0, . . . , 79} \ {30, 76}, we totally
obtained 1 085 554 019 solutions in more than two weeks. These solutions are related to
140 096 raw monomials, and the distribution of solutions is unbalanced. For instance, there
are 396 911 938 solutions related to the monomial tI , i.e., the constant “1” in the superpoly.
By removing the raw monomials whose solution numbers are even, we obtained 16 561
monomials that really appear in the superpoly of CI . Detailed results about this superpoly
can be found at the GitHub website.

Thus, we can get the value of this superpoly by summing up all 278 possible values
in the cube CI . As the value of k2 can be deduced directly from the other secret bits by
using this superpoly, we can recover the whole 80-bit key by doing 279 exhaustive searches.
The overall complexity is lower than 280, and it is an attack against 843-round Trivium.

4.2 Practical cube attacks against round-reduced Trivium
To perform practical cube attacks, we need many valuable cubes instead of a single one,
and besides, the dimension of the cubes must be small. Using the idea in [YT20], we preset
a set of indexes, and then searched for valuable cubes whose indexes are the subsets of the
preset set. If the size of the preset set is l, to obtain the values of the superpolys related
to the obtained valuable cubes, it suffices to query the encryption oracle 2l times.

Please remark that, unlike the linear superpolys found in [YT20], almost all superpolys
found by our technique are nonlinear, but these superpolys all have balanced secret
variables. This characteristic enables us to deduce the values of balanced variables by
linearizing the superpolys, and the linearization can be done by delicately selecting the
variables that are used to enumerate values. Moreover, once the values of some balanced
variables are deduced, they can be used to deduce the values of other balanced variables
iteratively. We use the following toy example to illustrate this iterative deduction.

Example 2. Let {f1 = x1 +x3 +x2x4x5, f2 = x2 +x4x5, f3 = x2 +x3 +x2x5} be nonlinear
polynomials with balanced variables {x1, x3}, {x2} and {x3} respectively. Assume we know
the values of {f1, f2, f3}, and our goal is to obtain the specific values of {x1, x2, . . . , x5}.

To solve this system, we can enumerate the values of x4 and x5 to linearize the
polynomial f2, and no matter what values they are, we will get the specific value of
x2. Then, we can get the value of x3 after knowing the values of x2 and x5 in f3. And
consequently, we can deduce the value of x1 in f1 after knowing the specific values of all the

118 Automatic Search of Cubes for Attacking Stream Ciphers

other variables. In this way, for each enumeration of x4 and x5, we can solve (x2, x3, x1)
within constant time. So the overall complexity for solving this system is 22.

Please remark that, there are three crucial points in the above method. Firstly, the
polynomials must have balanced variables. Secondly, the deducing order of variables is
very important, e.g., the value of x1 cannot be obtained from f1 by only guessing the
values of x4 and x5 at the beginning. Thirdly, the above method is independent with the
specific values of {f1, f2, f3} and {x4, x5}, i.e., the values of {x2, x3, x1} can always be
solved no matter what values of {f1, f2, f3} and {x4, x5} are.
A practical attack against 806-round Trivium

In [YT20], the authors presented 16 cubes whose superpolys are linear, and the values
of these superpolys can be obtained by 238.64 requests. But they had to use a brute-
force attack to recover the remaining 64 key bits, so their overall attack cannot be done
practically.

To obtain a practical attack against 806-round Trivium, we searched for more valuable
cubes. We preset a set of indexes, say Sa, which was obtained by merging some sets in
[YT20]. The size of Sa is 39, so it only needs 239 requests to obtain all the values of
superpolys whose related cubes are from the subsets of Sa. Finally, we found 29 valuable
cubes and recovered related superpolys, which can be found at the GitHub website. Details
about these cubes as well as Sa are shown in Table 6.

Table 6: Valuable cubes for attacking 806-round Trivium. Sorted by the deducing order.

Indexes of cubes balanced bits Indexes of cubes balanced bits
Sa \ {10, 16, 25, 38, 69} k25, k67 Sa \ {22, 49} k16
Sa \ {16, 49, 69} k77 Sa \ {22, 73} k18
Sa \ {14, 16, 25, 38, 69} k2, k32, k65 Sa \ {15, 22, 57} k13, k18
Sa \ {16, 25, 38, 40, 69} k7, k25, k34, k43, k67 Sa \ {33, 57, 69} k35

Sa \ {15, 16, 57} k29, k56 Sa \ {42, 69, 73} k0, k9, k18, k27, k30,
k33, k36

Sa \ {11, 15, 57} k48, k77 Sa \ {9, 44} k22, k49
Sa \ {16, 40, 49} k50 Sa \ {16, 25, 38, 48, 69} k30, k44, k45
Sa \ {0, 49} k3, k15, k57 Sa \ {15, 33, 69} k20, k29, k38, k56
Sa \ {30, 39, 49} k26, k53 Sa \ {0, 35, 49} k16, k31, k46, k76

Sa \ {11, 16, 25, 38, 69} k0, k12, k27, k54, k63,
Sa \ {16, 69, 73} k17, k19, k28, k31, k37,

k68 k40, k43, k49, k55, k67
Sa \ {0, 26, 49} k3, k30 Sa \ {0, 7, 46} k18, k21
Sa \ {15, 39, 63} k60 Sa \ {5, 40, 73} k6, k21
Sa \ {16, 25, 38, 63, 69} k0, k60, k78 Sa \ {0, 49, 76} k4
Sa \ {16, 63, 69} k9 Sa \ {28, 57, 61} k5
Sa \ {11, 15, 39} k79

Sa = {0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 33, 35, 37, 38, 39, 40, 42, 44,
46, 48, 49, 57, 61, 63, 69, 73, 76, 78}.

To attack 806-round Trivium practically, it takes 239 requests to obtain all the values
of superpolys in Table 6. By using the linear superpolys in [YT20], we can get the values
of the 16 variables: {k14, k15, k17, k28, k32, k33, k41, k42, k44, k46, k52, k55, k58, k59, k63, k65},
and the complexity is 238.64. Next, we need to enumerate the values of 35 variables:
{k1, k8, k10, k11, k12, k23, k24, k25, k27, k34, k37, k38, k39, k40, k43, k47, k49, k51, k53, k54, k56, k57,
k61, k62, k64, k66, k68, k69, k70, k71, k72, k73, k74, k75, k76}, and the complexity is 235. During
each enumeration, the values of the remaining 29 variables can be deduced iteratively in the
following order: (k67, k77, k2, k7, k29, k48, k50, k3, k26, k0, k30, k60, k78, k9, k79, k16, k18, k13, k35,
k36, k22, k45, k20, k31, k19, k21, k6, k4, k5), and this deduction only costs constant time. To
sum up, the whole attack costs 239 + 238.64 + 235 operations, which can be done practically.

Yao Sun 119

A practical attack against 808-round Trivium
Similarly, to attack 808-round Trivium practically, we preset a set Sb of indexes, and

found 37 valuable cubes, as shown in Table 7. The size of Sb is 44, so it takes 244 requests to
obtain all the values of these 37 superpolys. Next, we need to enumerate the values of 43 vari-
ables: {k1, k6, k8, k10, k11, k19, k20, k22, k24, k26, k27, k28, k33, k34, k35, k37, k38, k40, k41, k43, k44,
k45, k46, k47, k48, k49, k50, k51, k52, k54, k55, k59, k60, k61, k64, k65, k66, k69, k70, k72, k74, k75, k77}.
and this complexity is 243. For each enumeration, the values of the remaining 37 variables
can be deduced iteratively in the order: (k21, k56, k39, k76, k14, k67, k57, k62, k78, k12, k30,
k36, k68, k42, k23, k53, k58, k25, k32, k31, k71, k13, k73, k63, k0, k16, k18, k15, k29, k5, k79, k7, k9, k17,
k2, k4, k3). The whole attack costs 244 + 243 operations, which can be done practically.

Table 7: Valuable cubes for attacking 808-round Trivium. Sorted by the deducing order.

Indexes of cubes balanced bits Indexes of cubes balanced bits
Sb \ {37, 71, 75} k21, k48 Sb \ {11, 50, 55} k31, k40, k67
Sb \ {18, 37, 72} k56 Sb \ {15, 20, 75} k44, k71
Sb \ {11, 37, 72} k21, k39, k48, k66 Sb \ {29, 50, 71} k13, k31, k58
Sb \ {18, 37, 41} k49, k76 Sb \ {47, 50, 71} k13, k31, k73
Sb \ {11, 57, 76} k14, k41 Sb \ {34, 71, 75} k63
Sb \ {11, 50, 72} k40, k49, k67, k76 Sb \ {15, 18, 47} k0, k13

Sb \ {11, 37, 54} k14, k57 Sb \ {18, 29, 37} k0, k16, k33, k36, k42,
k51, k60, k63, k78

Sb \ {11, 14, 18, 57, 76} k40, k49, k62, k67, k76 Sb \ {32, 54, 71} k18, k27, k36, k45, k48,
k54, k55

Sb \ {37, 57, 71} k21, k40, k48, k49, k51,
Sb \ {18, 39, 47} k15k67, k78

Sb \ {11, 50, 54} k12, k57 Sb \ {14, 37, 54, 57, 76} k27, k29
Sb \ {18, 37, 76} k30, k39, k57, k66 Sb \ {12, 18, 41} k5, k32
Sb \ {50, 53, 57, 76} k36 Sb \ {12, 37, 54} k16, k61, k79
Sb \ {37, 39, 57} k62, k68 Sb \ {29, 64, 71} k7, k29, k47
Sb \ {15, 19, 54, 57, 76} k42, k57, k69 Sb \ {15, 18, 37, 57, 76} k9, k19
Sb \ {37, 54, 72} k23, k50 Sb \ {11, 37, 64} k17
Sb \ {30, 54, 57} k53 Sb \ {4, 11, 37} k2, k17, k34
Sb \ {50, 54, 72} k40, k58, k67 Sb \ {16, 53, 72} k2, k4
Sb \ {43, 71, 75} k25 Sb \ {2, 72, 75} k3
Sb \ {18, 37, 54, 57, 76} k32

Sb = {0, 2, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 34, 36, 37, 39, 41, 43, 45,
47, 50, 53, 54, 55, 57, 60, 62, 64, 69, 71, 72, 75, 76, 79}.

4.3 Cube attacks against round-reduced Kreyvium

Kreyvium is designed for the use of fully Homomorphic encryption [CCF+16]. The sizes of
key and IV are both 128. Kreyviumconsists of 5 registers, and 3 of them are the same
as Trivium. The other two registers are used to update the keys and IVs, which makes
Kreyviummore complicated than Trivium. The registers are initialized as

(s1, s2, . . . , s93) ← (k0, k1, . . . , k92),
(s94, s95, . . . , s177) ← (v0, v1, . . . , v83),

(s178, s179, . . . , s288) ← (v84, v85, . . . , v127, 1, . . . , 1, 0),
(K128,K127, . . . ,K1) ← (k0, k1, . . . , k127),

(V128, V127, . . . , V1) ← (v0, v1, . . . , v127).

The state of Kreyvium contains 288(s) + 128(K) + 128(V) = 544 bites, and is updated

120 Automatic Search of Cubes for Attacking Stream Ciphers

in the following way:

t1 ← s66 + s93,
t2 ← s162 + s177,
t3 ← s243 + s288 +K1,
z ← t1 + t2 + t3,
t1 ← t1 + s91 · s92 + s171 +V1,
t2 ← t2 + s175 · s176 + s264,
t3 ← t3 + s286 · s287 + s69,

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92),
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176),

(s178, s179, . . . , s288) ← (t2, s178, . . . , s287),
(K128,K127, . . . ,K1) ← (K1,K128, . . . ,K2),

(V128, V127, . . . , V1) ← (V1, V128, . . . , V2),

where z denotes the 1-bit key stream. The state is updated 1 152 times without producing
an output. After the key initialization is done, one bit key stream is produced by every
update function.

Cube attack against 892-round Kreyvium
In [HLM+20], the authors used a 115-dimensional cube with I = {0, . . . , 127} \

{6, 22, 38, 43, 61, 66, 72, 73, 78, 101, 106, 109, 110}. The superpoly of this cube is p =
k26 + k40 + k50 + k85 + k109 + 1. For testing the search algorithm, we preset S = I∪{38, 72},
and searched for valuables cubes whose balanced secret variables contain k26. The set C is
the set of cubes from the subsets of S whose sizes are 115, so there are 6 786 candidate
cubes. As a result, k26 does not appear in the superpolys of 5 009 cubes, and 912 cubes
were excluded by the search algorithm. We finally found 476 valuable cubes, including
the cube used by Hao et al. For the cube S \ {0, 48}, its superpoly is p = k26 + k85 + 1.
Together with Hao et al.’s superpoly, we can reduces the overall complexity from Hao et
al.’s 2127 + 2115 to 2126 + 2× 2115. In fact, this complexity can be even lowered by using
more superpolys.

Cube attack against 893-round Kreyvium
We chose the same set S as above, and searched for valuable cubes whose balanced

secret variables still contain k26. By excluding about 6 000 cubes, we finally obtained one
valuable cube, whose indexes are S \ {54, 67}. The superpoly of this cube can be found at
the given GitHub website. Thus, the overall complexity of cube attack against 893-round
Kreyvium is 2127 + 2115.

5 Conclusion

In this paper, we proposed a new algorithm to search for valuable cubes for attacking stream
ciphers. By dealing with candidate cubes together and using a probabilistic method of
rejecting useless cubes, the search algorithm is very efficient. This technique could be used
in both theoretical and practical analyses. As applications, we applied the search algorithm
to Trivium and Kreyvium, and obtained three improvements. Firstly, we proposed the
first theoretical key-recovery cube attack against 843-round Trivium. Secondly, we present
the best practical attack against Trivium, which increases the round from 805 to 808.
Lastly, we mount the key-recovery attack against Kreyvium to 893. We also believe this
new search algorithm is able to find valuable cubes for higher rounds of Kreyviumas well
as for other ciphers.

Yao Sun 121

Acknowledgments
The author thanks the anonymous reviewers and the shepherd Patrick Derbez for many
helpful comments. The work is supported by the National Natural Science Foundation of
China under Grants No. 61877058 and No. 61977060.

References
[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube

testers and key recovery attacks on reduced-round md6 and trivium. In Orr
Dunkelman, editor, Fast Software Encryption, pages 1–22, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A prac-
tical solution for efficient homomorphic-ciphertext compression. In Thomas
Peyrin, editor, Fast Software Encryption, pages 313–333, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[DCP08] Christophe De Cannière and Bart Preneel. Trivium, pages 244–266. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[DKR97] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher square. In
Eli Biham, editor, Fast Software Encryption, pages 149–165, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

[DMP+15] Itai Dinur, Paweł Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michał
Straus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced
keccak sponge function. In Elisabeth Oswald and Marc Fischlin, editors, Ad-
vances in Cryptology – EUROCRYPT 2015, pages 733–761, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages
278–299, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[DS11] Itai Dinur and Adi Shamir. Breaking grain-128 with dynamic cube attacks.
In Antoine Joux, editor, Fast Software Encryption, pages 167–187, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[FV14] Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and
799 rounds of trivium using optimized cube attacks. In Shiho Moriai, editor,
Fast Software Encryption, pages 502–517, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[FWDM18] Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, and Willi Meier. A key-recovery
attack on 855-round trivium. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, pages 160–184, Cham, 2018.
Springer International Publishing.

[GO21] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT
2020, pages 466–495, Cham, 2020. Springer International Publishing.

122 Automatic Search of Cubes for Attacking Stream Ciphers

[HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and
key-independent sums. In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology – ASIACRYPT 2020, pages 446–476, Cham, 2020. Springer
International Publishing.

[HW19] Kai Hu and Meiqin Wang. Automatic search for a variant of division property
using three subsets. In Mitsuru Matsui, editor, Topics in Cryptology – CT-RSA
2019, pages 412–432, Cham, 2019. Springer International Publishing.

[KW02] Lars Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, Fast Software Encryption, pages 112–127, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[Lai94] Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis, pages
227–233. Springer, Boston, MA., 1994.

[PJ12] Mroczkowski Piotr and Szmidt Janusz. The cube attack on stream cipher
trivium and quadraticity tests. Fundamenta Informaticae, 114(3-4):309–318,
2012.

[SBD+16] Md Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie
Simpson, and Kenneth Koon-Ho Wong. Investigating cube attacks on the
authenticated encryption stream cipher acorn. In Lynn Batten and Gang Li,
editors, Applications and Techniques in Information Security, pages 15–26,
Singapore, 2016. Springer Singapore.

[Sun21] Yao Sun. Cube attack against 843-round trivium. Cryptology ePrint Archive,
Report 2021/547, 2021. https://ia.cr/2021/547.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division
property for arx ciphers and word-based division property. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
pages 128–157, Cham, 2017. Springer International Publishing.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks
on non-blackbox polynomials based on division property. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages
250–279, Cham, 2017. Springer International Publishing.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and application
to simon family. In Thomas Peyrin, editor, Fast Software Encryption, pages
357–377, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EU-
ROCRYPT 2015, pages 287–314, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[WHG+19] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Milp-aided
method of searching division property using three subsetsÂăand applications.
In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology
– ASIACRYPT 2019, pages 398–427, Cham, 2019. Springer International
Publishing.

https://ia.cr/2021/547

Yao Sun 123

[WHT+18] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved division property based cube attacks exploiting algebraic
properties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, pages 275–305, Cham, 2018. Springer
International Publishing.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
milp method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology – ASIACRYPT 2016, pages 648–678, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[YLL19] Jingchun Yang, Meicheng Liu, and Dongdai Lin. Cube cryptanalysis of
round-reduced acorn. In Zhiqiang Lin, Charalampos Papamanthou, and
Michalis Polychronakis, editors, Information Security, pages 44–64, Cham,
2019. Springer International Publishing.

[YT19] Chen-Dong Ye and Tian Tian. Revisit division property based cube attacks:
Key-recovery or distinguishing attacks? In IACR Transactions on Symmetric
Cryptology, pages 81–102, 2019.

[YT20] Chen-Dong Ye and Tian Tian. A practical key-recovery attack on 805-
round trivium. Cryptology ePrint Archive, Report 2020/1404, 2020. https:
//eprint.iacr.org/2020/1404.

https://eprint.iacr.org/2020/1404
https://eprint.iacr.org/2020/1404

	Introduction
	Preliminaries
	Notations
	Cube attack
	Trivium
	Monomial prediction

	A search algorithm for valuable cubes
	A divide-and-conquer algorithm for recovering superpolys
	An observation
	A search algorithm for valuable cubes

	Applications to Triviumand Kreyvium
	Theoretical cube attacks against round-reduced Trivium
	Practical cube attacks against round-reduced Trivium
	Cube attacks against round-reduced Kreyvium

	Conclusion

