
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 4, pp. 36–73. DOI:10.46586/tosc.v2021.i4.36-73

Perfect Trees: Designing Energy-Optimal
Symmetric Encryption Primitives

Andrea Caforio1, Subhadeep Banik1, Yosuke Todo2, Willi Meier3, Takanori
Isobe4,5, Fukang Liu4 and Bin Zhang6,7,8,9

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
{andrea.caforio,subhadeep.banik}@epfl.ch

2 NTT Social Informatics Laboratories, Tokyo, Japan, yosuke.todo.xt@hco.ntt.co.jp
3 University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Windisch,

Switzerland willimeier48@gmail.com
4 University of Hyogo, Kobe, Japan takanori.isobe@ai.u-hyogo.ac.jp, liufukangs@163.com

5 National Institute of Information and Communications Technology (NICT), Tokyo, Japan
6 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China

martin_zhangbin@hotmail.com
7 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, 100878, China

8 University of Chinese Academy of Sciences, Beijing, 100049, China
9 Guizhou Shujubao Network Technology Co. Ltd, Guizhou, China

Abstract. Energy efficiency is critical in battery-driven devices, and designing energy-
optimal symmetric-key ciphers is one of the goals for the use of ciphers in such
environments. In the paper by Banik et al. (IACR ToSC 2018), stream ciphers were
identified as ideal candidates for low-energy solutions. One of the main conclusions of
this paper was that Trivium, when implemented in an unrolled fashion, was by far the
most energy-efficient way of encrypting larger quantity of data. In fact, it was shown
that as soon as the number of databits to be encrypted exceeded 320 bits, Trivium
consumed the least amount of energy on STM 90 nm ASIC circuits and outperformed
the Midori family of block ciphers even in the least energy hungry ECB mode (Midori
was designed specifically for energy efficiency).
In this work, we devise the first heuristic energy model in the realm of stream ciphers
that links the underlying algebraic topology of the state update function to the
consumptive behaviour. The model is then used to derive a metric that exhibits a
heavy negative correlation with the energy consumption of a broad range of stream
cipher architectures, i.e., the families of Trivium-like, Grain-like and Subterranean-like
constructions. We demonstrate that this correlation is especially pronounced for
Trivium-like ciphers which leads us to establish a link between the energy consumption
and the security guarantees that makes it possible to find several alternative energy-
optimal versions of Trivium that meet the requirements but consume less energy.
We present two such designs Trivium-LE(F) and Trivium-LE(S) that consume around
15% and 25% less energy respectively making them the to date most energy-efficient
encryption primitives. They inherit the same security level as Trivium, i.e., 80-bit
security. We further present Triad-LE as an energy-efficient variant satisfying a
higher security level. The simplicity and wide applicability of our model has direct
consequences for the conception of future hardware-targeted stream ciphers as for
the first time it is possible to optimize for energy during the design phase. Moreover,
we extend the reach of our model beyond plain encryption primitives and propose a
novel energy-efficient message authentication code Trivium-LE-MAC.
Keywords: Lightweight Cryptography · Stream Cipher · Hardware · Low Energy
Encryption · Trivium · Grain · Subterranean

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-09-01 Accepted: 2021-11-01 Published: 2021-12-03

https://doi.org/10.46586/tosc.v2021.i4.36-73
mailto:{andrea.caforio,subhadeep.banik}@epfl.ch
mailto:yosuke.todo.xt@hco.ntt.co.jp
mailto:willimeier48@gmail.com
mailto:takanori.isobe@ai.u-hyogo.ac.jp
mailto:liufukangs@163.com
mailto:martin_zhangbin@hotmail.com
http://creativecommons.org/licenses/by/4.0/

Caforio et al. 37

1 Introduction
Energy efficiency has become an eminent research discipline particularly in the context of
lightweight cryptography [BBI+15, BBR16, BMA+18, BDE+13, KDH+12]. Low-energy
consuming encryption solutions are critical, for example, in battery-driven devices that
run on tight budgets like portable devices, medical implants, sensor nodes or active RFID
tags. Power and energy are correlated parameters, as energy is essentially the time integral
of power, and power is simply the rate of energy consumption. In a nutshell, energy is a
measure of the total electrical work done by the battery source during the execution of
any operation, i.e.,

E =
∫
P dt.

Hence, a less energy-hungry operation drains the battery less and is important for applica-
tions that run on tight energy budgets.

Power/energy consumed in semiconductor circuits come from two principal sources:
dynamic and static. Static power is accounted for by the leakage current and other current
drawn continuously from the power supply. This type of power is generally not dependent
on the frequency of the clock driving the circuit. Dynamic power, on the other hand, is due
to the charging and discharging of load capacitances in CMOS circuits. Each 0→ 1 / 1→ 0
transition contributes to the dynamic dissipation, and hence this component varies directly
as the clock frequency. Since energy consumed in an operation is roughly equal to the
product of the average power and the time taken for it, this implies that the leakage
energy increases with any increase in the physical time required to do a task (which can
occur if we lower the clock frequency). Dynamic energy, on the other hand, would by a
similar logic be independent of the frequency of the signal clocking the circuit. In this
framework, there have been numerous previous works that have investigated the energy
efficiency of block ciphers. In [BDE+13, KDH+12], an evaluation of several lightweight
block ciphers with respect to various hardware performance metrics, with a particular
focus on the energy cost, was done. In [BBR16], the authors looked at design strategies like
serialization and round unrolling and the effect it has on the energy consumption required
to encrypt a single block of data. They concluded that in a low-leakage environment, at
high enough frequencies, the energy consumed for encrypting one block of plaintext was
actually independent of the clock frequency of the circuit, (the authors of [KDH+12] also
had independently come to the same conclusion). This is because if the leakage power is
low, then the lion’s share of the energy consumption is due to the dynamic component,
which is basically given by the sum total of all the glitches produced in the circuit which is
generally independent of the clock frequency. The readers will note that the frequency has
to be high enough for the above observation to hold. Otherwise, at lower clock frequencies,
the physical time taken to encrypt becomes larger and even small leakage power results in
significant enough energy consumption of the order of the dynamic energy. Then the total
energy increases monotonously as the frequency decreases. In [BBR16], it was also proved
that encrypting one block of plaintext for any r-round unrolled implementation (given the
above conditions and low leakage environment) had a quasi-quadratic form

E(r) = (Ar2 +Br + C) ·
(

1 +
⌈
R

r

⌉)
.

Here, A,B,C are constants and R is the number of iterations of the round function
prescribed for the design. Ar2 + Br + C denotes the energy consumed per cycle and(
1 +

⌈
R
r

⌉)
is the total clock cycles required to encrypt. This expression was arrived at due

to the following arguments: Since an r-round unrolled structure has r copies of the round
function circuit connected serially one after the other, the glitches (which are really due
to transients at beginning of the clock cycle) produced due to signal delays in the i-th

38 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

round function, are compounded in the (i + 1)-st round function and are compounded
further in the (i+ 2)-nd round function (see [BBI+15, Figs. 1,2,3,4]). It was then shown
that the power consumed in each round function formed a simple arithmetic sequence.
Since the total power consumed is a sum of these r terms of the sequence, it results in
a quadratic function in r. Multiplying this with the total time taken to encrypt, i.e.,(
1 +

⌈
R
r

⌉)
gives us the required expression. We can see that although an r-round unrolled

cipher consumes more energy per cycle for increasing values of r, it takes fewer cycles to
complete the encryption operation itself.

In the realm of stream ciphers, no energy model of the sort is currently known. However,
in another work by Banik et al. [BMA+18], some broader conclusions about the effects of
unrolling stream cipher circuits were made. They show that an unrolled stream cipher
circuit that produces multiple keystream bits in one clock cycle is more energy-efficient in
an asymptotic sense, i.e., when the encryption of multiple data blocks is considered instead
of a single block. In fact, it was shown that for over 320 bits of data, Trivium consumed
the least amount of energy on STM 90 nm ASIC circuits and outperformed the Midori
block cipher family. For asymptotically large amount of data, the regular Trivium circuit
reached its point of optimality relatively late at r = 160, and at this degree of unrolling it
was around 9 times more energy-efficient than Midori-64. These findings are reflected in
Figure 1, indicating that the baseline Trivium design is a fitting starting point from which
new low-energy constructions can be derived.

1 2 3 4 5 6 7 8 9 10

200

400

600

800

Number of Encrypted 64-bit Blocks

E
n
er
g
y
(p
J
)

1 10 20 30 40 50 60 70 80 90 100

0

0.4

0.8

1.2

1.6

2

Number of Encrypted 64-bit Blocks

PRESENT (r = 2)

Midori-64 (r = 2)

Grain-v1 (r = 20)

Grain-128 (r = 48)

Trivium (r = 160)

Plantlet (r = 16)

Lizard (r = 16)

Kreyvium (r = 128)

Subterranean-Deck (r = 4)

Trivium-LE(F) (r = 288)

Trivium-LE(S) (r = 288)

Triad-LE (r = 256)

Figure 1: Energy consumption (pJ) chart from Banik et al. [BMA+18] using the STM 90
nm cell library process at a clock frequency of 10 MHz. Added to the plot are figures for the
energy consumptions of Subterranean-Deck, and the designs Trivium-LE(F), Trivium-LE(S),
Triad-LE that we propose in this paper, for the same standard cell library and operating
frequency. Figures are reported for short messages (1 to 10 blocks of 64-bits) and longer
messages (1-100 blocks). Legend entries highlighted in blue and green have a security level
of 80 and 128 bits respectively, whereas Triad-LE offers 112-bit security.

The reasons why a heuristic energy model for stream ciphers appears to be harder
to conceive are manifold. For one, stream ciphers circuits are often not more than a
single large register bank whose outputs are fed into a thin combinatorial layer, e.g., in
Trivium the state update function only consists of 12 two-input logic gates. This means
that for small r the energy consumption of the algorithm is almost entirely determined by
the storage elements, i.e., the contribution of the round function circuit is insignificant.
Further note that when r is small the switching activity of the state update function
heavily depends on the underlying cell library process and can thus vary widely. Only for
large r the energy consumption of the round function layer renders itself decisive, however
it becomes increasingly complex to reason about the circuit as the algebraic complexity of
the underlying equations grows unmanageable, thus preventing any deeper analysis of the
involved switching activity. This stands in contrast to block ciphers where the unrolling
factor r is usually small and thus the complexity of the round function circuits remains
bounded.

Caforio et al. 39

Analogously, the reasons why some hardware stream ciphers outperform block ciphers
in energy efficiency are also many. Most hardware stream ciphers (like Trivium and the
Grain family) are designed with a few register locations at the beginning being untapped,
i.e., not used in register update. This allows for efficient hardware unrolling, so that,
unlike block ciphers, each individual round in these stream ciphers can be implemented
in parallel and hence does not increase the circuit depth. As such, the glitches produced
in the circuit of round i do not increase the glitches in round i + 1, at least when the
circuit is unrolled for small values of r. Perhaps the most important reason is that stream
ciphers perform the key-IV setup only once and then are able to encrypt multiple bits of
data without having to do it again. For example, an implementation of Trivium that is
unrolled r = 128 times, would only need 1152

128 = 9 clock cycles to complete key-IV setup
and takes 100 more cycles to encrypt up to 12800 bits of data. The most energy-efficient
implementation of Midori64 (at degree of unrolling r = 2), needs 8 cycles to encrypt every
64-bit block of data, and hence would need 8∗12800

64 = 1600 cycles to encrypt the same
length of data which is around 15 times more. Consequently, lightweight stream ciphers
are preferable when factors like energy and throughput are concerned.

1.1 Contributions
In this paper, we investigate unrolled stream cipher constructions and make some fun-
damental discoveries about their energy consumption behaviour. More specifically, our
contributions can be summarized as follows:

1. Perfect Tree Energy Model. Our first contribution in this paper is to re-
implement r-round unrolled stream cipher circuits in a generic more energy-efficient
manner. We shall define shortly the concept of a circuit strand, which basically
comprises of the logic functions involved in one register update. We demonstrate
that rather than following the approach in [BMA+18], if we adopt a technique in
which each strand is implemented separately as a unit and the circuit synthesizer
is prevented from performing any inter-strand optimization, then the power con-
sumption increases in a slower manner with the respect to the degree of unrolling r.
Trivium is especially suited for this restricted mode of compilation and reaches its
point of optimality in the fully unrolled setting at r = 288. This optimal energy is
significantly lower than the 160-round circuit reported in [BMA+18] under the same
operating environment.
This tessellation enables us to partition the entire circuit into smaller units which
are obviously the strands. Since these are interconnected, it gives rise to a natural
tree structure among them in the following way: a strand j is a child node of strand
i, if the output of j is one of the inputs of i. Hereafter, by observing the variation of
the power consumption in these strands, it is possible to deduce a strong correlation
between the power consumed by each strand its position in the above tree, which
leads to the definition of a tree-based metric that correlates the energy consumption
to a wide range of stream ciphers, namely:

(a) Trivium-like constructions [De 06] with register output tap locations chosen
randomly.

(b) Trivium-like constructions proposed in the literature that have some structural
differences in comparison to the original Trivium design. These include the
modified Trivium proposed in [MB07], TriviA [CCHN18], Kreyvium [CCF+18]
and Triad-SC [BIM+19].

(c) Algebraically more complex ciphers with large state update functions such as
Grain-128 [HJMM06].

40 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

(d) Subterranean-like constructions [DMMR20], which do not exhibit rotating state
registers.

Thus this leads to the proposal of the fist formal energy model for stream cipher
constructions akin to that for block ciphers in [BBR16].

2. New Energy-Optimal Stream Ciphers. By leveraging the obtained energy
model, we are able to show that register tap positions significantly affect the energy
efficiency. Hence, our next attempt is to design new energy-optimal ciphers, where
our approach is to change the register tap positions of the original Trivium cipher.
However, the change of the register tap positions also affects the security, and we
carefully chose these positions without decreasing the claimed security level, i.e., the
80-bit security of Trivium. We present two candidates, which we call Trivium-LE(F)
and Trivium-LE(S), that consume around 10-15% and 25% less energy than Trivium,
respectively. Note that Trivium-LE(F) is conservative with enough security margin,
and Trivium-LE(S) is challenging with a thin security margin. As shown in Figure 1,
both constructions stand as the currently most energy-efficient encryption primitives
in the literature when at least 24 bytes are encrypted. The energy efficiency of
Trivium-LE(F) outperforms known ciphers, and the structure is also useful to design
an energy-efficient message authentication code. We present Trivium-LE-MAC whose
update function inherits to Trivium-LE(F) but the message is absorbed instead of
key-stream generation.

It is important to note that our model makes it, for the first time, possible to design
stream ciphers for hardware environments that are specifically optimized in terms
of energy consumption as the metric is both simple and widely applicable. We also
applied the same strategy to Triad-SC, which supports 112-bit security, because it
seems to be the most promising for the energy efficiency due to the shorter state
size of 256 bits. By altering tap locations, we present one candidate, which we call
Triad-LE, that lower the energy consumption than the original Triad-SC.

1.2 Comparison with Other Works
Note that previous major works in the field of energy efficiency [BBI+15, BBR16, BMA+18]
were limited in their approach in the sense that their findings were restricted to a 90 nm
standard cell library and energy was computed at 10 MHz throughout. This was feasible
as 90 nm standard cells have very low leakage and at a frequency of 10 MHz or higher the
contribution of the leakage energy to the total energy consumption was minimal. Since
the dynamic component of the energy is constant with respect to frequency, as a result,
at all frequencies upwards of 1 MHz the energy consumption was more or less constant
(see [BBR16, Fig. 1]). However, we present our findings for 4 different standard cell
libraries in which the underlying transistors have sizes 90 nm (TSMC), 65 nm (UMC),
45 nm and 15 nm (NanGate) respectively and therefore we do not ignore leakage energy.
Although for presentability, we report results at certain fixed frequencies for each library,
primarily to bring out the dynamic part of it, the energy trends that we present hold
across libraries and a wide range of clock frequencies, and we argue that convincingly
in the paper. When this is not possible, for space constraints, the results are reported
at clock frequency 10 MHz for the TSMC 90 nm and UMC 65 nm libraries and at 1
GHz for the NanGate libraries. This is done so that the dynamic energy component is
the dominant contributor of the total energy consumption (for better comparison with
[BBI+15, BBR16, BMA+18, KDH+12]). All energy figures are reported for encryption
of 1.28 Mbits of data and are generated after a timing simulation of around 10000 test
vectors on the corresponding netlist post-synthesis.

Caforio et al. 41

Note that in real-world, on-chip implementations of these circuits, typically there are
more sources that cost energy like (a) energy consumed in the clock-tree or (b) energy
consumed when the device is idling. In this work, we do not focus on these issues primarily
because they are common to all circuits. Instead our focus will be on the energy consumed
by the circuit itself.

1.3 Outline
In Section 2, we present the effects that different compiler directives used to synthesize
stream cipher circuits have on the energy consumption. Section 3 details the obtained
heuristic energy model. In Section 4, we propose energy-optimal Trivium variants and
an energy-efficient message authentication code. Subsequently, in Section 5, we study
recent Trivium-like, Grain-like and Subterranean-like constructions proposed in the literature
and show that our derived energy model works for these designs too. The paper is then
concluded in Section 6.

2 Restricted Circuits
Combinatorially heavy circuits, such as the increasingly complex algebraic state update
equations in r-round unrolled stream ciphers, induce synthesis tools to produce optimized
architectures in terms of circuit area. They also introduce a gap when it comes to reasoning
about the overall energy consumption, which is significantly hindered as the synthesized
circuits have mutated into opaque, garbled constructions.

We find that imposing a regular structure which is exclusively composed of simple
combinatorial logic gates in which the state update function is replicated unaltered across
different r in an unrolled setting yields equivalent if not better power figures for basic as
well as more feature-rich cell libraries when compared to the highly optimized circuits of
the Synopsys Design Compiler synthesis tool. We define one such structure as follows:

Definition 1 (Strand). Recall the Trivium update function that consists of three inde-
pendent logic blocks of the form whose inputs are tapped from the 288-bit state register
x1, x2, . . . , x288 such that

t1 ← x66 + (x91 · x92) + x93 + x171 (x′1, . . . , x′93)← (t3, x1, . . . , x92)
t2 ← x162 + (x175 · x176) + x177 + x264 (x′94, . . . , x

′
177)← (t1, x94, . . . , x176)

t3 ← x243 + (x286 · x287) + x288 + x69 (x′178, . . . , x
′
288)← (t2, x178, . . . , x287).

We define each individual logic block as a strand of the following form:

a+ b+ (c · d) + e.

A feature-rich library with 3-pin linear cells can implement one strand with 3 gates (1
NAND2, 1 XNOR2, 1 XNOR3), hence the entire Trivium combinatorial layer then consists
of 10 gates in total (9 for the 3 strands and one 3-input XOR gate for the output function).
A simpler library that only consists of 2-pin linear logic elements such as the NanGate cell
library family requires 14 gates for the combinatorial layer. A full description of Trivium is
given in Appendix A.

In this respect, we investigate several circuit and compilation directives supported by
the Synopsys Design Compiler.

• Regular. The entire circuit is compiled with the regular compile command which
moderately attempts to optimize the synthesis result. In this setup, the synthesizer
is free to choose the mapping and the corresponding optimization. The compiler may

42 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

choose to not respect the boundaries between two strands and make any optimization
it deems fit. This is actually equivalent to the implementation strategy of [BMA+18],
i.e., in which the compiler has the freedom to optimize given the logical representation
of the update function.

• Restricted. Same compilation directive as in the regular configuration, i.e., compile,
however the synthesis of the state update function is restricted to the logical mapping,
where the state update circuit for r = 1 is simply replicated for higher degrees of
unrolling. Under this directive, the compiler puts together each strand separately and
is forced to respect the boundaries between 2 strands. Thus when used as such, the
compiled circuit consists of exactly 3r strands for an r-round unrolled construction.

• Ultra. The circuit is synthesized using compile_ultra directive which is a high-effort
routine that optimizes beyond the entity boundaries and often yields the most area-
and latency-efficient constructions. Here too, the compiler may choose not to respect
strand boundaries.

One of our empirical findings is that for Trivium circuits compiled under the Restricted
directive, the increase in the power consumption (for encrypting a given number of data
blocks) is much slower (with respect to the degree of unrolling r) than circuits compiled
under the Regular or Ultra directives.1 Note that a more fundamental answer to the
question whether the energy figures increase or decrease when a cipher is further unrolled
is directly linked to its latency and power consumption.

Let L(r) be the total number of clock cycles required to encrypt a fixed-size plaintext
block in the r-round unrolled setting and denote by P (r) and E(r) the power and energy
values respectively. It is crucial to note that L(r) will decrease and consequently P (r) will
increase as r increases and thus the value of r which minimizes E(r) = P (r) · L(r) (this is
true for block ciphers too) was exactly the problem studied for block ciphers in [BBR16]
and for stream ciphers in [BMA+18].

In Figure 2 and Figure 3, we detail the energy and area simulation results for four
standard cell libraries (TSMC 90 nm, UMC 65 nm and NanGate 45 and 15 nm) over a
wide range of frequencies. The choice of frequencies was indeed library specific: so that the
critical path of the circuit was well below the clock period even when the circuit was fully
unrolled. This obviates the need for the compiler to use higher drive strength based cells
just to get a positive slack (i.e., ensure clock period larger than critical path), which alters
the basic character of the circuit for different values of r and prevents a fair evaluation.
Hence for the faster NanGate library based circuits we used the frequency range 1 MHz
to 1 GHz, and for the other libraries we used the range 0.2 MHz to 100 MHz. We find
that the circuits compiled in the restricted mode are by far the most energy-efficient of
the three. Its energy consumption more or less decreases monotonously for r ≥ 150, which
suggests that if r is allowed to vary up to 288, then the fully unrolled cipher, i.e., r = 288,
is the best setup for energy constrained environments (though not always). This empirical
observation naturally allows us to segue into the next round of results in Section 3 where
we look more closely at the circuits compiled under the restricted mode.

3 Perfect Tree Energy Model
For the remaining experiments, we look to investigate unrolled Trivium circuits with r = 288
since they achieve maximum throughput and deliver close to the best energy efficiency
for all libraries across a wide range of frequencies. Though it was theoretically possible

1One reason for this is that with the other compiler directives, the main optimization effort goes behind
reducing area of the circuit and meeting timing slack requirements. And the result it blurs the boundaries
between individual strands and is thus not necessarily power-optimal.

Caforio et al. 43

50 100 150 200 250 300

200

300

400

500

600

r

n
J/
1.
28

M
b
it

1 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300

60

80

100

120

140

r

10 MHz

50 100 150 200 250 300

40

60

80

100

r

n
J/
1.
28

M
b
it

100 MHz

50 100 150 200 250 300

40

60

80

100

r

1000 MHz

(a) NanGate 15 nm

50 100 150 200 250 300

4,000

6,000

8,000

r

n
J/
1.
28

M
b
it

1 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300

400

600

800

1,000

r

10 MHz

50 100 150 200 250 300

200

300

400

r

n
J/
1.
28

M
b
it

100 MHz

50 100 150 200 250 300

150

200

250

300

350

r

1000 MHz

(b) NanGate 45 nm

50 100 150 200 250 300
100

150

200

250

300

350

r

n
J/
1.
28

M
b
it

0.2 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300
50

100

150

r

1 MHz

50 100 150 200 250 300

40

60

80

100

120

140

r

n
J/
1.
28

M
b
it

10 MHz

50 100 150 200 250 300

40

60

80

100

120

140

r

100 MHz

(c) UMC 65 nm

50 100 150 200 250 300

200

300

400

500

r

n
J/
1.
28

M
b
it

0.2 MHz

Regular
Restricted

Ultra

50 100 150 200 250 300

100

200

300

r

1 MHz

50 100 150 200 250 300
50

100

150

200

250

300

r

n
J/
1.
28

M
b
it

10 MHz

50 100 150 200 250 300
50

100

150

200

250

300

r

100 MHz

(d) TSMC 90 nm

Figure 2: Trivium energy measurements for the three synthesis settings for different
frequencies and libraries. Note that energy graphs are noisier for the regular/ultra modes
which indicates that the synthesizer chooses different mapping strategies for varying r.

50 100 150 200 250 300
2,000

4,000

6,000

8,000

10,000

r

G
E

NanGate 15 nm

Regular
Restricted

Ultra

50 100 150 200 250 300
2,000

4,000

6,000

8,000

10,000

r

NanGate 45 nm

50 100 150 200 250 300

2,000

4,000

6,000

8,000

10,000

r

UMC 65 nm

50 100 150 200 250 300

2,000

4,000

6,000

8,000

10,000

r

TSMC 90 nm

Figure 3: Trivium area measurements (Gate Equivalent) for the three synthesis settings
for all unrolling factors r and cell libraries. Note that the number of clock cycles that are
required in order to encrypt x bits of data is given by d 1152

r e+ dxr e, hence the encryption
of 1.28 MBit of data for r = 288 has a latency of 4449 cycles.

44 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

to unroll more, it would require more silicon area and improve energy efficiency only
fractionally more. Since the circuits are compiled in restricted mode, it is possible to see
how much power each strand consumes. We commence by introducing some notations and
definitions that will help us formalize the write-up better. We commence by introducing
some notations and definitions that will help us formalize the write-up better.

As mentioned in Section 2, each state update function of Trivium consists of three
strands t1, t2, t3, i.e.,

t1 = x66 + x93 + (x91 · x92) + x171

t2 = x162 + x177 + (x175 · x176) + x264

t3 = x243 + x288 + (x286 · x287) + x69.

Definition 2 (i-th Strand). Denote by ti(r) the strand for equation ti in the r-th unrolled
round with i ∈ {1, 2, 3} and r ∈ {1, . . . , 288} such that each successive ti(r) can be
recursively defined as:

t1(r) = t3(r − 66) + t3(r − 93) + [t3(r − 91) · t3(r − 92)] + t1(r − 78)
t2(r) = t1(r − 69) + t1(r − 84) + [t1(r − 82) · t1(r − 83)] + t2(r − 87)
t3(r) = t2(r − 66) + t2(r − 111) + [t2(r − 109) · t2(r − 110)] + t3(r − 69),

where t1(r) = x94−r, t2(r) = x178−r and t3(r) = x1−r whenever r ≤ 0.

Figure 4 shows the power consumed in each of the strands ti(r) for increasing values
of r for 2 of the libraries we experiment with in this paper. We had expected the power
in the strands to increase monotonously with r as in block ciphers, but the figure clearly
suggests that the increase is far from monotonous. The red marks represent the strands
whose power consumption experiences a sudden dip. This observation seemed at first to
be counter-intuitive, and so we set about trying to understand this curious phenomenon.
We first observed that all t1(r)’s (for 1 ≤ r ≤ 66) consume the same power until t1(67)
whose power consumption is considerably larger (note the red to black jump in Figure 4
around r = 66 for t1(r) for all the libraries). All inputs to t1(r) (for 1 ≤ r ≤ 66) come
directly from the register. Thus in some sense their input nodes are all at a distance 0
from the register. However, one of the inputs of t1(67) comes from the output of t3(1) and
thus not all its inputs are at distance 0 from the register. This delay imbalance in the
input wires gives rise to more glitches in the internal circuitry of t1(67) and this hints at
one of the reasons why it consumes more. Further consider the boundary around r = 93.
At r = 94, the power consumption of t1(94) drops. It is easy to see that all the inputs of
t1(94) are at distance 2 from the register, whereas the inputs of t1(93) are still unbalanced
with respect to the delay from the register. This led us to believe that delay imbalance
plays a major role in determining how much power the strands consume.

Through the Looking Glass. In order to verify the above phenomenon, we looked at
the internal timing diagrams of both the strand pairs (a) t1(66) and t1(67), and (b) t1(93)
and t1(94), presented in Figure 5 (the circuit was synthesized using NanGate 45 nm cell
library and clocked at 1 GHz). Let us examine t1(66). The first 2 input pins x1, x28,
according to the circuit synthesizer, have an average delay of 0.09 ns from the clock edge
at which the new inputs are written on to the registers. As a result, the output of the first
XOR gate in the strand i.e., x1 ⊕ x28 is only moderately glitchy. Over 4450 clock cycles
this net switches logic only 2271 times, as found by a post-synthesis timing simulation on
the netlist. On the other hand, in t1(67), x27 is at a delay 0.09 ns whereas the other input
t3(1) is at an average delay 0.25 ns. The output of the corresponding XOR gate x27⊕ t3(1)
is glitchier as compared to x1 ⊕ x28, it switches 4512 times in the same interval. This
clearly indicates that t1(67) consumes more power. Conversely, consider t1(93). The first
2 input pins x1, t3(27) have delays 0.09 ns and 0.25 ns from the clock edge. Hence the net

Caforio et al. 45

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1

m
W

t1(r)

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1

t2(r)

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1

t3(r)

(a) NanGate 45 nm

0 50 100 150 200 250 300
0.06

0.08

0.1

0.12

0.14

0.16

0.18

m
W

t1(r)

0 50 100 150 200 250 300
0.06

0.08

0.1

0.12

0.14

0.16

0.18

t2(r)

0 50 100 150 200 250 300

0.08

0.1

0.12

0.14

0.16

t3(r)

(b) TSMC 90 nm

Figure 4: Power measurements for all the perfect unrolled strand trees for two cell library
processes. The red data points indicate unrolled strand equations which correspond to
perfect trees. The dashed blue line signifies the transition boundaries between perfect and
imperfect trees, i.e., low points represent perfect unrolled strand trees while high points
correspond to imperfect trees.

x1 ⊕ t3(27) switches around 4665 times in the same interval. However, in t1(94), the pins
t3(1), t3(28) have delays 0.24 ns and 0.25 ns. Hence, many of the glitches produced by
them cancel out and the XOR net t3(1)⊕ t3(28) switches 2551 times in this interval. This
indicates that depth-balanced strands consume less power than unbalanced ones.

3.1 Circuit to Tree
In order to formalize the above phenomenon, we found that the circuit strands are connected
naturally in a well-defined graphical topology. Each unrolled strand can be translated into
a 5-ary tree with the root node as the output bit whose subtrees are other unrolled strand
trees or leaf nodes.

Definition 3 (Unrolled Strand Tree). Let Ti(r) be the 5-ary unrolled strand tree corre-

t1(66)t1(66)t1(66)

x1 ⊕ x28x1 ⊕ x28x1 ⊕ x28

x1x1x1

x28x28x28

t1(67)t1(67)t1(67)

t3(1)⊕ x27t3(1)⊕ x27t3(1)⊕ x27

t3(1)t3(1)t3(1)

x27x27x27

#Switch

220522052205

227122712271

221622162216

219721972197

448444844484

451245124512

224122412241

227122712271

(a)

t1(93)t1(93)t1(93)

x1 ⊕ t3(27)x1 ⊕ t3(27)x1 ⊕ t3(27)

x1x1x1

t3(27)t3(27)t3(27)

t1(94)t1(94)t1(94)

t3(1)⊕ t3(28)t3(1)⊕ t3(28)t3(1)⊕ t3(28)

t3(1)t3(1)t3(1)

t3(28)t3(28)t3(28)

#Switch

466546654665

443144314431

221522152215

221622162216

251325132513

257825782578

221122112211

221422142214

(b)

Figure 5: Timing diagrams for internals in (a) t1(66), t1(67), and (b) t1(93), t1(94).

46 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

t3(1)

x243 x288 x286 x287 x171

t3(100)

t2(34)

x129 x144 x142 x143 x231

x189 x187 x188 t3(31)

x214 x259 x257 x258 x40

t3(200)

Figure 6: The strand trees T3(1), T3(100) and T3(200). T3(1), T3(200) are perfect.

sponding to the unrolled strand equation ti(r). The child nodes of the strand Ti(r) are
therefore all the 5 nodes Tj(u) for which the corresponding terms tj(u) are present in its
recursive definition as per Definition 2.

Example 1. To make the link between unrolled strand equations, and their respective
trees clearer, we give 3 examples of varying complexity. The unrolled strand trees T3(1),
T3(100) alongside T3(200) are displayed in Figure 6. Note that terms that appear several
times in an unrolled strand equation result in duplicate nodes in the corresponding unrolled
strand tree. This is to ensure that the equations are a one-to-one representation of the
actual circuit.

We can further classify our unrolled strand trees as either perfect or imperfect according
to the following definitions.

Definition 4 (Perfect m-ary Tree). A perfect m-ary tree is a tree in which all non-leaf
nodes have m children and all leaf nodes are at the same depth.

Clearly, the unrolled strand trees in Trivium are 5-ary. Further, remark that in Figure 6,
T3(1) and T3(200) are perfect unrolled strand trees while T3(100) is imperfect due to
having leaf nodes at different depths. In the example in the previous subsection clearly,
T1(66), T1(94) were perfect trees whereas T1(67), T1(93) were not. This gives us a very
good understanding of the power consumption of strands vis-à-vis the position of the
corresponding nodes in the circuit tree graph. A strand evidently consumes less power if
the node it occupies in the circuit graph houses a perfect tree.

Let us try to argue this inductively. A tree is 5-ary perfect if and only if all of its 5
child nodes are also perfect. Thus it is easy to see that in a perfect tree all its input nodes
are at approximately the same average delay from the register. This being so all perfect
trees tend to consume less power. On the other hand a tree is imperfect if and only if one
of its child nodes is also imperfect, due to which the gate output corresponding to this
imperfect child node is considerably more glitchy. This excess glitch from the child node
would naturally be carried forward in the parent strand making its output glitchier and
thus causing it to consume more dynamic power. This observation naturally leads us to the
next question: is it possible to have a general Trivium-like stream cipher (with tap locations
perhaps different from the original Trivium specifications) that is more energy-efficient and
also secure at the same time? The translation of circuit to an equivalent algebraic topology
may have given us a quick way to check this. Since perfect trees consume less dynamic

Caforio et al. 47

power, a variant of Trivium (with different tap locations) is likely to consume less energy if
its circuit tree graph has a larger total number of perfect trees.

Let us provide more arguments as to why the above makes sense. Consider two
configurations of Trivium: Trivium-A and Trivium-B with different tap locations (both
synthesized in restricted mode). At a degree of unrolling equal to 288, the circuits of
both these variants consist of exactly the same amount of gates and flip-flops. Since the
leakage power in a circuit depends directly on the total silicon area, both these circuits
are likely to consume the same leakage power. Furthermore, the circuit graphs of both
these variants have exactly the same amount of nodes. If for example Trivium-A has more
perfect trees in the graph than Trivium-B, then it automatically implies that Trivium-A has
fewer imperfect trees than Trivium-B, which more or less implies that Trivium-A is likely
to be the variant that consumes less dynamic power. Since the leakage power is the same,
this means that the Trivium-A consumes less total power and hence less total energy. This
of course should hold irrespective of the standard cell library used to synthesize the circuit
or the frequency of signal used to clock the circuit.

We can estimate the total number of perfect trees in a generic Trivium configuration.
To ease notation we will denote the total number of perfect trees among all strands ti(r) as
S(Ti) such that the total number of perfect trees in the circuit is S(T) =

∑
i S(Ti). More

formally, let f be a function from the set of all trees to {0, 1} such that f(Ti(r)) = 1 if and
only if Ti(r) is a perfect tree, and is 0 otherwise: then S(Ti) =

∑
r f(Ti(r)). Below, we

report the distribution of perfect unrolled strand trees in the original Trivium. In Trivium,
we have S(T1) = 105, S(T2) = 144, S(T3) = 93, and hence S(T) = 339. Note that there
are no perfect unrolled strand trees of depth 4 or larger.

3.2 Enumerating Perfect Trees
In the following, let us consider a generic Trivium layout in order to determine configurations
that yield a high number of perfect trees and consequently lower the power consumption.

Definition 5. Denote by Trivium(X,n) a generic Trivium configuration composed of n
chained registers (X1, . . . , Xn) such that X`

j is the jth register’s leftmost forward tap, Xf
j

is the feedback tap and Xop
j is the output tap. See Figure 7 for a schematic depiction.

Note that Xop
j is essentially the final tap location of the jth register (this is required to

ensure the one-to-one nature of the Trivium update). The figure does not explicitly show
the taps for the AND gates, as we will show that if both the AND taps are between X`

j

and Xop
j then it does not affect the total number of perfect trees in the circuit graph.

Note that this notation corresponds to n update function strands hence the unrolled
strand tree of tj(r) is Tj(r).

Example 2. The original Trivium specification composed of three update function strands
is congruent to Trivium(X, 3) where X`

1 = 66, Xf
1 = 69, Xop

1 = 93, X`
2 = 69, Xf

2 =
78, Xop

2 = 84, X`
3 = 66, Xf

3 = 87, Xop
3 = 111 with an additional non-linear gate between

the leftmost and output tap in each register.

Finding configurations that lead to an increased number of perfect trees seems non-
trivial as the search space is enormous. Additionally, a closed-form solution that evaluates
the exact number of perfect trees for a given circuit Trivium(X,n) appears equally hard.
A brute-force solution consists of individually creating the unrolled strand tree for each
equation and checking that all leaf nodes are at the same distance from the root. However,
this approach is expensive and hard to optimize apart from ordinary parallelizations.
Nevertheless, transcribing the problem into a recurrence relation offers some remedy to
this issue.

48 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

1 X`
1 Xf

1 Xop
1tn t1

1 X`
2 Xf

2 Xop
2t1 t2

1 X`
n Xf

n Xop
ntn−1 tn

Figure 7: Generic Trivium(X,n) configuration of n chained registers.

Lemma 1. Given an arbitrary, generic Trivium(X,n) circuit composed of n registers, the
total number of perfect unrolled strand trees S(T) in the fully unrolled setting is given by
S(T) =

∑n
j=1 S(Tj) =

∑n
j=1

∑n
l=1 (gl(Xj)− fl(Xj))+

, where y+ = max{y, 0} and fl(Xj),
gl(Xj) are recursively defined functions for 1 ≤ l ≤ n of the form

fl(Xj) = max
{
fl−1(Xj−1) +Xop

j , fl−1(Xj) +Xf
j+1

}
gl(Xj) = min

{
fl−1(Xj−1) +Xop

j +
[
(gl−1(Xj−1)− fl−1(Xj−1))− (Xop

j −X
`
j)
]+
,

gl−1(Xj) +Xf
j+1

}
,

such that f1(Xj) = 0 and g1(Xj) = min
{
X`
j , X

f
j+1

}
. The number of perfect trees of depth

t for the j-th strand is S(Tj)|depth=t = (gt(Xj)− ft(Xj))+. Hence the total number of
trees of all depths is S(Tj) =

∑n
l=1 (gl(Xj)− fl(Xj))+ and thus the lemma follows.

We remark that since there are n registers indexed 1 to n the value of j + 1 (resp.
j − 1) refers to addition (resp. subtraction) modn in the set {1, 2, · · · , n}. Further note
that a tree is perfect if and only if all its subtrees are perfect.

Proof. (Intuition) From Figure 8, we can see that there are certain values of r for which
the circuit for tj(r) produces a perfect depth 1, depth 2 tree etc. We define two families of
functions ft, gt such that ft(Xj) + 1 is the minimum value of r for which tj(r) corresponds
to a perfect depth t tree, and similarly gt(Xj) is the maximum such value of r. It stands to
reason that the total number of depth t trees produced in this range of r is gt(Xj)−ft(Xj).
Note that, obviously if gt(Xj) ≤ ft(Xj) for some t then there do not exist any depth t
trees. It remains to show that ft and gt can be recursively defined. The full proof is
considerably involved and is given in Appendix B.

To conclude let’s argue why the number of perfect trees is independent of the AND
gate taps as long as they are to the right of the leftmost tap X`

j . It is intuitively not
difficult to reason why and let us argue with the help of our previous example: t1(66)
corresponds to a perfect tree but t1(67) is imperfect. This is because in the process of
unrolling X`

1 + 1 is the first value of r at which t1(r) no longer takes inputs directly from
the register. Thereafter, it does not matter where exactly the AND taps are as long as they
are to the right of X`

1: all subsequent values of r until Xop
1 continue to produce imperfect

trees.

Caforio et al. 49

f1(Xj) = 0 g1(Xj)

1 + f1(Xj)

= g1(Xj)− f1(Xj)

b b

f2(Xj) g2(Xj)

1 + f2(Xj)

bb

= g2(Xj)− f2(Xj)

b b

gt(Xj) ≤ ft(Xj)

Perfect depth 1 trees # Perfect depth 2 trees

= 0 since gt(Xj) ≤ ft(Xj)

Perfect depth t trees

br

Figure 8: Illustration of finite depth trees in Trivium circuit.

Verification: In order to verify our hypothesis (at least empirically) that (a) the number
of perfect trees is actually a good indicator of the energy consumption of a generalized
Trivium circuit, and (b) that the above holds irrespective of the cell library used to
construct the circuit or frequency of the signal used to clock it, we performed an extensive
simulation experiment. We generated a large number of Trivium circuits with random
taps and calculated the number of perfect trees with the help of the recursion formula
given above. We synthesized each circuit in restricted mode using the 4 cell libraries
used in all of our experiments and computed the total power consumed at a wide range
of frequencies. The results are plotted in Figure 9. Not only is there a strong negative
correlation between the power consumed (and hence energy) and the number of perfect
trees, the results hold across libraries and clock frequencies as claimed in Section 3.1. For
each cell library the same trend is visible across all frequencies. Similarly, since the leakage
power of each random Trivium instance is the same and frequency independent (say it is
equal to Pl), and since decreasing the frequency (alt. increasing the clock period by ∆T)
only increases the physical time required for encrypting a fixed size plaintext block by
an amount proportional to ∆T , hence it follows that the leakage energy of each Trivium
instance increases by an amount proportional to Pl ·∆T when the frequency is decreased.
Since the dynamic energy is frequency independent, hence all other things remaining the
same, when only the frequency is varied, it is equivalent to translating each energy scatter
plot by a constant amount along the Y(energy)-axis.

Note that even for configurations with same number of perfect trees, there may be a
slight variation in energy consumption, but this variation is negligible as the number of
perfect trees increase. This really depends on how badly the imperfect trees are configured
in the graph, i.e., configurations with large number of trees with wide variation of delays
at their input nodes tend to consume more energy. To model such situations when the
number of perfect trees is small, one can think of secondary metrics like the distribution
D(x) of number of trees where the absolute difference of the maximum and minimum
depths of leaves in the tree is equal to x (note D(0) is the number of perfect trees). It is
easy to see that configurations for which D(x) is lower for higher values of x (i.e. lesser
number of highly imbalanced trees) are better for energy. Also note that the graph tells us
that to get any significant decrease in energy consumption over the original specifications
of Trivium (around 10-20%) one needs at least 500 perfect trees.

3.3 Post-Routing
Power measurements of integrated systems are usually carried out at the gate level on the
post-synthesis netlist and do not account for effects that normally arise after the circuit has
been mapped into silicon which are mainly due to parasitics introduced by interconnects.
Hence, in this post-routing setting, the obtained post-synthesis figures would need to be
reevaluated as to obtain a more accurate picture.

50 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

300 400 500 600 700 800

44

45

46

S(T)

µ
W

1 MHz

300 400 500 600 700 800
100

110

120

130

S(T)

10 MHz

300 400 500 600 700 800

0.7

0.8

0.9

1

S(T)

m
W

100 MHz

300 400 500 600 700 800

7

8

9

S(T)

1000 MHz

(a) NanGate 15 nm

300 400 500 600 700 800
0.56

0.57

0.57

S(T)

m
W

1 MHz

300 400 500 600 700 800

0.85

0.9

0.95

S(T)

10 MHz

300 400 500 600 700 800

3.5

4

4.5

S(T)

m
W

100 MHz

300 400 500 600 700 800

30

35

40

S(T)

1000 MHz

(b) NanGate 45 nm

300 400 500 600 700 800

5

5.2

5.4

5.6

S(T)

µ
W

0.2 MHz

300 400 500 600 700 800
10

11

12

13

14

S(T)

1 MHz

300 400 500 600 700 800

0.07

0.08

0.09

0.1

S(T)

m
W

10 MHz

300 400 500 600 700 800

0.6

0.7

0.8

0.9

S(T)

100 MHz

(c) UMC 65 nm

300 400 500 600 700 800
6.2

6.4

6.6

6.8

7

S(T)

µ
W

0.2 MHz

300 400 500 600 700 800

16

17

18

19

20

S(T)

1 MHz

300 400 500 600 700 800

0.13

0.14

0.15

0.16

0.17

S(T)

m
W

10 MHz

300 400 500 600 700 800
1.2

1.3

1.4

1.5

1.6

1.7

S(T)

100 MHz

(d) TSMC 90 nm

Figure 9: Power measurements of several Trivium(X, 3) circuits vs S(T) for different
libraries and frequencies. The red data points signify the power consumption of original
Trivium.

In our case, we repeated the experiments from Figure 9 post-route using the Cadence
Innovus place-and-route implementation system for the TSMC 90 nm cell library and report
that the perfect tree model applies in almost the same magnitude as in the post-synthesis
setting. On average, the added interconnect circuitry imposes an area penalty of roughly
4-5% and thus does not affect the overall results as shown in Figure 10.

4 Energy-Optimal Variants of Trivium
Before we start to look for more energy-efficient Trivium configurations with more perfect
trees, let us once again look at the recursion relationship we have just stated. Note that
most perfect trees are at depth 1. In order to increase the number of degree 1 perfect trees,
it is obvious that we need to have higher values of g1(Xj) = min{X`

j , X
f
j+1}, i.e., each tap

Caforio et al. 51

300 400 500 600 700 800

6.4

6.6

6.8

7

7.2

S(T)

µ
W

0.2 MHz

300 400 500 600 700 800

18

18.5

19

19.5

20

20.5

S(T)

1 MHz

300 400 500 600 700 800

0.14

0.15

0.16

0.17

0.18

S(T)

m
W

10 MHz

300 400 500 600 700 800

1.4

1.45

1.5

1.55

1.6

1.65

1.7

S(T)

100 MHz

Figure 10: Post-routing power measurements of several Trivium(X, 3) circuits as a function
of S(T) for using the TSMC 90 nm process. The red data points signify the power
consumption of the original Trivium. Note that fewer data points are being plotted as the
post-routing workflow is significantly more time consuming in comparison to post-synthesis
analysis.

location should be chosen towards the end of the register. Naturally, it is not possible to
choose each tap location only energy efficiency reasons as the new configuration must be
as secure as the original Trivium. Since the search space is large, we decided to follow the
following criteria, inherited from the original Trivium:

A: The linear tap locations X`
i , X

f
i and Xop

i for all i, are chosen from the multiple of 3.
In other words, X`

i , X
f
i , and X

op
i are divisible by 3 for all i.

B: The locations of AND gates are fixed such that these two inputs are not divisible
by 3. In Trivium, Xop

i − 1, Xop
i − 2 are chosen for all i. However, as discussed in

the previous section, the impact on the energy consumption is negligible as long as
the number of perfect trees is the same. Therefore, we change the AND location to
X`
i + 1, X`

i + 2. Then, the number of perfect trees never changes, and the number of
times that AND gates are applied increases according to the increase of the number
of rounds. Thus, this choice is profitable for the security without increasing the
energy consumption.

C: Each tap location for X`
i and Xf

i is larger than 64 such that a 64× parallel imple-
mentation is possible in the software.

D: Under the condition where the output of each AND gate is approximated to 0, we
denote by ε the maximum correlation in a linear combination of keystream bits.
In Trivium, ε = 2−72, but it is quite robust against linear attacks because at least
2144 keystream bits are required. For a cipher targeting 80-bit security, ε ≤ 2−40 is
necessary.

In particular, A and B are two of the most important criteria in the design philosophy
of Trivium. Thanks to them, we can expect that ε in criterion D is the highest correlation
even when the condition where the output of each AND gate is approximated to 0 is
removed. It is primarily because of the following reason. Under parameters following A
and B, the whole cipher is divided into three sub-ciphers, and each sub-cipher is only
connected non-linearly. In D, we first evaluate the correlation under the restriction, where
the output of AND gate is always approximated to 0. In other words, only one sub-cipher
is active, and the other two are inactive. Of course, this restriction is not exhaustive.
However, intuitively, we are unlikely to find a better distinguisher beyond this restriction.
Because, if at least one output of AND gate x · y is approximated to x, y, or x+ y instead
of 0, it implies at least two sub ciphers are active. It intuitively increases the number of
active AND gates and makes constructing linear distinguishers with high correlation much
harder.

52 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

Table 1: List of configurations and associated security parameters. ε represents maximum
linear bias. T is the complexity of guess-and-determine attack. c represents an additional
cost required to do Gaussian elimination to solve a set of linear equations to recover the
internal state. The first row represents the parameters for the original Trivium.

Parameters # Perfect Trees Max Bias G&D Complexity

X`
1 Xf

1 Xop
1 X`

2 Xf
2 Xop

2 X`
3 Xf

3 Xop
3 − log2 ε log2 T

1 66 69 93 69 78 84 66 87 111 339 72 log2 c+ 83.5781

2 87 78 93 66 90 99 75 87 96 495 72 log2 c+ 81.3796

3 87 81 90 81 96 102 69 87 96 534 68 log2 c+ 80.0959

4 75 84 87 84 81 105 81 90 96 570 64 log2 c+ 79.0486

5 75 90 93 90 87 96 78 93 99 591 60 log2 c+ 78.8501

6 81 90 93 90 84 96 78 93 99 624 56 log2 c+ 77.8853

7 81 90 93 90 84 99 81 93 96 642 52 log2 c+ 77.2073

8 75 90 93 96 87 99 87 93 96 666 48 log2 c+ 77.0503

9 84 90 96 90 87 96 87 93 96 699 40 log2 c+ 75.8174

As a result, three criteria A, B, and C allow us to reduce the number of candidates
to 28534800 ≈ 224.8, and exhaustive search is possible. We exhaustively searched for
the best candidates, i.e., the number of perfect trees is maximized, for correlation ε ∈
{2−72, 2−68, 2−64, 2−60, 2−56, 2−52, 2−48, 2−44, 2−40} in D. In Table 1, we list the best
candidates for each ε. In addition, we also applied Maximov and Biryukov’s Guess-and-
Determine attack [MB07] on each of the candidates and list the result. In this attack, the
weakness of the multiple-of-3 choice is exploited, and this attack shows Trivium has 80-bit
security but it does not have 128-bit security even if the key length is simply extended to
128 bits. Note that this attack has many parameters and scenarios. The complexity listed
in Table 1 is the so-called scenario T1, i.e., the time complexity is minimized under the
condition that solving only a linear system is enough to recover the key.

It is clear from the table that an increase in the number of perfect trees is generally
accompanied by an increased maximum linear bias and decrease in the complexity of
the guess-and-determine attack. Considering c ≈ 216, all parameters would have 80-bit
security, but the security margin is very marginal for parameters whose ε is close to 2−40.
The parameter in row 2 is the best one whose correlation is as low as the original Trivium,
but the number of perfect trees is not over 500.

4.1 Trivium-LE(F) and Trivium-LE(S) 2

Having established a set of potential configurations, we proceed to the proposal of two
energy-optimal Trivium-like designs.

4.1.1 Trivium-LE(F)

As a good alternative which is almost equivalently secure as the original Trivium, the
second row of Table 1 gives us the parameter set

(X`
1, X

f
1 , X

op
1 ; X`

2, X
f
2 , X

op
2 ; X`

3, X
f
3 , X

op
3) = (87, 78, 93 ; 66, 90, 99 ; 75, 87, 96).

A graphical depiction of those parameters is given in Figure 11.
This choice gives us a decrease in energy of around 15% over the original Trivium and

still provides us with some headway over the margins of security. We therefore propose
2Note that the (F) and (S) stand for Fast and Slow respectively. This is because the (S) variant uses a

larger number of initialization rounds.

Caforio et al. 53

zi

1 8778 93

1 66 90 99

1 75 87 96

Figure 11: Update function of Trivium-LE(F).

this parameter set as a more energy-efficient variant of Trivium and call it Trivium-LE(F).
We keep the key-IV setup and initialization routines for Trivium-LE(F) same as Trivium.
For completeness, we round off this section with a preliminary security analysis. Since only
the tap locations are modified in Trivium-LE(F), all types of attacks against Trivium can
be applied against Trivium-LE(F). Three important attacks against Trivium are discussed
below.

Linear Distinguishing Attack. In order to achieve 80-bit security, there should not be
linear distinguishers whose correlation is higher than 2−40. As we already discussed in the
section before, the best correlation is 2−72 when outputs of AND gates are approximated
to 0. While it is unlikely to find better distinguishers due to the multiple-of-3 property, we
heuristically evaluated the case where these outputs are not approximated to 0. As we
expected, we could not find better linear distinguishers with correlation higher than 2−72.

Maximov and Biryukov’s Guess-and-Determine Attack. This attack mainly ex-
ploits the multiple-of-3 property of Trivium, and it should be effective because Trivium-LE(F)
also inherits the multiple-of-3 property. This attack first divides the internal state into
three sub states and consists of two phases. In the first phase, we first guess one of three
sub states at some time. In the second phase, assuming that the sub state is guessed
correctly, we next recover the rest of the bits, i.e., 288× 2/3 = 192 bits. Then, we guess
outputs of any AND gates and collect keystream bits, which are linearly represented by the
internal state. In the so-called scenario T0, no output of any AND gates is guessed. When
we use T0 to attack Trivium-LE(F), the time complexity is c · 274.0, which is the same as
the attack against Trivium in the same scenario. However, only 96 linear equations are
collected for the second phase and it is not enough to recover the remaining 192 bits. Thus,
we need to solve a nonlinear system but an efficient algorithm is not known. In scenario
T1, outputs of some AND gates are guessed to collect enough linear equations to recover
the remaining 192 bits. When we use T1 to attack Trivium-LE(F), the time complexity is
c · 281.3796, where 48, 45, and 44 outputs of AND gates are guessed for each register. Then,
we can collect 192 linear equations for the second phase, and an efficient algorithm such as
the Gaussian elimination is available. Considering c ≈ 216, Trivium-LE(F) is secure enough
against this attack.

Cube Attack. Unlike the attacks above, the target of the cube attack is the initialization
phase of the cipher. The cube attack was initially introduced in [DS09]. The original attack
was experimental and its aim was to find linear or quadratic superpolies. However, after
the division-property based cube attack was proposed [TIHM17, TIHM18], the theoretical

54 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

security estimation is possible, and nowadays, the best cube attacks against Trivium are
based on the division-property based method [WHT+18, HLM+20, HIJ+19].

Cube attacks exploit low algebraic degree in the initialization. The first keystream bit
is regarded as the output of the Boolean function fk(iv). To execute cube attacks, the
superpoly has to be recovered, and it becomes impossible several rounds after the degree of
fk(iv) reaches 80. In practice, the best cube attack against Trivium is 842 rounds [HLM+20,
HSWW20], and the degree reaches 80 in 840 rounds. Therefore, we first investigated the
algebraic degree on fk(iv) by using the bit-based division property [Tod15, TM16] and the
left plot in Figure 12 shows the increase in the upper bound of the algebraic degree. Thanks
to changing the location of AND gates, the algebraic degree of Trivium-LE(F) increases
faster than Trivium, and the degree reach 80 in 780 rounds. Moreover, to conservatively
evaluate the degree of the superpoly to be high enough, we also investigated the upper
bound of the algebraic degree on f(k, iv) by using the bit-based division property. The
right plot in Figure 12 shows the increase in the upper bound of the algebraic degree.
About 900 rounds show the upper bound is full, i.e., 160, and it implies that the degree
of the superpoly is unlikely to be lower even if we use the 80-dimensional cube. In both
cases, fk(iv) and f(k, iv), Trivium-LE(F) is more secure than Trivium against cube attacks.
Thus, we conclude that Trivium-LE(F) has a large security margin against cube attacks.

700 720 740 760 780 800 820 840
30

40

50

60

70

80

47

52

56
58

62

67

72
75

78
80

53

59

66

75

80

Number of Rounds

D
eg
re
e

Upper Bound on Algebraic Degree of fk(iv).

Trivium (original)

Trivium-LE(F)

300 400 500 600 700 800 900 1,000 1,100

40

80

120

160

5 7 9 13 15
20

27
37

51

64

84

107

138

160

5 8
13 13

21
31 34

55
61

89

115

160

Number of Rounds

D
eg
re
e

Upper Bound on Algebraic Degree of f(k, iv).

Trivium (original)

Trivium-LE (F)

Figure 12: Increase in algebraic degree with respect to the #initialization rounds.

4.1.2 Trivium-LE(S)

We suggest another variant Trivium-LE(S) that results in around 25% lower energy when
compared with Trivium. This variant is based on the 8th row of Table 1, and uses the
parameter set

(X`
1, X

f
1 , X

op
1 ; X`

2, X
f
2 , X

op
2 ; X`

3, X
f
3 , X

op
3) = (96, 87, 99 ; 87, 93, 96 ; 75, 90, 93).

We have found that this cipher is algebraically weaker than Trivium, in as much as the
algebraic degree of its output bit increases more slowly. It needs 1050 and 1200 rounds
to reach the upper bounds of the degree of fk(iv) and f(k, iv) be the full, respectively.
Compared to the original Trivium, the increase of the degree is about 25% slower. Therefore
we suggest that for a safe security margin, the number of initialization rounds used with
this variant is 288× 5 = 1440. Note that in terms of an 288 times unrolled circuit, this
variant only takes 1 extra clock cycle to initialize, and so asymptotically speaking the
energy consumption does not increase due to this extra cycle. For space constraints we
defer the security analysis to Appendix C.

Caforio et al. 55

4.2 Trivium-LE-MAC
In addition to the stream ciphers Trivium-LE(F) and Trivium-LE(S), we also propose a
message authentication code (MAC) scheme called Trivium-LE-MAC, which is designed by
slightly modifying the round function of Trivium-LE(F). To realize a MAC scheme whose
energy consumption is competitive with the stream cipher Trivium-LE(F), it should absorb
a 1-bit message into the internal state every round function. While the easiest method
is simply XORing the 1-bit message with any 1 bit in the internal state, it is not secure
enough against forgery attacks. To guarantee forgery security, we evaluated the lower
bound in the number of active AND gates with an MILP-based method when two different
messages are absorbed. After exhaustive experimentation we found that a 1-bit message
has to be XORed to at least 3 positions of the internal to be secure against forgery attacks.
For example, one possible choice is to XOR the 1-bit message with three output bits of
state update function, i.e., t1, t2, t3.

From an energy perspective, it is advisable that these injections take place as close as
possible to the registers inputs, i.e., to locations au1 , bu2 , cu3 for smaller values of u1, u2, u3.
If we model the message inputs as zero-depth nodes, then it makes each strand ti(r)
correspond to 6-ary trees. It is, for example, easy to see that the first 1 ≤ r ≤ X`

i − ui
strand trees for ti(r) are all depth 1 perfect 6-ary trees. Hence lower values of ui intuitively
make sense.

On the other hand, we chose the injected positions by respecting the multiple-of-3
property to efficiently evaluate the resistance against forgery attacks with an MILP-based
method. Specifically, in the constructed model, the message difference is only allowed to
be injected at clock cycles 3j1 + j0 (j1 ≥ 0) when the non-zero difference is first introduced
at the clock j0. Moreover, the output difference of the active AND gate is always assumed
to be 0. The goal is to minimize the number of active AND gates in a trail available for the
forgery attack, i.e., the difference of the whole internal state becomes zero after a certain
number of clocks. We evaluated all possible candidates of the three injected positions
(a1+3i0 , b1+3i1 , c1+3i2) where 0 ≤ i0 ≤ 30, 0 ≤ i1 ≤ 32 and 0 ≤ i2 ≤ 31. When the total
distance from the first bit of each register is smaller than 69, among all the candidates, the
maximal number of active AND gates is 72. Thus, we choose the best candidate (a1, b7, c1)
which reaches 72 active AND gates while achieving the smallest total distance of 6.

Algorithm1 shows the specifications. Note that Trivium-LE-MAC inherits the security
level of Trivium-LE(F) against any key-recovery attack, i.e., 80-bit security. However, the
tag length is at most 64 bits. In other words, the security level of the integrity is at most
64 bits.

4.3 Remark About Authenticated Encryption
Authenticated encryption schemes attract strong interest from both industrial and academic
communities, and an authenticated encryption using Trivium-LE(F) would be beneficial to
lower energy consumption. In one of the possible constructions, inspired by the duplex
sponge construction, a 1-bit message is absorbed into the internal state, and simultaneously,
a key stream is squeezed to encrypt the 1-bit message. However, since the round function
of Trivium-LE(F) is very sparse, the guess-and-determine attack can recover the internal
state with a practical complexity when attackers can control and observe the partial
information in the internal state at the same time. Such an event would not happen
when the implementation respects nonce and never releases unverified plaintexts. However,
in case such implementation issues happens, attackers can recover the secret key with
practical complexity.

We think the risk above should be avoided. Consequently, we suggest the so-called
generic construction such as [NRS14], where the authenticated encryption with associated
data can be constructed by an IV-based symmetric-key cipher and a message authentication

56 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

Algorithm 1 Trivium-LE-MAC
1: procedure R(a, b, c,m)

2: z ← a87 ⊕ a93 ⊕ b66 ⊕ b99 ⊕ c75 ⊕ c96

3: t1 ← a87 ⊕ a93 ⊕ a88 · a89 ⊕ b90

4: t2 ← b66 ⊕ b99 ⊕ b67 · b68 ⊕ c87 ⊕m

5: t3 ← c75 ⊕ c96 ⊕ c76 · c77 ⊕ a78 ⊕m

6: b6 ← b6 ⊕m

7: (a1, a2, . . . , a93)← (t3, a1, . . . , a92)

8: (b1, b2, . . . , b99)← (t1, b1, . . . , b98)

9: (c1, c2, . . . , c96)← (t2, c1, . . . , c95)

10: return (a, b, c, z)

11: procedure P̄(a, b, c)

12: (a, b, c, z)← R(a, b, c, 1)

13: for i = 2 to 1152 do
14: (a, b, c, z)← R(a, b, c, 0)

15: return (a, b, c)

1: procedure Load(N ,K)

2: a← (K1, . . . , K80, 0, 0, . . . , 0)

3: b← (N1, . . . , N80, 0, 0, . . . , 0)

4: c← (0, . . . , 0, 1, 1, 1)

5: return (a, b, c)

6: procedure TriMAC(N ,K,M)

7: (a, b, c)← P̄(Load(N,K))

8: len← the bit length of M .

9: for i = 1 to len do
10: (a, b, c, z)← R(a, b, c,Mi)

11: (a, b, c)← P̄(a, b, c)

12: for i = 1 to 64 do
13: (a, b, c, Ti)← R(a, b, c, 0)

14: return T

code (MAC). Due to the page limitation, we do not show a concrete combining methodology
here. We suggest a reasonable choice based on the generic construction in Appendix D.

5 Generalization to Other Stream Ciphers
In this section, we study 4 Trivium-like ciphers. We will show that the circuit tree
phenomenon translates seamlessly onto these more complex Trivium variations.

Trivium-MB. This construction was proposed by Maximov and Biryukov [MB07] and
adds an additional noise term, i.e., a two-input AND gate, to each strand equation t1, t2, t3
which is then backward connected to the register’s input. The keystream output function
remains unchanged. We denote it by Trivium-MB. Each register update function ti is of
the type

xa + xb + (xc · xd) + (xe · xf) + xg,

implying that each Ti(r) has seven child nodes instead of five.

TriviA. The stream cipher by Chakraborti et al. [CCHN18] was used in the authenticated
encryption scheme of the same name. It also features a key size of 128-bit alongside a
96-bit initialization vector but exhibits an increased 384-bit internal state partitioned into
three chunks of sizes 132, 105 and 147. Unlike Trivium and Maximov’s construction, it
adds a non-linear term to the keystream function in the form of a two-input AND gate.
Each node in the circuit graph of TriviA also has 5 child nodes as in Trivium.

Kreyvium. Kreyvium is a stream cipher designed by Canteaut et al. [CCF+18] explicitly
for the use in fully homomorphic encryption schemes. The cipher has the same structure
and tap locations as Trivium, however a 128-bit security is achieved by additionally XORing
bits from the key and IV to the update functions. It was shown in [BMA+18], that Kreyvium
circuits are most energy-efficient at degrees of unrolling that are multiples of 128. This is
because the circuit does not require additional shift registers to rotate the key/IV bits
to produce the required bits in the update function. In our experiments, the cipher is
unrolled 256 times.

Triad-SC. This construction was proposed by Banik et al. [BIM+19] as a low-energy
alternative to Trivium. It has a much smaller state size (256 bits) and aims to provide

Caforio et al. 57

112-bit security. It counters the guess-and-determine attacks by using one additional AND
gate over and above the original architecture of Trivium. The update functions in Triad-SC
are asymmetric: t1 is of the form xa + xb + (xc · xd) + (xe · xf) + xg whereas t2, t3 are of
the form xa + xb + (xc · xd) + xe. Hence, T1(r)’s are 7-ary trees and T2, T3(r)’s are 5-ary
trees.

We performed a similar experiment for all the above ciphers as for the original Trivium:
(a) We synthesized the circuit in restricted mode and record the power consumed in each
strand. Results presented in Figure 14 show that strands associated with perfect trees
consume much less power that the strands with imperfect trees. And (b) we generated
numerous random instances of these ciphers with different tap locations. For every instance
we plot power consumed vs number of perfect trees in the circuit tree graph. The results
are plotted in Figure 13. The results are indeed on expected lines: there is strong negative
correlation between energy consumed and number of perfect trees. For space constraints,
in the figure we plot results only for the TSMC 90 nm cell library (with power measured
at 10 MHz), however extrapolating the results from Section 3.2 we can make a similar
argument that the results are neither library nor frequency specific.

300 400 500 600 700

0.18

0.2

0.22

0.24

S(T)

m
W

Trivium-MB

200 400 600 800 1,000

0.2

0.25

0.3

S(T)

TriviA

300 400 500 600 700 800

0.14

0.15

0.16

0.17

S(T)

Kreyvium

300 400 500 600

0.12

0.13

0.14

0.15

0.16

S(T)

Triad-SC

Figure 13: Power consumption figures as a function of the number of perfect trees for
Trivium-like schemes. All data was obtained using the TSMC 90 nm process at a clock
frequency of 10 MHz. Red data points mark the original schemes.

5.1 Applicability to Grain-128
The concept of a circuit strand seamlessly translates over to Grain-128 [HJMM06] whose
round function consists of two distinct strands that update two registers b1, b2, . . . , b128
and s1, s2, . . . , s128 such that

(x′1, . . . , x′128)← (f, x1, . . . , x127)
(y′1, . . . , y′128)← (g, y1, . . . , y127),

where f and g are linear and non-linear functions respectively defined as follows:

f = x128 + x121 + x90 + x58 + x47 + x32,

g = x128 + y128 + y102 + y72 + y37 + y32 + y44y60 + y61y125

+ y63y67 + y69y101 + y80y88 + y110y111 + y115y117

Evidently, the complexity of the update function in this family is higher than in Trivium
and so finding a sensible restricted circuit configuration for these complex strands is a
harder task. Even if we define the strand as a sub-circuit for the f, g functions, it is not
immediately clear which configuration of gates is the best way to construct each strand.
We can however delegate this responsibility to the circuit compiler, so that in the restricted
mode it still respects the boundary between the strands, but chooses the internal structure
of the strand independently. In Figure 15, we repeat the experiments from Section 2 by
letting the synthesizer choose the circuit for each individual strand of f and g in Restricted

58 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

µ
W

t1(r)

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

t2(r)

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

t3(r)

(a) Trivium-MB [MB07]

0 100 200 300 400
0.05

0.1

0.15

0.2

0.25

µ
W

t1(r)

0 100 200 300 400
0.05

0.1

0.15

0.2

0.25

t2(r)

0 100 200 300 400
0.05

0.1

0.15

0.2

0.25

t3(r)

(b) TriviA [CCHN18]

0 50 100 150 200 250

0.08

0.1

0.12

0.14

0.16

µ
W

t1(r)

0 50 100 150 200 250 300
0.08

0.1

0.12

0.14

0.16

0.18

0.2

t2(r)

0 50 100 150 200 250
0.08

0.1

0.12

0.14

0.16

t3(r)

(c) Kreyvium [CCF+18]

0 50 100 150 200 250 300

0.1

0.12

0.14

0.16

µ
W

t1(r)

0 50 100 150 200 250 300

0.08

0.1

0.12

0.14

0.16

t2(r)

0 50 100 150 200 250 300

0.08

0.1

0.12

0.14

0.16

t3(r)

(d) Triad-SC [BIM+19]

Figure 14: Power consumption measurements for all the unrolled strand trees for the
128-bit key size variation of Trivium proposed by Maximov and Biryukov [MB07], the
state update function of the TriviA stream cipher [CCHN18], Kreyvium [CCF+18] and
Triad-SC [BIM+19]. The Measurements were obtained using the TSMC 90 nm process at
a frequency of 10 MHz.

Caforio et al. 59

50 100 150 200 250
50

100

150

200

r

n
J
/
1.
28

M
B
it

100 MHz

Regular
Restricted

Ultra

(a) NanGate 15 nm

50 100 150 200 250
200

400

600

800

1,000

1,200

r

100 MHz

(b) NanGate 45 nm

50 100 150 200 250

60

80

100

120

140

160

r

10 MHz

(c) UMC 65 nm

50 100 150 200 250
100

150

200

250

300

r

10 MHz

(d) TSMC 90 nm

Figure 15: Grain-128 energy measurements for three synthesis settings and cell libraries.
The complete set of plots for different frequencies is given in Appendix F, Figure 19.

Table 2: Subterranean-Deck energy measurements for r = 4 for four cell libraries.
nJ/1.28 MBit

Regular Ultra Restricted
NanGate 15 nm (100 MHz) 162.9 153.0 150.5
NanGate 45 nm (100 MHz) 341.2 389.1 326.6
UMC 65 nm (10 MHz) 129.9 156.1 107.7
TSMC 90 nm (10 MHz) 222.3 206.5 192.1

mode instead of imposing a predefined set of logic gates. The results in Figure 15 show that
for Grain-128 suggests that restricted mode performs at least on par with other synthesis
modes indicating that further optimizations for the restricted mode are possible by finding
better circuit configurations. Additionally, by repeating the experiments from Section 3.2,
we observe that increasing the number of perfect unrolled strand trees also correlates with
the power consumption although in a weaker form, hence our results are also applicable
to stream ciphers whose state update functions are significantly more complicated than
in Trivium-like ciphers. Due to space constraints, we refer the reader to Figure 19 and
Figure 20 in Appendix F.

5.2 Applicability to Subterranean-Deck
Unlike Trivium and Grain, the Subterranean-Deck [DMMR20] stream cipher does not feature
a rotating register but in each round each state bit x1, x2, . . . , x257 is replaced by the
output of a single strand that is replicated 257 times such that

(x′1, . . . , x′257)← (Tπ(1), Tπ(2), . . . , Tπ(257))
Ti ← (xi + (xi+1 + 1)xi+2) + (xi+3 + (xi+4 + 1)xi+5) + (xi+8 + (xi+9 + 1)xi+10),

for some permutation π. This strand can be realized in 3 NOT, 3 NAND, 1 XNOR3 and 1
XOR4 gates for feature-rich cell libraries and with 3 NOT, 3 NAND and 4 XOR2 for the
more basic libraries. Denote ti = (xi + (xi+1 + 1)xi+2). Each Ti consists of 3 sub-strands
ti, ti+3, th+8 of exactly equal circuit complexity. In restricted mode, if each Ti is compiled
separately, then the sub-strand ti is replicated 3 times in the strands Ti, Ti−3, Ti−8. This
increases the circuit size three times, and also adds to unnecessary power consumption.
Instead, if we choose ti (in place of Ti) as the minimal unit whose compilation is restricted,
then this replication can be avoided, and this is precisely what we do here. This simplicity
lends itself well to the restricted mode of synthesis as shown in Table 2 and this mode is
decidedly better energy-wise.

A unique property of this structure is that all the sub-strands ti that constitute the
round-function at any level are perfect trees in the corresponding circuit graph. As a

60 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

0 50 100 150 200 250

0.04

0.06

0.08

0.1
µ
W

Figure 16: Power plot for 4-round unrolled Subterranean-Deck (TSMC 90 nm at 10 MHz).
The points in red, black, blue and green represent the power consumed by the strands ti
in the first, second, third, and fourths levels of the round function.

result, it is expected that all the sub-strands at a given level consume similar energy. This
is borne out by simulations performed on 4-round unrolled Subterranean-Deck as shown in
Figure 16.

5.3 Triad-LE

Similarly to the case of the design of Trivium-LE(F) and Trivium-LE(S) based on Trivium,
we present a low-energy variant of Triad-SC [BIM+19], which we call Triad-LE, that
consumes around 5% less energy than Triad-SC. Triad-SC’s update function has similar
structure to Trivium, but the linear tap locations are chosen with respect to the multiple-
of-2 property instead of the multiple-of-3 property. Each strand basically has the form
Xop
i = X`

i ⊕ (Xop−1
i ∧ XAi

i) ⊕ Xf
i+1, but to enhance the security level, the first strand

is of the form Xop
1 = X`

1 ⊕ (Xop−1
1 ∧XA1

1)⊕Xf
2 ⊕ (Xop−3

2 ∧Xop−3
3). By comprehensive

cryptanalysis and evaluation using the number of perfect trees, the following parameters
are adopted in Triad-LE.

(X`
1, X

f
1 , X

op
1 ; X`

2, X
f
2 , X

op
2 ; X`

3, X
f
3 , X

op
3) = (68, 76, 80 ; 64, 84, 88 ; 78, 74, 88).

(A1, A2, A3) = (73, 67, 85).

Except for changing these tap positions, the specification is inherited from the original
Triad-SC. Due to the page limit, we do not show the detail of the analysis here, and they
are provided in Appendix E. As far as we apply several known attacks, the immunity of
Triad-LE against the known attacks is almost equivalent with that of the original Triad-SC.

6 Conclusion

In this paper, we make some fundamental observations about the energy consumption
of hardware-targeted stream ciphers and propose the first heuristic energy model that is
based on the novel perfect tree metric. Our model is both simple and widely applicable to a
wide range of stream ciphers and thus enables designers of future algorithms to specifically
optimize for the energy consumption. The perfect tree energy model finds direct application
in Trivium-LE(F) and Trivium-LE(S) that stand as the most energy-efficient encryption
primitives known in the literature with a 10-15% (resp. around 25 %) margin to the next
best cipher. A complete summary of all measurements is given in Table 3. Finally, we
extend the reach of our model beyond stream ciphers and propose a novel, energy-efficient
MAC Trivium-LE-MAC that can then be used to bootstrap an energy-efficient AEAD mode.

Caforio et al. 61

Table 3: Measurements summary for all investigated stream ciphers.
Scheme Library Area (GE) Power (µW) Energy (nJ/1.28 Mbit)

0.2 MHz 1 MHz 10 MHz 100 MHz 1 GHz 0.2 MHz 1 MHz 10 MHz 100 MHz 1 GHz

Trivium NanGate 15 nm 10834 – 46.23 127.1 936.1 9026 – 205.7 56.39 41.64 40.15

(r = 288) NanGate 45 nm 9521 – 577.5 932.1 4477 39980 – 2569 414.6 199.2 177.2

UMC 65 nm 9911 5.579 13.15 98.36 905.1 – 124.1 58.51 43.75 42.83 –

TSMC 90 nm 9757 7.015 19.85 164.3 1609 – 155.8 88.29 73.08 71.57 –

Trivium-LE(F) NanGate 15 nm 10834 – 45.35 118.3 848.4 8147 – 201.7 52.62 37.73 36.24

(r = 288) NanGate 45 nm 9521 – 574.5 901.0 4166 36863 – 2555 400.8 185.3 163.9

UMC 65 nm 9911 5.391 12.21 88.97 856.5 – 119.3 54.34 39.57 38.10 –

TSMC 90 nm 9757 6.659 18.12 147.0 1436 – 148.1 80.60 65.39 63.89 –

Trivium-LE(S) NanGate 15 nm 10834 – 44.42 108.2 746.3 7127 – 197.6 48.13 32.68 31.70

(r = 288) NanGate 45 nm 9521 – 568.9 845.1 3608 31247 – 2531 376.1 160.5 138.9

UMC 65 nm 9911 5.238 11.30 80.51 767.2 – 115.9 50.23 35.81 34.13 –

TSMC 90 nm 9757 6.411 16.08 132.1 1311 – 142.58 71.53 58.76 58.33 –

Triad-SC NanGate 15 nm 10834 – 44.88 121.6 889.1 8564 – 224.6 60.84 44.49 42.85

(r = 256) NanGate 45 nm 9199 – 561.8 918.8 4488 40075 – 2811 459.7 224.6 201.5

UMC 65 nm 9487 5.035 11.79 87.79 847.5 – 126.0 59.01 43.39 42.42 –

TSMC 90 nm 9350 6.422 17.90 147.1 1438 – 160.7 89.61 73.62 72.02 –

Triad-LE NanGate 15 nm 10834 – 44.59 118.6 859.4 8266 – 223.1 59.39 43.00 41.36

(r = 256) NanGate 45 nm 9199 – 560.0 900.9 4309 38450 – 2802 450.8 215.6 192.4

UMC 65 nm 9487 4.985 11.53 85.27 822.2 – 124.7 57.74 42.66 41.16 –

TSMC 90 nm 9350 6.348 17.53 143.4 1400 – 158.8 87.77 71.17 70.01 –

Trivium-MB NanGate 15 nm 13635 – 57.93 185.5 1460 14218 – 257.7 82.51 64.99 63.25

(r = 288) NanGate 45 nm 12132 – 768.9 1470 8487 75790 – 3402 654.1 377.6 335.9

UMC 65 nm 12287 6.886 15.95 118.0 1138 – 153.2 70.99 52.49 50.66 –

TSMC 90 nm 12783 9.798 28.02 233.0 2283 – 217.9 124.6 103.6 101.6 –

TriviA NanGate 15 nm 15340 – 71.15 231.0 1829 17813 – 237.4 77.07 61.02 59.43

(r = 384) NanGate 45 nm 13440 – 839.1 1565 8835 59172 – 2799 522.5 294.7 196.1

UMC 65 nm 13892 8.869 23.24 184.9 1809 – 147.9 77.55 61.69 60.12 –

TSMC 90 nm 13867 11.94 37.59 326.1 3210 – 199.3 125.4 108.8 107.2 –

Kreyvium NanGate 15 nm 11043 – 50.69 143.5 1078 10425 – 250.5 71.81 53.95 52.16

(r = 288) NanGate 45 nm 9703 – 594.8 1015 5220 47308 – 2976 508.0 261.2 236.7

UMC 65 nm 10083 5.333 12.10 93.22 900.4 – 133.4 62.59 46.65 45.06 –

TSMC 90 nm 9927 7.128 20.06 165.5 1620 – 178.4 100.4 82.83 81.07 –

Subterranean-Deck NanGate 15 nm 12344 – 58.51 199.6 1505 15722 – 585.2 199.6 150.6 157.2

(r = 4) NanGate 45 nm 11170 – 706.6 940.1 3327 – – 7067 940.2 332.2 –

UMC 65 nm 11620 5.756 14.05 107.6 1003 – 575.7 140.1 107.7 103.1 –

TSMC 90 nm 11125 8.741 24.05 192.2 1930 – 874.2 240.6 192.3 193.0 –

Grain-128 NanGate 15 nm 8565 – 31.89 51.12 457.1 4401 – 645.1 103.5 92.65 89.71

(r = 64) NanGate 45 nm 7592 – 456.3 748.6 3671 – – 9238 1516 743.1 –

UMC 65 nm 7544 3.636 8.356 61.45 592.4 – 294.3 169.7 124.4 119.9 –

TSMC 90 nm 7512 5.411 15.30 126.6 1239 – 438.4 309.6 256.4 250.3 –

62 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

Acknowledgments
Subhadeep Banik is supported by the Swiss National Science Foundation (SNSF) through
the Ambizione Grant PZ00P2_179921. Bin Zhang is supported by the National Key
R&D Research Program Grant 2017YFB0802504, the National Natural Science Foundation
of China Grant 61572482 and the National Cryptography Development Fund Grand
MMJJ20170107.

References
[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,

Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 411–436. Springer,
Heidelberg, November / December 2015.

[BBR16] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring
energy efficiency of lightweight block ciphers. In Orr Dunkelman and Liam
Keliher, editors, SAC 2015, volume 9566 of LNCS, pages 178–194. Springer,
Heidelberg, August 2016.

[BDE+13] Lejla Batina, Amitabh Das, Baris Ege, Elif Bilge Kavun, Nele Mentens,
Christof Paar, Ingrid Verbauwhede, and Tolga Yalçin. Dietary recommenda-
tions for lightweight block ciphers: Power, energy and area analysis of recently
developed architectures. In Michael Hutter and Jörn-Marc Schmidt, editors,
Radio Frequency Identification - Security and Privacy Issues 9th International
Workshop, RFIDsec 2013, Graz, Austria, July 9-11, 2013, Revised Selected
Papers, volume 8262 of Lecture Notes in Computer Science, pages 103–112.
Springer, 2013.

[BIM+19] Subhadeep Banik, Takanori Isobe, Willi Meier, Yosuke Todo, and Bin Zhang.
Triad v1: A lightweight aead and hash function based on stream cipher. NIST
Lightweight Cryptography Project, 2019.

[BMA+18] Subhadeep Banik, Vasily Mikhalev, Frederik Armknecht, Takanori Isobe, Willi
Meier, Andrey Bogdanov, Yuhei Watanabe, and Francesco Regazzoni. Towards
low energy stream ciphers. IACR Trans. Symm. Cryptol., 2018(2):1–19, 2018.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs
for stream ciphers. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume
1976 of LNCS, pages 1–13. Springer, Heidelberg, December 2000.

[CCF+18] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A
practical solution for efficient homomorphic-ciphertext compression. Journal
of Cryptology, 31(3):885–916, July 2018.

[CCHN18] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul
Nandi. TriviA and uTriviA: two fast and secure authenticated encryption
schemes. Journal of Cryptographic Engineering, 8(1):29–48, April 2018.

[De 06] Christophe De Cannière. Trivium: A stream cipher construction inspired by
block cipher design principles. In Sokratis K. Katsikas, Javier Lopez, Michael
Backes, Stefanos Gritzalis, and Bart Preneel, editors, ISC 2006, volume 4176
of LNCS, pages 171–186. Springer, Heidelberg, August / September 2006.

Caforio et al. 63

[DMMR20] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann
Rotella. The subterranean 2.0 cipher suite. IACR Trans. Symm. Cryptol.,
2020(S1):262–294, 2020.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
278–299. Springer, Heidelberg, April 2009.

[HIJ+19] Yonglin Hao, Takanori Isobe, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo,
and Qingju Wang. Improved division property based cube attacks exploiting
algebraic properties of superpoly. IEEE Trans. Computers, 68(10):1470–1486,
2019.

[HJMM06] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A
stream cipher proposal: Grain-128. In Proceedings 2006 IEEE International
Symposium on Information Theory, ISIT 2006, The Westin Seattle, Seattle,
Washington, USA, July 9-14, 2006, pages 1614–1618. IEEE, 2006.

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against Trivium and Grain-128AEAD. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 466–495. Springer, Heidelberg, May 2020.

[HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formu-
lation of the division property: Revisiting degree evaluations, cube attacks,
and key-independent sums. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 446–476. Springer,
Heidelberg, December 2020.

[KDH+12] Stéphanie Kerckhof, François Durvaux, Cédric Hocquet, David Bol, and
François-Xavier Standaert. Towards green cryptography: A comparison of
lightweight ciphers from the energy viewpoint. In Emmanuel Prouff and
Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 390–
407. Springer, Heidelberg, September 2012.

[MB07] Alexander Maximov and Alex Biryukov. Two trivial attacks on Trivium.
In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, SAC 2007,
volume 4876 of LNCS, pages 36–55. Springer, Heidelberg, August 2007.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Recon-
sidering generic composition. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274. Springer,
Heidelberg, May 2014.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 250–279. Springer, Heidelberg, August 2017.

[TIHM18] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. IEEE Trans. Computers,
67(12):1720–1736, 2018.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and application
to simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS,
pages 357–377. Springer, Heidelberg, March 2016.

64 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 287–314. Springer, Heidelberg, April 2015.

[WHT+18] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved division property based cube attacks exploiting algebraic
properties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 275–305. Springer,
Heidelberg, August 2018.

A Trivium
The stream cipher was proposed by De Cannière and Preneel [De 06] and is an eSTREAM
portfolio member. The construction is specifically tailored to constrained hardware devices
and can thus be efficiently implemented on a small circuit area budget. It features a state
of 288 bits and key size of 80 bits alongside an initialization vector of the same length. At
the beginning of the initialization phase, the 80-bit secret key K = (k1, . . . , k80) and the
publicly known 80-bit initial vector IV = (iv1, . . . , iv80) are loaded into the internal state
(x1, . . . , x288). Subsequently, the state update function is run for 4 · 288 = 1152 iterations.
During encryption, the keystream bits zi are extracted from intermediate values of the
state update equations. Both the initialization procedure and the keystream routine are
shown in Algorithm 2.

Algorithm 2 Trivium
1: procedure Init(k, iv)
2: (x1, . . . , x93)← (k1, . . . , k80, 0, . . . , 0)
3: (x94, . . . , x177)← (iv1, . . . , iv80, 0, . . . , 0)
4: (x178, . . . , x288)← (0, . . . , 0, 1, 1, 1)
5: for i = 1 to 4 · 288 do
6: t1 ← x66 + (x91 · x92) + x93 + x171
7: t2 ← x162 + (x175 · x176) + x177 + x264
8: t3 ← x243 + (x286 · x287) + x288 + x69
9: (x1, . . . , x93)← (t3, x1, . . . , x92)

10: (x94, . . . , x177)← (t1, x94, . . . , x176)
11: (x178, . . . , x288)← (t2, x178, .., x287)

1: procedure KSG(x)
2: for i = 1 to N do
3: s1 ← x66 + x93
4: s2 ← x162 + x177
5: s3 ← x243 + x288
6: zi ← s1 + s2 + s3
7: t1 ← s1 + (x91 · x92) + x171
8: t2 ← s2 + (x175 · x176) + x264
9: t3 ← s3 + (x286 · x287) + x69

10: (x1, . . . , x93)← (t3, x1, . . . , x92)
11: (x94, . . . , x177)← (t1, x94, . . . , x176)
12: (x178, . . . , x288)← (t2, x178, .., x287)

B Proof of Lemma 1
We prove Lemma by the means of induction.

Base Case: Consider t1(r) in the original Trivium, whose recursive description is given
in Figure 6. We know that for r = 1 → 66(= X1

1), t1(r) can be written as functions of
depth 0 nodes of the circuit i.e. the state variables x1, x2, x3, . . . , x288, and it is easy to
see that all t1(r), r ∈ [1, 66] are perfect depth 1 trees. For r = 67, t1(r) is expanded as
t3(1) +x27 +x28 ·x29 +x105. Note that t3(1) is no longer a depth 0 node, and hence t1(67)
is not a perfect tree. Also consider a sightly modified form of Trivium in which Xf

2 = 62
(say). In this case the recursive definition of t1(r) is as follows:

t1(r) = t3(r − 66) + t3(r − 93) + [t3(r − 91) · t3(r − 92)] + t1(r − 62)

Now it is easy to see that t1(r) is a perfect depth 1 tree only upto r = 62, as t1(63) will
involve a t1(1) term which is no longer at depth 0. Thus the number of perfect depth
1 trees for t1(r) in a generalized Trivium circuit has to be the smaller of 66 and 62, i.e.
min

{
X`

1, X
f
2

}
. Does this also depend on the tap position of the two AND gates and the

Caforio et al. 65

final XOR term t3(r− 93)? The final XOR term must be tapped from the final location of
each register to ensure that the state update function is one-to-one. So numerically, Xop

j

has to be the length of the register Xj . Since X`
j is an intermediate location and Xop

j is
the final location of register j, we always have X`

j < Xop
j . If we select the tap locations for

the AND gates in the range (X`
j , X

op
j), it is easy to see that the perfect depth 1 trees only

occur till the smaller of X`
1 and Xf

2 . Even if the the tap location of one or both inputs to
the AND gate is less than X1

j , we can simply select the numerically smallest tap location
of register Xj as X`

j , since in terms of the circuit graph it does not make a difference if
X`
j is input to an XOR or an AND gate. However, here we have the AND taps strictly

in between X`
j and Xop

j and so the the actual locations do of the AND taps not make a
difference. Thus it is pretty easy to see base case for our recursive formula f1(Xj) = 0 and
g1(Xj) = min

{
X`
j , X

f
j+1

}
.

Inductive Step: Now let us assume the inductive hypothesis, i.e. gl, fl are as defined
in the Lemma statement for t = 1, 2, 3, . . . , l − 1. Consider the equation for t1(r) at
r = r0 = fl−1(X3) + Xop

1 and r = r0 + 1. For conciseness, denote by the symbol α the
value of fl−1(X3) and ∆ = Xop

1 −X`
1. It holds (note a1, a2 are the AND gate taps with

X`
1 < a1, a2 < Xop

1)

t1(r0) = t3(r0 −X`
1) + t3(r0 −Xop

1) + [t3(r0 − a1) · t3(r0 − a2)] + t1(r0 −Xf
2)

= t3(α+ ∆) + t3(α) + [t3(α+ (Xop
1 − a1)) · t3(α+ (Xop

1 − a2))]

+ t1(α+ (Xop
1 −X

f
2))

t1(r0 + 1) = t3(α+ ∆ + 1) + t3(α+ 1)

+ [t3(α+ 1 + (Xop
1 − a1)) · t3(α+ 1 + (Xop

1 − a2))] + t1(α+ 1 + (Xop
1 −X

f
2))

Note that by the inductive hypothesis, t3(α) corresponds to a depth l− 2 tree, whereas
t3(α+ 1) corresponds to a depth l − 1 tree. All other t3 terms in the above expressions
are depth l − 1 trees or greater by the inductive hypothesis. If t1(α+ (Xop

1 −X
f
2)) also

corresponds to a depth l − 1 tree, it is easy to see that r0 + 1 is the first value of r for
which t1(r) produces a perfect depth l tree. However that is always not the case. It may so
happen that t1(α+ (Xop

1 −X
f
2)) still corresponds to a depth l − 2 tree for certain specific

instances of the generic Trivium circuit. In such cases the value of r has to be equal to
u = fl−1(X1)+Xf

2 +1 to ensure that the t1 term in the expression for t1(r) also produces a
depth l−1 tree by the inductive hypothesis. This is true since t1(u−Xf

2) = t1(fl−1(X1)+1)
which corresponds to a depth l − 1 tree by the inductive hypothesis.

For t1(r) to definitely correspond to a depth l perfect tree both the depth conditions on
the above t3 and t1 nodes must be satisfied. This leads us to the easy conclusion that the
first value of r for which t1(r) is a perfect depth r tree is the maximum of fl−1(X3)+Xop

1 +1
and fl−1(X1) +Xf

2 + 1. Generalizing over all configurations of n-stage registers, we have

fl(Xj) = max
{
fl−1(Xj−1) +Xop

j , fl−1(Xj) +Xf
j+1

}
.

Now to prove the recursive expression for gl, consider again t1(r) for the generic Trivium
circuit for r = r1 = gl−1(X3) +X`

1 and r = r1 + 1. For conciseness, denote by the symbol

66 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

β the value of gl−1(X3). It holds

t1(r1) = t3(r1 −X`
1) + t3(r1 −Xop

1) + [t3(r1 − a1) · t3(r1 − a2)] + t1(r1 −Xf
2)

= t3(β) + t3(β −∆) + [t3(β −∆ + (Xop
1 − a1)) · t3(β −∆ + (Xop

1 − a1))]

+ t1(β −∆ + (Xop
1 −X

f
2))

t1(r1 + 1) = t3(β + 1) + t3(β + 1−∆)
+ [t3(β + 1−∆ + (Xop

1 − a1)) · t3(β + 1−∆ + (Xop
1 − a2))]

+ t1(β + 1−∆ + (Xop
1 −X

f
2))

By the inductive hypothesis t3(β + 1), no longer corresponds to a perfect tree of depth
l − 1. Assuming that t3(β − ∆), t3(β − ∆ + (Xop

1 − a1)), t3(β − ∆ + (Xop
1 − a1)) and

t1(β −∆ + (Xop
1 −X

f
2)) do correspond to perfect depth l− 1 trees, r1 = gl−1(X3) +X`

1 is
of course the largest value of r that produces depth l trees.

There are 2 assumptions made in the above proof which may not always hold for all
configurations of the generic Trivium circuit. The first is if t3(β −∆) does not correspond
to a perfect depth l − 1 tree (note if t3(β −∆) is not a perfect depth l − 1 tree, neither
of the AND terms will correspond to depth l − 1 trees since their index values are larger
than β −∆). The above happens when

β −∆ ≤ fl−1(X3)⇒ gl−1(X3)− fl−1(X3)− (Xop
1 −X`

1) ≤ 0

The above condition essentially means that the number of perfect depth l−1 trees for t3(r)
is less than or equal to Xop

1 −X`
1. This implies that the terms t3(r−X`

1) and t3(r−Xop
1) can

never be both of depth l − 1, which in turn implies that the expression for t1(r) can never
produce a depth l tree. In this case we can simply set gl(X1) to be some value less than or
equal to fl(X1) to indicate this impossibility. We can simply pick one of the expressions
for fl(X1), i.e. fl−1(X3) +Xop

1 for this purpose. Combining the two assumptions we can
write the new expression as fl−1(X3) +Xop

1 +
[
(gl−1(X3)− fl−1(X3))− (Xop

1 −X`
1)
]+

The second assumption was that t1 term also produces a perfect depth l − 1 tree. For
a generic Trivium circuit, this assumption may be false. The term t1(r −Xf

2) will produce
a depth l − 1 tree if r −Xf

2 ≤ gl−1(X1)⇒ r ≤ Xf
2 + gl−1(X1). Since we need both depth

conditions to be satisfied, we take minimum of the above two. Generalizing for all n stage
Trivium circuits we have

gl(Xj) = min
{
fl−1(Xj−1) +Xop

j +
[
(gl−1(Xj−1)− fl−1(Xj−1))− (Xop

j −X
`
j)
]+
,

gl−1(Xj) +Xf
j+1

}
,

This completes the proof.

C Trivium-LE(S) Security Analysis
Trivium-LE(S) is another low-energy variant of Trivium and results in around 25% lower
energy when compared with Trivium.

(X`
1, X

f
1 , X

op
1 ; X`

2, X
f
2 , X

op
2 ; X`

3, X
f
3 , X

op
3) = (96, 87, 99 ; 87, 93, 96 ; 75, 90, 93).

The tap location for AND gates is X`
i + 1 and X`

i + 2.

Security Analysis. We inherit the security of Trivium-LE(F) against the TMD tradeoff
attack because it does not exploit the tap location. Here, we discuss the security against

Caforio et al. 67

700 750 800 850 900 950 1,000 1,050
30

40

50

60

70

80

47

52

56
58

62

67

72
75
78
80

53

59

66

75

80

32

46 46

61 61

75 75

80

of rounds

d
eg
re
e

Upper bound on algebraic degree of fk(iv).

Trivium (original)

Trivium-LE(F)

Trivium-LE(S)

Figure 17: Increase in algebraic degree with respect to the number of initialization rounds.

the correlation attack, the Maximov/Biryukov’s guess-and-determine attack, and the cube
attack.
Linear Distinguishing Attack. On this parameter, the maximum linear correlation
is 2−48, and the required data is about 296 to distinguish the keystream from ideal one.
Compared to 2144 in Trivium or Trivium-LE(F), the security margin is very narrow. However,
it is still enough to achieve the claimed security, i.e., 80 bits, which is the same as Trivium.
Maximov/Biryukov’s Guess-and-Determine Attack. Similarly to the case for
Trivium-LE(F), we evaluated the number of collectable linear equations after guessing
some outputs of AND gates. In the scenario T1, the time complexity is c · 277.0503, where
37, 41, and 44 outputs of AND gates are guessed for each register. Considering c ≈ 216,
this attack never threatens the claimed security, i.e., 80 bits.
Cube Attack. We also investigated the increase in algebraic degree by using the bit-
based division property. Figure 17 shows the upper bound of the algebraic degree of fk(iv).
Trivium-LE(S) is clearly more vulnerable than Trivium and Trivium-LE(F) against the cube
attack. The degree of even 1000 rounds does not reach 80. In other words, we can attack
1000-round Trivium-LE(S) with the use of any 76-dimensional cube. The upper bound
reaches the full, i.e., 80, in 1050 rounds although the original Trivium reach the same level
in 840 rounds. In other words, the increase of the degree is about 25% slower because
1050/840 = 1.25. This is the main reason why we increase the number of rounds in the
initialization from 288× 4 = 1152 to 288× 5 = 1440.

D AEAD Using Trivium-LE(F) and Trivium-LE-MAC
In this section, we present an authenticated encryption with associated data (AEAD)
by combining Trivium-LE(F) and Trivium-LE-MAC with the so-called generic construc-
tion [NRS14], where the authenticated encryption with associated data can be constructed
by an IV-based symmetric-key cipher and a message authentication code (MAC). In our
case, Trivium-LE(F) is an IV-based symmetric-key cipher and Trivium-LE-MAC is a vecMAC
accepting two inputs, i.e., IV and message. We recommend the use of the N1 scheme due
to the parallelizable computation of the encryption and the MAC. However, to apply the
N1 scheme, we have two problems: the first is the use of multiple keys, and another is how
to involve associated data.

The first problem is the use of different keys for the encryption and the MAC, which is
necessary in the context of the provable security. We recommend the use of multiple keys if

68 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

possible, but as far as we evaluated, there is no attacks even if they use the same key for the
encryption and the MAC because the initialization of Trivium-LE(F) and Trivium-LE-MAC
is different.

For another problem, we need a vecMAC accepting three inputs, but Trivium-LE-MAC
accepts only two inputs. Namprempre et al also showed the generic method to construct
such a vecMAC from a normal MAC, but it calls a normal MAC several times [NRS14].
Such construction is not efficient for our case because the cost by the initialization of
Trivium-LE-MAC is relatively high. Instead, to realize such a vecMAC efficiently, we treat
a message m and an associated data ad as a single message with appropriate domain
separation. Specifically, we use the following map

encoder : (ad,m)→ (ad‖len(ad)‖m‖len(m)),

where len(ad) and len(m) are 7-byte values representing the byte length of ad and m,
respectively. This implies that associated data and message accepts at most 256 bytes.
Note that the AEAD only accepts byte strings and never accepts bit strings whose length is
not the multiple of 8. When encoder is injective, we never have two different (ad,m) which
are encoded to the same single message. To prove it, we confirm the decoder corresponding
to the encoder is uniquely determined. We assume a byte string x is the output of the
encoder. Moreover, len(x) denotes the byte length of x, and x[i] denotes the ith byte of x.
We first extract the last 7-byte of x and get the byte length of m, i.e.,

len(m) = (x[len(x)− 6]‖x[len(x)− 5]‖x[len(x)− 4]‖x[len(x)− 3]‖x[len(x)− 2]
‖x[len(x)− 1]‖x[len(x)].

Since the byte length of m is determined, we can extract a message as

m = (x[len(x)− 6− len(m)], . . . , x[len(x)− 6− 2], x[len(x)− 6− 1]).

We next extract the byte length of ad as

len(ad) = (x[len(x)− 6− len(m)− 6]‖ · · · ‖x[len(x)− 6− len(m)],

and the remaining (x[0], . . . , x[len(x) − 6 − len(m) − 6 − 1]) represents an associated
data. Since the decoder corresponding to the encoder is uniquely determined, encoder is
injective.

E Triad-LE
Triad-SC was proposed by Banik et al. [BIM+19] as a low energy alternative to Trivium. It
has a much smaller state size (256 bits) and aims to provide 112-bit security. It counters
guess and determine attacks by using one additional AND gate over and above the original
architecture of Trivium. It uses a 128-bit key arranged bytewise as (k[1], k[2], . . . , k[16])
and 96-bit IV (iv[1], iv[2], . . . , iv[12]), where each k[i], iv[j] are the ith key byte and jth IV
byte respectively. Algorithm 3 lists the update function of Triad-SC. It uses 1024 rounds
for initialization after the Key-IV setup.

To begin this section, we try to enumerate the number of perfect trees for a generic
Triad-SC architecture.

Definition 6. Denote by Triad(X, 3) a generic Triad-SC configuration composed of 3
chained registers (X1, . . . , Xn) such that X`

j is the register’s leftmost forward tap, Xf
j is a

feedback, Xop
j is the output tap and Y, Z are two additional non-linear taps that feed into

the output of register X1.

Caforio et al. 69

Algorithm 3 Triad-SC update routine.
(s1, . . . , s80)← (iv[1], k[5], 18, k[4], 18, k[3], 18, k[2], 170, k[1])
(s81, . . . , s168)← (iv[12], . . . , iv[2])
(s169, . . . , s256)← (k[16], . . . , k[6])
for i← 1 to N do

u← s68 + s80 + (s165 · s253)
v ← s144 + s168
w ← s236 + s256

if i > 1024 then
zi ← u+ v + w

t1 ← u+ (s73 · s79) + s146
t2 ← v + (s145 · s167) + s252
t3 ← w + (s245 · s255) + s74

(s1, . . . , s80)← (t3, s1, . . . , s79)
(s81, .., s168)← (t1, s81, .., s167)
(s169, ., s256)← (t2, s169, .., s255)

Corollary 1. Given an arbitrary, generic Triad(X, 3) circuit composed of 3 registers, the
total number of perfect unrolled strand trees S(T) in the fully unrolled setting is given by

S(T) =
3∑
j=1

S(Tj) =
3∑
j=1

3∑
l=1

(gl(Xj)− fl(Xj))+
,

where y+ = max{y, 0} and fl(Xj), gl(Xj) are recursively defined functions for 1 ≤ l ≤ 3
of the form

fl(Xj) =


max

{
fl−1(X3) +Xop

j , fl−1(X1) +Xf
2 , fl−1(X1) + Y,

fl−1(X2) + Z} , if j = 1
max

{
fl−1(Xj−1) +Xop

j , fl−1(Xj) +Xf
j+1

}
, otherwise.

gl(Xj) =



min
{
fl−1(X3) +Xop

1 +
[
(gl−1(X3)− fl−1(X3))− (Xop

1 −X`
1)
]+
,

gl−1(X1) +Xf
2 , gl−1(X1) + Y, gl−1(X2) + Z

}
, if j=1

min
{
fl−1(Xj−1) +X3

j +
[
(gl−1(Xj−1)− fl−1(Xj−1))− (Xop

j −X`
j)
]+
,

gl−1(Xj) +Xf
j+1

}
, otherwise.

such that f1(Xj) = 0 and g1(Xj) = min
{
X`
j , X

f
j+1

}
. The number of perfect unrolled

strand trees of depth t for the j-th strand is S(Tj)|depth=t = (gt(Xj)− ft(Xj))+.

Proof. The addition of an AND gate that feeds into the output of X1 can be regarded as
two feedback taps. As a result, the same reasoning from Proof B applies. This means that
two additional feedback terms are required for both fl(Xj) and gl(Xj), i.e., fj−1(X1) + Y
and gj−1(X1) + Y for tap Y , similarly fl−1(X2) + Z and gj−1(X2) + Z for tap Z.

E.1 Searching for More Energy-Efficient Parameters
We repeated the experiment that we did for generating energy-efficient candidates with
the Trivium architecture. Again since the search space for tap locations is too large we
focused on the following strategy.

A: We keep the multiple of 2 property of original Triad-SC (all linear taps are multiples of
2), for the same reason as in Trivium.

B: In Triad-SC, Y and Z were chosen to be equal to Xop
2 − 3 and Xop

3 − 3. Given the
search space is large we decided to stick to this.

70 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

Table 4: List of configurations and associated security parameters. ε represent maximum
linear bias. T is the complexity of guess and determine attack. c represents an additional
cost required to do Gaussian elimination to solve a set of linear equations to recover the
internal state. Y, Z were set to Xop

2 − 3, Xop
3 − 3 and one locations of the 3 and gates to

Xop
j − 1. Aj represents the location of the other tap of the 3 AND gates. The first row

represents the parameters for the original Triad-SC.
Parameters # Perfect Trees Max Bias G&D Complexity

X`
1 Xf

1 Xop
1 X`

2 Xf
2 Xop

2 X`
3 Xf

3 Xop
3 A1 A2 A3 − log2 ε log2 T

1 68 74 80 64 66 88 68 84 88 73 65 77 401 72 log2 c+ 163.477

2 68 76 80 64 84 88 78 74 88 73 67 85 469 72 log2 c+ 163.04

3 82 68 84 66 86 90 70 78 82 77 65 73 473 72 log2 c+ 161.812

C: For the taps for the other AND gates, one location was fixed at Xop
j − 1 (as in original

Triad-SC) and the other location was searched for exhaustively.

D: Under the condition where the output of each AND gate is approximated to 0, we
denote by ε the maximum correlation in a linear combination of keystream bits.
Moreover, we also denote by #ACTand the number of active AND gates. In Triad-SC,
#ACTand = 96 and ε = 2−72. We inherited this condition.

We first computed the number of perfect trees using the recursion formula above. We
thereafter chose candidates with minimum linear bias 2−72 and then check for security
against guess and determine attacks. Table 4 details the 2 best candidates we found.

Although the candidate in row 3, has the maximum number of perfect trees, it would
result in 3 registers of size 84, 90 and 82 bits each. The original Triad-SC had register
lengths that are multiples of 8, so that it could be deployed efficiently on 8-bit processors.
Since the candidate in row 2 satisfies this criterion, and also since the energy consumption
resulting from 469 and 473 perfect trees are almost equal, we select this candidate for
further analysis. We call this candidate Triad-LE. Note that we keep the key-IV setup
and initialization same as in the original Triad-SC. To round off this section we perform a
preliminary security analysis.

E.2 Security Analysis

Time-Memory-Data Trade-off Attack. In [BS00], the authors had mounted a table
based generic TMD tradeoff attack against stream ciphers for which the tradeoff curve
is TM2D2 = N2 with T ≥ D2 and P = N/D where T = Online time complexity, M =
Memory complexity, D = Data complexity, N = Cardinality of the set of internal states
and P= Offline Time complexity. From this can be easily seen that if K is the complexity
of exhaustive search against the same cipher then N ≥ K2 ensures that there does not
exist any point on the tradeoff curve for which both P and T are less than K. In other
words if the size of the internal state of the cipher is atleast twice the desired security level
in bits, then a TMD tradeoff attack can not be applied on it. We can see that Trivium,
Trivium-LE, Triad-SC and Triad-LE easily satisfy this condition.

However we do have to take into account the sampling resistance of Triad-LE too. It
can be verified that the sampling resistance of Triad-LE is R = 2−64. In that case the new
tradeoff curve will be TM2D2 = N2 with T ≥ R2D2 and P = N/D. It can be easily seen
that there does not exist any point on the tradeoff curve that has all P, T,D ≤ 2112.

Linear Distinguishing Attack. As we already discussed in Sect. E.1, the correlation
of the best linear distinguisher is 2−72 when outputs of AND gates is approximated to
0. While we unlikely to find better distinguisher due to the multiple-of-2 property, we
heuristically evaluated the case where these outputs are not approximated to 0. As we
expected, we cannot find better linear distinguishers.

Caforio et al. 71

Maximov and Biryukov’s Guess-and-Determine Attack. Maximov/Biryukov’s
guess-and-determine attack mainly exploits the multiple-of-3 property in Trivium. Therefore,
this attack cannot be applied to Triad-SC or Triad-LE directly. However, the same attack
strategy can be extended to configuration with the multiple-of-2 property. We first divides
the internal state into two sub states and consists of two phases. In the first phase, we
first guess one of two sub states at some time. In the second phase, assuming that the
sub state is guessed correctly, we next recover the rest of the bits, i.e., 256× 2 = 128 bits.
Similarly to the original attack, we guess outputs of any AND gates and collect keystream
bits, which are linearly represented by the internal state. Unlike Trivium, Triad-LE has an
additional AND gate and we need to guess these outputs. Moreover, the output of the
additional AND gate is always involved in the keystream, and it implies we cannot collect
any linear equation for free. As a result, by guessing 85, 85, 77, and 92 outputs of AND
gates are guessed, we can recover the 256-bit state, but the required keystream is 2159.04

and the time complexity is c · 2163.04.

Cube Attack. We also investigated the increase in algebraic degree by using the bit-based
division property. Note that it is not enough to achieve 112-bit security even if the degree
of fk(iv) is the full, i.e., 96. When the corresponding superpoly is low degree, 1-bit secret
key information can be efficiently recovered. Therefore, unlike Trivium-LE, we focus on
f(k, iv) and evaluated the increase in algebraic degree. Figure 18 shows the upper bound
of the algebraic degree, and it reaches degree 224 in 680 rounds. Considering that the full
rounds are 1024, Triad-LE has plenty of security margin.

300 400 500 600 700 800

56

112

168

224

18
29

42

61

90

129

177

224

16
30

41
55

90

119

167

224

of rounds

d
eg
re
e

Upper bound on algebraic degree of f(k, iv).

Triad-SC
Triad-LE

Figure 18: Increase in algebraic degree with respect to the number of initialization rounds.

72 Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

F Supplementary Plots

50 100 150 200 250
50

100

150

200

r

nJ
/1

.2
8

M
Bi

t

1 MHz
Regular

Restricted
Ultra

50 100 150 200 250
50

100

150

200

r

10 MHz

50 100 150 200 250
50

100

150

200

r

100 MHz

(a) NanGate 15 nm

50 100 150 200 250

4,000

4,500

5,000

5,500

r

nJ
/1

.2
8

M
Bi

t

1 MHz

50 100 150 200 250
600

800

1,000

1,200

1,400

1,600

r

10 MHz

50 100 150 200 250
200

400

600

800

1,000

1,200

r

100 MHz

(b) NanGate 45 nm

50 100 150 200 250
160

180

200

220

240

r

nJ
/1

.2
8

M
Bi

t

0.2 MHz

50 100 150 200 250
80

100

120

140

160

r

1 MHz

50 100 150 200 250
60

80

100

120

140

160

r

10 MHz

(c) UMC 65 nm

50 100 150 200 250

250

300

350

400

450

r

nJ
/1

.2
8

M
Bi

t

0.2 MHz

50 100 150 200 250

150

200

250

300

350

r

1 MHz

50 100 150 200 250
100

150

200

250

300

r

10 MHz

(d) TSMC 90 nm

Figure 19: Energy consumption Grain-128.

Caforio et al. 73

50 100 150 200 250 300

0.4

0.6

0.8

1

S(T)

m
W

10 MHz

50 100 150 200 250 300

4

6

8

10

S(T)

100 MHz

50 100 150 200 250 300

40

60

80

100

S(T)

1 GHz

(a) NanGate 15 nm

50 100 150 200 250 300

1.5

1.6

1.7

1.8

1.9

S(T)

m
W

1 MHz

50 100 150 200 250 300
3

4

5

6

7

8

S(T)

10 MHz

50 100 150 200 250 300
20

30

40

50

60

70

S(T)

100 MHz

(b) NanGate 45 nm

50 100 150 200 250 300
1.2

1.4

1.6

1.8

2

·10−2

S(T)

m
W

0.2 MHz

50 100 150 200 250 300
3

4

5

6

7

·10−2

S(T)

1 MHz

50 100 150 200 250 3000.2

0.3

0.4

0.5

0.6

S(T)

10 MHz

(c) UMC 65 nm

50 100 150 200 250 300

2

2.5

3

3.5

·10−2

S(T)

m
W

0.2 MHz

50 100 150 200 250 300

6 · 10−2

8 · 10−2

0.1

0.12

0.14

S(T)

1 MHz

50 100 150 200 250 300
0.4

0.6

0.8

1

1.2

1.4

S(T)

10 MHz

(d) TSMC 90 nm

Figure 20: Power trees Grain-128.

	Introduction
	Contributions
	Comparison with Other Works
	Outline

	Restricted Circuits
	Perfect Tree Energy Model
	Circuit to Tree
	Enumerating Perfect Trees
	Post-Routing

	Energy-Optimal Variants of Trivium
	Trivium-LE(F) and Trivium-LE(S) Note that the (F) and (S) stand for Fast and Slow respectively. This is because the (S) variant uses a larger number of initialization rounds.
	Trivium-LE-MAC
	Remark About Authenticated Encryption

	Generalization to Other Stream Ciphers
	Applicability to Grain-128
	Applicability to Subterranean-Deck
	Triad-LE

	Conclusion
	Trivium
	Proof of Lemma 1
	Trivium-LE(S) Security Analysis
	AEAD Using Trivium-LE(F) and Trivium-LE-MAC
	Triad-LE
	Searching for More Energy-Efficient Parameters
	Security Analysis

	Supplementary Plots

