
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 3, pp. 84–101. DOI:10.46586/tosc.v2021.i3.84-101

Improved Preimage Attacks on 3-Round
Keccak-224/256

Xiaoen Lin, Le He and Hongbo Yu(�)†

Department of Computer Science and Technology, Tsinghua University, Beijing, China
linxe17@tsinghua.org.cn, he-l17@mails.tsinghua.edu.cn,

yuhongbo@mail.tsinghua.edu.cn

Abstract. In this paper, we provide an improved method on preimage attacks of
standard 3-round Keccak-224/256. Our method is based on the work by Li and Sun.
Their strategy is to find a 2-block preimage instead of a 1-block one by constructing
the first and second message blocks in two stages. Under this strategy, they design a
new linear structure for 2-round Keccak-224/256 with 194 degrees of freedom left,
which is able to construct the second message block with a complexity of 231/262.
However, the bottleneck of this strategy is that the first stage needs much more
expense than the second one. Therefore, we improve the first stage by using two
techniques. The first technique is constructing multi-block messages rather than
one-block message in the first stage, which can reach a better inner state. The
second technique is setting restricting equations more efficiently, which can work in
3-round Keccak-256. As a result, the complexity of finding a preimage for 3-round
Keccak-224/256 can be decreased from 238/281 to 232/265.
Keywords: Keccak · SHA-3 · Preimage attack · Linear structure

1 Introduction
The SHA (Secure Hash Algorithms) is a family of cryptographic hash functions which
have been standardized as the FIPS (Federal Information Processing Standards) by NIST
(National Institute of Standards and Technology). Up to now, three generations of SHA
standard have been proposed. Among these generations, SHA-1 is not secure now because
collision resistance has been cracked by Wang et al. in [WY05]. Although SHA-2 is still
secure till now, its resemblance with SHA-1 has also aroused doubts in terms of security.
Therefore, NIST decided to launch a public competition to find a new hash function
standard in 2008, and the Keccak function won the competition finally.

Since the publication of Keccak in 2008, numerous researches have been conducted.
On collision attacks, most attacks depend on the differential trials. Dinur et al. [DDS12]
proposed target difference algorithm in 2012 which can linearize 1.5 rounds and connect to
2.5-round differential trails so that realistic collisions for 4-round Keccak-224/256 can be
found. After that, Qiao, Song, Guo et al. [GLL+20,QSLG17,SLG17] improved the method
by making full use of the degrees of freedom and finding better differential trails so that
realistic collisions for 5-round Keccak-224/256 can be found. On distinguishing attacks,
Dinur et al. gave the first cube distinguisher on the Keccak sponge function [DMP+14]
in 2014. In 2017, Huang et al. [HWX+17] developed the cube distinguisher and the
conditional cube tester to realize practical distinguishing attacks on 7-round Keccak sponge

†Corresponding Author

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-06-01 Accepted: 2021-08-01 Published: 2021-09-17

https://doi.org/10.46586/tosc.v2021.i3.84-101
mailto:linxe17@tsinghua.org.cn
mailto:he-l17@mails.tsinghua.edu.cn
mailto:yuhongbo@mail.tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/


Xiaoen Lin, Le He and Hongbo Yu 85

function under different capacities. Besides, there are many other attacks under different
security settings. We would not list them all here since they are less relevant to our work.

In this paper, we focus on preimage attacks of round-reduced Keccak. In [NRM11],
Naya-Plasencia et al. presented practical preimage analysis for 2-round Keccak-224/256.
In [GLS16], Guo et al. improved the technique of linear structure and presented preimage
analysis for up to 4-round Keccak. In [LS19], Li and Sun proposed a 2-block model
and a new linear structure with more degrees of freedom left. The bottleneck of their
strategy is that constructing the first block needs much more expense than the second
one (the details will be further discussed in Section 3). As a result, they found a trade-off
between the two blocks and succeeded in constructing the practical attacks on 3-round
Keccak-224. In addition, their method also performed well on 3-round Keccak-256 and
4-round Keccak-224/256. All the preimage cryptanalysis on round-reduced Keccak-224/256
above are summarized in Table 1.

Table 1: Summary of preimage cryptanalysis on round-reduced Keccak-224/256.

Round Instance Complexity Reference
2 Keccak-224 233 [NRM11]

a20 [GLS16]
2 Keccak-256 233 [NRM11]

a20 [GLS16]
a297 [GLS16]

3 Keccak-224 a238 [LS19]
a232 Section 4.1

a2192 [GLS16]
3 Keccak-256 a281 [LS19]

a265 Section 5.2
4 Keccak-224 a2213 [GLS16]

a2207 [LS19]
4 Keccak-256 a2251 [GLS16]

a2239 [LS19]
a Note: those results do not include the complexities for
solving the linear equation system (with a factor O(n3)
where n is the number of linear equations).

Our contributions. Based on Li and Sun’s work [LS19], we propose two techniques
to improve the first stage of their work which is the bottleneck of their algorithm. The
first idea is to construct multi-block messages rather than one-block message which can
improve the inner state better and better so that more degrees of freedom can be left in
the second stage. The second idea is to improve the setting of restricting equations so that
more restrictions can be satisfied within the same degrees of freedom. Using these new
techniques, we reduce the complexity of preimage attacks of 3-round Keccak-224/256 from
238/281 to 232/265.

Organization. We first give some preliminaries and notations about Keccak in Section
2. Then we introduce the related work in Section 3. In Section 4 and Section 5, we analyze
our techniques used in 3-round Keccak-224 and 3-round Keccak-256 respectively. Some
experimental results are presented in Section 6. At last, conclusions are summarized in
Section 7.



86 Improved Preimage Attacks on 3-Round Keccak-224/256

2 Preliminaries
2.1 Sponge Construction
The sponge construction is a new iterative hash function framework proposed by Bertoni et
al. [BDPA11]. As shown in Figure 1, it has two phases—absorbing phase and squeezing
phase. In the absorbing phase, it receives the input message M (after padding) by r bits
and mixes the inner state by function f repeatedly with an all “0” initial value (IV). In the
squeezing phase, it outputs r bits and mixes the inner state repeatedly until the output
reaches the required length `.

Figure 1: The sponge construction.

2.2 Keccak-f Permutation
The core of the sponge construction is permutation Keccak-f [b], and the case of b = r+c =
1600 is chosen by NIST as SHA-3 standards. So, we only focus on the case of b = 1600.

As shown in Figure 2, the 1600 bit inner state can be organized as 5× 5 64-bit lanes,
denoted as Ax,y,z, where 0 ≤ x, y ≤ 4, 0 ≤ z ≤ 63.

Figure 2: The Keccak-f state.

The Keccak-f consists of 24 rounds of permutation R, and each R consists of 5 steps
R = ι ◦ χ ◦ π ◦ ρ ◦ θ, where:

θ : Ax,y,z = Ax,y,z ⊕
⊕

i=0∼4
(Ax−1,i,z ⊕Ax+1,i,z−1)

ρ : Ax,y,z = Ax,y,(z−rx,y)

π : Ax,y,z = Ax+3y,x,z

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z

ι : A0,0,z = A0,0,z ⊕RCz



Xiaoen Lin, Le He and Hongbo Yu 87

In the formulas above, “ ⊕ ” denotes bit-wise XOR and “ · ” denotes bit-wise AND.
The indices of x and y are taken modulo 5, and the index of z is taken modulo 64. rx,y is
a constant as listed in Table 2, and RCz is a round-dependent constant which does not
affect our attacks.

Table 2: The offsets of ρ.

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14

2.3 SHA-3 Standard
NIST standardized several versions of SHA-3 [Dwo15] with parameters r = 1600− 2` and
c = 2`, where ` ∈ {224, 256, 384, 512}. As for the padding rules, the message M is padded
till the length is a multiple of r by concatenating a bit string of “10∗1” and “0110∗1” for
Keccak and SHA-3 respectively.

2.4 Notations
For a certain Keccak-f permutation, we use capital Greek letters Θ,P,Π,X, I with a
superscript to express the inner state after the corresponding step is executed. For example,
in the last Keccak-f permutation, the first 256 bits of I3 are the output of 3-round Keccak-
256. And we may use extra three indices in subscript to express the bits in the inner
state. Besides, we use “ ∗ ” to indicate all legal values. For example, A∗,y,z is a row, Ax,∗,z
is a column, Ax,y,∗ is a lane and A∗,∗,z is a slice. Especially, we use H to denote the
starting inner state of the last Keccak-f permutation (or the ending inner state I3 of the
penultimate Keccak-f permutation).

3 Related Work
In this section, we will briefly introduce Li and Sun’s work [LS19] about preimage attack
of 3-round Keccak-224/256.

3.1 Overall Idea
To obtain a 3-round Keccak-224/256 preimage, their work consists of three parts. First,
they construct a first message block with a complexity of 265/2161 which can let the inner
state H meet some restrictions that the second stage requests. Then, with the given inner
state H, they adopt a new linear structure which can match specified 224/256 output bits
of 3-round Keccak-224/256 with a complexity of 231/262. At last, they find a trade-off
between the two stages above, and reach an overall complexity of 238/281.

3.2 The Basic Allocating Approach
To be more specific, they prove a theorem (Theorem 1) as shown below. This paper just
cites the theorem and for the entire proof, please refer to [LS19].

Theorem 1 [LS19]. Let the messaged state1 be (a) in Figure 3, i.e. bits in Row 0, 2
are unknowns, and bits in Row 1, 3, 4 are constants such that

1“the messaged state” means the inner state before θ operation in the first round



88 Improved Preimage Attacks on 3-Round Keccak-224/256

I. ax,1,z = ax,3,z = ax,4,z ⊕ 1, and
II.
⊕

x,z ax,4,z = 0 2

𝒂𝟎,𝟏,𝒛

𝒂𝟎,𝟑,𝒛

𝒂𝟎,𝟒,𝒛

θ

1𝑠𝑡 𝑟𝑜𝑢𝑛𝑑

0 1 linear const

(𝑎) (𝑏)

Figure 3: The inner states about θ operation in the first round.

where ax,y,z stands for the linear or constant bit at the position (x, y, z), 0 ≤ x, y < 5,
and 0 ≤ z < 64. Then there exist constants sx,z’s with 0 ≤ x < 5 and 0 ≤ z < 64, such
that if assuming

⊕4
j=0 ax,j,z = sx,z, then the state (b) in Figure 3 can be obtained by

operating θ on (a). And hence, the KECCAK-f [1600] permutation can be linearized up to
2 rounds with 194 degrees of freedom left.

The application of Theorem 1 is shown in Figure 4. Suppose Condition_I and
Condition_II are satisfied. Their structure begins with 10 undetermined lanes (640
variables). Then in θ operations of the first two rounds, they add 320 and 128 linear
equations respectively (with one linear dependent equation in each round) to control
the column sums and prevent the variable diffusions. After that, the inner state will be
transformed as Figure 4 shows. In the third round, since operations θ, ρ, π are linear,
the inner state Π3 will still be linear with 640− 319− 127 = 194 degrees of freedom left.

θ π ∘ ρ ι ∘ χ

θ π ∘ ρ ι ∘ χ

1𝑠𝑡 𝑟𝑜𝑢𝑛𝑑

2𝑛𝑑 𝑟𝑜𝑢𝑛𝑑

0 1 linear const

Figure 4: The 2.5-round linear structure with 194 degrees of freedom left.

Next, they use the 194 degrees of freedom to match specified 224/256 output bits.
According to [LS19], each row with 4-bit output is corresponding to 4 linear equations,
while each row with 3-bit output is corresponding to 2 linear equations and 1 quadratic
equation. Let ij and oj with j = 0, 1, 2, 3, 4 be the input and output bits of χ, then:

o0 = i0 ⊕ (o1 ⊕ 1) · i2
o1 = i1 ⊕ (o2 ⊕ 1) · i3
o2 = i2 ⊕ (o3 ⊕ 1) · i4
o3 = i3 ⊕ (o4 ⊕ 1) · i0

2We use Condition_I and Condition_II to denote these two conditions in this paper.



Xiaoen Lin, Le He and Hongbo Yu 89

Moreover, if 4 consecutive output bits are known, the expression of o3 can be rewritten
as o3 = i3 ⊕ (i4 ⊕ 1) · (o0 ⊕ (o1 ⊕ 1) · o2). However, if only 3 consecutive output bits are
known, the quadratic expression can not be simplified.

Notice that each linear equation can be ensured by spending 1 degree of freedom, and
the rest can hold with a probability of 1

2 for each. As a result, using the 194 degrees of
freedom, they can construct the second message block matching specified 224/256 output
bits with a complexity of 231/262. Notice that there is an extra 21 complexity for 3-round
Keccak-224. That’s because the 224-bit digest contains 32 3-bit output rows while the
256-bit digest only contains 4-bit output rows. Thus, for Keccak-224, the 194 degrees of
freedom can only satisfy all 192 linear equations and 1 quadratic equation, bringing an
extra 21 complexity.

From Theorem 1 we can see that it is important to construct the first message block
which makes the inner state H meet Condition_I and Condition_II as efficient as possible.
Moreover, the first 1600 − 2n (n = 224/256) bits of any message state can be chosen
arbitrarily. So all ax,1,z = ax,4,z ⊕ 1 and part of ax,3,z = ax,4,z ⊕ 1 in Condition_I can
always be satisfied. Therefore, Condition_I can be simplified to ax,3,z = ax,4,z ⊕ 1, where
3/2 ≤ x ≤ 4 for Keccak-224/256.

To meet Condition_I and Condition_II in the starting inner state H of the second
message block, they use Guo et al.’s work [GLS16] to construct the first message block. As
shown in Figure 5 and Figure 6, by eliminating the propagation of the θ operation in
the first two rounds, the linear structure can fully linearize 2.5 rounds with 128/64 (for
Keccak-224/256) degrees of freedom left. Using these degrees of freedom, they set 2 bits
Π3

0,3,z and Π3
0,4,z of a certain slice Π3

∗,∗,z to be constant so that the 4 corresponding bits
X3

3,3,z, X3
3,4,z, X3

4,3,z and X3
4,4,z in X3

∗,∗,z are linear, obtaining 2 satisfiable restrictions in
Condition_I. In a word, they spend every 4 degrees of freedom satisfying 2 restrictions
of Condition_I, and we call it 4-for-2 Strategy in this paper (we improve this strategy
and propose a technique named 5-for-3 Strategy in Section 5). Under this strategy, they
can satisfy 64/32 restrictions in Condition_I, while there are 129/193 restrictions of two
kinds of conditions in total. So they need to enumerate 265/2161 times to meet all the rest
restrictions. In summary, under the strategy in [LS19], the first message block can be fully
constructed with a complexity of 265/2161.

θ π ∘ ρ ι ∘ χ

θ π ∘ ρ ι ∘ χ

θ π ∘ ρ

𝜫𝟎,𝟑,∗
𝟑

𝜫𝟎,𝟒,∗
𝟑

ι ∘ χ

Χ𝟑,𝟑,∗
𝟑 Χ𝟑,𝟒,∗

𝟑

Χ𝟒,𝟑,∗
𝟑 Χ𝟒,𝟒,∗

𝟑

1𝑠𝑡 𝑟𝑜𝑢𝑛𝑑

2𝑛𝑑 𝑟𝑜𝑢𝑛𝑑

3𝑟𝑑 𝑟𝑜𝑢𝑛𝑑

0 1 linear const unconcerned quadratic

Figure 5: The 2.5-round linear structure for 3-round Keccak-224.



90 Improved Preimage Attacks on 3-Round Keccak-224/256

θ π ∘ ρ ι ∘ χ

θ π ∘ ρ ι ∘ χ

θ π ∘ ρ

𝜫𝟎,𝟑,∗
𝟑

𝜫𝟎,𝟒,∗
𝟑

ι ∘ χ

Χ𝟑,𝟑,∗
𝟑 Χ𝟑,𝟒,∗

𝟑

Χ𝟒,𝟑,∗
𝟑 Χ𝟒,𝟒,∗

𝟑

1𝑠𝑡 𝑟𝑜𝑢𝑛𝑑

2𝑛𝑑 𝑟𝑜𝑢𝑛𝑑

3𝑟𝑑 𝑟𝑜𝑢𝑛𝑑

0 1 linear const unconcerned quadratic

Figure 6: The 2.5-round linear structure for 3-round Keccak-256.

3.3 The Trade-Off of Allocating Approach
It is obvious that the bottleneck is constructing the first message block. So, they tolerate
nI pairs of bits (ax,3,z and ax,4,z for some x and z) not satisfying Condition_I which can
reduce the complexity greatly. However, as shown in Figure 7, this causes quadratic bits
in the inner state X2 of the second stage. To eliminate the effects of these quadratic bits,
each pair of bits that does not meet Condition_I will cost another 1 degree of freedom
to set a linear bit to be constant (the orange square). So the overall complexity becomes
265

C
nI
65

+ 231+nI/ 2161

C
nI
161

+ 262+nI , reaching a trade-off complexity of 238/281 (nI = 7/19) for
3-round Keccak-224/256.

θ π ∘ ρ ι ∘ χ

θ π ∘ ρ ι ∘ χ

1𝑠𝑡 𝑟𝑜𝑢𝑛𝑑

2𝑛𝑑 𝑟𝑜𝑢𝑛𝑑

0 1 linear const linear, need to be const quadratic

𝑆𝑙𝑖𝑐𝑒 𝑧 𝑆𝑙𝑖𝑐𝑒 𝑧 𝑆𝑙𝑖𝑐𝑒 [𝑧 + 8] 𝑆𝑙𝑖𝑐𝑒 [𝑧 + 8]

𝑆𝑙𝑖𝑐𝑒 [𝑧 + 8] 𝑆𝑙𝑖𝑐𝑒 [𝑧 + 8] 𝑆𝑙𝑖𝑐𝑒 [𝑧 + 18] 𝑆𝑙𝑖𝑐𝑒 [𝑧 + 18]

Figure 7: A case of effects caused by one unsatisfied restriction of Condition_I.

4 Improved Preimage Attack on 3-Round Keccak-224
In this section, we will analyze preimage cryptanalysis on 3-round Keccak-224. We will
discuss a technique named Iterating Strategy, which can provide a better inner state H
(satisfying more restrictions under the same complexity) for the second stage.



Xiaoen Lin, Le He and Hongbo Yu 91

4.1 Iterating Strategy
Li and Sun’s strategy [LS19] uses two message blocks corresponding to the two stages.
And the goal of the first stage is to reach an inner state H which meets Condition_II
and as many restrictions of Condition_I as possible. However, if we construct multi-block
messages rather than one-block message to implement the same effect in the first stage,
the complexity can be further decreased.

For Keccak-224, as shown in Figure 8, we do not spend the degrees of freedom in the
second message block matching the output bits directly, but we spend them restricting
more opposite pairs of bits (satisfy some restrictions of Condition_I) as the first message
block does. Similarly, we use the third message block to restrict more opposite pairs of bits
as the first two message blocks do. Iteratively, there will be more and more opposite pairs
of bits in each inner state H, which means more and more restrictions will be satisfied.
After a good-enough inner state H is found, we construct the last message block matching
the target output bits. And we get the entire preimage eventually.

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

Q
`
D

Q
`
D

Q
`
D

second 
message 

block

third 
message 

block

last 
message 

block

⊕

Q
`
D

θ

⊕

θ

Q
`
D ⊕

θ

Q
`
D

……

0

1

linear

fixed

restricted, with the 
color darker the more 
conditions satisfied

the color lighter the 
fewer bits are 1

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

Q
`
D ⊕

θ

unconcerned

Figure 8: Iterating Strategy on 3-round Keccak-224. (R = ι ◦ χ ◦ π ◦ ρ ◦ θ)

The overall complexity of improved preimage attacks on 3-round Keccak-224 is analyzed
as follows.

For each new message block in the first stage, we must satisfy Condition_II randomly
with a complexity of 21. Suppose that there are k restrictions of Condition_I which are
not fulfilled in the previous message block. Then we need to spend k degrees of freedom
eliminating the effects of quadratic bits in X2, and there remain 194−k degrees of freedom.
Within these degrees of freedom, we spend

⌊ 194−k
4
⌋
× 4 of them on satisfying

⌊ 194−k
4
⌋
× 2

restrictions of Condition_I via 4-for-2 Strategy (one more restriction can be satisfied if
there exactly remain 3 degrees of freedom). Therefore, we can ensure at least

⌊ 194−k
4
⌋
× 2

out of 128 restricting equations. If we iterate once and want to get the new message block
with k′ (k′ ≤ 128−

⌊ 194−k
4
⌋
× 2) restrictions of Condition_I not be fulfilled, then we need

to enumerate 21 × (2128−b 194−k
4 c×2)÷ (Ck′

128−b 194−k
4 c×2) times in average.



92 Improved Preimage Attacks on 3-Round Keccak-224/256

A possible iterating process is listed in Table 3.

Table 3: A possible iterating process of 3-round Keccak-224 via Iterating Strategy.

message block id k k′ complexity
# 1 128 35 29.71

# 2 35 14 211.23

# 3 14 10 210.18

# 4 10 9 210.51

# 5 9 8 212.15

# 6 8 7 214.01

# 7 7 5 218.48

# 8 5 4 219.50

# 9 4 3 222.45

#10 3 2 225.87

#11 2 1 228.00

2 0 233.00

After an 11-block iteration, we get an inner state H which satisfies Condition_II
and most restrictions of Condition_I (except 1 restriction) with a complexity less than
229. Considering the padding rules, we need to ensure H3

2,3,63 = H3
2,4,63 with an extra

complexity of 21. Totally, we get the inner state H with a complexity less than 229+1 = 230.
Finally, we enumerate the 12th message block 2224+1−194+1 = 232 times (the first “1” is
for 1 quadratic equation, and the second “1” is for 1 unsatisfied restriction) to get an
entire preimage of 3-round Keccak-224. The overall complexity is 232. Besides, we can get
an inner state H which satisfies all restrictions of Condition_I and Condition_II with a
complexity of 233 (the experimental results are presented in Section 6).

5 Improved Preimage Attack on 3-Round Keccak-256
Improved preimage attacks on 3-round Keccak-256 will be analyzed in this section. In
addition to the technique of Iterating Strategy, we will discuss another technique named
5-for-3 Strategy which can make better use of the degrees of freedom in the first stage.

5.1 Iterating Strategy

For Keccak-256, the only differences are the number of output bits and the number of
restrictions of Condition_I, so the Iterating Strategy can also be used in preimage attack
on 3-round Keccak-256 directly as shown in Figure 9.

For each new message block in the first stage, we must satisfy Condition_II randomly
with a complexity of 21 as well. We still use symbols k and k′ to express the number
of unsatisfied restrictions of Condition_I in the previous and current message block
respectively. Then k degrees of freedom will be spent on eliminating the effects of quadratic
bits in X2 with 194 − k degrees of freedom left. However, there are as many as 192
restrictions of Condition_I while we still only satisfy

⌊ 194−k
4
⌋
× 2 of them. Therefore, if we

iterate once for the new message block with k′ restrictions of Condition_I not be fulfilled,
we need to enumerate 21 × (2192−b 194−k

4 c×2)÷ (Ck′

192−b 194−k
4 c×2) times in average.



Xiaoen Lin, Le He and Hongbo Yu 93

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

Q
`
D

Q
`
D

Q
`
D

second 
message 

block

third 
message 

block

last 
message 

block

⊕

Q
`
D

θ

⊕

θ

Q
`
D ⊕

θ

Q
`
D

……

0

1

linear

fixed

restricted, with the 
color darker the more 
conditions satisfied

the color lighter the 
fewer bits are 1

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

Q
`
D ⊕

θ

unconcerned

Figure 9: Iterating Strategy on 3-round Keccak-256. (R = ι ◦ χ ◦ π ◦ ρ ◦ θ)

A possible iterating process is listed in Table 4.

Table 4: A possible iterating process of 3-round Keccak-256 via Iterating Strategy.

message block id k k′ complexity
#1 192 80 28.97

#2 80 20 258.45

#3 20 10 262.14

#4 10 8 263.56

#5 8 7 267.10

After a 5-block iteration, we get an inner state H which satisfies Condition_II and most
restrictions of Condition_I (except 7 restrictions) with a complexity less than 268. And to
deal with the padding rules, we need to ensure H3

1,3,63 = H3
1,4,63 with an extra complexity

of 21. Totally, we get the inner state H with a complexity less than 268+1 = 269. Finally,
we enumerate the 6th message block 2256−194+7 = 269 times to get an entire preimage of
3-round Keccak-256. The overall complexity is 269.

5.2 5-for-3 Strategy
Comparing with Keccak-224, Keccak-256 has one more type of Condition_I (x = 2). Due
to the limitation of linearization, we totally ignore this type of restrictions. Surprisingly,
by spending one more degree of freedom for a slice, we can satisfy one more restriction of
type x = 2, which is more efficient.

Consider the two slices Π3
∗,∗,z and X3

∗,∗,z (we can use X3
∗,∗,z to replace I3

∗,∗,z since the
last two rows never change after ι operation). In order to meet Condition_I, we need to
satisfy that:



94 Improved Preimage Attacks on 3-Round Keccak-224/256


X3

2,3,z ⊕X3
2,4,z = 1

X3
3,3,z ⊕X3

3,4,z = 1
X3

4,3,z ⊕X3
4,4,z = 1

(1)

From the χ operation Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z, we have:
Π3

2,3,z ⊕ (Π3
3,3,z ⊕ 1) ·Π3

4,3,z ⊕Π3
2,4,z ⊕ (Π3

3,4,z ⊕ 1) ·Π3
4,4,z = 1

Π3
3,3,z ⊕ (Π3

4,3,z ⊕ 1) ·Π3
0,3,z ⊕Π3

3,4,z ⊕ (Π3
4,4,z ⊕ 1) ·Π3

0,4,z = 1
Π3

4,3,z ⊕ (Π3
0,3,z ⊕ 1) ·Π3

1,3,z ⊕Π3
4,4,z ⊕ (Π3

0,4,z ⊕ 1) ·Π3
1,4,z = 1

(2)

To ensure the satisfaction of equations (2), we add 5 linear equations on Π3:
Π3

0,3,z = 1
Π3

0,4,z = 1
Π3

2,3,z ⊕Π3
2,4,z = Π3

3,3,z

Π3
3,3,z = Π3

3,4,z

Π3
4,3,z ⊕Π3

4,4,z = 1

(3)

To sum up, we spend every 5 degrees of freedom on satisfying 5 linear equations so
that 3 restrictions of Condition_I will also be satisfied. We name this strategy 5-for-3
Strategy. Then for Keccak-256, the 5-for-3 Strategy can take the place of 4-for-2 Strategy
as shown in Figure 10.

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

Q
`
D

Q
`
D

Q
`
D

second 
message 

block

third 
message 

block

last 
message 

block

⊕

Q
`
D

θ

⊕

θ

Q
`
D ⊕

θ

Q
`
D

……

0

1

linear

fixed

restricted, with the 
color darker the more 
conditions satisfied

the color lighter the 
fewer bits are 1

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

𝑅 ∘ 𝑅 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌

Q
`
D ⊕

θ

unconcerned

Figure 10: Iterating Strategy via 5-for-3 Strategy on 3-round Keccak-256. (R = ι◦χ◦π◦ρ◦θ)

The overall complexity of improved preimage attacks on 3-round Keccak-256 via
Iterating Strategy and 5-for-3 Strategy is analyzed as follows.

We satisfy Condition_II with a complexity of 21. And we spend k degrees of freedom
eliminating the effects of quadratic bits in X2 and there remain 194− k degrees of freedom.
Next, we spend

⌊ 194−k
5
⌋
× 5 degrees of freedom satisfying

⌊ 194−k
5
⌋
× 3 restrictions of

Condition_I. Suppose that each of the rest 192−
⌊ 194−k

5
⌋
× 3 restrictions of Condition_I



Xiaoen Lin, Le He and Hongbo Yu 95

will fulfil with a probability of 1
2 . Then the probability that exactly k′ restrictions not be

fulfilled is (Ck′

192−b 194−k
5 c×3)÷ (2192−b 194−k

5 c×3). Taking into account Condition_II, we are

expected to enumerate 21 × (2192−b 194−k
5 c×3)÷ (Ck′

192−b 194−k
5 c×3) times to get a new inner

state.
A possible iterating process is listed in Table 5.

Table 5: A possible iterating process of 3-round Keccak-256 via Iterating Strategy and
5-for-3 Strategy.

message block id k k′ complexity
# 1 192 91 25.49

# 2 91 48 211.97

# 3 48 41 28.31

# 4 41 37 210.23

# 5 37 35 210.80

# 6 35 33 212.65

# 7 33 32 212.38

# 8 32 31 213.40

# 9 31 30 214.49

#10 30 27 218.18

#11 27 25 219.32

#12 25 21 225.67

#13 21 10 248.62

#14 10 5 260.12

#15 5 4 261.33

#16 4 3 262.78

After a 16-block iteration, we get an inner state H which satisfies Condition_II and
most restrictions of Condition_I (except 3 restrictions) with a complexity less than 263.
And to deal with the padding rules, we need to ensure H3

1,3,63 = H3
1,4,63 with an extra

complexity of 21. Totally, we get the inner state H with a complexity less than 263+1 = 264.
Finally, we enumerate the 17th message block 2256−194+3 = 265 times to get an entire
preimage of 3-round Keccak-256. The overall complexity is 265. The experimental results
of the first 12 message blocks are presented in Section 6.

6 Experiment
We will present the experimental results in this section. First, we will show the results of
preimage attacks on 3-round Keccak-224 including the two stages. Next, we will show the
results of the first stage of preimage attacks on 3-round Keccak-256.

Results of Keccak-224. In the first stage, we run 400 processes on 2.50 GHz CPU
for about 2 hours to get the results. According to our experiment, solving a linear
equation system costs about 219.3 cycles in average. So, the expected costs of getting
the results are 233 × 219.3 = 252.3 cycles. Meanwhile, the experimental result costs
400× 2.5× 230 × 7200 = 252.78 cycles, which is in line with expectations.

The experimental results consist of 11 message blocks, and the produced inner state H
can meet all 128 restrictions of Condition_I as well as Condition_II and the padding rules.



96 Improved Preimage Attacks on 3-Round Keccak-224/256

Due to the limitation of space, the 11 message blocks together with the last message block
are listed in Appendix A. Here we only list part of the results in Table 6.

Table 6: The inner state H (in little-endian order).

the inner state after 11 message blocks
e8607ad31bf82c29 108f3f79af33a40b 91f9fc271728393f 1312a1a67d97af82 d2d7f7468979007b
ee14a076f8c3956a 0917f9faceecfc18 b0ba65b1a2889be7 fd54b7280431cf9d 7ff153da60d37e49
03cbf192382c2826 877d2d5fdf9542a2 036d316b1bd49c02 ce3683a1e78c9dd2 3c3ffc6c8dbfc786
0c321c19a083c89f 2a4f2a6d8fa38c09 410eea37f6cf19f5 f806a2ff56a7105a 410a3228e0868a50
fd255898fbbae50c e5e3b70a10e1acac 5edc01abb491bd9e 07f95d00a958efa5 bef5cdd71f7975af

XOR values of restrictions of Condition_I
–––––––––––––––– –––––––––––––––– –––––––––––––––– ffffffffffffffff ffffffffffffffff

Using this inner state H, we get a preimage matching 224-bit all ‘0’ digest in the second
stage (we use the code published in [LS19] to get the preimage with an NVIDIA GTX
1080 Ti card for around 10 hours). The results are listed in Table 7.

Table 7: The last message block and the 3-round digest (in little-endian order).

the 12th (last) message block
94cbfb3a690a8d98 04a85c22dab8e6b0 8f0cfb9b0c442bd2 50e15a0c65acf5ed 04ace5f5db4c6d9d
ecce0711fc868f99 130bb10f21f2af4b 11999be5e9e6d986 055215d75296dfc7 3efb61f28055f419
b4432a530ccb79d0 8c966bcac722ad59 5549925e1d71107d a73a1343cd3689de a334a0e63f0cc6e4
0ee8bb7ea4c6d26c 3053629860bddf5a e02d1463bda15b94 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

3-round digest
0000000000000000 0000000000000000 0000000000000000 00000000

Results of Keccak-256. We run 200 processes on 2.50 GHz CPU for 1 hour to get the
results of the first stage (we get four results satisfying 171 restrictions, and we only present
one of them). According to our experiment, solving a linear equation system costs about
220.6 cycles in average. So, the expected costs to get four results are 4×225.67×220.6 = 248.27

cycles. Meanwhile, the experimental result costs 200 × 2.5 × 230 × 3600 = 250.78 cycles,
which is roughly in line with expectations.

The experimental results consist of 12 message blocks, and the produced inner state H
can meet 171 restrictions of Condition_I as well as Condition_II and the padding rules.
The entire 12 message blocks are listed in Appendix B. Here we only list the inner state H
in Table 8.

Table 8: The inner state H (in little-endian order).

the inner state after 12 message blocks
2765917b3a69a027 babfba7f5b4b9e9b 8e8e9da01404fefe f436e5591cac135b 3ac10eb1fc266a3f
1f9179d78612d85a daa6ac87f59b5c9b 98faf46dd3916d84 31262adedde125d1 92d3a6ef9e96d541
d0ad46049bf7e2f7 d9eed66f20681de6 608e0871b2bd46c2 4201125674bca08d 64f129f30c304db7
effa5f9f4e707313 6d7a0c483758079d 69b60e60ca1b52f2 e766493834523982 17c7ef107de53f8f
af968f7afc60c504 ae02837a7c48ec83 9649f1df3cacac07 1899b6c749adc25d e83810efe292d1d8

XOR values of restrictions of Condition_I
–––––––––––––––– –––––––––––––––– ffffffbff6b7fef5 ffffffff7dfffbdf ffffffff9f77ee57



Xiaoen Lin, Le He and Hongbo Yu 97

7 Conclusion
In this paper, we provide an improved preimage cryptanalysis on 3-round Keccak-224/256
based on the work of Li and Sun. The main idea is to improve the first stage which is the
bottleneck of their work. For this goal, two techniques are proposed:

• We propose Iterating Strategy which can provide more degrees of freedom by using
more than two message blocks.

• We propose 5-for-3 Strategy which can satisfy more restrictions within the same
degrees of freedom.

Using these techniques, we decrease the complexity of finding the restricted inner
state. After trading off, the total complexity is decreased as well. It is expected that the
complexity of preimage attacks on 3-round Keccak-224/256 can be decreased into 232/265.

It is noted that our techniques are still far from threatening the security of other Keccak
variants or more rounds. Larger digest versions use one-block message framework [GLS16]
which depend on the all ‘0’ IV rather than an inner state with some specific conditions. As
for the attack with more than 3 rounds [LS19], the bottleneck is in the second stage which
we do not optimize. However, our techniques may be applied when some new attacks are
proposed.

Acknowledgments
This work was supported by the National Key Research and Development Program of
China (Grant Nos. 2017YFA0303903 and 2018YFB0803405). We are grateful to Yao Sun
and Ting Li for their help of calculating the second-stage results of the preimage attacks
on 3-round Keccak-224.

References
[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-

tographic sponge functions, 2011.

[DDS12] Itai Dinur, Orr Dunkelman, and Adi Shamir. New attacks on Keccak-224 and
Keccak-256. In FSE 2012, volume 7549 of LNCS, pages 442–461. Springer,
Heidelberg, 2012.

[DMP+14] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Practical complexity cube attacks on round-reduced keccak sponge
function. IACR Cryptol. ePrint Arch., 2014:259, 2014.

[Dwo15] M. Dworkin. Sha-3 standard: Permutation-based hash and extendable-output
functions. 2015.

[GLL+20] Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao, and Ling
Song. Practical collision attacks against round-reduced SHA-3. Journal of
Cryptology, 33(1):228–270, 2020.

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to
cryptanalysis of round-reduced Keccak. In ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 249–274. Springer, Heidelberg, 2016.



98 Improved Preimage Attacks on 3-Round Keccak-224/256

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional cube attack on reduced-round Keccak sponge function. In
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 259–288. Springer,
Heidelberg, 2017.

[LS19] Ting Li and Yao Sun. Preimage attacks on round-reduced Keccak-224/256
via an allocating approach. In EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 556–584. Springer, Heidelberg, 2019.

[NRM11] María Naya-Plasencia, Andrea Röck, and Willi Meier. Practical analysis of
reduced-round Keccak. In INDOCRYPT 2011, volume 7107 of LNCS, pages
236–254. Springer, Heidelberg, 2011.

[QSLG17] Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New collision attacks
on round-reduced Keccak. In EUROCRYPT 2017, Part III, volume 10212 of
LNCS, pages 216–243. Springer, Heidelberg, 2017.

[SLG17] Ling Song, Guohong Liao, and Jian Guo. Non-full sbox linearization: Applica-
tions to collision attacks on round-reduced Keccak. In CRYPTO 2017, Part
II, volume 10402 of LNCS, pages 428–451. Springer, Heidelberg, 2017.

[WY05] XiaoyunWang and Hongbo Yu. How to break MD5 and other hash functions. In
EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer, Heidelberg,
2005.

A One Instance of Preimage of 3-Round Keccak-224

Table 9: One instance of preimage of 3-round Keccak-224 (in little-endian order).

the 1st message block
e70b144e6be90cb8 19dcf87383f85c33 9304bc275c51774d 748e51e030d3a5f0 d84a88aeed0d026c
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
b25e411b3ebc59ed 4c89ad26d6ad0966 c651e97209042218 de24fb4a9a790f5a 72e0220447a7a8c6
ffffffffffffffff ffffffffffffffff ffffffffffffffff 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 2nd message block
126c0858bd87808f d169a3a2b42a7d87 236a463ebcfa1e72 b575a7f6a25448b3 67b053a68d0e5d68
b571ba98044d13ef d11d3181c1658d22 0b97e54a9e4561d1 23f4195bcf025054 58c064b300430101
58dd068893abacac 4192a6bf207e38f8 2fb0ef20c7d2b44e a9ac8c4012aa0bb3 99718c55c10d45b7
2e9ea20a92420435 171e69bc10dcb8d5 4b2994a22b987322 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 3rd message block
29cdbbf36beae8b1 4ed14c7c084d7542 88a82f933c29b2fa eb106ddd368c5079 072dccfab5cac97e
690bc81515956d06 06857b25ca1dbfa1 d8e4ebd52a84cabe feae97e22572674b df5e1223a7b9dae3
593163e38b1ffcfd 36b9db4640b1ae8f 516696d5d487b5a3 16109192752222d5 08a012a7e6fcbe84
e471a94872d60abd 23414a4e0ee274d0 58c49b3f3bcb10e3 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 4th message block
b8f14d68c2466398 b04bec7bf706651b cc816d641c44d7f4 6e7791a6de6aebdb bc3621710c563787
f1114ed799c15859 1159303eb53d1904 a43da120f9a496ce 79e6753ca0d56ef1 a4833be79aa1ebca
79fea00268a47847 86cc61404b825937 9daeb7376181dfbf d5b10848d85c23cd ee2745175c70a401
2cad0bf77d69c08c 8a0ddc71a2026415 e6f88b6646072178 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000



Xiaoen Lin, Le He and Hongbo Yu 99

the 5th message block
5b0f71376d3a70ba cd2739c5fadda85a 0b9ddf9bbbe51bc2 aa8f5604e72cca04 327b2859ef99fac4
bfbc34703411a2fa 8fcc4d914af0b3f2 546384b82efe91e4 519bd2ef4eeaf985 14aeaa231610f348
3c3105d79f3bfd80 939766c39a837c76 bfd5be0ef5f69520 722d2793f2318895 d905b7527c7f5902
08fe2e665d7dd3a6 6748247fd85ceae3 0d32f9c5ed6965c4 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 6th message block
feb58371dfcf2216 89c766f532b8316b e85e903bffc3cc2f d1df32dc334cedc7 4d001955adcc0ddd
b1e9642ae989c7a6 f09b69513963a013 4007d09344a0857e 067337a7e954a153 297c3064bec54c68
224d2a3c8bfb8952 abeda9614102927d 9002f20550263063 3ffe6c48d14fa3c8 fc3a4f0cdd601b65
08b0ea7424822299 c081496ac3cd5a4b 4c0eeff16df70d04 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 7th message block
09a6de6d57941573 0d04af2a9e8396c2 0e8359e5ef304860 de97db39e8c40760 8e51fce527607ea6
9581e722d724a6dd f883a4f03c806a42 c776a9bd3f2ac6be b2eb552628967520 7e9a02670e4b3363
56ddbafd17ad6a6a 5f30fcf2a6da8f3c 0ccfb643ade5d88b 92bb34d46adb073a ce5f115897805146
e8ede2750bc647b0 1e9aee7ff5049662 3a5f971686d56a0c 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 8th message block
c3717eb68e997064 f1955c85f149fb75 d012b8cbaea66317 240e292c3a0f9581 d95fa140d7c9b6c2
5aa977ee563d65f5 1381fa5dc4027683 8afb2ba571d7ed3d af03d7e0886a7608 7dd6eca4b971a63a
7f3be7d88dfee519 06cb619412ee1786 c8d02210a57753be 7dddabe802cc0064 29117733d884d79d
5987eedb1e90e223 6621ba073436c820 08d29253cb32150a 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 9th message block
fa2f1364cf301a4e b3df5bc05be02cc3 8af99bd748114722 350423c6ace57a31 83702fcc38ac39f0
58881c22e2b72723 ab2f837983735e25 24bd203f75521b46 6745c6b9fbe5d1a5 27134eb9b4afc7c5
99afc3f20e0f3dfd a1637c7713a854c9 2b057402681026a0 0badba430e13f5f5 5f382f11009c76ef
b39e2c586ffd9ab8 464b33aef2b3f411 78913c656e29dfa9 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 10th message block
637229c9f6c8c626 570d82f708765ca0 7082d7954711739f 6111dbe140d3eec2 7e625020c241971e
4c95b9931496b14f 3339cd2b009a07dd c5d8c62552215442 bd4046ef8ebb548a 3614eb4e25c4f78e
85c93218aa5281a5 c5c829c8d9eb165d b3233f210351e37f c674fd81f5298bf4 fd59a295e6a869bd
48249213fcee254b 57047ac5c0a3cb8c 2272e60ff46761ab 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 11th message block
5d623af067561182 e6c936759f313b6a 76f598a72df9c7a8 d6fc8957f41ed999 0a80227e8ea73404
249015615d43d6dc 1baff4359dcb70d2 20667c69c7de9173 43be9dc29ba6c8f1 274604c962a3dfb1
8f19ce954c6d8a8d ad1f8dcf25e6aa43 870c5e19fddb1be8 2bee83fc5c8dfd97 ab85478a45b5a3df
292423d29d6d1dd2 507a9a5bc2e3bc61 1c509b99450abfa4 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 12th message block
94cbfb3a690a8d98 04a85c22dab8e6b0 8f0cfb9b0c442bd2 50e15a0c65acf5ed 04ace5f5db4c6d9d
ecce0711fc868f99 130bb10f21f2af4b 11999be5e9e6d986 055215d75296dfc7 3efb61f28055f419
b4432a530ccb79d0 8c966bcac722ad59 5549925e1d71107d a73a1343cd3689de a334a0e63f0cc6e4
0ee8bb7ea4c6d26c 3053629860bddf5a e02d1463bda15b94 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000



100 Improved Preimage Attacks on 3-Round Keccak-224/256

B One 12-Block Instance of the First Stage of Preimage
Attacks on 3-Round Keccak-256

Table 10: The first 12 blocks in the first stage of preimage attacks on 3-round Keccak-256
(in little-endian order).

the 1st message block
a87e4b4591f0687c 84def99bf4272cd9 c723d6e67f3e7b6b e26ce2551b109fdb f8c07a91b5e04142
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
02d4e1ef3b5ac2d6 2e7453315e8d8673 927683b32a6b2e3e b739b7004e45ca8e ad952fc4e0b51417
ffffffffffffffff ffffffffffffffff 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 2nd message block
0131127868c5eca4 481e88fef7f835b2 3f7c30ee2b18bc9b 29169e7fe1fa7a05 c8488dd9b24b1612
8c9a16cbe89414be aa800aa0467902a4 8ace1ce757f8d35c 352b978f459471ee 116648278b89f778
04d1167b50c6b654 27a4060a2ce64c45 33da42207746a6c8 2a6d8cc7c06aba6b 1af754519656a39a
3b1a48403b167ac0 0b3e40bb0e25d475 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 3rd message block
676509fd04883731 c312babe7ad90df3 5522440426d28a78 c6b2b6dce094cda2 cd79d6bd710b8e31
64f0fb307ab9290f 56100677b01c58b6 ba2e24ac8d38f687 38ff427956f53a0c 9fbe70623351aef2
e9e8f7b6de7e7060 6dc7f1b29e81f89b 5a8e29c217d109d5 c772c00b58b826c4 3a2be13d0c3c5499
5747eb9510effc99 d6052132c2427f33 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 4th message block
a4cda31899256497 715563d6a427264a 755ee24e3fd7ce95 315509f648246f32 5b213820188c9d8e
1481618cc5e427d8 2e75a7ff053e721d 496dc64aa616d685 d897634e7f2b2df4 71be70cf3889499e
ff7a96e424a94555 a9f6c5aeb830853c 6c670055219266df 3c3a068154aa9390 96cf729838728202
db64a740f9589513 2764bb94b367a884 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 5th message block
dcbe58b183dc41d4 e34fd3c7e5aa21ef a0f66fd7ca634450 ba4c4fb944ab81ac dcc19648624e9e8b
e7fe18b5136741f8 0a976baec941006b db18ddf29be6a93b e7b5768114b31638 cb033abd5c1c30dc
08293758f3e869c3 e5ac7ea44c8ef07b a7f0477695ef4804 1f3d6259c1b0d9f8 884a30db099f2230
cff7efffe0a6343e ed545a88086e87a7 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 6th message block
d485e3166f82636f aa42ebc6e29aa2be e095e87c8ebc6db1 a27a311655072c2c 46820369e658deac
2d1574ee508e7bf2 91d253375dc273b8 172f37e02d6e2a86 1d45c223f2b41991 d6cf75f27cfb0dad
afd53e5dffc7caa7 f88350234c478dbd 624adf441e7ef330 4bba7d186e494252 b4008fbfc0631902
9555eabaec092b47 b50622a2f9efae69 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 7th message block
83044e63844ddbb8 d135b0d01ed47bfb c83bf865df75ebbb 7aa1b9676f00456d 5546998bc4dfa501
da591b6a1f39ea43 b792d66ad8372922 c7cc994c55e7e6cd eb66775db8e3e0ba d5b8a76ac3a5a58b
aecc0becddf84002 0cd9696cfd226270 81e3cd39659715a7 33b7a38cd7c2c151 284f2e868b30eee7
e3eabb69eb6b40e7 37a65b3cbbab1f84 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 8th message block
ea416a86ba6bba7a 07dd944d5a5207d2 e2216052ca5eec77 3c4a4fe6085bd5dc 6acd039872ec89bf



Xiaoen Lin, Le He and Hongbo Yu 101

99addf32207e4b56 500381ce5c0d8346 1ae7e42d5785e08f 2d9a4114702571d4 57c502924aa9f8ac
b9898734c4c411bf c7ed05a43fc5e4eb b45ab22d24647598 e39ddf99b2a560b7 e3685a210700580d
edef697bdd2923ef 6138f8f38a91a2b4 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 9th message block
74cf7ad3cb5c688b 293f72ffaac3be04 daa3e1c626d20c92 60e555cb822d2345 e10996a979a9c520
22546ae5928c17b8 24bf5d7e40539aeb a414620eeab4b716 13336ce0280f51b4 da3652dc78ebfdb9
028f93b799f1c702 b635e84f848cc584 ec9416f01ac3530f 9afde1444f2839d7 002753dd1e0c0bcf
db7d222f5992b23a c5ce1a296c383421 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 10th message block
799035349bd98195 b3e6579ffbb7d6d4 5318dbdd25b98223 41426631d911493e dd85dacbc065c2cb
143fc388b42666ed 616c75eeff801ce1 3fe11c04e8e09a94 7af8ddd6a87a868b fc22dd5cd84e636d
5c0604d54f600df7 0bc31c8706eb4fb0 66239737aa0ab292 86d3116db845895f b764a2fd34b28ed5
c6afa57f4fdae837 80eaac6257d32938 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 11th message block
487aa7cc49c5536f 8311c849d9fc74fa 966a2052bbe40e51 b8a63ab937c7c257 d10e0b299815a791
0379109824528280 fc9aff577593b9b6 3758db6078aeb1ca b2e887ebbdca1e22 7e317366421357f2
ee81d9847ca04df5 a9fc5005a9a42c32 2f5b69fb9e0d4001 a24bd5e2145bbc0e 8e77215236c03891
d7b8738f92eaa99e 6ba852e2c5f8647e 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 12th message block
dc0dbf7d91fb4441 6aa5fbafa98221f7 89050db49c6e9897 2a349d48906c64e2 dca1a319838c015f
b35f33fc4a4930cd 6ec20bf573640766 05ec836c5995b2c1 e292afadd198efaf 4d29bc75680254c1
a77563d658388351 87e8a16725f03427 7ac7d5326c0cc6fe 87fdf37cef971818 cce3d2d85bed65e5
79ffefa6cc33e89f 3d9bee727ec02c95 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000


	Introduction
	Preliminaries
	Sponge Construction
	Keccak-f Permutation
	SHA-3 Standard
	Notations

	Related Work
	Overall Idea
	The Basic Allocating Approach
	The Trade-Off of Allocating Approach

	Improved Preimage Attack on 3-Round Keccak-224
	Iterating Strategy

	Improved Preimage Attack on 3-Round Keccak-256
	Iterating Strategy
	5-for-3 Strategy

	Experiment
	Conclusion
	One Instance of Preimage of 3-Round Keccak-224
	One 12-Block Instance of the First Stage of Preimage Attacks on 3-Round Keccak-256

