# Improved Preimage Attacks on 3-Round Keccak-224/256 

Xiaoen Lin, Le He and Hongbo Yu ${ }^{(\boxtimes) \dagger}$<br>Department of Computer Science and Technology, Tsinghua University, Beijing, China<br>linxe17@tsinghua.org.cn, he-l17@mails.tsinghua.edu.cn, yuhongbo@mail.tsinghua.edu.cn


#### Abstract

In this paper, we provide an improved method on preimage attacks of standard 3-round Keccak-224/256. Our method is based on the work by Li and Sun. Their strategy is to find a 2-block preimage instead of a 1-block one by constructing the first and second message blocks in two stages. Under this strategy, they design a new linear structure for 2-round Keccak-224/256 with 194 degrees of freedom left, which is able to construct the second message block with a complexity of $2^{31} / 2^{62}$. However, the bottleneck of this strategy is that the first stage needs much more expense than the second one. Therefore, we improve the first stage by using two techniques. The first technique is constructing multi-block messages rather than one-block message in the first stage, which can reach a better inner state. The second technique is setting restricting equations more efficiently, which can work in 3 -round Keccak-256. As a result, the complexity of finding a preimage for 3-round Keccak-224/256 can be decreased from $2^{38} / 2^{81}$ to $2^{32} / 2^{65}$.


Keywords: Keccak • SHA-3 • Preimage attack • Linear structure

## 1 Introduction

The SHA (Secure Hash Algorithms) is a family of cryptographic hash functions which have been standardized as the FIPS (Federal Information Processing Standards) by NIST (National Institute of Standards and Technology). Up to now, three generations of SHA standard have been proposed. Among these generations, SHA-1 is not secure now because collision resistance has been cracked by Wang et al. in [WY05]. Although SHA-2 is still secure till now, its resemblance with SHA-1 has also aroused doubts in terms of security. Therefore, NIST decided to launch a public competition to find a new hash function standard in 2008, and the Keccak function won the competition finally.

Since the publication of Keccak in 2008, numerous researches have been conducted. On collision attacks, most attacks depend on the differential trials. Dinur et al. [DDS12] proposed target difference algorithm in 2012 which can linearize 1.5 rounds and connect to 2.5-round differential trails so that realistic collisions for 4-round Keccak-224/256 can be found. After that, Qiao, Song, Guo et al. [GLL ${ }^{+}$20, QSLG17, SLG17] improved the method by making full use of the degrees of freedom and finding better differential trails so that realistic collisions for 5 -round Keccak-224/256 can be found. On distinguishing attacks, Dinur et al. gave the first cube distinguisher on the Keccak sponge function [DMP ${ }^{+} 14$ ] in 2014. In 2017, Huang et al. [HWX ${ }^{+}$17] developed the cube distinguisher and the conditional cube tester to realize practical distinguishing attacks on 7-round Keccak sponge

[^0]function under different capacities. Besides, there are many other attacks under different security settings. We would not list them all here since they are less relevant to our work.

In this paper, we focus on preimage attacks of round-reduced Keccak. In [NRM11], Naya-Plasencia et al. presented practical preimage analysis for 2-round Keccak-224/256. In [GLS16], Guo et al. improved the technique of linear structure and presented preimage analysis for up to 4-round Keccak. In [LS19], Li and Sun proposed a 2-block model and a new linear structure with more degrees of freedom left. The bottleneck of their strategy is that constructing the first block needs much more expense than the second one (the details will be further discussed in Section 3). As a result, they found a trade-off between the two blocks and succeeded in constructing the practical attacks on 3-round Keccak-224. In addition, their method also performed well on 3-round Keccak-256 and 4-round Keccak-224/256. All the preimage cryptanalysis on round-reduced Keccak-224/256 above are summarized in Table 1.

Table 1: Summary of preimage cryptanalysis on round-reduced Keccak-224/256.

| Round | Instance | Complexity | Reference |
| :---: | :---: | :---: | :---: |
| 2 | Keccak-224 | $2^{33}$ | $[$ NRM11] |
|  |  | ${ }^{\mathrm{a}} 2^{0}$ | $[$ GLS16] |
| 2 | Keccak-256 | $2^{33}$ | $[$ NRM11] |
|  |  | ${ }^{\mathrm{a}} 2^{0}$ | $[$ GLS16 $]$ |
|  |  | ${ }^{\mathrm{a}} 2^{97}$ | $[$ GLS16] |
| 3 | Keccak-224 | ${ }^{\mathrm{a}} 2^{38}$ | $[$ LS19] |
|  |  | ${ }^{\mathrm{a}} 2^{32}$ | Section 4.1 |
|  |  | ${ }^{\mathrm{a}} 2^{192}$ | $[$ GLS16] |
| 3 | Keccak-256 | ${ }^{\mathrm{a}} 2^{81}$ | $[$ LS19] |
|  |  | ${ }^{\mathrm{a}} 2^{65}$ | Section 5.2 |
| 4 | Keccak-224 | ${ }^{\mathrm{a}} 2^{213}$ | $[$ GLS16] |
|  |  | ${ }^{\mathrm{a}} 2^{207}$ | $[$ LS19] |
| 4 | Keccak-256 | ${ }^{\mathrm{a}} 2^{251}$ | $[$ GLS16] |
|  |  | ${ }^{\mathrm{a}} 2^{239}$ | $[$ LS19] |

${ }^{\text {a }}$ Note: those results do not include the complexities for
solving the linear equation system (with a factor $O\left(n^{3}\right)$
where $n$ is the number of linear equations).

Our contributions. Based on Li and Sun's work [LS19], we propose two techniques to improve the first stage of their work which is the bottleneck of their algorithm. The first idea is to construct multi-block messages rather than one-block message which can improve the inner state better and better so that more degrees of freedom can be left in the second stage. The second idea is to improve the setting of restricting equations so that more restrictions can be satisfied within the same degrees of freedom. Using these new techniques, we reduce the complexity of preimage attacks of 3 -round Keccak-224/256 from $2^{38} / 2^{81}$ to $2^{32} / 2^{65}$.

Organization. We first give some preliminaries and notations about Keccak in Section 2. Then we introduce the related work in Section 3. In Section 4 and Section 5, we analyze our techniques used in 3-round Keccak-224 and 3-round Keccak-256 respectively. Some experimental results are presented in Section 6. At last, conclusions are summarized in Section 7.

## 2 Preliminaries

### 2.1 Sponge Construction

The sponge construction is a new iterative hash function framework proposed by Bertoni et al. [BDPA11]. As shown in Figure 1, it has two phases - absorbing phase and squeezing phase. In the absorbing phase, it receives the input message $M$ (after padding) by $r$ bits and mixes the inner state by function $f$ repeatedly with an all " 0 " initial value (IV). In the squeezing phase, it outputs $r$ bits and mixes the inner state repeatedly until the output reaches the required length $\ell$.


Figure 1: The sponge construction.

### 2.2 Keccak- $f$ Permutation

The core of the sponge construction is permutation Keccak- $f[b]$, and the case of $b=r+c=$ 1600 is chosen by NIST as SHA-3 standards. So, we only focus on the case of $b=1600$.

As shown in Figure 2, the 1600 bit inner state can be organized as $5 \times 564$-bit lanes, denoted as $A_{x, y, z}$, where $0 \leq x, y \leq 4,0 \leq z \leq 63$.


Figure 2: The Keccak- $f$ state.
The Keccak- $f$ consists of 24 rounds of permutation $R$, and each $R$ consists of 5 steps $R=\iota \circ \chi \circ \pi \circ \rho \circ \theta$, where:

$$
\begin{aligned}
\theta: A_{x, y, z} & =A_{x, y, z} \oplus \bigoplus_{i=0 \sim 4}\left(A_{x-1, i, z} \oplus A_{x+1, i, z-1}\right) \\
\rho: A_{x, y, z} & =A_{x, y,\left(z-r_{x, y}\right)} \\
\pi: A_{x, y, z} & =A_{x+3 y, x, z} \\
\chi: A_{x, y, z} & =A_{x, y, z} \oplus\left(A_{x+1, y, z} \oplus 1\right) \cdot A_{x+2, y, z} \\
\iota: A_{0,0, z} & =A_{0,0, z} \oplus R C_{z}
\end{aligned}
$$

In the formulas above, " $\oplus$ " denotes bit-wise XOR and ". " denotes bit-wise AND. The indices of $x$ and $y$ are taken modulo 5 , and the index of $z$ is taken modulo 64. $r_{x, y}$ is a constant as listed in Table 2, and $R C_{z}$ is a round-dependent constant which does not affect our attacks.

Table 2: The offsets of $\rho$.

|  | $\mathrm{x}=0$ | $\mathrm{x}=1$ | $\mathrm{x}=2$ | $\mathrm{x}=3$ | $\mathrm{x}=4$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}=0$ | 0 | 1 | 62 | 28 | 27 |
| $\mathrm{y}=1$ | 36 | 44 | 6 | 55 | 20 |
| $\mathrm{y}=2$ | 3 | 10 | 43 | 25 | 39 |
| $\mathrm{y}=3$ | 41 | 45 | 15 | 21 | 8 |
| $\mathrm{y}=4$ | 18 | 2 | 61 | 56 | 14 |

### 2.3 SHA-3 Standard

NIST standardized several versions of SHA-3 [Dwo15] with parameters $r=1600-2 \ell$ and $c=2 \ell$, where $\ell \in\{224,256,384,512\}$. As for the padding rules, the message $M$ is padded till the length is a multiple of $r$ by concatenating a bit string of " $10^{*} 1$ " and " $0110^{*} 1$ " for Keccak and SHA-3 respectively.

### 2.4 Notations

For a certain Keccak- $f$ permutation, we use capital Greek letters $\Theta, P, \Pi, X, I$ with a superscript to express the inner state after the corresponding step is executed. For example, in the last Keccak- $f$ permutation, the first 256 bits of $I^{3}$ are the output of 3-round Keccak256. And we may use extra three indices in subscript to express the bits in the inner state. Besides, we use "*" to indicate all legal values. For example, $A_{*, y, z}$ is a row, $A_{x, *, z}$ is a column, $A_{x, y, *}$ is a lane and $A_{*, *, z}$ is a slice. Especially, we use $H$ to denote the starting inner state of the last Keccak- $f$ permutation (or the ending inner state $I^{3}$ of the penultimate Keccak- $f$ permutation).

## 3 Related Work

In this section, we will briefly introduce Li and Sun's work [LS19] about preimage attack of 3 -round Keccak-224/256.

### 3.1 Overall Idea

To obtain a 3 -round Keccak-224/256 preimage, their work consists of three parts. First, they construct a first message block with a complexity of $2^{65} / 2^{161}$ which can let the inner state $H$ meet some restrictions that the second stage requests. Then, with the given inner state $H$, they adopt a new linear structure which can match specified 224/256 output bits of 3 -round Keccak- $224 / 256$ with a complexity of $2^{31} / 2^{62}$. At last, they find a trade-off between the two stages above, and reach an overall complexity of $2^{38} / 2^{81}$.

### 3.2 The Basic Allocating Approach

To be more specific, they prove a theorem (Theorem 1) as shown below. This paper just cites the theorem and for the entire proof, please refer to [LS19].

Theorem 1 [LS19]. Let the messaged state ${ }^{1}$ be (a) in Figure 3, i.e. bits in Row 0, 2 are unknowns, and bits in Row 1, 3, 4 are constants such that

[^1]I. $a_{x, 1, z}=a_{x, 3, z}=a_{x, 4, z} \oplus 1$, and
II. $\bigoplus_{x, z} a_{x, 4, z}=0^{2}$


Figure 3: The inner states about $\theta$ operation in the first round.
where $a_{x, y, z}$ stands for the linear or constant bit at the position $(x, y, z), 0 \leq x, y<5$, and $0 \leq z<64$. Then there exist constants $s_{x, z}$ 's with $0 \leq x<5$ and $0 \leq z<64$, such that if assuming $\bigoplus_{j=0}^{4} a_{x, j, z}=s_{x, z}$, then the state (b) in Figure $\mathbf{3}$ can be obtained by operating $\theta$ on (a). And hence, the KECCAK- $f[1600$ ] permutation can be linearized up to 2 rounds with 194 degrees of freedom left.

The application of Theorem 1 is shown in Figure 4. Suppose Condition_I and Condition_II are satisfied. Their structure begins with 10 undetermined lanes ( 640 variables). Then in $\theta$ operations of the first two rounds, they add 320 and 128 linear equations respectively (with one linear dependent equation in each round) to control the column sums and prevent the variable diffusions. After that, the inner state will be transformed as Figure 4 shows. In the third round, since operations $\theta, \rho, \pi$ are linear, the inner state $\Pi^{3}$ will still be linear with $640-319-127=194$ degrees of freedom left.


Figure 4: The 2.5-round linear structure with 194 degrees of freedom left.
Next, they use the 194 degrees of freedom to match specified $224 / 256$ output bits. According to [LS19], each row with 4-bit output is corresponding to 4 linear equations, while each row with 3 -bit output is corresponding to 2 linear equations and 1 quadratic equation. Let $i_{j}$ and $o_{j}$ with $j=0,1,2,3,4$ be the input and output bits of $\chi$, then:

$$
\begin{aligned}
& o_{0}=i_{0} \oplus\left(o_{1} \oplus 1\right) \cdot i_{2} \\
& o_{1}=i_{1} \oplus\left(o_{2} \oplus 1\right) \cdot i_{3} \\
& o_{2}=i_{2} \oplus\left(o_{3} \oplus 1\right) \cdot i_{4} \\
& o_{3}=i_{3} \oplus\left(o_{4} \oplus 1\right) \cdot i_{0}
\end{aligned}
$$

[^2]Moreover, if 4 consecutive output bits are known, the expression of $o_{3}$ can be rewritten as $o_{3}=i_{3} \oplus\left(i_{4} \oplus 1\right) \cdot\left(o_{0} \oplus\left(o_{1} \oplus 1\right) \cdot o_{2}\right)$. However, if only 3 consecutive output bits are known, the quadratic expression can not be simplified.

Notice that each linear equation can be ensured by spending 1 degree of freedom, and the rest can hold with a probability of $\frac{1}{2}$ for each. As a result, using the 194 degrees of freedom, they can construct the second message block matching specified 224/256 output bits with a complexity of $2^{31} / 2^{62}$. Notice that there is an extra $2^{1}$ complexity for 3 -round Keccak-224. That's because the 224 -bit digest contains 323 -bit output rows while the 256 -bit digest only contains 4 -bit output rows. Thus, for Keccak-224, the 194 degrees of freedom can only satisfy all 192 linear equations and 1 quadratic equation, bringing an extra $2^{1}$ complexity.

From Theorem 1 we can see that it is important to construct the first message block which makes the inner state $H$ meet Condition_I and Condition_II as efficient as possible. Moreover, the first $1600-2 n(n=224 / 256)$ bits of any message state can be chosen arbitrarily. So all $a_{x, 1, z}=a_{x, 4, z} \oplus 1$ and part of $a_{x, 3, z}=a_{x, 4, z} \oplus 1$ in Condition_I can always be satisfied. Therefore, Condition_I can be simplified to $a_{x, 3, z}=a_{x, 4, z} \oplus 1$, where $3 / 2 \leq x \leq 4$ for Keccak-224/256.

To meet Condition_I and Condition_II in the starting inner state $H$ of the second message block, they use Guo et al.'s work [GLS16] to construct the first message block. As shown in Figure 5 and Figure 6, by eliminating the propagation of the $\theta$ operation in the first two rounds, the linear structure can fully linearize 2.5 rounds with 128/64 (for Keccak-224/256) degrees of freedom left. Using these degrees of freedom, they set 2 bits $\Pi_{0,3, z}^{3}$ and $\Pi_{0,4, z}^{3}$ of a certain slice $\Pi_{*, *, z}^{3}$ to be constant so that the 4 corresponding bits $X_{3,3, z}^{3,}, X_{3,4, z}^{3}, X_{4,3, z}^{3}$ and $X_{4,4, z}^{3}$ in $X_{*, *, z}^{3}$ are linear, obtaining 2 satisfiable restrictions in Condition_I. In a word, they spend every 4 degrees of freedom satisfying 2 restrictions of Condition_I, and we call it 4-for-2 Strategy in this paper (we improve this strategy and propose a technique named 5-for-3 Strategy in Section 5). Under this strategy, they can satisfy $64 / 32$ restrictions in Condition_I, while there are 129/193 restrictions of two kinds of conditions in total. So they need to enumerate $2^{65} / 2^{161}$ times to meet all the rest restrictions. In summary, under the strategy in [LS19], the first message block can be fully constructed with a complexity of $2^{65} / 2^{161}$.


Figure 5: The 2.5-round linear structure for 3-round Keccak-224.


Figure 6: The 2.5 -round linear structure for 3-round Keccak-256.

### 3.3 The Trade-Off of Allocating Approach

It is obvious that the bottleneck is constructing the first message block. So, they tolerate $n_{I}$ pairs of bits ( $a_{x, 3, z}$ and $a_{x, 4, z}$ for some $x$ and $z$ ) not satisfying Condition_I which can reduce the complexity greatly. However, as shown in Figure 7, this causes quadratic bits in the inner state $X^{2}$ of the second stage. To eliminate the effects of these quadratic bits, each pair of bits that does not meet Condition_I will cost another 1 degree of freedom to set a linear bit to be constant (the orange square). So the overall complexity becomes $\frac{2^{65}}{C_{65}^{n_{I}}}+2^{31+n_{I}} / \frac{2^{161}}{C_{161}^{n_{I}}}+2^{62+n_{I}}$, reaching a trade-off complexity of $2^{38} / 2^{81}\left(n_{I}=7 / 19\right)$ for 3-round Keccak-224/256.


Figure 7: A case of effects caused by one unsatisfied restriction of Condition_I.

## 4 Improved Preimage Attack on 3-Round Keccak-224

In this section, we will analyze preimage cryptanalysis on 3-round Keccak-224. We will discuss a technique named Iterating Strategy, which can provide a better inner state $H$ (satisfying more restrictions under the same complexity) for the second stage.

### 4.1 Iterating Strategy

Li and Sun's strategy [LS19] uses two message blocks corresponding to the two stages. And the goal of the first stage is to reach an inner state $H$ which meets Condition_II and as many restrictions of Condition_I as possible. However, if we construct multi-block messages rather than one-block message to implement the same effect in the first stage, the complexity can be further decreased.

For Keccak-224, as shown in Figure 8, we do not spend the degrees of freedom in the second message block matching the output bits directly, but we spend them restricting more opposite pairs of bits (satisfy some restrictions of Condition_I) as the first message block does. Similarly, we use the third message block to restrict more opposite pairs of bits as the first two message blocks do. Iteratively, there will be more and more opposite pairs of bits in each inner state $H$, which means more and more restrictions will be satisfied. After a good-enough inner state $H$ is found, we construct the last message block matching the target output bits. And we get the entire preimage eventually.


Figure 8: Iterating Strategy on 3-round Keccak-224. $(R=\iota \circ \chi \circ \pi \circ \rho \circ \theta)$
The overall complexity of improved preimage attacks on 3-round Keccak-224 is analyzed as follows.

For each new message block in the first stage, we must satisfy Condition_II randomly with a complexity of $2^{1}$. Suppose that there are $k$ restrictions of Condition_I which are not fulfilled in the previous message block. Then we need to spend $k$ degrees of freedom eliminating the effects of quadratic bits in $X^{2}$, and there remain $194-k$ degrees of freedom. Within these degrees of freedom, we spend $\left\lfloor\frac{194-k}{4}\right\rfloor \times 4$ of them on satisfying $\left\lfloor\frac{194-k}{4}\right\rfloor \times 2$ restrictions of Condition_I via 4-for-2 Strategy (one more restriction can be satisfied if there exactly remain 3 degrees of freedom). Therefore, we can ensure at least $\left\lfloor\frac{194-k}{4}\right\rfloor \times 2$ out of 128 restricting equations. If we iterate once and want to get the new message block with $k^{\prime}\left(k^{\prime} \leq 128-\left\lfloor\frac{194-k}{4}\right\rfloor \times 2\right)$ restrictions of Condition_I not be fulfilled, then we need to enumerate $2^{1} \times\left(2^{128-\left\lfloor\frac{194-k}{4}\right\rfloor \times 2}\right) \div\left(C_{128-\left\lfloor\frac{194-k}{4}\right\rfloor \times 2}^{k^{\prime}}\right)$ times in average.

A possible iterating process is listed in Table 3.
Table 3: A possible iterating process of 3-round Keccak-224 via Iterating Strategy.

| message block id | $k$ | $k^{\prime}$ | complexity |
| :---: | :---: | :---: | :---: |
| $\# 1$ | 128 | 35 | $2^{9.71}$ |
| $\# 2$ | 35 | 14 | $2^{11.23}$ |
| $\# 3$ | 14 | 10 | $2^{10.18}$ |
| $\# 4$ | 10 | 9 | $2^{10.51}$ |
| $\# 5$ | 9 | 8 | $2^{12.15}$ |
| $\# 6$ | 8 | 7 | $2^{14.01}$ |
| $\# 7$ | 7 | 5 | $2^{18.48}$ |
| $\# 8$ | 5 | 4 | $2^{19.50}$ |
| $\# 9$ | 4 | 3 | $2^{22.45}$ |
| $\# 10$ | 3 | 2 | $2^{25.87}$ |
| $\# 11$ | 2 | 1 | $2^{28.00}$ |
|  | 2 | 0 | $2^{33.00}$ |

After an 11-block iteration, we get an inner state $H$ which satisfies Condition_II and most restrictions of Condition_I (except 1 restriction) with a complexity less than $2^{29}$. Considering the padding rules, we need to ensure $H_{2,3,63}^{3}=H_{2,4,63}^{3}$ with an extra complexity of $2^{1}$. Totally, we get the inner state $H$ with a complexity less than $2^{29+1}=2^{30}$. Finally, we enumerate the $12^{\text {th }}$ message block $2^{224+1-194+1}=2^{32}$ times (the first " 1 " is for 1 quadratic equation, and the second " 1 " is for 1 unsatisfied restriction) to get an entire preimage of 3 -round Keccak- 224 . The overall complexity is $2^{32}$. Besides, we can get an inner state $H$ which satisfies all restrictions of Condition_I and Condition_II with a complexity of $2^{33}$ (the experimental results are presented in Section 6).

## 5 Improved Preimage Attack on 3-Round Keccak-256

Improved preimage attacks on 3-round Keccak- 256 will be analyzed in this section. In addition to the technique of Iterating Strategy, we will discuss another technique named 5-for-3 Strategy which can make better use of the degrees of freedom in the first stage.

### 5.1 Iterating Strategy

For Keccak-256, the only differences are the number of output bits and the number of restrictions of Condition_I, so the Iterating Strategy can also be used in preimage attack on 3-round Keccak-256 directly as shown in Figure 9.

For each new message block in the first stage, we must satisfy Condition_II randomly with a complexity of $2^{1}$ as well. We still use symbols $k$ and $k^{\prime}$ to express the number of unsatisfied restrictions of Condition_I in the previous and current message block respectively. Then $k$ degrees of freedom will be spent on eliminating the effects of quadratic bits in $X^{2}$ with $194-k$ degrees of freedom left. However, there are as many as 192 restrictions of Condition_I while we still only satisfy $\left\lfloor\frac{194-k}{4}\right\rfloor \times 2$ of them. Therefore, if we iterate once for the new message block with $k^{\prime}$ restrictions of Condition_I not be fulfilled, we need to enumerate $2^{1} \times\left(2^{192-\left\lfloor\frac{194-k}{4}\right\rfloor \times 2}\right) \div\left(C_{192-\left\lfloor\frac{194-k}{4}\right\rfloor \times 2}^{k^{\prime}}\right)$ times in average.


Figure 9: Iterating Strategy on 3-round Keccak-256. $(R=\iota \circ \chi \circ \pi \circ \rho \circ \theta)$
A possible iterating process is listed in Table 4.
Table 4: A possible iterating process of 3-round Keccak-256 via Iterating Strategy.

| message block id | $k$ | $k^{\prime}$ | complexity |
| :---: | :---: | :---: | :---: |
| $\# 1$ | 192 | 80 | $2^{8.97}$ |
| $\# 2$ | 80 | 20 | $2^{58.45}$ |
| $\# 3$ | 20 | 10 | $2^{62.14}$ |
| $\# 4$ | 10 | 8 | $2^{63.56}$ |
| $\# 5$ | 8 | 7 | $2^{67.10}$ |

After a 5-block iteration, we get an inner state $H$ which satisfies Condition_II and most restrictions of Condition_I (except 7 restrictions) with a complexity less than $2^{68}$. And to deal with the padding rules, we need to ensure $H_{1,3,63}^{3}=H_{1,4,63}^{3}$ with an extra complexity of $2^{1}$. Totally, we get the inner state $H$ with a complexity less than $2^{68+1}=2^{69}$. Finally, we enumerate the $6^{t h}$ message block $2^{256-194+7}=2^{69}$ times to get an entire preimage of 3 -round Keccak-256. The overall complexity is $2^{69}$.

### 5.2 5-for-3 Strategy

Comparing with Keccak-224, Keccak-256 has one more type of Condition_I $(x=2)$. Due to the limitation of linearization, we totally ignore this type of restrictions. Surprisingly, by spending one more degree of freedom for a slice, we can satisfy one more restriction of type $x=2$, which is more efficient.

Consider the two slices $\Pi_{*, *, z}^{3}$ and $X_{*, *, z}^{3}$ (we can use $X_{*, *, z}^{3}$ to replace $I_{*, *, z}^{3}$ since the last two rows never change after $\iota$ operation). In order to meet Condition_I, we need to satisfy that:

$$
\left\{\begin{array}{l}
X_{2,3, z}^{3} \oplus X_{2,4, z}^{3}=1  \tag{1}\\
X_{3,3, z}^{3} \oplus X_{3,4, z}^{3}=1 \\
X_{4,3, z}^{3} \oplus X_{4,4, z}^{3}=1
\end{array}\right.
$$

From the $\chi$ operation $A_{x, y, z}=A_{x, y, z} \oplus\left(A_{x+1, y, z} \oplus 1\right) \cdot A_{x+2, y, z}$, we have:

$$
\left\{\begin{array}{l}
\Pi_{2,3, z}^{3} \oplus\left(\Pi_{3,3, z}^{3} \oplus 1\right) \cdot \Pi_{4,3, z}^{3} \oplus \Pi_{2,4, z}^{3} \oplus\left(\Pi_{3,4, z}^{3} \oplus 1\right) \cdot \Pi_{4,4, z}^{3}=1  \tag{2}\\
\Pi_{3,3, z}^{3} \oplus\left(\Pi_{4,3, z}^{3} \oplus 1\right) \cdot \Pi_{0,3, z}^{3} \oplus \Pi_{3,4, z}^{3} \oplus\left(\Pi_{4,4, z}^{3} \oplus 1\right) \cdot \Pi_{0,4, z}^{3}=1 \\
\Pi_{4,3, z}^{3} \oplus\left(\Pi_{0,3, z}^{3} \oplus 1\right) \cdot \Pi_{1,3, z}^{3} \oplus \Pi_{4,4, z}^{3} \oplus\left(\Pi_{0,4, z}^{3} \oplus 1\right) \cdot \Pi_{1,4, z}^{3}=1
\end{array}\right.
$$

To ensure the satisfaction of equations (2), we add 5 linear equations on $\Pi^{3}$ :

$$
\left\{\begin{array}{l}
\Pi_{0,3, z}^{3}=1  \tag{3}\\
\Pi_{0,4, z}^{3}=1 \\
\Pi_{2,3, z}^{3} \oplus \Pi_{2,4, z}^{3}=\Pi_{3,3, z}^{3} \\
\Pi_{3,3, z}^{3}=\Pi_{3,4, z}^{3} \\
\Pi_{4,3, z}^{3} \oplus \Pi_{4,4, z}^{3}=1
\end{array}\right.
$$

To sum up, we spend every 5 degrees of freedom on satisfying 5 linear equations so that 3 restrictions of Condition_I will also be satisfied. We name this strategy 5-for-3 Strategy. Then for Keccak-256, the 5-for-3 Strategy can take the place of 4-for-2 Strategy as shown in Figure 10.


Figure 10: Iterating Strategy via 5-for-3 Strategy on 3-round Keccak-256. $(R=\iota \circ \chi \circ \pi \circ \rho \circ \theta)$

The overall complexity of improved preimage attacks on 3-round Keccak-256 via Iterating Strategy and 5-for-3 Strategy is analyzed as follows.

We satisfy Condition_II with a complexity of $2^{1}$. And we spend $k$ degrees of freedom eliminating the effects of quadratic bits in $X^{2}$ and there remain $194-k$ degrees of freedom. Next, we spend $\left\lfloor\frac{194-k}{5}\right\rfloor \times 5$ degrees of freedom satisfying $\left\lfloor\frac{194-k}{5}\right\rfloor \times 3$ restrictions of Condition_I. Suppose that each of the rest $192-\left\lfloor\frac{194-k}{5}\right\rfloor \times 3$ restrictions of Condition_I
will fulfil with a probability of $\frac{1}{2}$. Then the probability that exactly $k^{\prime}$ restrictions not be fulfilled is $\left(C_{192-\left\lfloor\frac{194-k}{5}\right\rfloor \times 3}^{k^{\prime}}\right) \div\left(2^{192-\left\lfloor\frac{194-k}{5}\right\rfloor \times 3}\right)$. Taking into account Condition_II, we are expected to enumerate $2^{1} \times\left(2^{192-\left\lfloor\frac{194-k}{5}\right\rfloor \times 3}\right) \div\left(C_{192-\left\lfloor\frac{194-k}{5}\right\rfloor \times 3}^{k^{\prime}}\right)$ times to get a new inner state.

A possible iterating process is listed in Table 5.
Table 5: A possible iterating process of 3-round Keccak-256 via Iterating Strategy and 5-for-3 Strategy.

| message block id | $k$ | $k^{\prime}$ | complexity |
| :---: | :---: | :---: | :---: |
| $\# 1$ | 192 | 91 | $2^{5.49}$ |
| $\# 2$ | 91 | 48 | $2^{11.97}$ |
| $\# 3$ | 48 | 41 | $2^{8.31}$ |
| $\# 4$ | 41 | 37 | $2^{10.23}$ |
| $\# 5$ | 37 | 35 | $2^{10.80}$ |
| $\# 6$ | 35 | 33 | $2^{12.65}$ |
| $\# 7$ | 33 | 32 | $2^{12.38}$ |
| $\# 8$ | 32 | 31 | $2^{13.40}$ |
| $\# 9$ | 31 | 30 | $2^{14.49}$ |
| $\# 10$ | 30 | 27 | $2^{18.18}$ |
| $\# 11$ | 27 | 25 | $2^{19.32}$ |
| $\# 12$ | 25 | 21 | $2^{25.67}$ |
| $\# 13$ | 21 | 10 | $2^{48.62}$ |
| $\# 14$ | 10 | 5 | $2^{60.12}$ |
| $\# 15$ | 5 | 4 | $2^{61.33}$ |
| $\# 16$ | 4 | 3 | $2^{62.78}$ |

After a 16 -block iteration, we get an inner state $H$ which satisfies Condition_II and most restrictions of Condition_I (except 3 restrictions) with a complexity less than $2^{63}$. And to deal with the padding rules, we need to ensure $H_{1,3,63}^{3}=H_{1,4,63}^{3}$ with an extra complexity of $2^{1}$. Totally, we get the inner state $H$ with a complexity less than $2^{63+1}=2^{64}$. Finally, we enumerate the $17^{\text {th }}$ message block $2^{256-194+3}=2^{65}$ times to get an entire preimage of 3 -round Keccak-256. The overall complexity is $2^{65}$. The experimental results of the first 12 message blocks are presented in Section 6.

## 6 Experiment

We will present the experimental results in this section. First, we will show the results of preimage attacks on 3-round Keccak-224 including the two stages. Next, we will show the results of the first stage of preimage attacks on 3-round Keccak-256.

Results of Keccak-224. In the first stage, we run 400 processes on 2.50 GHz CPU for about 2 hours to get the results. According to our experiment, solving a linear equation system costs about $2^{19.3}$ cycles in average. So, the expected costs of getting the results are $2^{33} \times 2^{19.3}=2^{52.3}$ cycles. Meanwhile, the experimental result costs $400 \times 2.5 \times 2^{30} \times 7200=2^{52.78}$ cycles, which is in line with expectations.

The experimental results consist of 11 message blocks, and the produced inner state $H$ can meet all 128 restrictions of Condition_I as well as Condition_II and the padding rules.

Due to the limitation of space, the 11 message blocks together with the last message block are listed in Appendix A. Here we only list part of the results in Table 6.

Table 6: The inner state $H$ (in little-endian order).

| the inner state after 11 message blocks |  |
| :---: | :---: |
| e8607ad31bf82c29 | 108f3f79af33a40b 91f9fc271728393f 1312a1a67d97af82 d2d7f7468979007b |
| ee14a076f8c3956a | 0917f9faceecfc18 b0ba65b1a2889be7 fd54b7280431cf9d 7ff153da60d37e49 |
| 03cbf192382c2826 | 877d2d5fdf9542a2 036d316b1bd49c02 ce3683a1e78c9dd2 3c3ffc6c8dbfc786 |
| 0c321c19a083c89f | $2 a 4 f 2 a 6 d 8 f a 38 c 09$ 410eea37f6cf19f5 f806a2ff56a7105a $410 a 3228 e 0868 a 50$ |
| fd255898fbbae50c | e5e3b70a10e1acac 5edc01abb491bd9e 07f95d00a958efa5 bef5cdd71f7975af |
| XOR values of restrictions of Condition_I |  |
|  | ffffffffffffffff fffffffffffffffff |

Using this inner state $H$, we get a preimage matching 224-bit all ' 0 ' digest in the second stage (we use the code published in [LS19] to get the preimage with an NVIDIA GTX 1080 Ti card for around 10 hours). The results are listed in Table 7.

Table 7: The last message block and the 3 -round digest (in little-endian order).

| the $12^{\text {th }}$ (last) message block |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 94cbfb3a690a8d98 | 04a85c22dab8e6b0 | 8f0cfb9b0c442bd2 | 50e15a0c65acf5ed | 04ace5f5db4c6d9d |
| ecce0711fc868f99 | 130bb10f21f2af4b | 11999be5e9e6d986 | 055215d75296dfc7 | 3efb61f28055f419 |
| b4432a530ccb79d0 | 8c966bcac722ad59 | 5549925e1d71107d | a73a1343cd3689de | a334a0e63f0cc6e4 |
| 0ee8bb7ea4c6d26c | 3053629860bddf5a | e02d1463bda15b94 | 000000000000000 | 0000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 |
| 3-round digest |  |  |  |  |
| 0000000000000000 | 0000000000000000 | 000000000000000 | 00000000 |  |

Results of Keccak-256. We run 200 processes on 2.50 GHz CPU for 1 hour to get the results of the first stage (we get four results satisfying 171 restrictions, and we only present one of them). According to our experiment, solving a linear equation system costs about $2^{20.6}$ cycles in average. So, the expected costs to get four results are $4 \times 2^{25.67} \times 2^{20.6}=2^{48.27}$ cycles. Meanwhile, the experimental result costs $200 \times 2.5 \times 2^{30} \times 3600=2^{50.78}$ cycles, which is roughly in line with expectations.

The experimental results consist of 12 message blocks, and the produced inner state $H$ can meet 171 restrictions of Condition_I as well as Condition_II and the padding rules. The entire 12 message blocks are listed in Appendix B. Here we only list the inner state $H$ in Table 8.

Table 8: The inner state $H$ (in little-endian order).


## 7 Conclusion

In this paper, we provide an improved preimage cryptanalysis on 3-round Keccak-224/256 based on the work of Li and Sun. The main idea is to improve the first stage which is the bottleneck of their work. For this goal, two techniques are proposed:

- We propose Iterating Strategy which can provide more degrees of freedom by using more than two message blocks.
- We propose 5-for-3 Strategy which can satisfy more restrictions within the same degrees of freedom.

Using these techniques, we decrease the complexity of finding the restricted inner state. After trading off, the total complexity is decreased as well. It is expected that the complexity of preimage attacks on 3 -round Keccak-224/256 can be decreased into $2^{32} / 2^{65}$.

It is noted that our techniques are still far from threatening the security of other Keccak variants or more rounds. Larger digest versions use one-block message framework [GLS16] which depend on the all ' 0 ' IV rather than an inner state with some specific conditions. As for the attack with more than 3 rounds [LS19], the bottleneck is in the second stage which we do not optimize. However, our techniques may be applied when some new attacks are proposed.

## Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303903 and 2018YFB0803405). We are grateful to Yao Sun and Ting Li for their help of calculating the second-stage results of the preimage attacks on 3-round Keccak-224.

## References

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge functions, 2011.
[DDS12] Itai Dinur, Orr Dunkelman, and Adi Shamir. New attacks on Keccak-224 and Keccak-256. In FSE 2012, volume 7549 of LNCS, pages 442-461. Springer, Heidelberg, 2012.
[DMP $\left.{ }^{+} 14\right]$ Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus. Practical complexity cube attacks on round-reduced keccak sponge function. IACR Cryptol. ePrint Arch., 2014:259, 2014.
[Dwo15] M. Dworkin. Sha-3 standard: Permutation-based hash and extendable-output functions. 2015.
[GLL ${ }^{+}$20] Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao, and Ling Song. Practical collision attacks against round-reduced SHA-3. Journal of Cryptology, 33(1):228-270, 2020.
[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to cryptanalysis of round-reduced Keccak. In ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 249-274. Springer, Heidelberg, 2016.
$\left[H W X^{+} 17\right]$ Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao. Conditional cube attack on reduced-round Keccak sponge function. In EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 259-288. Springer, Heidelberg, 2017.
[LS19] Ting Li and Yao Sun. Preimage attacks on round-reduced Keccak-224/256 via an allocating approach. In EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 556-584. Springer, Heidelberg, 2019.
[NRM11] María Naya-Plasencia, Andrea Röck, and Willi Meier. Practical analysis of reduced-round Keccak. In INDOCRYPT 2011, volume 7107 of $L N C S$, pages 236-254. Springer, Heidelberg, 2011.
[QSLG17] Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New collision attacks on round-reduced Keccak. In EUROCRYPT 2017, Part III, volume 10212 of $L N C S$, pages 216-243. Springer, Heidelberg, 2017.
[SLG17] Ling Song, Guohong Liao, and Jian Guo. Non-full sbox linearization: Applications to collision attacks on round-reduced Keccak. In CRYPTO 2017, Part II, volume 10402 of $L N C S$, pages 428-451. Springer, Heidelberg, 2017.
[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In EUROCRYPT 2005, volume 3494 of LNCS, pages 19-35. Springer, Heidelberg, 2005.

## A One Instance of Preimage of 3-Round Keccak-224

Table 9: One instance of preimage of 3-round Keccak-224 (in little-endian order).


| the $5^{t h}$ message block |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 5b0f71376d3a70ba cd2739c5fadda85a 0b9ddf9bbbe51bc2 aa8f5604e72cca04 327b2859ef99fac4 |  |  |  |  |
| bfbc34703411a2fa | 8fcc4d914af0b3f2 | 546384b82efe91e4 | 519bd2ef4eeaf 985 | 14aeaa231610f348 |
| 3c3105d79f3bfd80 | 939766c39a837c76 | bfd5be0ef5f69520 | 722d2793f2318895 | d905b7527c7f5902 |
| 08fe2e665d7dd3a6 | 6748247fd85ceae3 | 0d32f9c5ed6965c4 | 0000000000000000 | 0000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $6^{\text {th }}$ message block |  |  |  |  |
| feb58371dfcf2216 | 89c766f532b8316b | e85e903bffc3cc2f | d1df32dc334cedc7 | 4d001955adcc0ddd |
| b1e9642ae989c7a6 | f09b69513963a013 | 4007d09344a0857e | 067337a7e954a153 | 297c3064bec54c68 |
| 224d2a3c8bfb8952 | abeda9614102927d | 9002f20550263063 | 3ffe6c48d14fa3c8 | fc3a4f0cdd601b65 |
| 08b0ea7424822299 | c081496ac3cd5a4b | 4c0eeff16df70d04 | 000000000000000 | 000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $7^{\text {th }}$ message block |  |  |  |  |
| 09a6de6d57941573 | 0d04af2a9e8396c2 | 0e8359e5ef304860 | de97db39e8c40760 | 8e51fce527607ea6 |
| 9581e722d724a6dd | f883a4f03c806a42 | c776a9bd3f2ac6be | b2eb552628967520 | 7e9a02670e4b3363 |
| 56ddbafd17ad6a6a | $5 f 30 f c f 2 a 6 d a 8 f 3 c$ | Occfb643ade5d88b | 92bb34d46adb073a | ce5f115897805146 |
| e8ede2750bc647b0 | 1e9aee7ff5049662 | 3a5f971686d56a0c | 000000000000000 | 000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $8^{\text {th }}$ message block |  |  |  |  |
| c3717eb68e997064 | f1955c85f149fb75 | d012b8cbaea66317 | 240e292c3a0f9581 | d95fa140d7c9b6c2 |
| 5aa977ee563d65f5 | 1381fa5dc4027683 | 8afb2ba571d7ed3d | af03d7e0886a7608 | 7dd6eca4b971a63a |
| 7f3be7d88dfee519 | 06cb619412ee1786 | c8d02210a57753be | 7dddabe802cc0064 | 29117733d884d79d |
| $5987 \mathrm{eedb1e90e223}$ | 6621 ba 073436 c 820 | 08d29253cb32150a | 0000000000000000 | 0000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $9^{t h}$ message block |  |  |  |  |
| fa2f1364cf301a4e | b3df5bc05be02cc3 | 8af99bd748114722 | 350423c6ace57a31 | 83702fcc38ac39f0 |
| 58881c22e2b72723 | ab2f837983735e25 | 24bd203f75521b46 | 6745c6b9fbe5d1a5 | 27134eb9b4afc7c5 |
| 99afc3f20e0f3dfd | a1637c7713a854c9 | 2b057402681026a0 | Obadba430e13f5f5 | 5f382f11009c76ef |
| b39e2c586ffd9ab8 | 464b33aef2b3f411 | 78913c656e29dfa9 | 000000000000000 | 000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $10^{\text {th }}$ message block |  |  |  |  |
| 637229c9f6c8c626 | 570d82f708765ca0 | 7082d7954711739f | 6111dbe140d3eec2 | 7e625020c241971e |
| 4c95b9931496b14f | 3339cd2b009a07dd | c5d8c62552215442 | bd4046ef8ebb548a | 3614eb4e25c4f78e |
| 85c93218aa5281a5 | c5c829c8d9eb165d | b3233f210351e37f | c674fd81f5298bf4 | fd59a295e6a869bd |
| 48249213f cee254b | 57047ac5c0a3cb8c | 2272e60ff46761ab | 0000000000000000 | 0000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 000000000000000 | 000000000000000 |
| the $11^{\text {th }}$ message block |  |  |  |  |
| 5d623af067561182 | e6c936759f313b6a | 76f598a72df9c7a8 | d6fc8957f41ed999 | 0a80227e8ea73404 |
| 249015615d43d6dc | 1baff4359dcb70d2 | 20667c69c7de9173 | 43be9dc29ba6c8f1 | 274604c962a3dfb1 |
| 8f19ce954c6d8a8d | ad1f8dcf25e6aa43 | 870c5e19fddb1be8 | 2bee83fc5c8dfd97 | ab85478a45b5a3df |
| 292423d29d6d1dd2 | 507a9a5bc2e3bc61 | 1c509b99450abfa4 | 0000000000000000 | 000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $12^{\text {th }}$ message block |  |  |  |  |
| 94cbfb3a690a8d98 | 04a85c22dab8e6b0 | 8f0cfb9b0c442bd2 | 50e15a0c65acf5ed | 04ace5f5db4c6d9d |
| ecce0711fc868f99 | 130bb10f21f2af4b | 11999be5e9e6d986 | 055215d75296dfc7 | 3efb61f28055f419 |
| b4432a530ccb79d0 | 8c966bcac722ad59 | 5549925e1d71107d | a73a1343cd3689de | a334a0e63f0cc6e4 |
| 0ee8bb7ea4c6d26c | 3053629860bddf5a | e02d1463bda15b94 | 000000000000000 | 0000000000000000 |
| 0000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |

## B One 12-Block Instance of the First Stage of Preimage Attacks on 3-Round Keccak-256

Table 10: The first 12 blocks in the first stage of preimage attacks on 3-round Keccak-256 (in little-endian order).

| the $1^{\text {st }}$ message block |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| a87e4b4591f0687c 84def99bf4272cd9 c723d6e67f3e7b6b e26ce2551b109fdb f8c07a91b5e04142 |  |  |  |  |
| ff | fffffffffffffff | ff | ff | $f$ |
| 02d4e1ef3b5ac2d6 | 2e7453315e8d867 | 927683b32a6b2e3 | b739b7004e45ca | ad952fc4e0b51417 |
| ffffffffffffffff | fffffffffffffff | 000000000000000 | 000000000000000 | 000000000000000 |
| 0000000000000000 | 00000000000000 | 00000000000000 | 00000000000000 | 0000000000000000 |
| the $2^{\text {nd }}$ message block |  |  |  |  |
| 0131127868c5eca4 481e88fef7f835b2 3f7c30ee2b18bc9b 29169e7fe1fa7a05 c8488dd9b24b1612 |  |  |  |  |
| 8c9a16cbe89414be aa800aa0467902a4 8ace1ce757f8d35c 352b978f459471ee 116648278b89f778 |  |  |  |  |
| 04d1167b50c6b654 27a4060a2ce64c45 33da42207746a6c8 2a6d8cc7c06aba6b 1af754519656a39a |  |  |  |  |
| 3b1a48403b167ac0 0b3e40bb0e25d475 00000000000000000000000000000000000000000000000 |  |  |  |  |
| 00000000000000000000000000000000000000000000000000000000000000000000000000000000 |  |  |  |  |
| the $3^{\text {rd }}$ message block |  |  |  |  |
| 676509fd04883731 c312babe7ad90df3 5522440426d28a78 c6b2b6dce094cda2 cd79d6bd710b8e31 |  |  |  |  |
| 64f0fb307ab9290f 56100677b01c58b6 ba2e24ac8d38f687 38ff427956f53a0c 9fbe70623351aef2 |  |  |  |  |
| e9e8f7b6de7e7060 6dc7f1b29e81f89b 5a8e29c217d109d5 c772c00b58b826c4 3a2be13d0c3c5499 |  |  |  |  |
| 5747eb9510effc99 d6052132c2427f33 0000000000000000000000000000000000000000000000 |  |  |  |  |
| 00000000000000000000000000000000000000000000000000000000000000000000000000000000 |  |  |  |  |
| the $4^{\text {th }}$ message block |  |  |  |  |
| a4cda31899256497 715563d6a427264a 755ee24e3fd7ce95 315509f648246f32 5b213820188c9d8e |  |  |  |  |
| 1481618cc5e427d8 2e75a7ff053e721d 496dc64aa616d685 d897634e7f2b2df4 71be70cf3889499e |  |  |  |  |
| ff7a96e424a94555 a9f6c5aeb830853c 6c670055219266df 3c3a068154aa9390 96cf729838728202 |  |  |  |  |
| db64a740f9589513 2764bb94b367a884 00000000000000000000000000000000000000000000000 |  |  |  |  |
| 00000000000000000000000000000000000000000000000000000000000000000000000000000000 |  |  |  |  |
| the $5^{\text {th }}$ message block |  |  |  |  |
| dcbe58b183dc41d4 e34fd3c7e5aa21ef a0f66fd7ca634450 ba4c4fb944ab81ac dcc19648624e9e8b |  |  |  |  |
| e7fe18b5136741f8 0a976baec941006b db18ddf29be6a93b e7b5768114b31638 cb033abd5c1c30dc |  |  |  |  |
| 08293758f3e869c3 e5ac7ea44c8ef07b a7f0477695ef4804 1f3d6259c1b0d9f8 884a30db099f2230 |  |  |  |  |
| cff7efffe0a6343e ed545a88086e87a7 0000000000000000000000000000000000000000000000 |  |  |  |  |
| 00000000000000000000000000000000000000000000000000000000000000000000000000000000 |  |  |  |  |
| the $6^{\text {th }}$ message block |  |  |  |  |
| d485e3166f82636f aa42ebc6e29aa2be e095e87c8ebc6db1 a27a311655072c2c 46820369e658deac |  |  |  |  |
| 2d1574ee508e7bf2 91d253375dc273b8 172f37e02d6e2a86 1d45c223f2b41991 d6cf75f27cfb0dad |  |  |  |  |
| afd53e5dffc7caa7 f88350234c478dbd 624adf441e7ef330 4bba7d186e494252 b4008fbfc0631902 |  |  |  |  |
| $9555 \mathrm{eabaec} 092 \mathrm{~b} 47 \mathrm{~b} 50622 \mathrm{a} 2 \mathrm{f9efae69} 000000000000000000000000000000000000000000000000$ |  |  |  |  |
| 0000000000000000000000000000000000000000000000000000000000000000000000000000000 |  |  |  |  |
| the $7^{\text {th }}$ message block |  |  |  |  |
| 83044e63844ddbb8 d135b0d01ed47bfb c83bf865df75ebbb 7aa1b9676f00456d 5546998bc4dfa501 |  |  |  |  |
| da591b6a1f39ea43 b792d66ad8372922 c7cc994c55e7e6cd eb66775db8e3e0ba d5b8a76ac3a5a58b |  |  |  |  |
| aecc0becddf84002 Ocd9696cfd226270 81e3cd39659715a7 33b7a38cd7c2c151 284f2e868b30eee7 |  |  |  |  |
| e3eabb69eb6b40e7 37a65b3cbbab1f84 0000000000000000000000000000000000000000000000 |  |  |  |  |
| 00000000000000000000000000000000000000000000000000000000000000000000000000000000 |  |  |  |  |
| the $8^{t h}$ message block |  |  |  |  |
| ea416a86ba6bba7a | 7dd944d5a5207 | e2216052ca5eec77 | 3c4a4fe6085bd5d | acd039872ec89bf |


| 99addf32207e4b56 <br> b9898734c4c411bf <br> edef697bdd2923ef <br> 0000000000000000 | 500381ce5c0d8346 <br> c7ed05a43fc5e4eb <br> 6138f8f38a91a2b4 <br> 0000000000000000 | 1ae7e42d5785e08f <br> b45ab22d24647598 <br> 0000000000000000 <br> 0000000000000000 | 2d9a4114702571d4 <br> e39ddf99b2a560b7 <br> 0000000000000000 <br> 0000000000000000 | 57c502924aa9f8ac <br> e3685a210700580d <br> 0000000000000000 <br> 0000000000000000 |
| :---: | :---: | :---: | :---: | :---: |
| the $9^{\text {th }}$ message block |  |  |  |  |
| 74cf7ad3cb5c688b | 293f7 | aa3e1c626d2 | 60e555cb822d2345 | 10996a979a9c520 |
| 22546ae5928c17b8 | 24bf5d7e40539aeb | a414620eeab4b | 13336ce0280f51b4 | da3652dc78ebfdb9 |
| 028f93b799f1c702 | b635e84f848cc584 | ec9416f01ac3530f | 9afde1444f2839d7 | 002753dd1e0c0bcf |
| db7d222f5992b23a | c5ce1a296c383421 | 0000000000000000 | 0000000000000000 | 0000000000000000 |
| 000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 00 |
| the $10^{t h}$ message block |  |  |  |  |
| 799035349bd98195 | b3e6579ffbb7d6d4 | 5318dbdd25b9822 | 41426631d911493e | 2cb |
| 143fc388b42666ed | 616c75eeff801ce1 | 3fe11c04e8e09a94 | 7af8ddd6a87a868b | fc22dd5cd84e636d |
| 5c0604d54f600df7 | Obc31c8706eb4fb0 | 66239737aa0ab292 | 86d3116db845895f | b764a2fd34b28ed5 |
| c6afa57f4fdae837 | 80eaac6257d32938 | 00000000000000 | 0000000000000000 | 0000000000000000 |
| 000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $11^{\text {th }}$ message block |  |  |  |  |
| 487aa7cc49c5536f | 8311c849d9fc74fa | 966a2052bbe40e51 | b8a63ab937c7c257 | 10e0b299815a791 |
| 0379109824528280 | fc9aff577593b9b6 | 3758db6078ae | b2e887ebbdca1e22 | 7e317366421357f2 |
| ee81d9847ca04df5 | a9fc5005a9a42c32 | 2f5b69fb9e0d4001 | a24bd5e2145bbc0e | 8e77215236c03891 |
| d7b8738f92eaa99e | 6ba852e2c5f8647e | 000000000000000 | 0000000000000000 | 0000000000000000 |
| 000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |
| the $12^{\text {th }}$ message block |  |  |  |  |
| dc0dbf7d91fb4441 | 6aa5fbafa98221f7 | 89050db49c6e9897 | 2a349d48906c64e2 | ca1a319838c015f |
| b35f33fc4a4930cd | 6ec20bf573640766 | 05ec836c5995b2c1 | e292afadd198efaf | 4 d 29 bc 75680254 c 1 |
| a77563d658388351 | 87e8a16725f03427 | 7ac7d5326c0cc6fe | 87fdf37cef971818 | cce3d2d85bed65e5 |
| 79ffefa6cc33e89f | 3d9bee727ec02c95 | 000000000000000 | 0000000000000000 | 000000000000000 |
| 000000000000000 | 000000000000000 | 000000000000000 | 0000000000000000 | 0000000000000000 |


[^0]:    ${ }^{\dagger}$ Corresponding Author

[^1]:    1 "the messaged state" means the inner state before $\theta$ operation in the first round

[^2]:    ${ }^{2}$ We use Condition_I and Condition_II to denote these two conditions in this paper.

