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Abstract. In this paper, we investigate the security of SNOW-V, demonstrating two
guess-and-determine (GnD) attacks against the full version with complexities 9384
and 2°78 respectively, and one distinguishing attack against a reduced variant with
complexity 23°3. Our GnD attacks use enumeration with recursion to explore valid
guessing paths, and try to truncate as many invalid guessing paths as possible at early
stages of the recursion by carefully designing the order of guessing. In our first GnD
attack, we guess three 128-bit state variables, determine the remaining four according
to four consecutive keystream words. We finally use the next three keystream words
to verify the correct guess. The second GnD attack is similar but exploits one more
keystream word as side information helping to truncate more guessing paths. Our
distinguishing attack targets a reduced variant where 32-bit adders are replaced
with exclusive-OR operations. The samples can be collected from short keystream
sequences under different (key, IV) pairs. These attacks do not threaten SNOW-V,
but provide more in-depth details for understanding its security and give new ideas
for cryptanalysis of other ciphers.
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1 Introduction

SNOW-V [EJMY19] is a new member of the SNOW family of stream ciphers, proposed in
2019 in response to the new requirements of the confidentiality and integrity algorithms in
5G and beyond from 3GPP [3GP19]. First, the 256-bit security level is expected in 5G to
resist against attackers equipped with quantum computing capability, while the predecessor
SNOW 3G being used in 4G was only specified for 128-bit key length. If the key length in
SNOW 3G would be increased to 256 bits, there exist academic attacks against it much
faster than exhaustive key search, see e.g., [YJM19]. Besides, the algorithms are expected
to achieve high throughput in software environments, as many of the network nodes in 5G
can be virtualised and the ability to use specialised hardware for cryptographic primitives
will thus be reduced. The targeted speed for downlink transmission in 5G is 20 Gbps,
while current performance benchmarks for SNOW 3G only give approximately 9 Gbps in
a pure software environment [YJ20]. 3GPP has asked ETSI SAGE (Security Algorithms
Group of Experts) to select and evaluate efficient confidentiality and integrity algorithms
for 5G use [3GP19]. SNOW-V is designed given these motivating facts and aims to provide
a 256-bit security level and perform fast enough in software environments. It has been
submitted to SAGE and is under evaluation [SAG20].

SNOW-V follows the design principles of the SNOW family, with a linear part consisting
of LFSRs (Linear Feedback Shift Registers) to serve as the source of pseudo-randomness,
and a non-linear part called FSM (Finite State Machine) to disrupt the linearity. Both
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parts are redesigned and better aligned to adapt to the higher performance and stronger
security demands in 5G. The FSM part is now increased to a larger size and accommodates
two AES encryption rounds to serve as two large S-boxes providing non-linearity, thus
taking full advantage of the intrinsic instruction of AES encryption round supported by
most mainstream CPUs. SNOW-V can achieve rates up to 58 Gbps for encryption in a
pure software environment [EJMY19] and more than 1 Thps in hardware [CBB20).

Since proposed, SNOW-V has received internal and external evaluations [EJMY19,
CDM20], which exhaustively visit all the promising cryptanalysis techniques of stream
ciphers and ensure that none of them applies to SNOW-V faster than exhaustive key search.
After that, more in-depth and focused studies followed, e.g., [JLH20, GZ21, HIT"21]. For
example, the paper [HIIT21] investigates the security of the initialisation of SNOW-V,
using MILP (Mixed-integer linear programming) model to efficiently search for integral
and differential characteristics. The resulting distinguishing and key recovery attacks are
applicable to SNOW-V with reduced initialisation rounds of five, out of the original 16,
which indicates that the initialisation has a good security margin. Below we give a more
detailed introduction to the guess-and-determine attacks [JLH20, CDM20] and linear
cryptanalysis [GZ21] against SNOW-V, and present our contribution.
Guess-and-determine (GnD) attacks. A basic GnD attack of complexity 2°12 is
proposed in the evaluation report [CDM20]. In this attack, one has to guess three out of
the seven internal 128-bit state variables and derive another three using three consecutive
keystream words. Although not all derivation details were given, it was assumed that the
derivation is possible with a negligible time, leading to recovering six state variables in
time complexity 23%¢. The last seventh state variable is recovered by guessing, thus the
total complexity is 2°'2. The next four keystream words are thereafter used to verify the
correct guess. The authors in [JLH20] propose a byte-based GnD attack against SNOW-V
with complexity 24%6 using seven keystream words. In their attack, the state variables are
split into bytes with some carriers introduced, and dynamic programming tool is used to
help search a good guessing path that requires guessing as few bytes as possible. Both
GnD attacks require seven consecutive 128-bit keystream words which looks reasonable, as
the internal state has seven 128-bit unknown variables that needs to be either guessed or
determined.

Our contribution. Our GnD attacks follow the research line of the GnD attack in
[CDM20] and fill the gaps of it. In our first GnD attack, we find an efficient recursive
enumeration technique in a byte-wise manner to determine three more state variables given
three guesses and three consecutive keystream words, such that the complexity of deriving
six state variables is still 2334, We then use the same enumeration way to derive the last
seventh state variable with negligible overhead, thus the total attack complexity is 23%4.
This improves the GnD attacks both in [CDM20] (25!2) and [JLH20] (249¢).

In our recursive enumeration technique, we take full advantage of the observation
that some guessing values will not give valid solutions at some point in the middle of the
guessing process, and one can immediately terminate this guessing branch and trace back
to guess another value. Thus, some efforts of going deeper can be saved. The earlier and
more often one can find such cases, the more efforts can be saved. We carefully design the
guessing order of the guesses, such that most guessing paths would be truncated at some
point without going into the end, resulting in the total GnD attack complexity 2384,

In our second GnD attack, we use one additional “backward” keystream word as side
information to impose more constraints and truncate more “forward” guessing paths, thus
further reduce the complexity to 237®. In order to retrieve the side information efficiently
(e.g., instantly) we need a volatile table of size 2!28 bits, which might be implemented in
RAM or HDD. The improvement factor over the first GnD attack is not so significant,
but the idea of using side information to refute more guessing paths and thus reduce the
overall time complexity is interesting in general.
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Linear cryptanalysis. The SNOW family of stream ciphers is constructed from two
components — the LFSR, serving as the source of pseudo-randomness, and the FSM,
providing nonlinearity. In typical linear cryptanalysis of such a construction, the nonlinear
part FSM is approximated by a linear expression between some keystream words and LFSR
variables plus a biased noise variable N(®)_ while the variables in the FSM are cancelled. In
a distinguishing attack, such linear expressions at k time instances corresponding to either
the feedback polynomial or a low-weight (usually 3 or 4) multiple of it will be combined
(typically through exclusive-OR operation), such that the contribution terms from the
LFSR are cancelled. Hence, the linear expressions involve only the keystream symbols
and noises, making a reorganised keystream sample sequence biased and distinguishable
from random, given enough number of samples. As the FSM approximation expression is
repeated k times, the total noise would then involve k sub-noises.

For example, in SNOW 2.0 [EJ02], the LFSR has a feedback polynomial of weight
four in the time frame of width 17 over Fgs2.The authors of [WBDC03, NW06] found a
very strong approximation of the FSM such that the bias is large, and combining four
such approximations to cancel out the LFSR contribution led to a distinguishing attack of
overall complexity 222° in [WBDC03] and further improved to 217 in [NW06]. Note that
in both papers the feedback polynomial is used to find the four time instances such that
the LFSR contribution can be cancelled, and the required samples can be collected from
many short keystreams under different key and IV (Initialisation Vector) pairs.

A straightforward prevention of above situation is to increase the number of taps in
the LFSR update function. In this case the direct usage of the feedback polynomial would
involve many more sub-noises, and the bias of the total noise would be very small. However,
there is a possibility to find a theoretical low-weigh multiple of any feedback polynomial,
due to the birthday paradox, such that one can still construct a biased noise sample from
several keystream words but far apart in time instances, i.e., the attacker needs a long
keystream sequence to collect one single sample. This strategy was used in, e.g., the recent
cryptanalysis of ZUC-256 [YJM20] and SNOW 3G [YJM19], in which weight-4 multiples
are used. In SNOW-V | an equivalent 32 x 16-bit LFSR has a feedback polynomial of weight
12.

In [GZ21], the authors perform linear cryptanalysis of SNOW-V and propose correlation
attacks against three reduced variants of it, in which either a permutation operation is
omitted or 32-bit arithmetic additions are replaced with 8-bit ones. The closest variant
is SNOW-Vg,, m,, in which one Hs, (four parallel 32-bit adders) is replaced by Hg (16
parallel 8-bit adders), and the complexity of the correlation attack against it is 2377.
Correlation attacks are focused on recovering the internal state and thus require a single
long keystream under a fixed (key, IV) pair.

Our contribution. In our distinguishing attack, we target a reduced variant of
SNOW-V, denoted SNOW-Vg, in which the 32-bit adders are replaced with exclusive-OR.
Unlike the classical approach, e.g., the above mentioned, where one first approximates the
FSM and thereafter cancels the LFSR contribution by combining expressions at several time
instances, we do it vice-versa and cancel the LFSR contribution directly without combining
several approximations. We explore the fact that three LFSR registers appear twice in
three consecutive keystream words — the minimum needed for the FSM approximation in
SNOW-V — and moreover, they happen to contribute linearly in SNOW-Vg, thus can be
directly cancelled.

Therefore, we consider three consecutive 128-bit keystream words and linearly combine
the bytes in these keystream words, such that the contribution from the LFSR is directly
cancelled. We then explore linear masking coefficients in an efficient way to cancel out
as many S-box approximations in the FSM as possible, thus to make the bias larger. We
find a bias evaluated using Squared Euclidean Imbalance (SEI) around 273%% and give a
distinguishing attack with complexity 23%3. A single noise sample is collected from just
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three 128-bit consecutive keystream words, and the samples can be collected from many
short keystream sequences under different (key, IV) pairs.

Though none of existing and our cryptanalysis efforts result in a valid attack against
SNOW-V faster than exhaustive key search, they are still of great importance for fully
understanding the security of the cipher. Table 1 lists the main existing cryptanalysis
results against SNOW-V, and comparison with new results in this paper.

Outline. We first provide some notations and expressions in Section 2, together with a
brief description of SNOW-V. We then demonstrate two guess-and-determine attacks in
Section 3 and Section 4, respectively. In Section 5, we perform linear cryptanalysis against
SNOW-V and propose a distinguishing attack against the reduced variant SNOW-V 4. We
end the paper with conclusions in Section 6.

Table 1: Attacks against SNOW-V and its variants.

Attack Complexity Data Reference

Guess-and-Determine 2512 7 keystream words [CDM20]

2406 7 keystream words [JLH20]

2384 7 keystream words Section 3

2378% 8 keystream words Section 4

Linear Cryptanalysis 2377 long keystream of length 2254 [GZ21]

23037+ many short keystreams Section 5

Integral Distinguisher | 2% (5 rounds) 218 [HITT21]

Differential Distinguisher | 2°7 (4 rounds) 297 [HIT+21]
Differential Key Recovery | 215 (4 rounds) 227

" The attack has memory complexity 2'2® as it needs a volatile table of size 2'2® bits.

™ The attack is applied on the reduced variant SNOW-Vg,, m,-
™ The attack is applied on the reduced variant SNOW-Vg,.

2 Preliminaries

2.1 Notations

The exclusive-OR and addition modulo 2™ are denoted by @& and B,,, respectively. ||
denotes the concatenation operation. The m-dimensional binary extension field is denoted
as Fom. For two variables z,y € Fom, xy denotes the multiplication over Fom. Given
two vectors a,b of length ¢, a = (a;—1,...,a1,a9) and b = (bs_1,...,b1,by), where
a;,b; € Fom for 0 < i <t — 1, we use ab to denote the point-wise multiplication computed
as ab = ®!_ja;b;, where a;b; is the multiplication over Fom. We sometimes also use
(at—1,...,a1,a9) - (bi=1,...,b1,bp) to denote the same point-wise multiplication. If m =1,
ab is the standard inner product.

The variables throughout the paper are normally 128-bit long, unless otherwise specified.
For a 128-bit variable x, we can express it as a byte vector (x5, z14,...,21,Zo), where
x; (0 <14 < 15) is the i-th byte. We use several subscripts to indicate several bytes of a
variable. For example, z1 57 denotes the 1-st, 5-th, 7-th bytes of x. To express the vector
of these bytes, we add a notation [-] outside. For example, [z15 7] denotes the byte vector
(1,5, 27). We add || between subscript indices to denote the concatenation of these bytes,
e.g., T1||5||7 denotes x1||xs||z7.
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2.2 Introduction to SNOW-V

In this section, we give a brief introduction to SNOW-V and predefine some notations and
expressions which will be frequently used in the subsequent cryptanalysis. The overall
schematic of SNOW-V is depicted in Figure 1. It follows the design principles of the
SNOW-family, consisting of the LFSR part and the FSM.
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Figure 1: Overall schematic of SNOW-V [EJMY19].

The LFSR part is a new circular construction consisting of two 256-bit registers, named
LFSR-A and LFSR-B, feeding to each other. Both LFSRs have 16 cells, each of which
holds an element from the finite field Fg16. These elements in LESR-A, denoted aqs, ..., ag,
and LFSR-B, denoted b1s, . .., by, are generated according to the generating polynomials
g2 () and ¢ (x), respectively, which are expressed as below:

g (@) =2 2P 4 et ¥ P 42t b+ 1 € Fyla],
P@) =2+ 2% + 2 + a2 + 28 + 2% + 2% + o+ 1 € Fyfz].

Denote the state of LESR-A and LFSR-B at clock ¢ by (agg, e a(()t)) and (bg?, . ,bét)),
respectively. Every time when clocking, the value in a cell is shifted to the next cell with a

smaller index and a(()t), bét) exit the LFSRs. The values in cell a15, b15 are updated as:

a9 = p® 4 0a® 4+ oY £ 0710 mod g (a),

b0 — () 4 gp®") 4 p(tH3) 4 g=1p(48)  1od ¢B(B),

where «, 8 are roots of the two generating polynomials g“(a) and gZ(3), respectively.
Such a construction has the maximum cycle of length 2°!2 — 1.

Every time when updating the LFSR part, LFSR-A and LFSR-B are clocked eight
times, thus half of the states will be updated. After that, the two taps T'1 and T2, which
are formed by considering (b15, b14, - . ., bg, bs), and (a7, ag, . .., a1, a9) as two 128-bit words,
are fed to the FSM.
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The FSM has three 128-bit registers, denoted R1, R2 and R3. It takes 71,72 as inputs
and produces a 128-bit keystream word z by the expression below,

2 = (R1) B3, T10) & R2®). (1)
The three registers are then updated as follows:
R2(HY) — AESR(R1Y), (2)
R3(HY) — AESR(R2Y), (3)
R1UHD — 5(R2® M3, (R3®) @ T2(1)), (4)

where AESg() is one AES encryption round and o is a byte-oriented permutation defined
as 0 =[0,4,8,12,1,5,9,13,2,6,10,14, 3,7,11,15]. The AES encryption rounds and 3z,
provide the source of non-linearity.

The design document has also specified the initialisation phase and AEAD (Authenti-
cated encryption with associated data) mode; as they are not relevant to our attacks, we
skip the details but refer to the design document [EJMY19].

Notations and Expressions. We give some notations and expressions here which will
be frequently used in the guess-and-determine attacks and linear cryptanalysis.

We use (R1, R2, R3) and (A0, A1, B0, B1) to denote the values of the registers in FSM
and in LFSR, respectively, at some specific time ¢, where A0 (B0) and Al (B1) are the
low and high 128 bits of LFSR-A (LFSR-B), respectively. Thus, these seven variables are
all 128-bit long and represents the whole state of the cipher. We can then get the following
expressions:

B1(t-1) — BO, Bot+L) — B1, B1¢+) — A0 @ 13(B0) & hﬁ(Bl),
AOUHD = A1, RIG-D — AES;'(R2),  R2(—V = AES;'(R3),

where AESR'() is the inverse of one AES encryption round. Here I3 and hg are two linear
operations relevant to the update of the LFSR, and are defined as below:

lp(X) = (B(Xus)j1a) ||+~ || B(X1)j0)) & X>3.2, (5)
hs(X) = (87" (Xus1a) ||+ || B71(X1)0)) & X525 (6)

where X is a 128-bit variable and X ¢, X5, denote the left and right shift by k bytes,
respectively. The multiplication operation with 3 or 3~! are applied to every 16-bit word
independently over the field of LFSR-B. They can be expressed as the multiplication of
the bit vector of the word and the binary 16 x 16-bit matrices of 8 or 3~!. The binary
matrix representations of 8 and 8! are given in Appendix A. The explicit expressions of
13(X) and hg(X) in bytes are given in Appendix B.

The expressions for three consecutive keystream words at clock t — 1,t and ¢ + 1, which
will be frequently used in our attacks, are derived as follows:

2= — (AES,'(R2) B3, B0) & AESR'(R3)),
() = (R1 M3, B1) ® R2, ™
2 = (0(R2 B35 (R3 @ A0)) B3z (A0 @ 15(B0) & hg(B1))) & AESR(RL).

3 The first guess-and-determine attack (T = 2384)

In this section, we fill the gaps of the GnD attack in [CDM20] and improve the complexity
from 2°'2 there down to 23%*. We first introduce some basics about guess-and-determine
attacks, which apply to our second GnD attack in Section 4 as well. We then describe the
attack in details and discuss its complexity.
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3.1 Basics about guess-and-determine attacks

In a guess-and-determine attack, one guesses some variables and determines others accord-
ing to some predefined relationships. In a GnD attack against a stream cipher, if all the
variables in the whole state could be determined through guessing a number ¢ of bits, where
t is smaller than the security level, the attack is then faster than exhaustive key search.
Knowing the whole state of a stream cipher at a certain time allows to trivially recover
the whole keystream corresponding to the specific secret key and IV. If the initialisation
phase has no special protection, one can even recover the secret key.

In this paper, we call every ordered tuple of values of the guessed and further determined
variables a guessing path or a guess-and-determine path, and use end-nodes to denote the
end points of the guessing paths. Usually, the complexity of a GnD attack is computed
as 2¢, if one simply loops over all the possible values of the chosen variables for guessing.
However, we notice that by guessing the variables in a careful order, one can either guess
fewer variables or truncate some guessing paths in which the already known (either guessed
or determined) variables fail to satisfy some equation constraints in the middle. In the
latter case, we can immediately trace back without going further and turn to guess another
value, thus the complexity could be reduced.

For example, consider the simplest loop in the pseudo-code in Listing 1, where z,y, z
are three 8-bit variables, it is straightforward to get that the complexity is T = 224,

T = 0;
for (x=0; x<256; x++)
for (y=0; y<256; y++)

for (z=0; z<256; z++)
{ T=T+ 1;

}
Listing 1: A simple GnD loop.

However, for a different loop shown in Listing 2, where L1[x] are lists depending on the
specific values of x and L2[z,y| are lists depending on the values of x,y, the size of the
loop is not fixed but rather depends on the lengths of lists L1[z] and L2[z,y]. For example,
for a specific value of z, after we have gone through every value of L1[z] for y (and
correspondingly subsequent z), we can immediately trace back to another x value, instead
of considering all the 256 values of 3. In this case, the complexity is not simply 224, but
instead the number of valid looping paths.
T = 0;
for (x=0; x<256; x++)

for(y = L1[x]. first; y!=NULL; y=y—>next)

]
for(z = L2[x, y]. first; z!=NULL; z=z—>next)
{ T=T + 1;

}
Listing 2: A more complex GnD loop.

Thus the complexity of a guess-and-determine attack could be expressed as ¢- T, where
c is some constant coeflicient which we will explain later, and 7" is not just the size of
the guessing loop, but rather dominated by the number of guessing paths that the attack
algorithm will reach an end-node. If the exact value of T is infeasible to compute, the
average value of it over the guessed variables is instead considered.

We will use the term enumeration to denote going through all the valid guess-and-
determine paths, and the size/length of such an enumeration will decide the GnD complexity
T. We would like to mention that the organisation of an enumeration may not be only
plain loops, but some more sophisticated algorithms, e.g., enumeration by recursion, in
which we adopt a recursion algorithm to explore all the solutions satisfying a certain
equation or a system of conditions.
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The other term c indicates some constant complexity, which solely depends on the
concrete platform and the operations how other values are determined from the known
ones. For example, the value of ¢ for computing D given A, B through D = A® B or
A=(DHB)® (D& S(B)) (S denotes S-box operation) will be different. Obviously, the
complexity for the former example can be ignored as it almost consumes nothing, thus
¢ = 1; however, for the latter case, it is not trivial to get the value of D directly, and
enumerations or some other techniques are required. Thus, the cost for simple derivations
are normally ignored, while if a derivation involves enumeration, the complexity of it
should be included.

3.2 Steps of the first GnD attack

In our first GnD attack, we guess three 128-bit state variables R1, R2, BO and use three
consecutive keystream words to determine three more, R3, Bl and AQ. The guessing
path is quite similar to the one in [CDM20], which guesses R1, R2, R3 instead, and then
similarly deriving B0, B1, A0. The derivations for R3 and B1 are simple, while tricky for
AO0. Tt is assumed in [CDM20] that A0 can be derived efficiently with negligible complexity
but no details are provided. We will fill this gap in Section 3.2.2 by breaking down AQ
into bytes in a similar manner as in [JLH20], but handling the order of derivations and
carries in a better way. After that, we use one more keystream word z(*+?) to determine
the final state variable A1 using the same way for deriving A0 with negligible time, instead
of purely guessing it with complexity 2!?® as done in [CDM20], which helps to reduce the
total complexity 2512 there to 23%4. Finally we use three additional keystream words to
verify the correct guess. In total, seven 128-bit keystream words are required to determine
the seven 128-bit state variables. A simplified flowchart of this GnD attack can be found
in Appendix F.

3.2.1 Initial guessing set and derivations

We consider the three consecutive keystream words given in Equation 7 and introduce two
intermediate 128-bit variables, C' and D, which are defined as follows:

C = 15(B0) & hs(B1), (8)

Correspondingly, the three keystream words can be rewritten as:

271 —(AESR!(R2) B3, B0) @ AES' (R3),
2) =(R1 B3, B1) @ R2, (10)
2+ —AESR(R1) @ D.

There are six unknown variables in Equation 10, and to determine all of them, one
has to guess not less than three. Since R1 and R2 appear twice in the expressions, we
prefer to first guess them. Let us initially guess (R1, R2, B0) with complexity 22%*. Then
the variables R3, B1 and D will be directly determined from Equation 10, respectively.
Thus, all the variables in Equation 10 are known, either through guessing or determining.
Besides, the intermediate variable C' in Equation 8 is also determined, and our last step is
to determine the values of the remaining two state variables, A0 and Al.

If we find an efficient way to enumerate all the solutions for A0 (and Al) without
additional guesses, the overall GnD complexity will be exactly 2384, We next show how we
efficiently find the solutions of A0 in Section 3.2.2, and use the same method to derive the
last state variable A1 with negligible complexity in Section 3.2.3.
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3.2.2 Deriving A0 using a 10-step recursive enumeration

A0 is determined using Equation 9, while we mention that even when all other variables
in Equation 9 are fixed, the value of A0 might not be uniquely or directly determined as
AQ appears twice in the equation with non-linear operations in between. So the task now
is to efficiently find the solutions for A0 in Equation 9, and we next show how we achieve
it in a byte-wise fashion. Each byte of D, D; (15 > ¢ > 0) is expressed as:
D, = (RQJ' Hs (R3J D AU]) Hg u]') Hs (AUL D Cl) Hg v, j= O'(i), (11)
where uj,v; € {0,1} are carry bits that arrive from arithmetic additions of the previous
bytes. We call these byte-wise equations as D-equations. Note that some carry values are
already known: ug = v = 0 for k = 0,4, 8,12. For other carriers, we do not have to guess
them if we derive the bytes of A0 in a careful order in 10 steps as given in Table 2.

Table 2: The 10 steps to derive AO.

Step 0: DO = (R20 Eﬂg (RSO &) AOO) Eﬂg U()) Eﬂg (AOO ©® Co) Eﬂg Vo
where wug=1v9=0
derive — (A0, u1,v1)
Step 1: D; = (R24 Hs (R34 D A04) Hs U4) Hs (A01 S¥) Cl) Hs v1
Dy = (R21 Hs (R31 D AOl) Hs ul) Hs (A04 &) 04) Hg vy
where w4 = v4 =0 and uq,v; are known from Step 0
derive  — (407, AOy4, us, v, us, vs)
Step 2: D5 = (R25 Eﬂg (R35 &3] A05) Eﬂg ’LL5) Eﬂg (AOE, ©® C5) Eﬂg Vs
where wus,vs are known from Step 1
derive — (AO0s, ug, vg)
Step 3: DQ = (RQg Eﬂg (R38 S5 AOg) Eﬂg u8) Eﬂg (A02 S¥) CQ) Eﬂg V2
Dg = (R22 Bag (RSQ D AOQ) Bﬂg UQ) Bag (AOg 5] Cg) Bﬂg (3
where ug = vg = 0 and uo, vy are known from Step 1
derive — (A03, AOs, us, v3, ug, Vg )
Step 4: D3 = (R212 Hg (R312 ® A012) Hg u12) Hs (A03 & C3) Hg v3
D12 = (R23 Bﬂg (R33 ©® AOS) Bﬂg U3) Bﬂg (A012 ©® 012) Bﬂg V12
where w12 = v12 = 0 and us, v3 are known from Step 3
derive — (AOg, A012, u13, ’U13)
Step 5: DG = (R29 Bag (R39 D AOQ) Bﬂg Ug) Bag (A06 &) 06) Bﬂg Vg
D9 = (R26 Bﬂg (R36 ©® AO(;) Bﬂg ’LL(;) Bﬂg (A09 (&) 09) Bﬂg (Vs
where  wug, vg, ug, V9 are known from Steps 2 and 3
derive — (AO@, AOQ, U7, V7, U10, UlO)
Step 6: Dig = (R219 Hs (R310 ® A019) Hs uig) Hs (A010 ® Cio) Bs v10
where w1g,v19 are known from Step 5
derive — (AOlo,un,vu)
Step 7: D7 = (R23Hs (R313 ® A0,3) B ui3) Hg (A07 & C7) Bg vy
D3 = (R27 Hs (R37 &) A07) Hs U?) Hs (AOIS S2) 013) Hs v13
where wy,v7,u13,v13 are known from Steps 4 and 5
derive — (A07, A013, U4, ’014)
Step 8: Dy = (R214 Hs (R314 ® A014) Hs u14) Bs (A011 & C11) Bs vi1
Dyy = (R211 Bs (R311 © A011) Bg ug1) B (A014 @ Cha) Bg v14
where  wq1,v11, U14, V14 are known from Steps 6 and 7
derive — (A0117A014,U15,U15)
Step 9: D5 = (R2y5Hg (R315 ® A015) Hg uis) Bs (4015 @ Ci5) B v1s
where w15, v15 are known from Step 8
derive — (A015)
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For each of the 238%* values of the initial guessing set (R1, R2, B0), we could have
different numbers, either zero or nonzero, of solutions for AQ. Most of the guessing values
will not even pass the first step in Table 2 as no valid solutions exist for the first D-equation,
and we can immediately trace back to guess another value of (R1, R2, B0); while other
guessing values could have more than one solutions. However, we will show in Section 3.3.1
that the average number of solutions over (R1, R2, BO) is exactly one.

The simplest way to enumerate all solutions is to use a recursion procedure. For
example, we can loop for all values of AQy in the first step, and for each valid solution we
recursively call the second step, and so on. If we only use simple loops for enumerating
all the solutions in each step in Table 2, the constant ¢ in the complexity will be quite
big (c ~ 2%), but later in Section 3.3.3 we will show how to reduce ¢ to much smaller in a
number of efficient ways.

3.2.3 Deriving A1 and final verification

After the above initial guessing and enumeration, we now know six out of seven 128-bit
variables of the state. There will be 23%* guessing paths that arrive to this final stage
of the attack. In order to derive the final 128-bit state variable A1, we use the fourth
keystream word z(t12):

2 = (R10+2) @y, B1H2) @ R2(H2),
where

R10%2) = 5(R2(HD Hy, (R3UHTD @ A1) = 0(AESg(R1) B3y (AESR(R2) ® Al)),
R2(+2) = AESR(R1HY) = AESg(0(R2 Hss (R3 @ A0))),
B1t+2) — 4o+ g lB(BO(tH)) @ hﬂ(Bl(t-i-l))

= A1 @ 1g(B1) @ hg(A0 @ 13(B0) @ hg(B1)).

Denote C" = l3(B1) & hg(A0 & Ig(B0) & hg(B1)), then we can get the equation for Al:
242 @ Ra(H2) = o(R2(HD My (R3UHD @ A1) By (A1 @ C).

One can see that the equation above has exactly the same form as the expression for A0 in
Equation 9, and therefore, we could use the ten steps in Table 2 to enumerate all solutions
for Al. The distribution of the number of solutions will be the same and there will be one
solution in average for each tuple of values of the other variables.

So far, we have guessed three state variables and determined the remaining four, such
that the values of the seven 128-bit words satisfy the four consecutive 128-bit keystream
words. The number of valid combinations of values is 23%¢ and in order to decide which one
is correct, we use the subsequent three keystream words for verification. The verification
only involves simple derivations thus the cost can be ignored.

3.3 Discussion on the complexity
3.3.1 Study of the two types of D-equations in the 10 steps

In this section, we compute the distribution of the number of solutions for the D-equations
in Table 2 and show that the average value is exactly one.

In Equation 11, the input carry bits u;,v; can be removed by setting RQS- = R2; Bu;
and D} = D;Buv;, respectively, which will not influence the distribution or the average value
of the number of solutions. The ten steps in Table 2 can be divided into two equivalent
types, which we denote by Type-1 and Type-2 D-equations.
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Type-1 equations have the form:
A= (BH, (Ce®X))H, (X & D),

where (A, B,C, D) are n-bit variables and X is the unknown which we need to enumerate.
Such Type-1 equations appear in Steps {0, 2, 6, 9}.
Type-2 equations have the form:

Al = (Bl Eﬂn (Ol &b Xl)) Hﬂn (X2 D Dl))
A2 = (BQ HEIn (02 @ XQ)) Hﬂn (Xl @ D2)7

where X7, X5 are two unknown variables that we want to enumerate, while others are
n-bit known variables. Such Type-2 equations appear in Steps {1, 3, 4, 5, 7, 8}.

For both types of equations, we have computed the distribution tables of the number
of solutions for the unknown X-bytes, given that other known variables are uniformly
distributed. We exhaustively (with some optimisations and cut-offs) try all the values of
the known variables, and count the number of solutions for the unknowns.

Table 3 presents the probabilities of X having different numbers of solutions for Type-1
equations corresponding to a random tuple (A4, B, C, D) over Fan. The probabilities are
derived through p = z/f, where x’s are the integers in the table and f is the corresponding
normalisation factor. The probability of having at least one solution when n = 8 can be
computed easily as 27391, This means that in Equation 9, only 272°! of the combinations
of (R2, R3,C, D) will result into valid solutions and continue with Step 1, and so on; while
for the remaining majority of the combinations we just stop and trace back to the last step
of the recursion. We can further compute the average number of solutions, Avr, as below:

2" -1
Avr = Z i - Pr{#Solutions = i}.

=0

The computed average value is exactly one.

Table 3: Distribution table of the number of solutions of X for type-1 equations.

#Solutions n=1 | n=2 | n=3 | n=4 | n=5 | n=6 | n=7 | n=8
normalisation factor f — | 2! 23 20 27 29 A 213 215

0 1 5 23 101 | 431 | 1805 | 7463 | 30581

2 1 2 4 8 16 32 64 128

4 1 4 12 32 80 192 448

8 1 6 24 80 240 672

16 1 8 40 160 560

32 1 10 60 280

64 1 12 84

128 1 14
256 1

We also derive the distribution and average value of the number of solutions for Type-2
equations using a similar technique. The distribution table under different n values is
given in Appendix D. The probability of having at least one solution is 273-°3 and the
average number of solutions is one as well.

Since the ten tuples of equations are independent to each other (except the carriers,
but the carriers do not influence the probability of having solutions), the probability of A0
having at least one solution is computed as 273-53%6-3.91x4 — 9=36.82  Thig means that
only a small fraction, i.e., 273682 of the 23%* initial guesses of (R1, R2, B0) will actually
have solutions for A0, while for other guessing values, the guessing process can be just
terminated here. However, when A0 has valid solutions, the number of solutions will be
around 23682 in average, and the overall average number of solutions is still one.
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3.3.2 The total attack complexity

As it was mentioned earlier, the large fraction of the guesses 2334 . (1 — 273:91) will fail in
Step 0 in Table 2, as it involves solving a Type-1 equation and the probability of having at
least one solution there is 27391, The remaining small fraction, 2384.273:91 x5 2380.09 of the
guesses will advance to Step 1. The number of solutions in Step 0 will be 2391 in average,
thus the total number of guessing paths that will arrive Step 1 is again 2380-09. 2391 & 9384,
The same observation applies to every step in Table 2. Thus for 2384 input combinations to
the recursive enumeration algorithm for deriving A0, we will get 23%* possible end-nodes,
exactly one per guessing tuple (R1, R2, BO) in average.

For the final step to determine A1, the situation will be the same, i.e., the majority of
the derived six-word tuple will fail the first step, and only a small fraction will advance to
the next step, and so on. The average number of solutions is again one and there are 2384
valid guessing paths. Thus the total complexity of the GnD attack is 2384,

3.3.3 Further reducing the complexity constant c

The complexity is written as c - 238 where ¢ is the complexity of operations involved in
each guessing path, mainly lies in solving the D-equations of either type.

Bit-wise enumeration recursion instead of byte-wise. Recall that the simplest way
to enumerate all solutions for AQ is to make a byte-wise recursion of depth ten, and in
each step we loop over the unknown byte(s) of A0, thus the overall enumeration recursion
will have a constant factor ¢ = 256 steps. However, we can change the recursion to be
deeper with depth 10 - 8 and search for solutions of each bit(s) of A0. This will shrink the
constant ¢ from 256 down to 2 !, since now we only need to test the binary bit-value(s)
before going to the next recursion depth while considering the resulting carriers from the
current step. So we can enumerate the 128-bit unknown AOQ by deriving one or two bits in
each recursive step. We have actually implemented such a bit-wise recursive enumeration
algorithm, see Appendix C. Note that the proposed recursion is linear with a fixed depth,
and may as well be organised as a number of (many) nested loops.

Precomputed lookup tables. Another approach is to precompute lookup tables helping
to instantly give the list of sub-solutions for each tuple of D-equations. The tables record
all the possible values of the known variables and the corresponding solutions for the
unknowns.

The smallest table will be of size 232 — 256 x 10 bits for Step 0, where each entry
corresponds to one value of the known variables, 256 is the maximum number of possible
solutions corresponding to one entry, and 10 bits correspond to the value of one unknown
(one byte) and two carriers (two bits). There will be exactly 232 valid records of size 10
bits in the table. An example of the smallest table is as below:

To[R20, R30, Co, Do] — {AOq, u1,v1}.
The largest table is of size 268 — 256 x 20 bits in Step 5:
T5[R2¢, R36, Cs, Ds, ug, v, R29, R39, Co, Dy, ug, vg] = {A0g, AOg, u7, v7, u10,v10}-

Truncating guessing paths reaching the 10-step stage for deriving A0. The
number of guessing paths that reach the 10-step stage for deriving AQ can be further

IFor a Type-2 D-equation we can loop over the first unknown bit-value (0 or 1, thus ¢ = 2), then derive
the second unknown bit-value using the first equation, and then test the pair of the bits using the second
equation.
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reduced by guessing the variables in the initial set in bytes, instead of 128 bits, in a careful
order. We give a simple example here, and there exist some more tricky ones. We first
guess the following 25 bytes and 2 bits in complexity 2202

R101,3,4,5,9,10,14,15, 220,145, 1230,1,4,5, B00,1,4,5,6,7,10,11, W04,

where wg 4 are two carry bits for 32-bit additions. Then the following variables can be
derived:

Rls)®1-8
®3-S
®3-5

( Rlyg)®1-S(R1;5)),
(
(

Ds=2""Mag(1.-S(Rls) &1 S(Rly)@2-S
)
)

)
Rly) @1 S(Rlys)),
Rlg)®1-S(Rlyy))
Rlg) @3- S(Rlyy))

b

—~ o~ o~

)
)
) )
) )

~— ~—

b

Blg = (ZO\Il @ R2¢)1) Hs2 Rlg))1 Bs2 wo,

Cojj1 = BBOg|;1 @ BOg)j7 @ B~ Blg1,
Cyji5 = BBO4jj5 ® BOjgjji1 © B~ Blyys.

With the set of the guessed and determined values, we can now check whether a solution
for bytes A0y, A0y, AO4, AO5 exists, in the first three steps in Table 2. The probability of
valid solutions, denoted pg_s, can be computed as pg_p = 27391%273:52 — 9=11.34 Tf po
solutions exist, we just roll back and make another guess; otherwise we guess the remaining
23 (= 48 — 25) bytes of the initial guessing set and run the 10-step algorithm to enumerate
all values of A0. The total number of nodes T” that will arrive to the 10-step stage will be:

T/ = 920042 4 (g, . 920042y 91842 _ 9202 4\, 9384
This means that only 237260 guessing paths (out of 23%4) will reach the 10-step stage
for enumerating A0. However, the total complexity will still be 2384, as the fact that there
are 2384 solutions satisfying the three consecutive keystream words remains unchanged.

Figure 2 gives an illustration of the first GnD attack and the “effect” of the idea to do a
pre-test after guessing only 202 bits.

If we do a pre-test after guessing 202 bits,
we will truncate some (but not all) nodes
that will anyways have zero solutions for AO

Guess R1, R2, BO
Derive R3, B1, C, D
2384 nodes

10-steps recursive
enumeation for AO

2384 nodes

10-steps recursive
enumeation for A1

2384 nodes

[ Verify the 7x128-bit state by using the next 3 keystream words ]

Figure 2: Illustration of the first GnD attack.



Jing Yang, Thomas Johansson and Alexander Maximov 67

4 The second guess-and-determine attack (T = 2378.16)

In this section, we provide a second guess-and-determine attack which can further reduce the
complexity by using one additional “backward” keystream block z(*=2) as side information
to truncate more “forward” guessing paths. Thus, this approach needs eight keystream
words. The improvement over the first GnD attack is not so significant, but the idea of
exploiting more equation constraints to truncate guessing paths itself is interesting, and
our second GnD attack serves as a direct illustration of it.

4.1 Use z(®? to truncate more guessing paths

If we want to further reduce the complexity of the first GnD attack, we could try to see
if we can use some additional information, besides those seven keystream words that are
already involved in the first attack. With such additional information, we can truncate
some portion of the guessing paths that have solutions for the D-equations while not for
the additional information, proportionally. Thus, the average number of end-points 2384
will be reduced proportionally as well. Specifically, we use one additional keystream word
at clock t — 2, i.e., 2=, to impose more constraints and truncate more guessing paths.
The expression of z(*=2) is shown below:

272 — (R1072) By, B1072) @ R2(72),
where R1(=2) B1(t=2) R2(t=2) are derived as follows:
R1¢=2 = AES!(R2(Y) = AES;! (AESRL'(R3)),
B1t=2 = pott=1),
R2(72 = AES,(R3U7Y) = AES,' ((0(R1) B3 R2D) @ A0t—Y)
= AES,' ((0(R1) B2 AESZ'(R3)) @ A0(—D).
According to the LFSR update function, we can derive:

A0Y = B1 @ 15(BO“Y) @ hg(B1UY) = B1 @ 13(B0*V) @ hyg(BO).

Thus z(*=2) can be written as an equation in one unknown variable BO®*~1) (given that
other variables are either known, guessed, or determined):
272 — (AESR' (AESR' (R3)) B3, B0 1)
X
@ AESL' ((0(R1) B3y AESR' (R3)) @ hs(B0) @ Bl ®lg(B0"D)).

Y

Using X, Y to denote the expressions in the brackets, we could simplify the above
equation as z(*=2) = (X M3y B0~ V) @ AESL' (Y @ 15(B0¢~1)). Similar to the situation
for A0 in our first GnD attack, BO(~1) appears twice with non-linear operations in between,
thus it can have different numbers of solutions given specific values of X, Y. If we change
to initially guess the two 128-bit variables X and Y, the expression of z(*~2) can help to
truncate more guessing paths that have no valid solutions for BO*~1) . Specifically, for
each guessing value of (X,Y), if we can immediately give a binary answer, i.e,. Yes or No,
about whether there is at least one solution for BO®~1) | we can discard those (X,Y) values
with no solutions, and only continue guessing the third 128-bit variable for the others.
Note that we do not enumerate solutions for BO®*~1) in 2(:=2) otherwise we would get the
same complexity 2334 as the first GnD attack, and we will later show how we efficiently get
the binary answer in Section 4.2.1. Actually, we will guess (X, BO®~1) instead of (X,Y)
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there, but we still first describe the idea by guessing (X,Y") as it is easier to illustrate how
2(t=2) ig exploited.

Let p. denote the probability that BO*~1) has solutions in the equation of z(*=2), then
the total complexity of the second GnD attack would be computed as:

256 128 384
T= 2 ((I=p)+ p. - 2 )~ p, - 2°°0
guess X,Y “No” “yeg” 3rd guess

We have derived the specific value of p, in Appendix G, which is 27°84, thus the total
complexity of the second GnD attack is around 2384584 ~ 2378.16,

4.2 Scenario of the second GnD attack

The flowchart of the second GnD attack is given in Appendix F, which follows the steps
below:

(1) Guess X and Y with complexity 22°6.

(2) For each (X,Y) value, check if BO®~1) in 2(#-2) has solutions: if yes, continue with
guessing the third variable in the next step; otherwise roll back to the last step.

(3) Guess B0 in complexity 2128 and further derive R2, R3 as below:
R3 from: X = AES,;'(AES:'(R3)),
R2 from: 2~V = (AES,'(R2) Bs2 B0) & AES,' (R3)).
This step will be entered p, - 22%¢ times in average.

(4) For each valid combination of (X, Y, B0), we get the following two equations in two
unknowns R1 and Bl:

) & R2 = R1 83, B,
Y @ hs(B0) = (¢(R1) Ba2 AES,' (R3)) @ Bl. (12)

We check if B1, R1 have valid solutions given other variables, and roll back if the
answer is negative, otherwise we enumerate all solutions recursively. We have
computed the distribution and average value of the number of solutions using the
similar way for the D-equations in the first GnD attack, and the details are given
in Appendix E. There is again one solution in average for each combination of the
known variables. Similarly, lookup tables can be precomputed to help enumerate
solutions efficiently.

(5) Enumerate all solutions for A0 as done in Section 3.2.2 in the first GnD attack;
(6) Enumerate all solutions for Al as done in Section 3.2.3 in the first GnD attack;

(7) Use the next three keystream words to verify the correct guess.

4.2.1 Guess (X, B0¢—1) instead of (X,Y)

In the first step, we need to give a binary answer about whether solutions exist for BO(~1)
in the equation:

22 = (BOU=1) By X) ® AESR (15(BO“ D) @ Y).

One simple way to achieve this is to run an enumeration algorithm on BO®*~1) and
whenever a solution is found, we stop and return “Yes”. This is similar to the process
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of computing p, in Appendix G. The process is actually an enumeration algorithm on
B0t with complexity 23584 resulting in the total complexity even higher than 23%4.
However, we can actually guess (X, BO®~1) instead of (X,Y), and Y can be uniquely
determined given (X, BO‘~1). But it could happen that for different (X, BO®*~1) pairs,
the values of (X,Y") are the same. So for every new X we must ensure that the value of Y’
is new, and skip the cases when the pair (X,Y") has already been considered. Thus, for
each new value of X we make a binary vector of length 2!28 in which we flag (i.e., set to 1)
those Y’s that have already been considered for that specific value of X. Thus, in step
(1) in Subsection 4.2, we guess (X, B0~1) and determine Y, and in step (2), we check if
(X,Y) pair has already been flagged: if so, we roll back to guess another value; otherwise,
continue with guessing B0 in step (3). Other steps are just the same as before.
T 0;
N = pow(2, 128); // 2 to the power of 128
char flag[N];
for(X = 0; X < N; +4X)
{ for(i = 0; i < N; 4+i)
flag[i] = 0;
for (BO = 0; BO < N; ++B0) // BO at clock t—1
{ derive Y;

if (flag[Y] == 0)
// we enter this branch with probability p_z in average
flag [Y] = 1;

for (BOt = 0; BOt < N; ++4BOt)

// guess the third unknown BOt: BO at clock t

{ T =T+ 1; // complexity to enumerate all guess basis
(%) ... further derivation and enumerations, Steps 3—7

Listing 3: Outline of the second GnD attack.

Listing 3 gives the pseudo-code of the second GnD attack. It is easy to see that the
number of times that the GnD attack arrives to the point (*) is T~ 22°¢ - p_ - 2128 where
p, = 27284 thus the complexity is about 2378, However, in order to gain the advantage in
time complexity over the first GnD attack we have to use memory of size 2'22 bits.

5 Linear cryptanalysis of SNOW-Vg

The basic idea of linear cryptanalysis is to approximate the non-linear operations of a cipher
as linear ones, and further to explore linear relationships either between keystream words,
or between keystream words and initial states, which could result into a distinguishing
attack or a correlation attack, respectively. Usually, such a linear approximation will
introduce a noise, and the quality of the linear approximation is measured by the bias
of this noise, which will directly influence the attack complexity. There are many ways
to define the bias and derive the complexity, and in our attack, we use SEI as defined in
[BJV04]. For a variable with distribution D, the SEI of it is computed as:

|ID|-1

«D)=|D|- 3" (Dml,ﬁl)Z,

=0

where D[i] is the occurrence probability of the value in the i-th entry. For a distribution
with SEI e(D), the number of samples required to distinguish it from the uniform random
distribution is in the order of 1/e(D) [BJV04].

In this section, we perform linear cryptanalysis of SNOW-V and propose a distinguishing
attack with complexity 23°3 against a reduced version SNOW-Vy, in which the 32-bit adders
are replaced with exclusive-OR. In the attack we explore the feature that three consecutive
keystream words contain the contribution from the LFSR linearly and redundantly, due to
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the chosen tap positions of T'1 and T2 in the design. Thus, unlike the linear attacks against
the predecessors SNOW 2.0 (e.g., [WBDCO03, NW06]), and SNOW 3G [YIM19], where
one first approximates the FSM and then cancels out the contribution from the LFSR
either according to the feedback polynomial or a multiple of it, here we do it vice-versa.
We will first cancel the LESR variables locally within these three keystream words without
combining several time instances, and thereafter construct a noise expression based on the
remaining expressions over the FSM variables.

5.1 Linear approximation

We first express the operations in the AES encryption round as L - S, where S denotes
S-box operation and L is the combination of the ShiftRow and MixColumn operations.
Similarly, the inverse AES encryption round can be expressed as S~!- L', where 5!
denotes the inverse S-box operation and L~! is the combination of inverse MixColumn and
inverse ShiftRow operations. L and L~! can be expressed as two 16 x 16-byte matrices,
in which each entry is an element from Fos. The expressions of L and L™! are given in
Appendix A. Besides, we replace Hss with &, and make a substitution of the variables
R2,R3 as L - R2, L - R3, respectively. Hence, R2, R3 are not the original variables, but
for ease of reading, we still use the original notations. Then the expressions of the three
consecutive keystream words in Equation 7 can be rewritten as follows:

=Y = §Y(R2) & B0 @ S™!(R3),
2 =R1®Bl1® L- R2,
2D = 6L R2@ oL - R3&® (0 A0 ® A0) ® l5(B0) ® hg(B1) ® L - S(R1).
The variables B0, B1, A0 are contributions from the LFSR, and we would like to cancel
them out first. To achieve so, we apply two linear operations /g, hg, which can be expressed

as two 128 x 128 binary matrices, to z(!) and z(*=1), respectively, and introduce a new
128-bit variable W defined as below:

W =14 ) @ hy(29) @ 2+, (13)

The contribution from the variables B0 and B1 is cancelled in W, and what remains
from the LFSR is only (0 A0 & A0). Now let us introduce ten byte-based variables from
W, shown below:

Eo =Wy, Ei=W18W,, Ey=W;s, Es =Wy @ W, Ey=Ws @& Wy,
Es; =W, Es=W3;& Wi, E;r=W;& Wy, Es=Wi1& W, Ey=Wis,
where W; is the i-th byte of W. Each byte-wise expression Fj (0 < k < 9) cancels out the

contribution from A0, and only the byte variables from registers R1, R2, R3 remain. Each
of the above Fj terms can be expressed in a form as below:

15

By = @iy - RL @ nil) - S(RL)]
=0
oll) - R2; @ nf) - STHR2)| @ [IfY) - R3; @ nf) - STL(R3;)), (14)

where Z,(fl)-,ngfz (€{1,2,3},0<k <9,0 <i<15) are 8 x 8 binary matrices that can be
derived f’ollo“;ing the expressions of W and E terms. This means that each Ej can contain
up to 48 independent noise terms of the form ax @© bS(x), i.e., up to 48 approximations of
the S-boxes or the inverse S-boxes. We can derive the expression for the total noise N as
a linear combination of these ten E-bytes as follows:

N=cy-Eg®ci - EF1®D---Dcg- Fo,
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where ¢;’s are linear masking coeflicients or binary matrices that an attacker can freely
choose. It is computationally infeasible to exhaust all the values of these matrices, and
below we show how we efficiently search them to achieve a decent bias.

Since we have ten byte expressions each of which can have up to 48 S-box approximations,
it is possible to find some linear combinations of these ten bytes such that some S-box
approximations could be removed in N, i.e., the coefficients of the linear part and the
S-box part of some bytes both become zero. Now we are interested in the maximum
number of S-box approximations that can be removed, as it can give a higher bias.

We first use MILP (Mixed-Integer Linear Programming) to help find a lower bound on
the number of active S-boxes, as done in [ENP19]. By solving the MILP problem, we get
a first insight that there will be not less than 37 active S-boxes. We next show how we
explore linear masking coefficients to remove as many S-box approximations as possible.

5.2 Exploring maskings to remove S-box approximations

We can construct a w-bit noise IV, using the ten 8-bit F-expressions, which is expressed
in a matrix form as below:

Ey
Ey
€9 )wxlo-s' . =c-E
By /108
where ¢;’s, 0 < i < 9, are w X 8 binary matrices that the attacker can choose freely,
but with the constraint that the rank of c is w, i.e., all w rows are nonzero and linearly

independent. For simplicity, let us introduce 96 8-bit variables as follows:

fori=0,...,15: Xi=Rl, Y;=S(RL),
Xio4i = R2;,  Yigpi = STHR2y),
X324 = R3;, Yaoii = STH(R3)).

Note that every X; (0 < j < 47) can be regarded as a uniformly distributed random
variable, and Y is the corresponding value after applying the S-box or inverse S-box. Thus,
an expression of the form a- X; ®b-Y;, where a, b are two linear maskings, can be possibly
biased only when a # 0,b # 0. When a = 0,b # 0 or a # 0,b = 0, the expression will be
uniform; and when a = 0,b = 0, this approximation can be removed. Since every E; is a

linear expression of the X, Y variables, the expression of the noise N,, can be rewritten as:
Xo Yo
No=(¢c e - ¢ ) 108" |Alosxass- : @® B1o.sx4s.8 - :
Xat ] 458 Yo /) 458

=c-[A-XaB-Y],

where A and B are two 10 - 8 x 48 - 8 binary matrices derived from the ten E-expressions
in Equation 14. It is therefore clear that the total w-bit noise N, consists of at most 48
sub-noise parts:

47
Ny = @ (c- A)[o:wq; 8i:8i+7] X; @ (c- B)[O:wfl; 8i:8i+7] Y,
i=0

a; bL

where a; and b; are w x 8 binary sub-matrices, constituted from the w rows and the eight
columns from 8i to 8i + 7 of the matrices ¢ - A and c - B, respectively. There are in total
96 such matrices.
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Obviously, if a; = b; = 0, the i-th sub-noise part vanishes to zero, and thus the total
noise will have a larger bias. If, on the other hand, only one of the two matrices is zero,
the contribution of that i-th sub-noise will make some or all bits of N,, pure random, thus
these bits will have no contribution to the bias. If all bits are affected and become random,
the total bias will be 0. Therefore, we are interested in selecting the masking matrix c
such that we can cancel as many S-box approximations out of 48 as possible, meanwhile
guaranteeing that the xor-sum of the remaining sub-noises is biased. Next we show how
we achieve this.

Algorithm to derive the linear masking matrix c. Let us select k distinct indices
{i1,i2,...,ir} €{0,1,...,47}, and we want to cancel the sub-noise parts corresponding
to these k indices, i.e., to make a;; =b;; =0 for j = 1,2,...,k, by carefully choosing the
linear masking ¢;’s. We can construct a matrix K that consists of the corresponding 8-bit
columns taken from the matrices A and B:

Kio-sx2k-8 =
A[O:7; 8i1:8i1+7) B[O:?; 8i1:8i1+7] ce A[O:’T; 81y :8ik+7] B[O:?; 81y, :8ik+7]
A[8:15; 8i1:8i1+7] B[8:15; 8i1:8i1+7) v A[8:15; 8i):8ik+7] B[8:15; 8iy:8ik+7]
. ;
A72:79; 8iy:8i14+7]  B72:79; 8i1:8i14+7] - A[72:79; 8in:8in+7  B[72:79; 8iy:8ip+7]

and we want to find a nonzero matrix ¢ such that:

Cuwx80 - Kgox2k-8 = Owx2k-8-

First of all, if the rank r of the matrix K is 80, there are no valid solutions of ¢ satisfying
c-K = 0. While if » < 80, there exist w = 80 — r nonzero linear combinations that will
map through K to zero. This also explains how the size w for the total noise N,, was
derived in our attack.

In order to search for the kernel linear combinations, we initially set ¢ as a square
identity matrix cgoxso = Igoxso, then perform the standard Gaussian elimination on the
binary matrix K to transform it to the row echelon form K’, and apply the same operations
to the matrix cgpxgg- This is quite similar to the steps of deriving an inverse matrix of K,
if K would be a square matrix.

In the end, we get the row echelon form K’ = ¢ - K, where the last w = 80 — r rows
of K’ are zeroes, while the matrix ¢ will be of the full-rank 80. Then we keep the last
w rows of ¢ and discard all other r rows, thus deriving the desired c,,xgo satisfying c-K = 0.

Search strategy for a good linear approximation. It is now clear that a larger
bias of the total noise can be achieved by removing as many S-box approximations (out
of 48) as possible. We can do it by exhaustively selecting k indices in (4k8) ways, then
applying the algorithm above to check if a solution for the matrix c exists for the selected
sub-noises, and if so, derive w and the corresponding linear masking matrix c. Then given
the derived c,, x50, we construct the distribution of the total w-bit noise N,, and compute
the bias. We pick the solution for which the total bias is the largest.

Correction approach. For many k-tuples of indices we would get a full-rank K, and
thus we do not have to continue further computations. However, another step of cutting
out k-tuples is to do a correction approach for the matrix c¢. If w is shrunk down to 0
during such a correction, there is no need to continue further computations and we jump
to the next k-tuple. The correction idea is as follows.

Given a derived masking matrix c,,xso, we can meet the situation when some of the 48
sub-noises will have a; = 0 and b; # 0 (or vice versa), which means that some bits of the
w-bit total noise become uniformly distributed. In such a case, we can try to correct the
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masking matrix c,,xg9 by removing those rows where the rows of b; are nonzero. In this
way we shrink w down but get a; = b; = 0. If w becomes 0 at the end of this procedure,
we proceed to the next k-tuple.

If for all 48 sub-noises we get either a; = 0,b; = 0 or a; # 0,b; # 0, the resulting linear
masking matrix ¢ may lead to a biased total noise. We then construct the distribution of
the total noise N,, and compute the corresponding bias. When constructing the distribu-
tion, we can utilise the Walsh-Hadamard Transforms to speed up the convolution of the
48 w-bit sub-noises [MJ05, YIM19].

Results. In our simulations we managed to find a 16-bit approximation Nyg, i.e., w = 16,
and the masking matrix cigxso can effectively eliminate nine S-box approximations. The
received bias (SEI) is

€(Nyg) =~ 27393,

The linear masking cigxgo is given in Listing 4, where the bits are encoded as 64-bit
unsigned integers in C/C++, and are mapped to the bits of ¢ as follows:

ci6xs0[t, J] = (C[i][1/64] > (j%64))&1.

uint64_t C[16]1[2] = {

0x0000020200020000ULL , 0x0000ULL}, { 0x94730000005e0000ULL, 0xO00OULL},
0x0000080800080000ULL, 0xO0000ULL}, { 0x48c4159600fa0120ULL, 0x0002ULL},
0x48c421a200ce0120ULL, 0x0002ULL}, { 0x0000444400440000ULL, 0x0000ULL},
0x3c15810000220080ULL, 0x0001ULL}, { 0x0000000000000022ULL, 0x0000ULL},
0x40c1000000600000ULL, 0x0100ULL}, { 0x0000000000000008ULL, 0x0000ULL},
0x0000000000000060ULL , 0x0000ULL}, { 0x0000000000000021ULL, 0xOO00OULL},
0x0000000000000004ULL, 0x0000ULL}, { 0x0000000000000010ULL, 0x0000ULL},
0x4b39000000ee0000ULL , 0x0000ULL}, { 0x54cc000000fe0000ULL, 0x8000ULL}};

A A A A A AR s s

Listing 4: The linear masking cigxso-

We also tested if there exists a linear masking that can eliminate ten or more S-box
approximations. We ran our exhaustive search program with k& = 10 for all the (‘fg) ~ 232:6
10-tuples, but with no valid results returned. By this we confirm that at most nine S-box

approximations can be removed from the total noise expression.

5.3 Distinguishing attack

If all arithmetic additions are substituted with exclusive-OR, we could have a distinguishing
attack against this variant with data complexity 23°3. Specifically, one should collect
around 23%3 different triples of consecutive keystream words and construct the sequence of
16-byte words {W} of length 23°3 by applying Equation 13 for each triple; then build the
sequence of 10-byte words {E} from {W}; and, finally, apply the linear masking c16xso
given in Listing 4 to each word in {E}, thus receiving the sequence of length 2393 of biased
16-bit noise samples { Ny}, which can be distinguished from random.

The bias derived in our attack does not depend on the key or IV, and the time width
to build a single sample is just three keystream words, which means that the data in our
attack can be collected from many short keystream sequences under different (key, IV)
pairs. Though the data complexity is still out of reach in practice, the attacking scenario
is more relevant to the practical situation. The attack can also be used to recover some
unknown bits of a plaintext encrypted a large number of times with different IVs and
potentially different keys, e.g., in a broadcast setting [SSST19].

Discussion on the full version. If we take the 32-bit adders into consideration, the
bias would change. However, how the bias would vary is not clear, as the Hzo operations
can be seen as part of multiple S-boxes and their approximations. On the other hand, it is
computationally difficult to compute the bias by exhaustive looping. We do not have a
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good idea about how to compute that bias in practice, and leave it as an open question for
further research.

6 Conclusions

In this paper, we investigate the security of SNOW-V and propose two guess-and-determine
attacks with complexities 2384 and 2378, respectively, and one distinguishing attack against a
reduced version, in which the 32-bit adders are replaced with exclusive-OR, with complexity
2303 These attacks do not threaten the full SNOW-V, but provide deeper understanding
into its security. Besides, our attacks provide new ideas for cryptanalysis against other
ciphers. Specifically, we recommend that in a guess-and-determine attack, instead of
simple looping, one should carefully design the order of the guessing and always truncate
those paths invalidating some equation constraints. In this way, one can save the cost for
going through the invalid guessing paths and thus the complexity can be reduced. A very
interesting open problem would be to investigate whether there are possible speed-ups for
these kind of GnD attacks using quantum computers. For linear cryptanalysis against
LFSR-based stream ciphers, it might be interesting to check if the LFSR contribution can
be cancelled locally first, then the remaining equations on FSM variables may be used to
construct a biased noise.
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A The matrices
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S OO OC OO OO OC—HOOOOOO
[eNeNolololoNeNe] OO0 O0O0O0O0O0O
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S OO OCOOoO O [eolelalololeloie]
SO0 O0OO0OHOO [eNeNelololoNole]
SO0 HO OO [eNelelolooNole)
(=N No ool SO OO OO OO
OCO—HOOO0OO0OO [=NeNeloloioleie)
OHOOOOOO SCooocococoo
O OO0 OOoOo [clololololeloie]
OO O O CO OO =
O QOO ~—0O OO ~O O~
[eolelalolelelole] [eolelaloiolaioll ol
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eopoeeeee 0000000
[=NeleloloNoNalle] [eNeNeloloNoNeNe)
SO OO OOoO O SO OO OO OO
SO0 O0O0HOO [eNeNoRololoNole]
SO0 O0OHO OO eeeeeeae e
OO 1O O OO SO OO OO OO
OCO—HOO0OO0OO0OO [eleNelololoNeie)
OHOOOOOO SCoooococoo

Listing 5: The 16 x 16 binary matrices for 8 (left) and S~ (right).
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Listing 6: The L~! (left) and L (right) matrices.

B The operations of I3 and hg in bytes

13(B0) can be expressed in bytes as below:

15(B0)2) 3 = BB0y)j3 ® BOg)9,

15(BO0)o|j1 = BB0g1 © BOg)7,

l5(B0)g|j7 = BB0g||7 © BO12)13,

15(B0) 1011 = BBO1o)|11,

15(B0)4) 5 = BBO4)|5 ® BO1g|j11,

lp(BO0)g|j9 = BB0g|j9g © BO14|15,

15(B0)12))13 = BB012)13,

15(B0)14)115 = BB014)|15-

hg(B1) can be expressed in bytes as below:

B Blys,

hs(B1)g)3

5_1310”17

hs(B1)o|1

= B7'Blg)7

hs(B1)g)|7

B Blys,

hg(B1)y)5

5_13110\\11 @ Blo
hg(B1)14)15 = 5713114”15 & Blyjs-

hs(B1)10/11

5_1Bls||97

hﬂ(31)8||9

B Bligjs @ Blys,

hﬁ(Bl)lzulg

C Recursion implementation for the 10-steps algorithm

Note that for a random choice of inputs C, D, R2, R3, the probability of having at least
one solution of A0 is 273682, However, if solutions exist, the average number of solutions
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will be 23682 Therefore, in the code below we also include the flag solvable=0/1 as the
argument to the method Dequation: :random() that generates either a fully random input
where A0 may possibly have a solution, or a random input where A0 is guaranteed to have
a solution — that is for testing and simulation purposes.

struct Dequation

{
u8 R2[16], R3[16], C[16], D[16]; // input
u8 ul16], v[16]; // intermnal
u8 AO[16]; // result

void computeD(u8 * Dr)

{
u8 T1[16];
for (int i = 0; i < 4; i++)
((u32*)T1) [i] = ((u32*)R2)[i] + (((u32*)R3)[i] =~ ((u32x*)A0)[i]);
for (int i = 0; i < 16; i++)
Dr[i] = T1[((i >> 2) | (i << 2)) & 0xf];
for (int i = 0; i < 4; i++)
((u32*)Dr) [i] += ((u32*)A0)[i] ~ ((u32%)C)[i];
}

void random(int solvable=0)
{ memset (this, Oxff, sizeof (xthis));

for (int i = 0; i < 16; i++)
{ R2[i] = rand();

R3[i] = rand();

C[i] = rand();

A0[i] = rand();

D[i] = rand();
}

if (solvable) computeD(D);

int expr(int i, int j, int Xi, int Xj)
{ return D[i] ~ ((R2[j] + (R3[j] ~ Xj) + uljl) + (Xi ~ C[i]) + vI[il);

}
void solvel(int step, int i, int X=0, int bit=-1)
{
if (bit >= 0 && (expr(i, i, X, X) & (1 << bit))) return;
if (bit == 7)
{
AO[i] = X;
next_carries(i, i);
solve(step + 1);
return;
}
solvel (step, i, X, ++bit);
solvel (step, i, X =~ (1 << bit), bit);
}
void solve2(int step, int i, int j, int Xi = 0, int Xj=0, int bit=-1)
{
if (bit>=0 && ((expr(i, j, Xi, Xj)lexpr(j, i, Xj, Xi)) & (1<<bit)))
return;
if (bit == 7)
{
AO[i] = Xi;
A0[j] = Xj;

next_carries (i, j);
next_carries(j, i);
solve(step + 1);
return;



78 Improved guess-and-determine and distinguishing attacks on SNOW-V

}

int t = (1 << ++bit);

solve2(step, i, j, Xi, Xj, bit);
solve2(step, i, j, Xi ~ t, Xj, bit);
solve2(step, i, j, Xi, Xj = t, bit);
solve2(step, i, j, Xi =~ t, Xj ~ t, bit);

}
void next_carries(int i, int j)
{
int nu = ((int)R2[j] + (int)(R3[j] ~ AO[jl) + (int)uljl);
int nv = (nu & Oxff) + (int) (AO[i] =~ C[i]) + (int)vI[il;
++i, ++j;
if (j & 3) uljl] = nu >> 8;
if (i & 3) v[i] = nv >> 8;
}
void solve(int step = 0)
{
static int S([10] = { 0, 1, 2, 5, 3, 6, 10, 7, 11, 15 };
if (step == 0)
ul0] = ul4] = ul8] = ul12] = v[0] = v[4] = vI[8] = v[12] = O;
if (step == 10)
{
// A solution for AO is found! do something with it...
u8 ver[16]; // we just verify that the solution is correct
computeD (ver) ;
if (memcmp (D, ver, 16))
printf ("ERROR: Verification of the derived AO failed!\n");
return;
}
int i = S[stepl, j = ((i >> 2) | (i << 2)) & O0xf; // j sigma (i)
if (i == j) solvel(step, i);
else solve2(step, i, j);
}

Listing 7: A possible recursion organisation for 10-steps.

D The distribution table of solutions for Type-2 equations

Consider n-bit variables A; 2, By 2, C1 .2, D1,2, X1,2 and two n-bit equations:

A= (B8, (CieX1))B, (X29 D),
Ay = (B H,, (Cy & X)) B, (X1 ® D2).

Table 4 contains the probabilities of the pair (X7, X2) having k solutions for a random
tuple (A4 2, B1,2,C1,2, D1,2), which are derived through p = z/f, where ’s are the integers
in the table and f is the corresponding normalisation factor. For the GnD attack against

SNOW-V we are interested in the distribution where n = 8.

Table 4: Distribution table for Type-2 equations.

#Solutions | n=1 | n=2 | n=3 | n=4 | n=5 n=6 n="7 n=8
factor f — | 22 23 27 | 210 214 218 222 226
0 ) 91 793 | 13484 | 225652 | 3734648 | 61316512
2 1 2 16 64 512 4096 32768 262144
4 1 18 119 | 1377 | 14759 150417 | 1478903
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216 5
220 1
224 56
228 1
232 5)
236 1
240 18
244 1
248 5)
252 1
256 128

E The probability of valid solutions in Equation 12

In this section, we compute the probability of valid solutions in Equation 12. We recall
that the equations are:

2 @ R2 = R1 8, Bl,
Y @ hg(B0) = (o(R1) Bs2 AESR'(R3)) ® B1,

where R1 and B1 are the two unknowns. First we note that z(!) and R2 are independent
from the rest variables, looping over the xor-sum of z(!) and R2 is equivalent to looping
over one random variable. Thus, we use a new variable U to denote z() & R2. Similarly,
Y and BO are independent from the rest variables, and we can regard Y @ hg(B0) as a
new variable V. Here we should be careful about hz(BO0): since hg is a full-rank matrix,
when B0 takes all the values, hg(B0) will also take all the values. AESEl(RS) can also be
regarded as a random variable W as is is a bijective mapping.
Thus we have a simplified system of equations:

U = R1 M3, B,

According to Equation 15, we have Bl = (6(R1) Hzs W) @ V, and further get:
U = R1H3, ((O’(Rl) Hso W) (&) V) (16)

The distributions of number of solutions of Equation 15 and Equation 16 are the same,
since Bl is uniquely determined given V, W and R1. We have experimentally verified this
observation over smaller dimensions. Thus we can use Equation 16 to get the distribution
of number of solutions of R1 and B1.

Similarly, we would have two types of equations, the first type with the form below,

Uy = Rl B ((R1o Bs Wy Bg vo) @ Vo) Bs uo,
and the second type with the form:

U1 = R].l Eag ((R14 Eg W1 Elg ’Ul) D Vl) Bﬂg (5%
U4 == R14 Eag ((Rll Eg W4 Elg U4) D V4) Eag Uyg.

We have experimentally computed the distributions of solutions for these two types of
equations, and the probabilities of having solutions are 273! and 27353, respectively. The
average number of solutions is exactly one for each combination of other variables. The
results are just the same to the ones of the D-equations for A0 in the first GnD attack.
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F The flowcharts of the guess-and-determine attacks

Figure 3 presents simple illustrations of the proposed GnD attacks.

verify if the values a
correct

verify if the values
correct
Yes

End End

Figure 3: Illustration of the GnD attacks (left: first; right: second).

G The probability p.

In this section, we derive the probability p, of BO®~1) having solutions in the equation of
2(t=2) Recall that the equation of z(*=2) is expressed as below:

272 = (B0"~Y B3, X) @ AESR (I5(BO"Y) @ V),

where AESR'(X) can be expressed as S~'(L~' - X), and lg operation is defined in
Equation 5. We temporarily replace Hs; with Hg. For simplicity, we denote Y/ = L™'Y
and ignore the time notations, then we can simplify the equation as:

2= (B0HEs X)® S (L s(BO) @ Y').

Now our task is to compute the probability of B0 having solutions given z, X,Y’. We
use an enumeration algorithm to achieve this by considering four groups of equations
recursively, which are given below.



82 Improved guess-and-determine and distinguishing attacks on SNOW-V

Step 1. Before giving the first group of equations, we first use z15 as an example
to illustrate how to derive each byte of z in details. z15 can be expressed as:

z12 = (B02 Hg X12)
® S ((e,b,d,9) - (B(BO19)113)0, B(BO012)113) 1, B(BO14)115)0, B(B014)115)1) © Y1),
where 6(BO'LH2+1)1’Z S {12, 14},] S {O, 1} is the j—th byte of ﬂ(BOIHBOlH)
For simplicity of expressions, we use [BO0; ;41,+2+3] to denote the vector of the four

bytes (BO“ BOZ‘_H, BOH_Q, BOH_g) and [¢BO¢71+17i+2,i+3] to denote the vector of the four
bytes after multiplying with g, i.e.,

[V B0; iv1,iv2,i+3] = (B(B0jjji+1)0, B(BO0s|jix1)1, B(B0it2)i+3)0, B(B0it2)i+3)1),

for i =0,4,8,12.
Now consider the first group of equations:
z12 = (B012 Bs X12) & S~ '((e,0,d,9) - [/ B012,13,14,15) D Y7>5),
z11 = (BO011 Bs X11) ® S7H((b,d., 9, ¢€) - [ B012,13,14,15] ® Y7,),
= (B0g B3 Xg) ® S™'((d,9,e,b) - [B012,13,14,15) ® Y{),
= (B0, B X1) ® S1((9, e, b,d) - [1)BO12.13,14.15] @ Y7).
Given the bytes of z, X,Y’, we can freely choose the values of B013 1415, then in 212 only
B0;7 remains unknown. Once B0;3 is further determined, B0, 6,11 will be derived uniquely
from 21 6,11, thus there is always a solution for these bytes if B0;2 in 212 has solutions. So

the main task now is to compute the probability of B015 having solutions in z15. According
to the expression of 8 matrix given in Appendix A, z15 can be further derived as:

Z192 = (3012 Hﬂg X12) @ S_l(e . (3012 << 1) @ b ) (BOIQ >> 7) EB Yi’é)?

where Y/} is a new variable, which is the linear combination of Y/y, B013, B014, B015. We
can compute the probability of B0;2 having at least one solution, denoted p,(B012), which
is:

p.(B012) ~ 0.363230705.

Thus, in Step 1 we can loop over B013 14,15, solve B0 with valid solutions of probability
p-(B012), and further derive B0; 11 correspondingly.

Step 2. Consider the second group of equations:

213 = (BO1s Bs X13) ® S7'((9,€,b,d) - ([ B0g 9,10,11] @ (B014, B015,0,0)) & Y{3),
= (B0g B3 Xs) ® S™*((e,b,d,9) - (/B0 9,10,11] @ (BO14, B015,0,0)) ® Y5),
= (B07 B X7) ® S71((b,d,9,¢€) - ([B0s,9,10,11] & (B014, BO15,0,0)) & Y7),
= (B0y B3 X3) ® S~((d,9,¢,b) - ([BOs 9,10,11] ® (B014, B015,0,0)) ® Y5).
Here we can only freely choose B0g 19, as the values of B011,14,15 have already been
considered in Step 1. We add the linear combinations of these known variables to the
Y'-terms, resulting in new Y variables, and use a new variable X/, to denote B013H X3,

which is also known. Thus we need to find solutions of B0g that satisfies the two equations
below:

213 = X13® 519 (Bs < 1)@ e (B0s > 7) @ Y3),
zg = (B0s Hg X5) @ 5_1(6 (B0s < 1)®b- (B0g>T)&® Yg/).
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We have computed that the probability of valid solutions for B0y is:
p.(B0g) ~ 0.363230705 - 275,

This can be understood in another way: the probability of BOg having solutions in zg is
0.363230705, and the solutions will satisfy the equation of z;3 with probability around 278.
After we have solved B0g, we can further derive BO; and B0y uniquely. Thus in Step 2 we
can loop over B0y 19, solve B0Og with valid solutions of probability p,(B0g), and further
derive B0 7.

Step 3. We further consider the next group of equations:
z14 = (B014 Bs X14) ® S7((d, 9, €,b) - (1 BO0456,7] ® [BO10,11,12,13)) ® Y4),
zg = (B0g Hs Xo) ® S™1((9,¢,b,d) - ([*B04 5,67 ® [B010,11,12,13]) ® Yy),
24 = (B04 B X4) © S™'((e,,d,9) - ([B04,5,6,7] ® [BO10,11,12,13]) © YS),
z3 = (BO3 s X3) ® S7'((b,d,9,¢€) - ([VBO456,7] ® [B010,11,12,13]) B Y3).
The known bytes B0 7,10,11,12,13 are added to the Y’-terms, while the bytes B0g 14 are

added to the X-terms. We can freely loop over B05; and solve the following equation in
BO4Z

24 = (B0, B X4) ® S e (BOy < 1)@b-(BOy>T)@Y,).
The probability of valid B0, solutions in z4 is again computed as 0.363230705, and such

solutions will satisfy 214,29 with probability around 2716. Thus the total probability of
valid B0, solutions, denoted p,(B04), is computed as:

p.(B04) ~ 0.363230705 - 2716,

After B0y having been solved, B03 can be uniquely determined according to z3. Thus
in Step 3 we can loop over B0s, solve B0y with valid solutions of probability p.(B04), and
further derive BO0s.

Step 4. The last group of equations contain the remaining four byte expressions 2 510,15
in only one unknown variable B0y, while other variables are already known:

2 = (B0o Bs Xo) @ S~ ((e,b,d,9) - ([1+B0¢ 1,2.3) @ [BOs.7.80]) ®Yy),

z5 = (B0s Bs X5) ® S™((9,,b,d) - ([1*B0¢,1,2,3) ® [B0g 7,89]) ® Yy),

210 = (BO1o Bs X10) & S™'((d,9,€,b) - ([B0o1,2,3] ® [B0g,7,8,0]) ® Y{y),

215 = (BOy5 Bs X15) & ST ((b,d,9,€) - ([B0o,1,2,3) © [B0g,7,8,9]) & Yy5).
Similarly, B0y will have valid solutions with probability 0.363230705 in zj, and these

solutions will satisfy zs, 210, 215 with probability 2724, Thus the probability of valid B0y
solutions, denoted p,(B0y), is:

p.(B0g) ~ 0.363230705 - 2724,

Summary. We can freely choose six bytes of B0, i.e., B059.10,13,14,15, of total size 248
which will result into valid solutions for bytes B0g 4,812 with probability p,(B0g)-p.(B04)-
p-(BO0s) - p.(Bi12). Other bytes will be further uniquely determined. Thus the total
probability p, is computed as:

p, =28 -p2(B0g) - p.(B04) - p.(BOg) - p.(B12) ~ 9—5.84

We cannot really compute an exact success probability for 32-bit adders Hsz, but one
can expect that it would be very similar to the derived probability, as only several carrier
bits need to be further considered.
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