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Abstract. The SoDark cipher is used to protect transmitted frames in the second and
third generation automatic link establishment (ALE) standards for high frequency
(HF) radios. The cipher is primarily meant to prevent unauthorized linking and
attacks on the availability of HF radio networks. This paper represents the first
known security analysis of the cipher used by the second generation ALE protocol—
the de facto world standard—and presents a related-tweak attack on the full eight
round version of the algorithm. Under certain conditions, collisions of intermediate
states several rounds into the cipher can be detected from the ciphertext with high
probability. This enables testing against the intermediate states using only parts of
the key. The best attack is a chosen-ciphertext attack which can recover the secret
key in about an hour with 100% probability, using 29 chosen ciphertexts.
Keywords: automatic link establishment · ALE · SoDark · cryptanalysis · block cipher

1 Introduction
This paper presents related-tweak attacks on the full eight round SoDark cipher used to
protect frames in the second generation (2G) automatic link establishment (ALE) standard
for high frequency (HF) radios. SoDark is a 24-bit block cipher with a 56-bit key and a
64-bit tweak [DoD17]. It is described further in Section 2. The cryptanalysis presented
here may also be relevant for the third generation (3G) ALE standard which uses the same
algorithm, but with sixteen rounds instead of the eight used in 2G ALE.

1.1 HF radio and automatic link establishment
The HF radio band between 3 and 30 MHz makes it possible to transmit radio messages
globally without any supporting infrastructure. This is a unique property of the HF band.
Therefore, HF radio is widely used by military, emergency response, and humanitarian
aid organizations around the world. The propagation conditions for HF radio constantly
change and are dependent on numerous factors, including time of day, season, space
weather, and properties of the transmitting and receiving equipment.

Establishing successful communications via HF radio has traditionally required skilled
radio operators. In order to decrease the dependence on operator skill, protocols for ALE
over HF radio were developed during the 1980s. In an ALE system, the frequency selection
and call to a receiving station is performed automatically by the radio equipment in lieu of
manual frequency selection and voice call by an operator. In ALE, frequency selection is
normally performed based on a radio propagation model and can be aided by automated
sounding calls. If a call is successful and answered by the receiving ALE station, the
established channel is handed over to a higher level protocol which can be, for example, a
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standard radio voice call or a data transmission. Upon completion of the call, ALE frames
are again automatically exchanged to disconnect the link and make the radios available
for new calls [Int02].

ALE standards of the first generation were proprietary and radios from different
manufacturers could not interoperate. This was rectified by standardizing the physical
and data-link layers of second generation (2G) ALE in the US standards FED-STD-1045
and MIL-STD-188-141. Later versions also introduced third generation (3G) and fourth
generation (4G) ALE standards, with added functionality and increased performance
[Int02, JKF+12]. The North Atlantic Treaty Organization (NATO) has also adopted 2G
and 3G ALE as the NATO standard STANAG 4538.

In 2G ALE, radios exchange frames made up of several 24-bit words, each consisting
of a 3-bit preamble and three 7-bit characters. As an example, the simplest frame used
when calling another station contains three 24-bit words. The first has the preamble “TO”
(binary 010) and contains the called station’s callsign. The second word is a repetition of
the first. The third has the preamble “TIS” (binary 101) and contains the calling station’s
callsign. Callsigns longer than three characters can be transmitted using extension words
with the preamble “DATA” (binary 000) after a “TO” or “TIS” word [DoD17].

ALE frames are vulnerable to spoofing. By transmitting crafted frames, an attacker
can affect availability in the radio network by, for example, disconnecting established calls
or establishing false links, thereby preventing legitimate traffic. To prevent this and to
prevent data such as callsigns from being transmitted in the clear, the standard includes
an optional linking protection mode. With linking protection enabled, all ALE words are
encrypted with a 24-bit block cipher. The cipher is always used in ECB mode, i.e. all
words are encrypted independently.

The SoDark cipher was originally developed for use in 2G ALE [Joh92] and was later
adopted for use with 3G ALE, where the cipher is extended to include a version with
48-bit block size. The 24-bit versions in 2G and 3G ALE differ only in the number of
rounds. In 2G ALE, the cipher is known as the Lattice algorithm and in 3G ALE as
SoDark [DoD17]. The latter name is used here to avoid confusion with the unrelated field
of lattice cryptography.

ALE networks, both with and without linking protection enabled, are in active use
by numerous government and non-government organizations all over the world [ALE21].
Although successor standards have been available for a long time, 2G ALE is still the de
facto world standard [Int02, Sig21]. This is likely because of compatibility requirements
with older generations of radio equipment that are still in use.

1.2 Differential cryptanalysis
Differential cryptanalysis [BS93] is one of the most powerful general attacks on block
ciphers. It was developed as an attack on the Fast Data Encipherment Algorithm (FEAL)
and was later adopted for the Data Encryption Standard (DES) [Bih06]. Since then, the
technique has proven to be useful in the analysis of many other ciphers. A central idea of
differential cryptanalysis is that of differences between states in two parallel applications
of the same cipher. Most commonly, differences are defined as the exclusive or (XOR) of
two states. In ciphers where key addition is performed with XOR, the difference between
two states before and after the addition does not change. This becomes very useful in
cryptanalysis, as it can be used to deduce differences in internal cipher states without any
knowledge of the key. The structure of SoDark makes it possible to calculate very high
probability differences many rounds into the cipher. In ciphers which use other operations,
such as multiplication, suitably defined differences can be used in the same way.

In many ciphers, including SoDark, S-boxes are the only non-linear operation. This
makes their resistance to differential cryptanalysis important. The properties of an S-box
with respect to differential cryptanalysis are commonly described through its difference
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Table 1: Summary of attacks on SoDark presented in this paper.

Rounds Complexity Success Setting
Time Data probability

6 247 212.7 50% Known plaintext
7 246.5 212.7 50% Known plaintext
8 245.7 212.7 50% Known plaintext
8 244.2 28 50% Chosen ciphertext
8 245.2 29 100% Chosen ciphertext

distribution table (DDT). An 8-bit S-box with 256 inputs and 256 outputs will have a
DDT of dimension 256× 256. The rows of the DDT represent input differences and the
columns output differences. The value of each cell in the DDT represents the number
of output pairs that will have a particular difference, given a particular input difference.
For any input difference, there will be many output differences that are impossible, i.e.
where the value of the corresponding cell in the DDT is zero. S-boxes that have not been
designed to resist differential cryptanalysis may have certain input–output differences that
are significantly more probable than others. The measure of this is the maximum cell
value in the DDT and is known as the differential uniformity [Nyb93].

1.3 Results
The attacks presented in this paper break the full eight-round SoDark used in 2G ALE
in practice. Table 1 summarizes the attacks presented in the following sections. The
attacks have been implemented in software and verified experimentally. On a computer
with several Nvidia graphics processing units (GPUs), both the known-plaintext and
chosen-ciphertext attacks require about an hour to recover the key.

1.4 Structure of the paper
This paper is structured as follows: Section 2 describes the SoDark algorithm in the
detail required for the following sections. Section 3 presents the cryptanalysis of SoDark.
Section 4 describes a software implementation of the attacks presented in the previous
section along with results of the experimental verification. Section 5 concludes the paper
and considers some wider implications of the findings.

2 The SoDark Cipher Algorithm
2.1 Notation
All operations used by the SoDark cipher are byte oriented. The bytes of the cipher’s
state are represented by the capital letters A, B, C ∈ {0, 1}8. Input byte A to round r is
denoted by A(r−1). The corresponding output byte from round r is A(r).

Concatenation of bytes into longer words is denoted by ‖. In particular, the full plaintext
is P = A(0) ‖B(0) ‖C(0) and the full ciphertext after r rounds is C = A(r) ‖B(r) ‖C(r).
K ∈ {0, 1}56 and T ∈ {0, 1}64 are used for the full key and tweak (see Subsection 2.2),
respectively. Individual bytes of K and T are denoted by k and t with subset indices where
k1 and t1 refer to the most significant bytes. Partial round keys of round r are denoted by
a(r), b(r), c(r) ∈ {0, 1}8.

The cipher uses two operations: exclusive or (XOR) and single-byte S-box lookups.
⊕ is used as the XOR operator. An S-box lookup of the value in X is denoted by S(X).
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Table 2: The SoDark S-box. Adapted from [DoD17].

?0 ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F
0? 9C F2 14 C1 8E CB B2 65 97 7A 60 17 92 F9 78 41
1? 07 4C 67 6D 66 4A 30 7D 53 9D B5 BC C3 CA F1 04
2? 03 EC D0 38 B0 ED AD C4 DD 56 42 BD A0 DE 1B 81
3? 55 44 5A E4 50 DC 43 63 09 5C 74 CF 0E AB 1D 3D
4? 6B 02 5D 28 E7 C6 EE B4 D9 7C 19 3E 5E 6C D6 6E
5? 2A 13 A5 08 B9 2D BB A2 D4 96 39 E0 BA D7 82 33
6? 0D 5F 26 16 FE 22 AF 00 11 C8 9E 88 8B A1 7B 87
7? 27 E6 C7 94 D1 5B 9B F0 9F DB E1 8D D2 1F 6A 90
8? F4 18 91 59 01 B1 FC 34 3C 37 47 29 E2 64 69 24
9? 0A 2F 73 71 A9 84 8C A8 A3 3B E3 E9 58 80 A7 D3
A? B7 C2 1C 95 1E 4D 4F 4E FB 76 FD 99 C5 C9 E8 2E
B? 8A DF F5 49 F3 6F 8F E5 EB F6 25 D5 31 C0 57 72
C? AA 46 68 0B 93 89 83 70 EF A4 85 F8 0F B3 AC 10
D? 62 CC 61 40 F7 FA 52 7F FF 32 45 20 79 CE EA BE
E? CD 15 21 23 D8 B6 0C 3F 54 1A BF 98 48 3A 75 77
F? 2B AE 36 DA 7E 86 35 51 05 12 B8 A6 9A 2C 06 4B

The SoDark S-box is bijective and the inverse operation, used in decryption, is denoted by
S−1(X). The S-box is provided in Table 2.

The cryptanalysis relies on the use of XOR differences and their development through
the cipher (see Subsection 1.2). Subset letters a and b are used to differentiate between
the same variable in two parallel encryptions, for example A

(1)
a and A

(1)
b . To improve

readability, differences are expressed using the shorthand ∆X = Xa ⊕Xb.

2.2 Tweak
In addition to the 56-bit key K, SoDark uses a 64-bit tweak T . Its primary purpose
appears to be prevention of replay attacks. The tweak format is briefly presented here
with emphasis on the parts required for the following cryptanalysis. The reader is referred
to the standard [DoD17] for a complete description. The standard and other publicly
available descriptions of the cipher (e.g. [Joh92]) use the term seed in place of tweak. This
paper uses the term tweak in accordance with current convention.

There is no mechanism in the ALE protocols for transferring a tweak. For this reason,
the tweak must be generated from information known to both the sender and receiver at
the time of transmission and reception. The information used is date and time of day,
transmission frequency, selected protection interval (PI), and word number in the current
PI. Table 3 shows how the tweak is formed using that information. The PI is a system
setting which defines the format of the time fields in the tweak. When the PI is equal
to one second, the coarse and fine time fields respectively correspond to the number of
minutes since midnight and seconds in the current minute. For other PIs, fields increment
differently, including modes where the fine time field is always set to all ones. Regardless of
PI, GPS time is normally used. The word number field starts at zero and is incremented for
each word encrypted in the current PI, except in some cases where the standard requires
transmitting stations to reset the word counter to facilitate synchronization.

The information used to generate the tweak is available to any outside observer, with
the exception of the PI system setting and thus the format used for the coarse and fine
time fields. However, there are only a handful of formats that would have to be tried by
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Table 3: Construction of the SoDark tweak from information known to both sender and
receiver. The same bit numbering as in [DoD17] is used, starting with 1 at the most
significant bit (MSB) of the first byte and ending with 64 at the least significant bit (LSB)
of the last byte. (BCD=Binary Coded Decimal, PI=Protection Interval)

MSB LSB Content Range
1 4 Month 1 – 12
5 9 Day 1 – 31
10 20 Coarse time 0 – 1439
21 26 Fine time 0 – 59
27 34 Word number in PI 0 – 153
35 36 Always zero 0
37 40 BCD frequency (100 MHz) 0 – 9
41 44 BCD frequency (10 MHz) 0 – 9
45 48 BCD frequency (1 MHz) 0 – 9
49 52 BCD frequency (100 kHz) 0 – 9
53 56 BCD frequency (10 kHz) 0 – 9
57 60 BCD frequency (1 kHz) 0 – 9
61 64 BCD frequency (100 Hz) 0 – 9

an attacker.

2.3 Round Function
When used in 2G ALE, the cipher has eight rounds. Before the first round, the 24-bit
plaintext is split into three bytes P = A(0) ‖B(0) ‖C(0). The round function performs the
following operations to calculate A(r), B(r), and C(r).

a(r) = k(3r−3) mod 7+1 ⊕ t(3r−3) mod 8+1 (1)
c(r) = k(3r−2) mod 7+1 ⊕ t(3r−2) mod 8+1 (2)
b(r) = k(3r−1) mod 7+1 ⊕ t(3r−1) mod 8+1 (3)

A(r) = S
(

A(r−1) ⊕B(r−1) ⊕ a(r)
)

C(r) = S
(

C(r−1) ⊕B(r−1) ⊕ c(r)
)

B(r) = S
(

B(r−1) ⊕A(r) ⊕ C(r) ⊕ b(r)
)

The first two rounds are illustrated in Figure 1. After the final round, the ciphertext is
formed by concatenation of the three state bytes: C = A(r) ‖B(r) ‖C(r).

As seen from Equations (1), (2), and (3), the SoDark key schedule is entirely linear,
with bytes from the key and tweak used one by one in rotation. Each round uses only 24
bits of the 56-bit key and 24 bits of the 64-bit tweak.

3 Cryptanalysis
3.1 Key Schedule
Despite its simplicity, the SoDark key schedule precludes many standard attacks on block
ciphers. The use of a tweak dependent on time and transmission frequency means that
each word will be encrypted with a unique tweak. This effectively prevents time-memory



Marcus Dansarie 41

A(0) B(0) C(0)
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k1 ⊕ t1 k2 ⊕ t2
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Figure 1: The first two rounds of the SoDark algorithm.
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trade-off attacks [Hel80]. Considering its key and block size, the cipher would otherwise
have been very vulnerable to such attacks.

Although it lacks round constants, the key schedule along with the use of unique
tweaks still prevent slide attacks [BW99]. The numbers of key (7) and tweak (8) bytes are
relatively prime, meaning that round keys don’t repeat until after 7 · 8 = 56 rounds.

SoDark with five rounds or fewer is however vulnerable to meet-in-the-middle (MITM)
attacks. In the five round case, the first two rounds do not use key byte 7 and the last
two rounds do not use key byte 2. This can be leveraged to perform a three-subset MITM
attack [BR11].

As pointed out by an anonymous reviewer, the symmetry of the cipher structure means
that the 256 keys where all key bytes are identical are weak keys. The presence of a weak key
can be tested for in just two operations by encrypting the plaintexts Pa = A(0) ‖B(0) ‖C(0)

and Pb = C(0) ‖B(0) ‖A(0) using a tweak where all bytes are the same. For a weak key,
this will result in the ciphertexts Ca = A(r) ‖B(r) ‖C(r) and Cb = C(r) ‖B(r) ‖A(r) for any
number of rounds r.

3.2 The SoDark S-box
No information on the criteria used in the selection of the S-box has been found. The
methods described by Biryukov and Perrin in [BP15] were applied in an attempt to reverse
engineer any design criteria, but did not yield any positive results.

To investigate whether the S-box is a randomly generated permutation, its linear
approximation table (LAT) and DDT were compared to those of randomly generated
permutations of GF(28). In [DR07], Daemen and Rijmen provide a formula for the
probability distribution of the LAT of a random Boolean permutation, originally from
[O’C95]:

P [ci,j = 2x] =
( 2n−1

2n−2+x

)2( 2n

2n−1

) .

Here, P [ci,j = 2x] is the probability that a particular combination of input and output
bits in an n-bit S-box will have the bias 2x.

A two-sided two-sample Kolmogorov–Smirnov test [Kol08] was performed to compare
the linear bias and differential uniformity of the S-box with the expected values in random
permutations. With p > 0.999999 in both cases, there is no evidence to refute the hypothesis
that the S-box is a randomly selected permutation. In particular, the S-box shows no signs
of having been chosen with resistance against linear or differential cryptanalysis as a goal.

It should be noted however, that the S-box actually has linear and differential properties
that are slightly worse than expected from the average random permutation. Its maximum
linear bias is 38

256 whereas the expected in a random permutation is 34
256 . Using the method

from [BP15], the probability of a random permutation having linear bias of more than or
equal to 38

256 was calculated to be 0.057, meaning that the higher than expected linear bias
is not statistically significant. Likewise, the S-box’s differential uniformity is 14, higher
than the expected value of 12.

3.3 Complexity Model
The attacks presented here are primarily evaluated based on their time complexities. A
brute force attack is expected to require, on average, 255 encryption operations to find the
correct 56-bit key. The speed of SoDark is bounded by the number of S-box lookups and the
complexity of other operations involved is negligible in comparison. Practical experience
has shown this to be true even in bitsliced software implementations (see Section 4) and
the same is expected for hardware implementations. For those reasons, the number of
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S-box operations required to test a single key in a brute force known-plaintext attack is
used as the benchmark when estimating the time complexity of the attacks presented here.

A single encryption in an r-round version of SoDark involves 3r S-box lookups. Two
obvious optimizations are possible. First, the S-box lookups in the last round provide no
security and can be eliminated by performing inverse lookups on the ciphertext beforehand.
This reduces the number of S-box lookups per key to 3 · (r − 1). Second, the first round
uses only key bytes k1, k2, k3 and the second round only key bytes k4, k5, k6. This means
that the intermediate states after the first and second round can be cached and reused for
most key attempts. A single byte in the third round can also be cached. Together, these
optimizations reduce the average number of S-box lookups per key in a brute force attack
to

3 · (r − 3) + 3 · 224

256 + 4 · 248

256 − 1 ≈ 3 · (r − 3)− 1.

This number of S-box lookups is used to assess the time complexity of the attacks.

Since the cipher has a block size of 24 bits and a 56-bit key, a brute force attack
is expected to generate about 232 false positives which must be checked against other
plaintext–ciphertext–tweak tuples. The increase in complexity due to this check has been
considered insignificant.

For data complexity, the metric used is simply the number of plaintext–ciphertext–tweak
tuples required for a 50% probability of success.

3.4 Known-plaintext Attacks on Six and Seven Rounds

As a prelude to the attack on the full eight round cipher as used in 2G ALE [DoD17], this
section presents a known-plaintext attack on six- and seven-round versions of the cipher.
The basis for the attack is that, in cases where tweaks differ only by a single byte, it is
possible to calculate differences of internal states between two encryptions using only the
ciphertext and tweak. As evident from the description in Subsection 2.2, tweaks with the
single byte difference used here are present in practically every transmitted ALE frame.

For any round r of SoDark and any pairs of plaintext, ciphertext, and tweak, the
differences after the previous round, ∆A(r−1), ∆B(r−1), and ∆C(r−1), can be calculated
without any key guessing:

∆B(r−1) = ∆S−1
(

B(r)
)
⊕∆A(r) ⊕∆C(r) ⊕∆t(3r+7) mod 8+1 (4)

∆C(r−1) = ∆S−1
(

C(r)
)
⊕∆B(r−1) ⊕∆t(3r+6) mod 8+1 (5)

∆A(r−1) = ∆S−1
(

A(r)
)
⊕∆B(r−1) ⊕∆t(3r+5) mod 8+1. (6)

For the six-round attack, consider a case with two plaintext–ciphertext–tweak tuples
where Ca = Cb and all bytes in the tweak are identical except for t5. Thus, ∆A(6) =
∆B(6) = ∆C(6) = 0, ∆t5 6= 0 and ∆tx = 0 for all x ∈ {1, 2, 3, 4, 6, 7, 8}. Using the fact
that ∆S−1 (X) = 0 when ∆X = 0, it becomes possible to calculate a part of the difference
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after the third round using only the ciphertexts and tweaks:

∆B(5) = ∆S−1
(

B(6)
)
⊕∆A(6) ⊕∆C(6) ⊕∆t2 = 0

∆C(5) = ∆S−1
(

C(6)
)
⊕∆B(5) ⊕∆t1 = 0

∆A(5) = ∆S−1
(

A(6)
)
⊕∆B(5) ⊕∆t8 = 0

∆B(4) = ∆S−1
(

B(5)
)
⊕∆A(5) ⊕∆C(5) ⊕∆t7 = 0

∆C(4) = ∆S−1
(

C(5)
)
⊕∆B(4) ⊕∆t6 = 0

∆A(4) = ∆S−1
(

A(5)
)
⊕∆B(4) ⊕∆t5 = ∆t5

∆B(3) = ∆S−1
(

B(4)
)
⊕∆A(4) ⊕∆C(4) ⊕∆t4 = ∆t5

∆C(3) = ∆S−1
(

C(4)
)
⊕∆B(3) ⊕∆t3 = ∆t5.

Knowing that ∆C(3) = ∆t5, matching against this value is possible using the corre-
sponding known plaintexts by iterating over six of the seven key bytes:

A(1) = S
(

A(0) ⊕B(0) ⊕ k1 ⊕ t1

)
C(1) = S

(
C(0) ⊕B(0) ⊕ k2 ⊕ t2

)
B(1) = S

(
B(0) ⊕A(1) ⊕ C(1) ⊕ k3 ⊕ t3

)
A(2) = S

(
A(1) ⊕B(1) ⊕ k4 ⊕ t4

)
C(2) = S

(
C(1) ⊕B(1) ⊕ k5 ⊕ t5

)
B(2) = S

(
B(1) ⊕A(2) ⊕ C(2) ⊕ k6 ⊕ t6

)
C(3) = S

(
C(2) ⊕B(2) ⊕ k1 ⊕ t8

)
∆C(3) = C(3)

a ⊕ C
(3)
b .

This is illustrated in Figure 2.
Assuming the cipher’s randomization properties are good (this is investigated in [Joh92]),

all differences after the fourth round have probability 2−24. The number of plaintext–
ciphertext–tweak tuple pairs required for one of them to have the output difference required
for the attacks with 50% probability is

− log 2
log (224 − 1)− log (224) ≈ 223.5.

When creating the plaintext–ciphertext–tweak tuple pairs, the tweaks in each pair
must be identical in seven of the eight bytes. The most efficient way to satisfy this in an
oracle model is to generate tuples for two different tweaks with ∆t5 6= 0 and ∆tx = 0 for
all x ∈ {1, 2, 3, 4, 6, 7, 8}. This way, with n generated tuples per tweak, n2 tuple-pairs can
be formed. Thus, only

√
223.5 ≈ 211.7 tuples are required for each of the two tweaks in

order to find the required output difference with 50% probability.
In a more realistic setting where an adversary is limited to passively intercepting ALE

frames sent between legitimate users, all words will be sent with a unique tweak except in
rare circumstances. All 24-bit words that constitute a particular frame will, however, have
tweaks that differ only in the fifth byte (see Table 3). In ALE networks where relatively
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A(0) B(0) C(0)

⊕ ⊕
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k1 ⊕ t1 k2 ⊕ t2

⊕
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k3 ⊕ t3

⊕ ⊕

S S

k4 ⊕ t4 k5 ⊕ t5

⊕

S

k6 ⊕ t6

⊕ ⊕k7 ⊕ t7 k1 ⊕ t8

S S

⊕

S

k2 ⊕ t1

⊕ ⊕k3 ⊕ t2 k4 ⊕ t3

S S

⊕ k5 ⊕ t4

S∆A(4) = ∆t5

∆B(4) = 0

∆C(4) = 0

∆B(3) = ∆t5

∆C(3) = ∆t5

k1, k2, k3,
k4, k5, k6

Figure 2: The first four rounds in the attacks on SoDark.
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long protection intervals are used, this may also be true for words in different frames. As
the simplest frame in a call consists of three 24-bit words (see Subsection 1.1), three-word
frames are assumed in the calculation of the data complexity for a realistic setting. This
means that each intercepted frame will yield three word pairs with the required tweak
difference, each with a 2−24 probability of having the right difference after round six. Each
frame thus has probability

1−
(
1− 2−24)3 ≈ 2−22.4

of having the sought difference. This means that

− log 2
3 log (1− 2−24) ≈ 221.9

frames are required for 50% probability of success. Assuming that any completed call has
involved at least four transmitted frames, this is equivalent to slightly less than a million
completed 2G ALE calls.

The dominant source of time complexity in the attack is the iteration over six key
bytes to calculate ∆C(3). Like in the brute force case, the number of S-box lookups can
be decreased through caching. With this optimization, the time complexity of the attack
becomes

2 · 28 + 2 · 216 + 2 · 224 + 2 · 232 + 2 · 240 + 4 · 248

8 ≈ 247.

The attack can be extended to seven rounds by observing that, with the same conditions
as the attack on six rounds, ∆A(7) = ∆C(7) = 0 and ∆S−1 (B(7)) = ∆t5. After a ciphertext
pair with this difference is found, the attack continues as in the six-round case.

In calculating the time complexity of the attack on seven rounds, the S-box lookups in
the filtering step are included:

2 · 223.5 + 2 · 28 + 2 · 216 + 2 · 224 + 2 · 232 + 2 · 240 + 4 · 248

11 ≈ 246.5.

3.5 Known-plaintext Attacks on Eight Rounds
In the full eight-round version of SoDark used in 2G ALE, it is not possible to immediately
identify the required difference after round six using just the ciphertext and tweak. However,
through a fast filtering operation on the ciphertext, it is possible to reject all pairs with
a zero probability of having the correct difference after the sixth round. For the pairs
remaining after the filtering step, all candidate values for k3 are also identified. For this
reason, the eight-round attack has lower time complexity than the previously described
attack on six and seven rounds while retaining the same data complexity.

In the first filtering step, Equations (4) – (6) are used to remove candidate pairs not
satisfying the requirement that

∆A(7) = ∆C(7) = 0. (7)

The second filtering step continues by guessing k3 to check if ∆B(6) = 0:

B(7)
a = S−1

(
B(8)

a

)
⊕A(8)

a ⊕ C(8)
a ⊕ t8 ⊕ k3

B
(7)
b = S−1

(
B

(8)
b

)
⊕A

(8)
b ⊕ C

(8)
b ⊕ t8 ⊕ k3

∆B(6) = ∆S−1
(

B(7)
)
⊕∆A(7) ⊕∆C(7) ⊕∆t5.

Figure 3 illustrates the filtering steps in the last two rounds of the algorithm.
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A(6) B(6) C(6)

⊕ ⊕

S S

k5 ⊕ t3 k6 ⊕ t4

⊕

S

k7 ⊕ t5

⊕ ⊕

S S

k1 ⊕ t6 k2 ⊕ t7

⊕

⊕

S

k3 ⊕ t8

A(8)

B(8)

C(8)

∆B(6) = 0

∆A(7) = 0 ∆C(7) = 0

∆B(7)

k3

Figure 3: The last two rounds in the attack on eight-round SoDark.
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For any values of k3 where ∆B(6) = 0, the attack proceeds to match ∆C(3) = ∆t5
using known plaintexts and iterating over key bytes k1, k2, k4, k5, and k6 as in the attacks
on six and seven rounds (see Figure 2).

For 50% probability of success, the first filtering step is expected to require 6 · 223.5

S-box lookups. The probability that a random plaintext–ciphertext–tweak tuple will satisfy
Equation (7) is 2−16, meaning that about 27.5 tuples remain for the second filtering step
which uses 4 · 28 S-box lookups per tuple. With the SoDark S-box, the probability for a
tuple to survive the second filtering step is 100

256 , resulting in 100
256 · 2

7.5 ≈ 26.1 remaining
tuples. The total time complexity for the attack on eight-round SoDark is therefore

1
14 ·

(
6 · 223.5 + 4 · 27.5 · 28+

26.1 ·
(

2 · 28 + 2 · 216 + 2.6
28 ·

(
2 · 224 + 2 · 232 + 2 · 240 + 4 · 248))) ≈ 245.7.

As already mentioned, this is lower than the preceding attack on six and seven rounds.
Naturally, by using a difference in another tweak byte, this attack can be adopted to fewer
rounds. In the case of seven rounds, a difference in t2 would be used instead of t5.

3.6 Chosen-ciphertext Attacks
The previous known-plaintext attacks can be improved significantly in a chosen-ciphertext
setting. From Equations (4) – (6) and Figure 3, it can be observed that it is easy to
generate ciphertext pairs that satisfy ∆A(7) = ∆C(7) = 0 with probability 1, since they all
satisfy

∆S−1
(

A(8)
)

= ∆S−1
(

C(8)
)

= ∆B(7)

with ∆B(7) 6= 0 and ∆t6 = ∆t7 = 0. Furthermore, since the value of ∆B(6) is only
dependent on a single unknown key byte, a single chosen-ciphertext pair can be generated
for each candidate value of k3. This means that 27 chosen plaintext–ciphertext–tweak
tuples are enough for 50% probability of success and 28 for 100%.

Generation of the chosen plaintext–ciphertext–tweak tuples is rather straightforward.
First, the attacker picks any two tweaks with the differences ∆t5 6= 0 and ∆tx = 0 for
all x ∈ {1, 2, 3, 4, 6, 7, 8}. The attacker continues by picking the values of S−1

(
B

(7)
a

)
and

S−1
(

B
(7)
b

)
such that

∆S−1
(

B(7)
)

= t5.

The corresponding values for B
(7)
a , B

(7)
b , and ∆B(7) can now be calculated. Then, the

values for S−1
(

A
(8)
a

)
, S−1

(
A

(8)
b

)
, S−1

(
C

(8)
a

)
, and S−1

(
C

(8)
b

)
are selected such that

∆S−1
(

A(8)
)

= ∆S−1
(

C(8)
)

= ∆B(7).

Finally, A
(8)
a , A

(8)
b , C

(8)
a , and C

(8)
b can be calculated directly from those values and are

used to calculate up to 256 ciphertext pairs of the form

Ca = A(8)
a ‖B(8)

a ‖C(8)
a

Cb = A
(8)
b ‖B

(8)
b ‖C

(8)
b
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Table 4: Summary of implemented attacks and the times required to perform attacks with
data for 50% success probability.

Rounds Implementation Data Time
8 GPU brute force 2 5 days
8 CPU known plaintext 212.7 9 days
8 GPU known plaintext 212.7 42 minutes
8 CPU chosen ciphertext 28 9 days
8 GPU chosen ciphertext 28 42 minutes

where

B(8)
a = S

(
B(7)

a ⊕A(8)
a ⊕ C(8)

a ⊕ k3 ⊕ t8

)
B

(8)
b = S

(
B

(7)
b ⊕A

(8)
b ⊕ C

(8)
b ⊕ k3 ⊕ t8

)
by iterating over k3. In an oracle model, the generated ciphertexts and tweaks can then
be used to obtain the corresponding plaintexts.

With the elimination of the filtering steps, the time complexity of the chosen-ciphertext
attack becomes

27 ·
(
2 · 28 + 2 · 216 + 2 · 224 + 2 · 232 + 2 · 240)

14 ≈ 244.2

in the 50% probability of success case and twice that for 100% probability of success.

4 Software Implementation and Experimental Verification
For experimental verification, the attacks described in the previous section were imple-
mented in C and the Nvidia CUDA parallel computing framework for general-purpose
GPUs [Nvi21]. Efficient attacks on two, three, four, and five rounds have also been
implemented. For up to five rounds, the attacks can be performed on any pair of plaintext–
ciphertext–tweak tuples with 100% probability of success. Additionally, a utility program
for SoDark encryption and decryption has been developed. The utility can also be used
for generation of random testing data. The implementation is available on Github under
an open source licence.1

Kwan’s algorithm [Kwa00] was used to generate a boolean gate representation of the
SoDark S-box which is, by far, the most time-consuming operation in the cipher. This
representation was used to develop a bitsliced [Bih97] CUDA implementation. On a
computer with six Nvidia GPUs, the implementation is able to recover the key in about
an hour when a sufficient number of plaintext–ciphertext–tweak tuples are available. The
reference brute force implementation searches through the entire key space in about five
days on the same computer. Table 4 summarizes the performance of the implemented
attacks. The CUDA implementation of the attacks on eight rounds presented in this paper
are about 170 times (27.4) faster than the bitsliced brute force implementation.

5 Conclusions and Future Developments
Both data and time complexities of the attacks on eight-round SoDark presented in
this paper are such that they are feasible in practice, as demonstrated in the previous

1https://github.com/dansarie/SoCracked

https://github.com/dansarie/SoCracked
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section. This means that the linking protection facility in 2G ALE fails in its stated goals.
Furthermore, trust in 3G ALE linking protection, which uses the same algorithm but with
16 rounds, is weakened.

While confidentiality is a stated goal, the main purpose of the SoDark cipher in the
context of ALE linking protection is authentication, i.e. prevention of unauthorized access
to HF radio networks [JKF+12]. Flaws in the cipher can directly affect the system at large
by allowing unauthorized users to spoof legitimate traffic or inject data into connected
systems. Security flaws in digital communication systems, like the one described here,
also open up for new methods of attacks on availability. HF radio systems are normally
resource constrained. In addition to low bandwidth, a radio station can usually only
handle one or a few calls at a time. This can make the consequences of unauthorized
access particularly severe. The traditional way of attacking availability in radio systems is
jamming, where the attacker attempts to overpower a legitimate transmitter’s signal. The
jammer’s probability of success increases with output power, antenna gain, and—most
importantly—proximity to the receiver. By transmitting spoofed linking requests and
thereby depleting a finite resource—the number of concurrent calls a radio station can
maintain at a time—an attacker with knowledge of the linking protection key can achieve
the same goals as with jamming, but without needing a power or proximity advantage over
the legitimate users. Similarly, by transmitting spoofed disconnection frames, the attacker
can disrupt calls in progress. Since group calls are possible in ALE, a single station can
call many or all stations in a network. Together with the fact that HF radio has global
reach, this means that an attacker can potentially deplete the resources of an entire HF
radio network and prevent all legitimate traffic using only a few spoofed frames.

In addition to the 24-bit version of SoDark presented in this paper, a 48-bit version
of the algorithm was introduced with 3G ALE. The 48-bit version retains the same key
size and key schedule. The round function is slightly modified compared to the 24-bit
version, presumably in order to improve mixing. The work presented here could prove a
good start for attacks on the sixteen-round 24- and 48-bit versions of SoDark that are
used in 3G ALE.

A new linking protection cipher, HALFLOOP, was introduced in MIL-STD-188-141D,
which was released in December 2017. HALFLOOP was developed together with the
fourth generation ALE standard and in response to worries about the security of SoDark,
particularly when it comes to the short key length. HALFLOOP is based on the same
basic operations as the Advanced Encryption Standard (AES) [AES01], but has significant
differences to AES in both the round function and key schedule. It supports 24-, 48-, and
96-bit block sizes and 128- and 256-bit key lengths. Although HALFLOOP is intended to
replace SoDark for linking protection in 2G and 3G ALE networks, it is not known if it is
in practical use anywhere. This apparent low adoption is likely due to the fact that using
HALFLOOP would cause incompatibility with older radio equipment [Joh16, DoD17].

It is unfortunate that HALFLOOP, like SoDark, was developed and standardized
without any public review. The story is very similar to that of other ciphers developed
for wireless communication standards. For example, both the DECT Standard Cipher for
cordless telephones [NTW10] and the A5/1 cipher for GSM mobile telephony [BSW01] have
been shown to be insecure. They are just two of a number of specialized or proprietary
ciphers for radio-based systems that share similar fates [Ver15]. When SoDark was
developed for 2G ALE, there were likely not many suitable block ciphers or modes available.
In light of this, the development of an application-specific cipher is understandable. The
same can not be said for HALFLOOP, which is a recent development. A mode such as
the Thorp shuffle [MRS09], together with for example AES, would likely be a much better
candidate for replacing SoDark.

The reoccurring phenomenon of inventing new ciphers for wireless communication
standards evokes both questions about the underlying reasons and conjectures about “Not
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Invented Here”-type phenomena [KA82]. Non-technical research into the organizational
causes could prove important for increasing security in future standards.
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