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Abstract. A dedicated pseudorandom function (PRF) called AES-PRF was proposed
by Mennink and Neves at FSE 2018 (ToSC 2017, Issue 3). AES-PRF is obtained
from AES by using the output of the 5-th round as the feed-forward to the output
state. This paper presents extensive security analysis of AES-PRF and its variants.
Specifically, we consider unbalanced variants where the output of the s-th round is
used as the feed-forward. We also analyze the security of “dual” constructions of the
unbalanced variants, where the input state is used as the feed-forward to the output
of the s-th round. We apply an impossible differential attack, zero-correlation linear
attack, traditional differential attack, zero correlation linear distinguishing attack
and a meet-in-the-middle attack on these PRFs and reduced round versions. We
show that AES-PRF is broken whenever s ≤ 2 or s ≥ 6, or reduced to 7 rounds,
and Dual-AES-PRF is broken whenever s ≤ 4 or s ≥ 8. Our results on AES-PRF
improve the initial security evaluation by the designers in various ways, and our
results on Dual-AES-PRF give the first insight to its security.
Keywords: AES-PRF · Dual-AES-PRF · Impossible differential · Zero-correlation
linear · Meet-in-the-middle

1 Introduction
A pseudorandom permutation (PRP) is one of the main primitives in symmetric-key
cryptography to realize security functionalities such as encryption, authentication and
authenticated encryption. A PRP is a keyed permutation, where for a randomly chosen
key, it is indistinguishable from a truly random permutation [LR88], and this security
notion is the main security goal in the design of block ciphers. Cryptanalysis of block
ciphers is a long-standing topic in symmetric-key cryptography, and design approaches
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Figure 1: Common PRP-to-PRF conversion schemes, where EK is an n-bit PRP

for an efficient block cipher resisting all known attacks are well studied. Many secure
block ciphers are readily available, some of which are standardized and stand the test of
extensive cryptanalysis. For instance there is a comfortable consensus in the community
that AES [DR02] is indeed a PRP.

The invertibility of a block cipher is necessary in some modes of operation. For
instance the CBC encryption mode [Dwo01] needs the decryption of the block cipher for
its decryption. The authenticated encryption mode OCB [KR11] also needs the block
cipher decryption. However, there are various other examples where the invertibility is
unnecessary, and the security actually increases if a PRP is replaced with a pseudorandom
function (PRF), which is a keyed function that is indistinguishable from a truly random
function [GGM86]. For instance the CTR encryption mode [Dwo01] remains secure only
if the query complexity is sufficiently smaller than 2n/2 [BDJR97], where n is the block
length of the underlying PRP, but this limitation becomes void if a PRF is used instead.
The same argument holds for the authenticated encryption GCM [MV04, Dwo07]. This
limitation of the query complexity is often referred to as the birthday bound, and the
examples illustrate that highly secure symmetric-key schemes can be obtained once we
have a highly secure PRF.

Given ample candidate block ciphers for PRPs, various techniques to convert a PRP
into a PRF have been developed. This approach is called the PRP-to-PRF conversion,
and the simplest way is to regard the PRP itself as a PRF, but it is well known that the
security is limited to the birthday bound. There have been various developments to obtain
a PRF with higher security. A scheme that remains secure even beyond the birthday query
complexity is said to have beyond the birthday bound security, and we list some of such
methods in Fig. 1. However, all these constructions have non-small efficiency costs. The
truncation method decreases the rate at which randomness is generated, and each of the
other three methods is twice as expensive as one block cipher call.

To maintain both efficiency and beyond the birthday bound security, based on the
design called SURF by Bernstein [Ber97] and inspired by EDMD [MN17a], Mennink and
Neves [MN17b] explored a dedicated design of a PRF. Specifically, given an r-round
iterative block cipher EK , let E1

K be the first r/2 rounds of EK and E2
K be the last r/2

rounds. Their proposal called FastPRF turns it into a non-invertible function, a PRF, by

FastPRFK(X) = EK(X)⊕ E1
K(X).
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We see that it runs as fast as the underlying block cipher, and incurs the cost of, besides
the block cipher, one additional XOR and the management of one extra data block. The
approach is generic in that it transforms any block cipher into a PRF, and [MN17b]
proposes a concrete instantiation with AES, which is the main target of this paper.

The PRF, called AES-PRF, is as efficient as AES, and inherits the design principle of
EDMD. The 128-bit key version of AES has 10 rounds, which is the focus of this paper1,
and we decompose it into the first s rounds and the last t rounds, where s+ t = 10. We
then XOR the output state of the s-th round to the ciphertext, and this gives the output
of AES-PRF, which we write AES-PRFs,t (See Fig 3). The primal proposal of [MN17b] is
the case (s, t) = (5, 5), i.e., the balanced case, while [MN17b] also proposes unbalanced
cases to evaluate the general security that AES-PRF offers.

The efficiency and cost-effectiveness of AES-PRF comes at the cost of provable security,
i.e., the provable security result of EDMD no longer applies to AES-PRF, since the proof
requires that the components are two independent PRPs. This implies that the security of
AES-PRF relies on the evaluation by cryptanalysts, which we present in this paper.

In [MN17b], the initial security evaluation is presented, and it was shown that the
cases (s, t) = (1, 9) and (9, 1) can be broken, while the security of the case (s, t) = (2, 8)
is left as an open question. They also summarize generic attacks, where it can always
break AES-PRF with 2n query complexity, or if the query complexity is q, then the
success probability of the distinguishing attack is q2/22n when q < 2n/2, and O(q/23n/2)
if q > 2n/2 [MN17b]. They conjecture that AES-PRF cannot be distinguished from a
random function significantly faster than by either bruteforcing the key or by the above
mentioned generic attacks.

In this paper, we extensively analyze the security of AES-PRFs,t. We also evaluate the
security of the dual version of AES-PRF, which we write Dual-AES-PRF, that corresponds
to the EDM counterpart of AES. From the provable security view point, EDM and EDMD
have roughly the same security bound. More precisely, EDM is secure up to about 2n/(67n)
query complexity, and EDMD is secure up to about 2n/67 query complexity [MN17b].
The effect of the slight difference of the security bound is unknown, and it would be
therefore interesting to see the security of both AES-PRF and Dual-AES-PRF from the
cryptanalytic perspective. Dual-AES-PRF is depicted in Fig. 4.

We consider a set of rich cryptanalytic techniques that we find to be effective on these
PRFs, and we apply an impossible differential attack [BBS99, Knu98], zero correlation
linear attack [BLNW12, BR14], traditional differential attack [BS90], zero correlation
linear distinguishing attack [BLNW12, BR14] and a meet-in-the-middle attack [DS08,
DKS10, DFJ13]. See Table 1 for the summary of our results. These results improve the
initial security evaluation by the designers in various ways, and significantly improve the
insight of their security. From these results, our observations can be summarized as follows.

• Our results indicate that the security of AES-PRF is higher than Dual-AES-PRF
from the applicability of differential attacks. This is consistent with the rationale
discussed in [MN17b] for the preference of EDMD over EDM for the base scheme of
AES-PRF.

• In terms of the number of rounds of the first part (s rounds), both AES-PRF and
Dual-AES-PRF have only one round as the security margin.

• The balanced case (s, t) = (5, 5) is certainly a natural choice of the design. However,
our results indicate that (s, t) = (4, 6) for AES-PRF is potential to be more secure,
since the margin with respect to the attacked rounds becomes larger.

This paper is organized as follows. In Sect. 2, we describe AES-PRF and Dual-AES-PRF
as well as the underlying block cipher. In Sect. 3, we present an overview of our results

1There are also 192-bit and 256-bit key versions [MN17b].
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Table 1: Summary of results. The mark * in column s is 10− t and that in column t is
10− s, but they can take any value.

Target s t Time Data Memory Method Ref

AES-PRF 1 * 2101 267 CP 267 ID [MN17b]
* 1 − − − Statistics

AES-PRF

1 * 271 271 CP 264 ID Sect. A.1
1 * 2122.49 2103.34 KP 296 ZC Sect. A.2
2 * 294 294 CP 288 ID Sect. 4.1
2 * 2115.14 2115.06 KP 265 ZC Sect. 4.2
* 3 284.96 284.96 KP 284.96 ZC distinguisher Sect. 4.3
* 4 296.95 296.95 KP 264 ZC distinguisher Sect. 4.3
s 7− s 2107 2107 CP 2104 MitM Sect. 6.1

Dual-AES-PRF

* 1 271 271 CP 264 ID Sect. B.1
* 1 2122.49 2103.34 KP 296 ZC Sect. B.2
* 2 2104 2104 CP 272 ID Sect. 5.1
* 2 2115.14 2115.06 KP 265 ZC Sect. 5.2
3 * 297 297 CP 232 Differential Sect. B.4
4 * 2121 2121 CP 28 Differential Sect. 5.3

with the cryptanalysis techniques we use. Then, Sects. 4, 5 and 6 are the core of our
paper where we detail our attacks against AES-PRF, Dual-AES-PRF and round-reduced
AES-PRF, respectively. We conclude the paper in Sect. 7. Many attacks are also described
in the Supplemental Material A and B.

2 AES-PRF and Its Dual
2.1 Description of AES
AES is the most common block cipher whose block length is 128 bits. AES accepts 128,
192 and 256-bit secret keys, and each is referred to as AES-128, AES-192 and AES-256,
respectively. In this paper, we focus on the analysis of PRFs instantiated with AES-128.
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Figure 2: AES byte order.

The internal state of AES-128 is represented as a 4× 4 matrix whose elements take a
1-byte value, and we refer to a particular byte of the internal state x by x[i], as depicted in
Fig. 2. We write x[i1, i2, . . . , im] to denote m bytes with position i1, i2, . . . , im, and x[i : j]
simply denotes consecutive bytes as positions between i and j.

The round function updates the state by applying four basic transformations: SubBytes
(SB), ShiftRows (SR), MixColumns (MC) and AddRoundKey (AK). SubBytes is a nonlinear
byte-wise substitution that applies an S-box to every byte of internal state. ShiftRows is a
rotation of i-th row by i bytes to the left, where i starts from 0. MixColumns is a linear
transformation that applies on each column by multiplying an invertible 4 × 4 matrix.
AddRoundKey is an exclusive-or of internal state with round key. AES-128 iterates the
round function 10 times, where an additional whitening key is XORed before the first
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round, and MixColumns is omitted in the last round.
In this paper, we use the following notation: xIi denotes the input of the round i, while

xSi , xRi , xMi and xOi denote the intermediate values after the application of SubBytes,
ShiftRows, MixColumns and AddRoundKey operations of round i, respectively. Then, we
have xOi−1 = xIi for i ≥ 2. The i-th round key is denoted as Ki, and the initial whitening
subkey is K0. In some cases, we interchange the order of the MixColumns and AddRoundKey
operations since these operations are linear. We denote the equivalent subkey by EKi,
that is EKi = MC−1(Ki), and xEi represents the intermediate value after the application
of AddRoundKey with equivalent subkey.

The key schedule works as follows. The 128-bit master key is divided into four 32-bit
words (W [0],W [1],W [2],W [3]). Then, W [i] for i ≥ 4 is computed as

W [i] =
{
W [i− 4]⊕ SB(RotByte(W [i− 1]))⊕Rcon[i/8] i ≡ 0 mod 4,
W [i− 4]⊕W [i− 1] otherwise,

where RotByte is a one byte rotation to the left, and Rcon denotes the round-dependent
constant. The i-th round key is (W [4i],W [4i+ 1],W [4i+ 2],W [4i+ 1]).

2.2 AES-PRF and Dual-AES-PRF

x

key

· · ·R1 R2 Rs Rs+1 Rs+2 Rs+t· · ·

Figure 3: AES-PRFs,t

The construction of AES-PRF is proposed by [MN17b]. The AES is decomposed into
sub-blocks, and they are chained like the dual of encrypted Davies-Meyer construction.
There are several settings for the decomposition, e.g., 10 rounds of AES-128 can be
decomposed into the first s rounds and the last t = 10− s rounds, as depicted in Fig. 3.

Definition 1 (AES-PRFs,t2). (s+ t)-round AES is decomposed into the first s rounds
and the last t rounds. The output of AES-PRFs,t is the XOR between the state encrypted
by s-round AES and the state encrypted by (s+ t)-round AES.

Unless otherwise stated, AES-PRFs,t adopts AES-128 with s + t = 10 rounds or its
round-reduced variant when s+ t < 10. The construction with s = 0 is equivalent to the
Davies-Meyer construction, and that with t = 0 is clearly insecure.

x

key

· · ·R1 R2 Rs Rs+1 Rs+2 Rs+t· · ·

Figure 4: Dual-AES-PRFs,t

It is natural to consider the dual of AES-PRF depicted in Fig. 4, and we call it
Dual-AES-PRF. Unlike AES-PRF, in Dual-AES-PRF, the plaintext is used as the feed-
forward instead of the intermediate state. Similarly to AES-PRFs,t, when the first
sub-block has s rounds and the last sub-block has t rounds, we call it Dual-AES-PRFs,t.

2This notation is different from that in [MN17b], where AES-PRFs is used instead of AES-PRFs,10−s.
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Figure 5: Summary of attacks, where either of the first or last sub-block can be regarded
a random permutation.

The construction with s = 0 is obviously insecure, and that with t = 0 is exactly the same
as the Davies-Meyer construction.

Therefore, s can be chosen from 1 to 9 for both AES-PRF and Dual-AES-PRF. The
designers also showed a few attacks on AES-PRF, where both s = 1 and t = 1 are broken.
We note that, as noted in [MN17b], Dual-AES-PRF is exposed to some risks that the
adversary has control over the intermediate state.

3 Overview of Our Attacks
In this paper, we show various types of attack against AES-PRF and Dual-AES-PRF.
Before we present the details of our attacks, we first summarize the overview to help
readers to see the relationship among these attacks. Our attacks can be separated into
two categories. The first one is that either of the first or the last sub-block can be
regarded as a random permutation, and the other is that the number of rounds in both
sub-blocks is restricted. We show five different types of attack: impossible differential
attack, zero correlation linear attack, differential attack, zero correlation linear distinguisher
and meet-in-the-middle attack. The first four attacks belong to the first category, and
the meet-in-the-middle attack belongs to the second category. We present in Fig. 5 the
summary of the attacks in the first category.

Impossible differential attack. An impossible differential attack was proposed indepen-
dently by Biham et al. [BBS99] and Knudsen [Knu98]. Incorrect keys are discarded by using
differentials that never occur in real ciphers. See Figs. 5a and 5c. When the sub-block with
the feed-forward structure is ideal, we can construct a very simple impossible differential
as the input has non-zero differences but the difference of the output before XOR is 0. In
other words, if the output after XORing the feed-forward value has the same difference as
the input, it is an impossible differential. Our goal is to recover the secret key in the other
sub-block. As a result, we can attack both AES-PRF with s ≤ 2 and Dual-AES-PRF
with t ≤ 2. The designers of AES-PRF also showed the attack against AES-PRF with
s = 1, but the attack against AES-PRF with s = 2 was left as an open problem [MN17b].
Therefore, we solve this open problem. Details are presented in Sects. 4.1 and 5.1.

Zero-correlation linear attack. A zero-correlation linear attack was successfully used
by Bogdanov and Rijmen [BLNW12, BR14]. The correct key is recovered by using linear
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approximations that hold for exactly 50% of the input values. The attack outline is similar
to the impossible differential attack above (see Figs. 5a and 5c again). Namely, if the output
of the sub-block with the feed-forward structure has the same linear mask as the input,
it is zero-correlation linear. Our goal is to recover the secret key in the other sub-block.
Similarly to the impossible differential, we can attack both AES-PRF with s ≤ 2 and
Dual-AES-PRF with t ≤ 2. Details are presented in Sects. 4.2 and 5.2.

Differential attack. The most simple differential attack exploits differentials that hold
with a high probability, but our differential attack exploits the differential that holds with
probability 1. As the designers of AES-PRF claimed, Dual-AES-PRF has vulnerability
where the intermediate state can be controlled by observing the collision of the output. If
the output of Dual-AES-PRF collides, we know the difference of the intermediate state
always coincides with the difference of the input (see Fig. 5d). Therefore, we can recover
the secret key by using such a differential that holds with probability 1. As a result, we
can attack only Dual-AES-PRF when s ≤ 4. Note that this attack cannot be applied to
AES-PRF because we cannot control the difference of the intermediate state. Details are
presented in Sect. 5.2.

Zero-correlation linear distinguisher. One of the reasons that the designers of AES-PRF
chose the EDMD construction instead of the EDM construction is the vulnerability
described above. Namely, we cannot control the difference of the intermediate state of
the AES-PRF. However, we show that it is possible to control the linear mask very well
thanks to the duality [Mat94]. See Fig. 5b. When the input linear mask is zero and the
output linear mask is non-zero, the linear masks for the input and output of the last
sub-block are the same as the output of the linear mask. Therefore, if chosen linear masks
are zero correlation for the last sub-block, we obtain a zero-correlation linear distinguisher.
We can construct such a linear mask up to t ≤ 4. As a result, AES-PRF with t ≤ 4 is
also vulnerable similar to Dual-AES-PRF. On the other hand, this attack only brings the
distinguisher, and it is left as an open problem to recover the secret key by exploiting this
idea. Details are presented in Sect. 4.3.

Meet-in-the-Middle attack. AES-PRF relies on AES as the underlying block cipher. As
the best known results against AES are based on meet-in-the-middle attacks, it makes
sense to study how this cryptanalysis technique applies to AES-PRF. As a result, we can
attack all variants of AES-PRF reduced to 7 rounds. On the other hand, Dual-AES-PRF
seems to provide more resistance against such attacks and we can only break few variants.
Surprisingly, unbalanced variants are the ones offering the best security. The details of our
attacks are presented in Sect. 6.1.

4 Attacks on AES-PRF
4.1 Impossible Differential
We show impossible differential attacks against AES-PRFs,t with s = 1 or 2, where Fig. 5a
illustrates the impossible differential attack for AES-PRFs,t. In this subsection, we focus
on AES-PRF2,8 because AES-PRF1,9 is clearly less secure than AES-PRF2,8. Please refer
to Supplemental Material A.1 for the attack against AES-PRF1,9.

4.1.1 Data Requirement for Impossible Differential Attack

Before explaining the detail procedure to attack AES-PRF by using the impossible differ-
ential, we first introduce a formula to estimate the data requirement.
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The impossible differential attack exploits differentials that never occur in real ciphers.
Assume that each pair ((P,C), (P ′, C ′)) can reject 2σ keys and 2τ is the size of the targeted
key space, the probability that an incorrect key is rejected by one pair is 2σ−τ . The average
number of pairs N required to be left with at most 2α key candidates is given by the
following formula [BBS99, BNS14]:

2α ≥ 2τ
(
1− 2σ−τ

)N ≈ 2τe−N/2τ−σ .

This inequality can be rewritten as:

N ≥ 2τ−σ × τ − α
log2 e

. (1)

4.1.2 Property of AES S-Box

We exploit the property of the differential distribution table (DDT) of AES S-box to
recover the secret key.

Property 1. For a given input difference ∆X, let us consider the output difference ∆Y .
For 129/256 such pairs, the differential transition is impossible. For 126/256 such pairs,
there are two ordered pairs, i.e., S(X)⊕S(X⊕∆X) = ∆Y and S(X⊕∆X)⊕S(X) = ∆Y .
And for the remaining 1/256 pair, there are four ordered pairs.

This property implies that pairs of input/output values of the AES S-box are immedi-
ately recovered once a pair of input/output differences is given. Moreover, the number of
recovered values is 1 in average because 0× 129/256 + 2× 126/256 + 4× 1/256 = 1. The
key recovery attack based on this property has been applied to AES [BDD+12], and we
also exploit this property to recover the secret key.

4.1.3 Impossible Differential Attack for AES-PRF2,8
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Figure 6: Analysis of AES-PRF2,8.

It is easy to check that AES-PRF2,8 is equivalent to the keyed function depicted in
Fig. 6, that is, for every plaintext P , the function presented in Fig. 6 always outputs
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AES-PRF2,8(P ). Before the analysis, we emphasize that the following contents should be
read with the company of Fig. 6.

Our attack targets 11 subkey bytes: K0[0],K0[3 : 5],K0[9 : 10],K0[14 : 15],K1[0 : 1]
and K1[6]. Before the attack, we store the set C of all 288 possible values for the 11
subkey bytes in memory, and incorrect keys will be removed from C based on impossible
differential attack shown in Algorithm 1.

Assume that we have a pair (P, P ′) of plaintexts with difference ∆P . Let C and C ′

be the corresponding ciphertexts such that 11 bytes of MC−1(∆C) are 0 as depicted in
Fig. 6. Then, any key guess under which the input difference of MC−1 ◦F ◦MC(·) is also
MC−1(∆C) must be incorrect, since this leads to an impossible differentialMC−1(∆C) 9
0 of the permutation MC−1 ◦ F ◦MC(·).

Prepare 264 plaintexts traversing all the 264 possibilities of the 8 bytes marked with ,
while the remaining bytes are fixed to constants. These 264 plaintexts forms a structure
from which we obtain

264 × (264 − 1)
2 × 2−88 ≈ 239

pairs of plaintexts with 11 bytes of MC−1(∆C) being 0. In practice, such pairs can be
identified with the following approach. We encrypt the 264 plaintexts and insert them into
a hash table H according to MC−1(∆C). Good pairs can be created in those slots of the
hash table with more than one elements.

For each such pair (good pair), we guess the 2 bytes of ∆xM1 marked with . For
any of the 216 possible guesses, we can get corresponding xI1[0, 5, 10, 15] and xS1 [0, 5, 10, 15]
from Property 1. Since the plaintexts are known, we can derive 4 bytes of the subkey K0
marked by . At this point, we can compute xM1 [0 : 1] and ∆xI2[0 : 1](= ∆xM1 [0 : 1]).
Recall that keys satisfying ∆xS2 = SR−1(MC−1(∆C)) are incorrect, and we can get such
xI2[0 : 1] from Property 1. Since both xI2[0 : 1] and xM1 [0 : 1] are known, we can derive the
2 bytes of K1 marked by . We store the 216 possible subkey guesses in a hash table G
indexed by (K1[0],K0[5] +K1[1]). Similarly, we guess the 3 red bytes of ∆xM1 , from
which the 7 pink bytes of K0 and K1 can be derived.

Since the subkeys must satisfy the following equations extracted from the key schedule
algorithm of AES,

{
K1[4] +K0[4] = K1[0]
K1[5] = K0[5] +K1[1]

whose probability is 2−16, for each of the 224 guesses of (K0[3],K0[4],K0[9],K0[14],K1[4 :
6]), we check the hash table G at the pin (K1[4] +K0[4],K1[5]). If it is empty, we discard
the guess. Otherwise, we remove the subkey guesses produced by combining the current
guess and the guesses in the hash table G indexed by (K1[4] +K0[4],K1[5]) from the set
C. Note that given one good pair approximately 216 × 224 × 2−16 = 224 keys are rejected.

Complexity Analysis. In this attack, the targeted 11 key bytes are K0[0],K0[3 : 5],K0[9 :
10],K0[14 : 15],K1[0 : 1] andK1[6]. Hence, we have (τ, σ) = (88, 24). We will collect enough
data such that only 250 candidates remain in C, and therefore the whole key can be recovered
with complexity 250×2128−11×8 = 290 after the analysis. According to equation (1), we need
288−24 × 88−50

log2 e
< 269 good pairs, which demands 269/239 = 230 structures. In summary,

the attack requires 264+30 = 294 chosen plaintexts, 230 × (264 + 239 × (216 + 224)) ≈ 294

computations, and 288 memory. This attack solves the open problem proposed by Mennink
and Neves (see Sect. 3.3.3 of [MN17b]).
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Algorithm 1: Impossible differential attack on AES-PRF2,8 with one structure
1 Ask for the encryption of one structure of 264 plaintexts P of the form indicated by

Fig. 6, and store them in a hash table H according to the value of
MC−1(∆C)[2, 3, 5 : 12, 15].

2 Store the set of 288 possible values for the 11 subkey bytes K0[0], K0[3 : 5],
K0[9 : 10], K0[14 : 15], K1[0 : 1] and K1[6] in C.

3 for each pair ((P, P ′), (C,C ′)) in H with MC−1(∆C)[2, 3, 5 : 12, 15] = 0 do
4 for every of the 216 values of ∆xM1 marked with do
5 Derive K0[0, 5, 10, 15] (marked by ) from ∆P [0, 5, 10, 15] and

∆xS1 [0, 5, 10, 15]

6 Derive K1[0, 1] (marked by ) from ∆xI2[0, 1] and
∆x2 = SR−1(MC−1)(∆C)

7 Store the derived K0[0, 5, 10, 15] and K1[0, 1] in a hash table G indexed by
(K1[0],K0[5] +K1[1])

8 end

9 for every of the 224 values of ∆xM1 marked with do
10 Derive the 7 bytes of K0 and K1 marked by

11 if The slot of G indexed by (K1[4] +K0[4],K1[5]) is empty then
12 Discard the derived key guess
13 else
14 Remove the key values derived by combining the 7-byte value and the

guesses in the hash table G indexed by (K1[4] +K0[4],K1[5]) from C
15 end
16 end
17 end

4.2 Zero-Correlation Linear
Figure 5a illustrates the zero-correlation linear attack for AES-PRFs,t. Similarly to the
impossible differential attack, we focus on AES-PRF2,8, and please refer to Supplemental
Material A.2 for the attack against AES-PRF1,9.

4.2.1 Data Requirement for Zero-Correlation Linear Attack

In this section, we briefly introduce the data complexity of zero-correlation linear attack.
For more information, please refer to [BLNW12, BN17, SCW17].

Let the adversary be givenN plaintext-ciphertext pairs and ` non-trivial zero-correlation
linear approximations for an n-bit block cipher. For each of the ` given approximations, the
adversary computes the number V [i] of times the linear approximations are fulfilled on N
plaintext, i ∈ {1, 2, . . . , `}. Each V [i] suggests an empirical correlation value ĉi = 2V [i]

N − 1.
Then, the adversary evaluates the statistic:

T = N
∑̀
i=1

ĉi
2 = N

∑̀
i=1

(
2V [i]
N
− 1
)2

.

After setting the type-I error probability (the probability to miss the right key) to α0, and
the type-II error probability (the probability to accept a wrong key) to α1, the number N
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of known-plaintexts3 in the attack is

N ≈
2n(χ(`)

1−α0
− χ(`)

α1 )
χ

(`)
α1

, (2)

where χ(`)
1−α0

and χ(`)
α1 are the respective quantiles of the χ2-distribution with ` degrees of

freedom evaluated on the points 1− α0 and α1, respectively.

4.2.2 Zero-Correlation Linear Attack for AES-PRF2,8

The linear mask Γ that we use under this case is depicted in Fig. 7. The number of
non-trivial zero-correlation linear approximations is ` = (28 − 1)4 under this setting.

Non-zero Mask

Zero Mask

Figure 7: Linear mask Γ for AES-PRF2,8.

Note that AES-PRF2,8 is equivalent to the keyed function depicted in Fig. 8. The
detailed key-recovery attack can be found in Algorithm 2.
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Figure 8: Zero-correlation attack for AES-PRF2,8.

Complexity Analysis. In this attack, we use ` = (28 − 1)4 non-trivial zero-correlation
linear approximations. We set the type-I error probability to α0 = 2−4, and the type-II
error probability to α1 = 2−17. Thus, the data complexity is 2115.06 known-plaintexts4.
Then, the key space is reduced to 264−17 = 247, and we exhaustively guess the remaining 64
bits. Therefore, the final exhaustive search requires the complexity of 264+47 = 2111. Since
V1 and V2 constitute the largest memory and the sizes of other counters are negligible, the
memory complexity is roughly 265. The time complexity on Steps 5–21 of Algorithm 2 is
2106.00. Thus, the total computational time, which is dominated by the data collection
part and the final exhaustive search phase, is about 2115.14.

3The data requirement will decrease if we use distinct known-plaintexts, which have been discussed in
[BN17]. However, using distinct known-plaintext sampling method will increase the memory complexity.
For almost all cases included in this paper, the data requirement computed by these two sampling methods
only have slight difference. Thus, we only consider known-plaintext sampling method.

4All the computations involving the quantiles of the χ2-distribution are conducted with Maplesoft
(http://www.maplesoft.com/), and the computation is accurate to 500 decimal places.

http://www.maplesoft.com/
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Algorithm 2: Zero-correlation linear attack on AES-PRF2,8

1 Allocate a global counter V1[z1] for each of 264 possible values of z1.
2 for each of N plaintext-ciphertext pairs do
3 Compute z1 = P [0, 5, 10, 15]‖C ′[0 : 3] and update V1 as V1[z1] += 1.
4 end
5 Allocate counters Vi for each value of zi, 2 6 i 6 6.
6 for each possible 32-bit subkey value K0[0, 5, 10, 15] do
7 Reset V2, compute z2 = xM1 [0 : 3]‖C ′[0 : 3] and update V2 as V2[z2] += V1[z1].
8 for each possible 8-bit subkey value K1[0] do
9 Reset V3, compute z3 = xM1 [1 : 3]‖C ′[1 : 3]‖(C ′[0]⊕ xS2 [0]) and update V3 as

V3[z3] += V2[z2].
10 for each possible 8-bit subkey value K1[1] do
11 Reset V4, compute z4 = xM1 [2 : 3]‖C ′[2 : 3]‖(C ′[0 : 1]⊕ xS2 [0 : 1]) and

update V4 as V4[z4] += V3[z3].
12 for each possible 8-bit subkey value K1[2] do
13 Reset V5, compute z5 = xM1 [3]‖C ′[3]‖(C ′[0 : 2]⊕ xS2 [0 : 2]) and

update V5 as V5[z5] += V4[z4].
14 for each possible 8-bit subkey value K1[3] do
15 Reset V6, compute z6 = C ′[0 : 3]⊕ xS2 [0 : 3] and update V6 as

V6[z6] += V5[z5].
16 Allocate a counter V [z] for each of (28−1)4 zero-correlation linear

approximations, and set it to zero.

17 Update V [z] by V6[z6] and compute T = N
∑̀
i=1

(
2V [i]
N − 1

)2
.

18 if T < τ then
19 The guessed key bytes constitute a possible subkey candidate.

20 All master keys that are compatible with are tested
exhaustively against a maximum of 2 plaintext-ciphertext
pairs.

21 end
22 end
23 end
24 end
25 end
26 end

4.3 Zero-Correlation Linear Distinguisher
For the distinguishing attack, we use the zero-correlation linear distinguisher illustrated in
Fig. 5b, where we show distinguishing attacks against AES-PRF7,3 and AES-PRF6,4. The
main observation is that 0 AES-PRFs,t−−−−−−−−→ Γ constitutes a zero-correlation linear approximation
for AES-PRFs,t, if Γ AESt−−−→ Γ is a zero-correlation linear approximation, where AESt
denotes the last t rounds of AES. Since the input mask is zero, we only need to evaluate the
zero-correlation property at the output. After determining Γ, we compute the χ2-statistic
with N plaintext-ciphertext pairs. Then, we can distinguish this construction with a
random function by comparing the value of T with a predetermined threshold τ .

Let n be the block length and ` be the number of non-trivial zero-correlation linear
approximations. Then, the data complexity of our distinguishing attack is roughly estimated
as O(2n−`/2) [BW12, BLNW12]. In order to reduce the data complexity, we should increase
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the number of involved zero-correlation linear approximations. We only consider truncated
linear trails and exhaustively search all 216 input/output patterns Γp = (γ0, γ1, . . . , γ15),
γi ∈ {0, 1}.

4.3.1 Zero-Correlation Linear Distinguisher against AES-PRF7,3

SB SR MC

SB SR MC

SB SR

Contradiction

Non-zero Mask

Unknown Mask

Zero Mask

Figure 9: Zero-correlation distinguisher for AES3.

The maximum Hamming weight of Γp such that Γp AES3−−−→ Γp constitutes a zero-
correlation trail achieves 11. One family of zero-correlation linear approximations satisfying
this case can be found in Fig. 9. The bytes marked with denote bytes with non-zero
linear masks. We omit AddRoundKey operation because it does not affect the propagation
of linear mask.

Complexity Analysis. For the attack of AES-PRF7,3, we use ` = (28 − 1)11 non-trivial
zero-correlation linear approximations. We set the type-I error probability to α0 = 2−2,
and the type-II error probability to α1 = 2−2. Thus, the data complexity is 284.96 known-
plaintexts. The time complexity is about 284.96 because data collection phase dominates
the time complexity. The memory complexity is roughly 284.96.

4.3.2 Zero-Correlation Linear Distinguisher against AES-PRF6,4

SB SR MC

SB SR MC

SB SR MC

SB SR

Contradiction

Non-zero Mask

Unknown Mask

Zero Mask

Figure 10: Zero-correlation distinguisher for AES4.
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The maximum Hamming weight of Γp such that Γp AES4−−−→ Γp constitutes a zero-
correlation trail is 8. One family of zero-correlation linear approximations satisfying this
condition can be found in Fig. 10, where bytes marked with denote bytes with non-zero
linear masks.

Complexity Analysis. For the attack of AES-PRF6,4, we use ` = (28−1)8 non-trivial zero-
correlation linear approximations. We set the type-I error probability to α0 = 2−2, and the
type-II error probability to α1 = 2−2. Thus, the data complexity is 296.95 known-plaintexts.
The time complexity is 296.95, and the memory complexity is roughly 264.

5 Attacks on Dual-AES-PRF
5.1 Impossible Differential

P

C

SB SB SRSR MC

1

1

1

1

2

2

2

2

xI
10xE

9xS
9

8 rounds

=MC−1(KEK 99 K10)

Figure 11: Overview of impossible differential against Dual-AES-PRF8,2.

We show impossible differential attacks against Dual-AES-PRFs,t with t = 1 or 2. In
this subsection, we focus on Dual-AES-PRF8,2 because Dual-AES-PRF9,1 is less secure
than Dual-AES-PRF8,2. Please refer to Supplemental Material B.1 for the attack against
Dual-AES-PRF1,9.

The overview of the impossible differential attack against Dual-AES-PRF8,2 is shown in
Fig. 11. We first prepare pairs (P, P ′) of plaintexts whose difference ∆P is active in 4 bytes
P [0, 4, 5, 9]. Then, we pick pairs where the difference of corresponding ciphertexts is inactive
in C[2, 3, 5, 6, 8, 9, 12, 15]. Any key guess under which the difference of the intermediate
state is also ∆P must be incorrect, since this leads to an impossible differential ∆P 9 0
of the permutation.

Prepare 232 plaintexts traversing all the 232 possibilities of the 4 bytes marked with ,
while the remaining bytes are fixed to constants. From such 232 plaintexts, the probability
that the pair of ciphertexts has the difference above is 232×(232−1)

2 × 2−64 ≈ 2−1. For each
such pair (good pair), we guess the 2 bytes of K10 marked with . For any of the 216

possible guesses, we can derive ∆xI10[0, 1]. Since ∆xE9 [2] = ∆xE9 [3] = 0, from the inverse
MixColumns, we can solve the following equation system{

13 ·∆xI10[0] + 09 ·∆xI10[1] + 14 ·∆xI10[2] + 11 ·∆xI10[3] = 0
11 ·∆xI10[0] + 13 ·∆xI10[1] + 09 ·∆xI10[2] + 14 ·∆xI10[3] = 0

to get the values of ∆xI10[2] and ∆xI10[3]. Combining the knowledge of ∆C = C ⊕ C ′,
∆xI10[2, 3], we obtain xI10[2, 3] from Property 1. Then, the key bytes marked with 1 can be
derived. At this point, the main diagonal K10[0, 7, 10, 13] is known, and xE9 [0, 1] can be
computed. Together with the knowledge of ∆P [0, 5] and ∆xS9 [0, 5](= ∆xE9 [0, 1]), we obtain
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xS9 [0, 5] from Property 1. Then, the key bytes of EK9 marked with 2 can be derived.
Similarly, we continue the guess on the 2 bytes of K10 marked with , which leads to the
determination of the bytes of K10 marked with 1 and the bytes of EK9 marked with 2 .
Therefore, for each good pair, approximately 216 × 216 = 232 keys are rejected. Moreover,
the time complexity is 232 for each good pair.

We use the same formula that is introduced in Sect. 4.1. Then, we have (τ, σ) = (96, 32).
According to equation (1), we need 296−32 × 96

log2 e
< 271 good pairs to remove all incorrect

keys, which demands 271/2−1 = 272 structures. Organising the attack with the early abort
technique [LKKD08], we only need to store the 271 pairs instead of 296 keys. In summary,
the attack requires 232+72 = 2104 chosen plaintexts, 232+72 = 2104 computations, and
approximately 272 128-bit blocks in memory. The procedure of the key recovery attack is
described in Algorithm3.

Algorithm 3: Impossible differential attack on Dual-AES-PRF8,2 with one struc-
ture

1 Allocate a memory H to store good pairs.
2 for every of the 272 distinct values of P [1 : 3, 6 : 8, 10 : 15] do
3 Ask for 232 plaintexts P of the form indicated by Fig. 11, and sort 232 (P,C)

according to the value of C[0, 1, 4, 7, 10, 11, 13, 14].
4 When we find pairs whose value of C[0, 1, 4, 7, 10, 11, 13, 14] collides, the pair of

the values ((P, P ′), (C,C ′)) is stored in H.
5 end

6 for every of the 216 values of K10 marked with do
7 for every of the 216 values of K10 marked with do
8 for each pair ((P, P ′), (C,C ′)) in H do
9 Derive ∆xI10[0, 1], and get ∆xI10[2, 3] from ∆xE9 [2, 3] = 0.

10 Derive K10[7, 10] (marked by 1 ) from ∆xI10[2, 3] and ∆C[7, 10].
11 Derive EK9[0, 1] (marked by 2 ) from ∆xS9 [0, 5] and ∆xE9 [0, 1].

12 Similarly to the procedure above, derive K10[11, 14] (marked by 1 ) and
EK9[4, 5] (marked by 2 ).

13 Discard the derived impossible key bytes, EK9[0, 1, 4, 5] and
K10[7, 10, 11, 14].

14 end

15 if Key bytes that are not discarded remain then
16 Store the (4 + 8)-byte key as the candidate of the correct key.
17 else
18 end
19 end
20 end

5.2 Zero-Correlation Linear
Figure 5c illustrates the zero-correlation linear attack for Dual-AES-PRFs,t. The analysis
in this subsection is restricted to t = 2, and please refer to Supplemental Material B.2 for
the zero-correlation attack against Dual-AES-PRF9,1.

The linear mask Γ that we use under this case is the same as the one given in Fig. 7.
The number of non-trivial zero-correlation linear approximations is ` = (28 − 1)4 under
this setting.
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Figure 12: Zero-correlation attack for Dual-AES-PRF8,2.

Note that Dual-AES-PRF8,2 is equivalent to the keyed function depicted in Fig. 12.
The key-recovery attack can be found in Algorithm 4.

Complexity Analysis. In this attack, we use ` = (28 − 1)4 non-trivial zero-correlation
linear approximations. We set the type-I error probability to α0 = 2−4, and the type-II
error probability to α1 = 2−17. Thus, the data complexity is 2115.06 known-plaintexts.
Since V1 and V2 constitute the largest memory and the sizes of other counters are negligible,
the memory complexity is roughly 265. The time complexity on Steps 5–21 of Algorithm 4
is 2106.00. Thus, the total computational time, which is dominated by the data collection
part and the final exhaustive search phase, is about 2115.14.

5.3 Differential
The differential attack that we utilize in this subsection is illustrated in Fig. 5d. We
show the differential attack against Dual-AES-PRF4,6 in this subsection. Please refer to
Supplemental Material B.3 and B.4 for the differential attacks against Dual-AES-PRF2,8
and Dual-AES-PRF3,7, respectively.

5.3.1 Differential Attack for Dual-AES-PRF4,6

An illustration for the key-recovery procedure can be found in Fig. 13. Independently of any
probabilities, once the key is fixed, AES is a permutation, and then, Dual-AES-PRFs,t(x) =
Dual-AES-PRFs,t(y) is equivalent to AESs(x)⊕ x = AESs(y)⊕ y, which can be rewritten
as x⊕ y = AESs(x)⊕AESs(y). In our attack, we encrypt plaintexts with only one active
byte. Hence, whenever a pair (x, y) collides, then AES4(x)⊕AES4(y) is equal to x⊕ y, so
differences at input and output of 4-round AES have only one active byte (at the same
position) and thus the trail depicted on Fig. 13 is followed with probability 1.

In order to obtain one collision pair at the output, we need to create 2128 pairs. Consider
a structure of 28 plaintexts that the unique gray byte shown in Fig. 13 is active, while the
remaining bytes in white are fixed to constants. From one structure of 28 plaintexts, we
are able to construct 28 × (28 − 1)/2 ≈ 215 pairs. Thus, 2113 structures are required. If we
find a collision at the output, we know the difference at xO4 .

For the collision pair (P, P ′) satisfying the input difference, we enumerate all 272

possible differences at xS1 , xS2 , and xI4. Then, all input and output differences of the
SubBytes operations in the first four rounds are known. From Property 1, partial values
of xIi and xSi (1 ≤ i ≤ 4), whose positions correspond to all active bytes of the SubBytes
operation, can be recovered. Then, 10-byte information of the subkey can be obtained,
which are dyed in blue in Fig. 13. For each guess of the differences, we are able to retrieve
80-bit information of the subkeys, and all master keys that are compatible with are tested
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Figure 13: Key-recovery attack for Dual-AES-PRF4,6.

exhaustively against a maximum of two plaintext-ciphertext pairs. A detailed description
can be found in Algorithm 5.

In total, the data complexity of this attack is 2121 chosen plaintexts. The time
complexity is also 2121. Since the input difference of the collision pair must follow the input
difference of the distinguisher, we do not need to consider pairs constructed by choosing
plaintexts from different structures. In other words, in the collision searching phase, each
structure can be handled, independently. Thus, the memory complexity is 28.

6 Attacks on Round-Reduced Versions of AES-PRF

In this section we describe key-recovery attacks against AES-PRF and Dual-AES-PRF
when the number of rounds is reduced to 7. Indeed, the best known attacks against
round-reduced versions of AES-128 are able to break up to 7 rounds and it is worth to
show that using the feed-forward of an internal state does not increase the security.

6.1 Demirci-Selçuk attack against AES-PRF3,4

In this section, we show how to apply a Demirci-Selçuk attack [DS08] against AES-PRF3,4.
Interested reader may refer to [DF16] for further details and improvements of this crypt-
analysis technique.

We want to emphasize this is the first time that this cryptanalysis technique is applied
to a primitive which is not a block cipher. Hence, beside its interest in understanding the
security of AES-PRF, we believe this attack opens a new research line as future work may
try to extend the application range of Demirci-Selçuk attacks.
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6.1.1 4-round Distinguisher

Our attack against AES-PRF3,4 relies on the exact same 4-round distinguisher than the
original attack of Demerci-Selçuk. Denoting δ-set a collection of 256 plaintexts such that
one byte is active and takes all the possible values while other ones are constant, we have
the following property:

Lemma 1 (4-round distinguisher). Consider the encryption of a δ-set through four full
AES rounds. For each of the 16 bytes of the state, the ordered sequence of 255 differences
of that byte in the corresponding ciphertexts is fully determined by just 25 byte parameters.
Consequently, for any fixed byte position, there are at most (28)25 = 2200 possible sequences
when we consider all the possible choices of keys and δ-sets (out of the (28)255 = 22040

theoretically possible 255-byte sequences).

The proof of this lemma is straightforward and can be found in [DF13].

6.1.2 Differential Enumeration Technique

The 4-round distinguisher above cannot be used to attack AES-128 since there are too many
sequences to store. However, in 2010 Dunkelman et al. proposed a powerful technique to
reduce the memory requirement of the attack [DKS10]. This technique, later improved by
Derbez et al. in [DFJ13], asks to store only the sequences built from a δ-set containing
a message P that belongs to a pair (P, P ′) following a well-chosen truncated differential
characteristic, depicted on Fig. 14.

The 4-round distinguisher is between rounds 2 and 6. Given a δ-set such that coloured
byte of xI2 takes all the possible values, the sequence of differences in coloured byte of xR6
is fully determined by the 25 coloured bytes of xI3, xI4, xI5 and xI6. Indeed, if one knows the
value of those bytes for one message of the δ-set, he can propagate the differences from xR2
to xR6 and hence build the sequence. However, if the message belongs to a pair following
the truncated differential characteristic of Fig. 14, the 25 coloured bytes can assume only
(28)11 = 288 values. Indeed, it is enough to know the differences in coloured bytes of xR2 ,
xR3 , xI5, xI6 and xR6 to deduce the required bytes, since differences before and after the
S-box is known for all of them.

6.1.3 Attack against AES-PRF3,4

The attack is quite similar to the original attack against AES-128. As it, we start by
computing and storing in a hash table all the 288 sequences constructed by following the
differential enumeration technique. This is the offline phase and this step has a time
complexity of 288 × 28 = 296 partial encryptions and 288 × 28 = 296 bytes of memory are
required.

Then, in the online phase, one has to find a pair following the truncated differential
characteristic. Classically, we start by asking for a structure of 232 messages with one
diagonal active and other bytes constant. Then, if a pair follows the characteristic,
difference of ciphertexts belongs to a subspace of dimension 8 because difference in state
xI4 belongs to a subspace of 4, as well as difference in state xI8. Hence, we sort the 232

messages according to the 8 constant (linear combinations of) bytes to identify pairs that
may follow the truncated differential. Hopefully, for each such pair, it is straightforward
to recover ∆xI8 and ∆xI4 assuming the pair follows the characteristic.

Then one guesses ∆xI2 and ∆xR2 to recover the actual value of coloured bytes of xI1,
xR1 , xI2, xR2 , xI3 and xR3 . Similarly, it is enough to guess ∆xR6 to recover the actual value of
xI7 and xR7 . At this step, we have a message P0 for which we know the actual value of grey
bytes as well as black bytes of xI3 and xR3 . Hence, we now have to compute a δ-set from
this message, compute the corresponding sequence of differences and check whether it is in
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Algorithm 4: Zero-correlation linear attack on Dual-AES-PRF8,2

1 Allocate a global counter V1[z1] for each of 264 possible values of z1.
2 for each of N plaintext-ciphertext pairs do
3 Compute z1 = SR(P )[0 : 3]‖C[0, 7, 10, 13] and update V1 as V1[z1] += 1.
4 end
5 Allocate counters Vi for each value of zi, 2 6 i 6 6.
6 for each possible 32-bit subkey value K10[0, 7, 10, 13] do
7 Reset V2, compute z2 = SR(P )[0 : 3]‖xE9 [0 : 3] and update V2 as

V2[z2] += V1[z1].
8 for each possible 8-bit subkey value MC−1(K9)[0] do
9 Reset V3, compute z3 = SR(P )[1 : 3]‖xE9 [1 : 3]‖

(
SR(P )⊕ SB−1(xR9 )

)
[0]

and update V3 as V3[z3] += V2[z2].
10 for each possible 8-bit subkey value MC−1(K9)[1] do
11 Reset V4, compute

z4 = SR(P )[2 : 3]‖xE9 [2 : 3]‖
(
SR(P )⊕ SB−1(xR9 )

)
[0 : 1] and update

V4 as V4[z4] += V3[z3].
12 for each possible 8-bit subkey value MC−1(K9)[2] do
13 Reset V5, compute

z5 = SR(P )[3]‖xE9 [3]‖
(
SR(P )⊕ SB−1(xR9 )

)
[0 : 2] and update V5

as V5[z5] += V4[z4].
14 for each possible 8-bit subkey value MC−1(K9)[3] do
15 Reset V6, compute z6 = SR(P )[0 : 3]⊕ SB−1(xR9 )[0 : 3] and

update V6 as V6[z6] += V5[z5].
16 Allocate a counter V [z] for each of (28 − 1)4 zero-correlation

linear approximations, and set it to zero.

17 Update V [z] by V6[z6] and compute T = N
∑̀
i=1

(
2V [i]
N − 1

)2
.

18 if T < τ then
19 The guessed key bytes constitute a possible subkey candidate.

20 All master keys that are compatible with are tested
exhaustively against a maximum of 2 plaintext-ciphertext
pairs.

21 end
22 end
23 end
24 end
25 end
26 end

P
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xI5 xR5 xI6 xR6 xI7 xR7 xI8

C

Figure 14: Truncated differential characteristic on AES-PRF3,4. Differences in white
squares are null.
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Algorithm 5: Differential attack on Dual-AES-PRF4,6 with one collision pair
Input: The collision pair, the input difference ∆xI1, and the output difference

∆xO4 .
1 for each of the 28 active values of ∆xS1 do
2 Deduce xI1[0] and xS1 [0] from ∆xI1[0] and ∆xS1 [0].
3 Compute K0[0] = P [0]⊕ xI1[0].
4 for each of the 232 active values of ∆xS2 do
5 Compute ∆xI2 = MC ◦ SR(∆xS1 ).
6 Deduce xI2[0 : 3] and xS2 [0 : 3] from ∆xI2[0 : 3] and ∆xS2 [0 : 3].
7 Compute EK1[0] = MC−1(xI2[0 : 3])[0]⊕ xS1 [0].
8 for each of the 232 active values of ∆xI4 do
9 Compute ∆xS3 = SR−1 ◦MC−1(∆xI4) and ∆xI3 = MC ◦ SR(∆xS2 ).

10 Deduce xI3 and xS3 from ∆xI3 and ∆xS3 .
11 Compute EK2[0, 7, 10, 13] = MC−1(xI3)[0, 7, 10, 13]⊕ xS2 [0, 3, 2, 1].
12 Deduce xI4[0, 5, 10, 15] from ∆xI4[0, 5, 10, 15] and

MC−1 ◦ SR−1(∆xO4 )[0, 5, 10, 15].
13 Compute K3 = xI4[0, 5, 10, 15]⊕MC ◦ SR(xS3 )[0, 5, 10, 15].
14 All master keys that are compatible with the deduced bytes of K0 - K3

are tested exhaustively against a maximum of 2 plaintext-ciphertext
pairs.

15 end
16 end
17 end

the table or not. If the sequence does not belong to the table, we know with probability 1
that either the pair did not follow the characteristic or we made one wrong guess. In the
opposite case, if the sequence is in the table, with very high probability the pair follows
the truncated characteristic and the guesses are correct. To compute the sequence, we
propagate difference on xI2 to both xI4 and the plaintext. Then, using the corresponding
ciphertext and ∆xI4 we compute ∆xI8 and propagate it to xR6 .
Complexities. Time and memory complexities both are around 296. In the online
phase, to get a pair following the truncated differential characteristic, we need about 281

structures of 232 plaintexts. Indeed, each pair of such structure follows the characteristic
with probability 2−24−120 = 2−144 and one structure contains 232+31 = 263 pairs. Hence,
the data complexity of the attack is 2113 chosen plaintexts. In the first step, for each
structure we sort the corresponding ciphertexts to identify pairs that may follow the
characteristic. This step requires 232 × 16 = 236 bytes of storage and its time complexity
is around 232. Repeated for each structure, the time complexity of this step is around
2113. Approximately 281+63−64 = 280 pairs pass this step. For each of them we then
need to guess 2 differences and propagate 28 differences, leading to a complexity around
280+16+8 = 2104 encryptions.
Key-recovery. At the end of the attack, we have a message for which we also know the
right value of 4 bytes in state xI1. This directly leads to the knowledge of 4 key bytes. One
can recover the remaining key bytes by exhaustive search.
Trade-off. It is possible to optimize the overall complexity of the attack by storing several
tables. Indeed, with the same structure we have 4 choices for active byte of xI2 as well
as 16 choices for the actives byte of xR6 . Hence, we can decrease the overall complexity
to 2113−2−4 = 2107. It is worth noticing that the overall complexity of this attack is very
close to 2100, overall complexity of the original attack against 7-round AES-128.
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Remarks. The main difference between attacking AES-PRF3,4 and AES-128 is the
dimension of the subspace in which ∆C belongs. Let denote by V4 and V8 the subspaces
in which ∆xI4 and ∆xI8 respectively belong. Note that whatever the position of the active
byte on xI2 as well as the position of the active byte on xI6, V4 ∩ V8 = {0} and thus we can
directly deduce both ∆xI4 and ∆xI8 from ∆C. This is why the complexity of the attack is
similar for both AES-PRF3,4 and AES-128.

It is worth mentioning that if the last MixColumns operation is not omitted the result
above does not hold. In that case, for some positions of the active bytes, V4 = V8 and
thus one should make four extra guesses to identify ∆xI4 and ∆xI8, increasing the time
complexity by a factor 232.

6.1.4 Attack against Other Variants

This attack can be applied to AES-PRFs,7−s in straightforward way for all values of s. We
only distinguish two cases: difference in state xIs will be computed from xI2 for s ≤ 3 and
from xI6 otherwise. For Dual-AES-PRFs,7−s, surprisingly, it seems that we can only mount
attacks with s ∈ {3, 4, 7}. Indeed, in other cases, the truncated differential characteristic
used in the attack becomes impossible, making the differential enumeration technique not
efficient enough to beat exhaustive search for 128-bit version.

7 Conclusions
In this paper, we performed an extensive security analysis of the pseudo-random function
AES-PRF proposed by Mennink and Neves at FSE 2018. By applying several well-known
cryptanalysis techniques to AES-PRF, we complemented the initial analysis provided by
the designers with stronger attacks. Surprisingly, we found that the unbalanced version
AES-PRF4,6 seems to offer better security margins than the original design AES-PRF5,5
according to the current results of our cryptanalysis. We also evaluated the dual version of
AES-PRF and showed that this construction is a bit weaker, as expected by Mennink and
Neves. Indeed, we were able to mount a key-recovery attack against Dual-AES-PRF4,∗,
while we only found a distinguisher against AES-PRF∗,4. Finally, we also studied round-
reduced versions of both AES-PRF and Dual-AES-PRF. The best known attacks against
the underlying block cipher, AES-128, break up to 7 rounds and we wondered whether
the PRF reduced to 7 rounds was secure or not. As a result, we found that all variants of
AES-PRF reduced to 7 rounds can be broken with complexities similar to attacks against
AES-128.

All in all, while our attacks only apply to the unbalanced or round-reduced versions
of AES-PRF, and do not endanger the full design, they provide further insight into its
security.

Finally, this paper focuses on the 128-bit key version of AES-PRF and Dual-AES-PRF,
and we leave the analyses of 192-bit and 256-bit key versions as open questions.
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A Attacks on AES-PRF
A.1 Impossible Differential Attack for AES-PRF1,9

We hereby describe an attack on AES-PRF1,9 based on impossible differential. Consider a
structure of 264 plaintexts such that the 8 gray bytes shown in Fig. 15 are active (taking
all possible values), while the remaining bytes in white are fixed to constants. Wrong
keys associated with this structure can be deleted from the set of key candidates with
Algorithm 6.

Figure 15: The attack on AES-PRF1,9, where we only consider pairs with input and
output difference patterns as depicted, and the red bytes in K0 are the targeted partial
subkey information.

Algorithm 6: Impossible differential attack on AES-PRF1,9 with one structure
1 Ask for the encryption of one structure of 264 plaintexts P of the form indicated by

Fig. 15, and store them in a hash table according to the value of C[8 : 15].

2 for each pair ((P, P ′), (C,C ′)) in the hash table with ∆C[8 : 15] = 0 do
3 Compute t = SR−1(MC−1(∆C))
4 Remove all key values from the set of key candidates for

K0[0, 3, 4, 5, 9, 10, 14, 15] such that SB(P ⊕K0)⊕ SB(P ′ ⊕K1) = t

5 end

From one structure of 264 plaintexts, we can obtain 264 × (264 − 1)/2 ≈ 2127 pairs, in
which there are approximately 2127−64 = 263 pairs whose ciphertext differences satisfy the
output difference pattern shown in Fig. 15. Since only such pairs are used in Algorithm 6,
we call them good pairs. For each good pair, we try to identify partial subkey values which
lead the underlying differential characteristic to follow the pattern specified in Fig. 15
where ∆xI2 = ∆C, and we remove the partial subkey values as such from the candidate
key set, since ∆xI2 = ∆C impose an impossible differential over the last permutation (i.e.,
form nonzero input difference to zero output difference).

The input difference ∆xI1 and output difference ∆xS1 of the first S-box layer can be
computed as ∆xI1 = ∆P and ∆xS1 = SR−1(MC−1(∆xI2)). Let S be the AES S-box. Then
the expected number of solutions of the equation S(a⊕k)⊕S(b⊕k) = c in k for randomly
chosen known values of a, b, and c is 1. Therefore, by setting ∆xI2 = ∆C, we can identify
one incorrect key guess in average from one good pair.
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In our analysis, σ = 0 and τ = 8 × 8 = 64 (the 8 red bytes in K0). According to
equation (1), we need about 264−0 × 64/ log2 e < 270 good pairs to remove all incorrect
candidate keys (only the right key survives). Thus, we have to repeat Algorithm 6 for
270−63 = 27 structures. Consequently, the attack requires 264 × 27 = 271 chosen plaintexts,
264 × 27 = 271 computations, and 264 memory, while the attack of Mennink and Neves
(see Sect. 3.3.2 of [MN17b]) requires 267 chosen plaintexts, 2101 computations, and 267

memory.

A.2 Zero-Correlation Attack for AES-PRF1,9

The linear mask Γ we use in this case is depicted in Fig. 16. Thus, the number of non-trivial
zero-correlation linear approximations is ` = (28 − 1)7 under this setting.

Non-zero Mask

Zero Mask

Figure 16: Linear mask Γ for AES-PRF1,9.

Note that AES-PRF1,9 is equivalent to the keyed function depicted in Fig. 17. The
key-recovery attack can be found in Algorithm 7.

P xI
1

K0

SB

xS
1

SR

xR
1

MC−1(K1)

xE
1

MC 9 rounds MC−1

MC−1(C)

MC
C

Figure 17: Zero-correlation attack for AES-PRF1,9.

Complexity Analysis In this attack, we use ` = (28 − 1)7 non-trivial zero-correlation
linear approximations. We set the type-I error probability to α0 = 2−4, and the type-II
error probability to α1 = 2−26. Thus, the data complexity is 2103.34 known-plaintexts.
Since V1 is the largest memory and the sizes of the other counters are negligible, the
memory complexity is roughly 296. The time complexity, which is dominated by the subkey
guessing part, is about 2122.49.
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Algorithm 7: Zero-correlation linear attack on AES-PRF1,9

1 Allocate counters Vi for each value of zi, 1 6 i 6 6.
2 for each possible 16-bit subkey value K0[0, 5] do
3 Reset V1, compute

z1 = P [4, 9, 10, 14, 15]‖MC−1(C)[2 : 6]‖
(
xR1 ⊕MC−1(C)

)
[0 : 1] and update

V1 with N known-plaintexts.
4 for each possible 8-bit subkey value K0[10] do
5 Reset V2, compute

z2 = P [4, 9, 14, 15]‖MC−1(C)[3 : 6]‖
(
xR1 ⊕MC−1(C)

)
[0 : 2] and update

V2 as V2[z2] += V1[z1].
6 for each possible 8-bit subkey value K0[15] do
7 Reset V3, compute

z3 = P [4, 9, 14]‖MC−1(C)[4 : 6]‖
(
xR1 ⊕MC−1(C)

)
[0 : 3] and update

V3 as V3[z3] += V2[z2].
8 for each possible 8-bit subkey value K0[4] do
9 Reset V4, compute

z4 = P [9, 14]‖MC−1(C)[5 : 6]‖
(
xR1 ⊕MC−1(C)

)
[0 : 4] and update

V4 as V4[z4] += V3[z3].
10 for each possible 8-bit subkey value K0[9] do
11 Reset V5, compute

z5 = P [14]‖MC−1(C)[6]‖
(
xR1 ⊕MC−1(C)

)
[0 : 5] and update

V5 as V5[z5] += V4[z4].
12 for each possible 8-bit subkey value K0[14] do
13 Reset V6, compute z6 =

(
xR1 ⊕MC−1(C)

)
[0 : 6] and update

V6 as V6[z6] += V5[z5].
14 Allocate a counter V [z] for each of (28 − 1)7 zero-correlation

linear approximations, and set it to zero.

15 Update V [z] by V6[z6] and compute T = N
∑̀
i=1

(
2V [i]
N − 1

)2
.

16 if T < τ then
17 The guessed key bytes constitute a possible subkey

candidate.
18 All master keys that are compatible with are tested

exhaustively against a maximum of 2
plaintext-ciphertext pairs.

19 end
20 end
21 end
22 end
23 end
24 end
25 end
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B Attacks on Dual-AES-PRF
B.1 Impossible Differential for Dual-AES-PRF9,1

P

C
SB SR

K10

9 rounds

Figure 18: Overview of impossible differential against Dual-AES-PRF9,1.

We first prepare pairs (P, P ′) of plaintexts whose difference ∆P is active in the left two
columns as shown in Fig. 18. Then we pick pairs where the difference of the corresponding
ciphertexts is inactive in C[2, 3, 5, 6, 8, 9, 12, 15]. Then any key guess under which the
difference of the intermediate state before the last S-box layer is also ∆P must be incorrect,
since this leads to an impossible differential ∆P 9 0 of the permutation.

Prepare 264 plaintexts traversing all the 264 possibilities of the 8 bytes marked with ,
while the remaining bytes are fixed to constants. From such 264 plaintexts, we can get

264 × (264 − 1)
2 × 2−64 ≈ 263.

pairs of ciphertexts satisfying difference above.
Combining the knowledge of ∆C and ∆P , we can derive the impossible key bytes in

K10[0, 1, 4, 7, 10, 11, 13, 14]. Since every pair derives 1 impossible key in average, approxi-
mately 263 keys are rejected.

We use the same formula that is introduced in Sect. 4.1. Then, we have (τ, σ) = (64, 0).
According to equation (1), we need 264−0 × 64

log2 e
< 270 good pairs to remove all incorrect

keys, which demands 270−63 = 27 structures. In summary, the attack requires 264+7 = 271

chosen plaintexts, 264+7 = 271 computations, and 264 memory.

B.2 Zero-Correlation Linear for Dual-AES-PRF9,1

The linear mask Γ we use under this case is same as the one given in Fig. 16. The number
of non-trivial zero-correlation linear approximation is ` = (28 − 1)7 under this setting.

Note that Dual-AES-PRF9,1 is equivalent to the keyed function depicted in Fig. 19.
The key-recovery attack can be found in Algorithm 8.

Complexity Analysis In this attack, we use ` = (28 − 1)7 non-trivial zero-correlation
linear approximations. We set the type-I error probability to α0 = 2−4, and the type-II
error probability to α1 = 2−26. Thus, the data complexity is 2103.34 known-plaintexts.
Since V1 is the largest memory and the sizes of the other counters are negligible, the
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Algorithm 8: Zero-correlation linear attack on Dual-AES-PRF9,1

1 Allocate counters Vi for each value of zi, 1 6 i 6 6.
2 for each possible 16-bit subkey value K10[0, 13] do
3 Reset V1, compute z1 = P [2 : 6]‖C[1, 4, 7, 10, 14]‖

(
P ⊕ xI10

)
[0 : 1] and update

V1 with N known-plaintexts.
4 for each possible 8-bit subkey value K10[10] do
5 Reset V2, compute z2 = P [3 : 6]‖C[1, 4, 7, 14]‖

(
P ⊕ xI10

)
[0 : 2] and update

V2 as V2[z2] += V1[z1].
6 for each possible 8-bit subkey K10[7] do
7 Reset V3, compute z3 = P [4 : 6]‖C[1, 4, 14]‖

(
P ⊕ xI10

)
[0 : 3] and update

V3 as V3[z3] += V2[z2].
8 for each possible 8-bit subkey K10[4] do
9 Reset V4, compute z4 = P [5 : 6]‖C[1, 14]‖

(
P ⊕ xI10

)
[0 : 4] and

update V4 as V4[z4] += V3[z3].
10 for each possible 8-bit subkey K10[1] do
11 Reset V5, compute z5 = P [6]‖C[14]‖

(
P ⊕ xI10

)
[0 : 5] and update

V5 as V5[z5] += V4[z4].
12 for each possible 8-bit subkey K10[14] do
13 Reset V6, compute z6 =

(
P ⊕ xI10

)
[0 : 6] and update V6 as

V6[z6] += V5[z5].
14 Allocate a counter V [z] for each of (28 − 1)7 zero-correlation

linear approximations, and set it to zero.

15 Update V [z] by V6[z6] and compute T = N
∑̀
i=1

(
2V [i]
N − 1

)2
.

16 if T < τ then
17 The guessed key bytes constitute a possible subkey

candidate.
18 All master keys that are compatible with are tested

exhaustively against a maximum of 2
plaintext-ciphertext pairs.

19 end
20 end
21 end
22 end
23 end
24 end
25 end

memory complexity is O(296). The time complexity, which is dominated by the subkey
guessing part, is about 2122.49.

B.3 Differential Attack for Dual-AES-PRF2,8

An illustration for the key-recovery attack can be found in Fig. 20.
Birthday Paradox indicates that we are able to obtain a collision pair with 264 plaintexts.

Denote the collision pair as P1 and P2. Then, the differences of ∆xI1 and ∆xO2 at xI1 and
xO2 are known as ∆xI1 = ∆xO2 = P1 ⊕ P2.

We enumerate all 232 differences of xS1 at bytes [0, 5, 10, 15]. Then, the values of xI1
and xS1 at bytes [0, 5, 10, 15] are known. The value of K0 at bytes [0, 5, 10, 15] can be
computed as K0 = P ⊕ xI1. We compute the difference ∆xI2 of xI2 at bytes [0 : 3] as
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Figure 19: Key-recovery attack for Dual-AES-PRF9,1.

∆xI2 = MC ◦ SR(∆xS1 ), and the difference ∆xS2 of xS2 as ∆xS2 = SR−1 ◦MC−1(∆xO2 ).
Then, the values of xI2 and xS2 at bytes [0 : 3] can be retrieved. Thus, the value of K1 at
bytes [0 : 3] can be computed as K1 = MC ◦ SR(xS1 )⊕ xI2.

Then, we enumerate all 232 differences of xS1 at bytes [3, 4, 9, 14]. With a similar
analysis, we are able to obtain the value of K0 at bytes [3, 4, 9, 14], and the value of K1 at
bytes [4 : 7] under each guess.

Since K1[5] = K1[1] ⊕ K0[5], we obtain 256 120-bit information of the subkeys by
combining the two sets composed of 232 candidates. At last, all master keys that are
compatible with the candidates are tested exhaustively against a maximum of two plaintext-
ciphertext pairs.

In total, the data complexity of this attack is 264 known plaintexts. The time complexity,
which is dominated by the data collection phase and the exhaustive search phase, is 265.
The memory complexity, which is dominated by the collision searching phase, is 264.
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Figure 20: Key-recovery attack for Dual-AES-PRF2,8.

B.4 Differential Attack for Dual-AES-PRF3,7

An illustration for the key-recovery procedure can be found in Fig. 21.
Consider a sturcture of 232 plaintexts such that the 4 gray bytes shown in Fig. 21 are

active, while the remaining bytes in white are fixed to constants. From one structure of
232 plaintexts, we are able to construct 232 × (232 − 1)/2 ≈ 263 pairs. In order to obtain
one collision pair at the output, we need to create 2128 pairs. Thus, 265 structures are
required. If we find a collision at the output, we know the difference at xO3 .
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For the collision pair P1 and P2 satisfying the input difference, we enumerate all 232

input differences at xI2 and 232 output differences at xS2 . Denote S as the AES S-box. The
expected number of solutions of the equation S(x)⊕ S(x⊕∆x) = ∆y in x for randomly
chosen ∆x and ∆y is 1. Since we already know the differences of xI2 and xS2 at bytes [0 : 3],
we are able to obtain the values of xI2 and xS2 at bytes [0 : 3].

Then, we compute the difference ∆xS1 at xS1 as ∆xS1 = SR−1 ◦MC−1(∆xI2). Note
that the difference ∆xI1 at xI1 is known, we are able to retrieve the values of xI1 and xS1
at bytes [0, 5, 10, 15]. Thus, the value of K0 at bytes [0, 5, 10, 15] can be obtained, since
K0 = P ⊕ xI1.

Now, we compute the value of xM1 at bytes [0 : 3] with the 4-byte known value of xS1 .
Combining the known value of xI2, we are able to get the value of K1 at bytes [0 : 3].

After that, we compute the difference ∆xI3 at xI3 as ∆xI3 = MC ◦ SR(∆xS2 ), and
the difference ∆xS3 at xS3 as ∆xS3 = SR−1 ◦MC−1(∆xO3 ). With the input and output
differences of the third SubBytes operation, the values of xI3 and xS3 are determined. Then
the value of xE2 at bytes [0, 7, 10, 13] can be computed with xE2 = MC−1(xI3). In addition
to the known bytes of xS2 , the value of EK2 at bytes [0, 7, 10, 13] can be obtained, naturally.

For each fixed ∆xI2 and ∆xS2 , we are able to retrieve 96-bit information of the subkey,
and all master key that are compatible with are tested exhaustively against a maximum of
two plaintext-ciphertext pairs.

In total, the data complexity of this attack is 297 chosen plaintexts. The time complexity,
which is dominated by the data collection phase, is also 297. In the collision searching
phase, each structure can be analyzed, independently. Thus, the memory complexity is
232.
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Figure 21: Key-recovery attack for Dual-AES-PRF3,7.
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