CRYPTANALYSIS OF AES-PRF AND ITS DUAL

$\begin{array}{cccc} {\rm Patrick\ Derbez^1 \quad Tetsu\ Iwata^2 \quad \underline{\rm Ling\ Sun^{3,4} \quad Siwei\ Sun^5}}\\ {\rm Yosuke\ Todo^6 \quad Haoyang\ Wang^4 \quad Meiqin\ Wang^3} \end{array}$

Univ Rennes, CNRS, IRISA, France
Nagoya University, Japan
Shandong University, China
Nanyang Technological University, Singapore
Chinese Academy of Sciences, China
NTT Secure Platform Laboratories, Japan

FSE 2019, Paris, France @ March 25, 2019

OVERVIEW

- 1. Background and Motivation
- 2. Preliminary
- **3. Overview of Our Attacks**
- 4. Attacks on AES-PRF
- 5. Attacks on Dual-AES-PRF
- 6. Summary and Conclusion

MOTIVATION

IINARY

Overview

ATTACKS ON AES-PRF

ATTACKS ON DUAL-AES-PRF

Conclusion

BACKGROUND AND MOTIVATION

BACKGROUND Pseudorandom permutation (PRP)

- ▶ Main primitives in symmetric-key cryptography
- ▶ Ultimate security goal in the design of block ciphers
- ▶ Many secure block ciphers are readily available, e.g., AES

BACKGROUND Pseudorandom permutation (PRP)

- ▶ Main primitives in symmetric-key cryptography
- ▶ Ultimate security goal in the design of block ciphers
- ▶ Many secure block ciphers are readily available, e.g., AES

Pseudorandom function (PRF)

- ▶ Invertibility is unnecessary
- ▶ CTR encryption mode, authenticated encryption GCM

BACKGROUND Pseudorandom permutation (PRP)

▶ Main primitives in symmetric-key cryptography

- ▶ Ultimate security goal in the design of block ciphers
- ▶ Many secure block ciphers are readily available, e.g., AES

Pseudorandom function (PRF)

- ▶ Invertibility is unnecessary
- \blacktriangleright CTR encryption mode, authenticated encryption GCM

PRP-to-PRF conversion

- Large efficiency costs design, e.g., Truncation, XOR of Permutations (XoP), Encrypted Davies-Meyer (EDM), The Dual of EDM (EDMD)
- ▶ Dedicated design with small efficiency costs, e.g., FastPRF,

 $\operatorname{FastPRF}_{K}(X) = E_{K}(X) \oplus E_{K}^{1}(X).$

MOTIVATION

Observations

- ▶ AES-PRF_{s,t} is as efficient as AES
- ▶ Efficiency and cost-effectiveness comes at the cost of provable security
- ▶ Provable security result of EDMD no longer applies to AES-PRF

Open Problems

- ▶ (s,t) = (2,8) is left as an open question
- ▶ The security of AES-PRF $_{s,t}$
- ▶ The security of the dual version (Dual-AES-PRF)

Methods

▶ ID, ZC, DC, and MITM

Preliminary

Overview

ATTACKS ON AES-PRF

ATTACKS ON DUAL-AES-PRF

Conclusion

Preliminary

AES-PRF & DUAL-AES-PRF

▶ AES-PRF_{s,t} (Mennink and Neves @ FSE 2018)

▶ Dual-AES-PRF $_{s,t}$

Preliminary

OVERVIEW

ATTACKS ON DUAL-AES-PRF

CONCLUSION

OVERVIEW OF OUR ATTACKS

ATTACKS ON AES-PRF

Impossible differential/Zero-correlation attacks $(s \leq 2)$

Zero-correlation distinguishers $(t \leq 4)$

Meet-in-the-middle attacks on $\text{AES-PRF}_{s,7-s}$

ATTACKS ON DUAL-AES-PRF

Impossible differential/Zero-correlation attacks $(t \leq 2)$

Differential attacks $(s \leq 4)$

Preliminary

Overview

ATTACKS ON DUAL-AES-PRF

Conclusion

ATTACKS ON AES-PRF

CONCLUSION

IMPOSSIBLE DIFFERENTIAL ATTACK FOR $AES-PRF_{2,8}$

OVERVIEW

Zero-Correlation Linear Attack for $AES-PRF_{2,8}$

13/23

DISTINGUISHERS AGAINST $AES-PRF_{7,3}$ & $AES-PRF_{6,4}$

ZC Distinguisher for AES₃

ATTACK AGAINST AES-PRF_{3,4}

▶ The number of possible sequences: $(2^8)^{255} = 2^{2040} \longrightarrow (2^8)^{25} = 2^{200}$

Preliminary

Overview

ATTACKS ON DUAL-AES-PRF

Conclusion

ATTACKS ON DUAL-AES-PRF

16/23

Impossible Differential Attack for Dual-AES-PRF $_{\rm 2,8}$

Zero-correlation attack for Dual-AES-PRF $_{8,2}$

DIFFERENTIAL ATTACK FOR DUAL-AES-PRF $_{4,6}$

INARY

Overview

ATTACKS ON AES-PRF

ATTACKS ON DUAL-AES-PRF

CONCLUSION

SUMMARY AND CONCLUSION

20/23

MOTIVATION

SUMMARY

Target	s	t	Time	Data	Memory	Method	Ref
AES-PRF	1	*	2^{101}	2^{67} CP	2^{67}	ID	@FSE 2017
	*	1	-	_	_	Statistics	
AES-PRF	1	*	2^{71}	2^{71} CP	2^{64}	ID	
	1	*	$2^{122.49}$	$2^{103.34}$ KP	2^{96}	\mathbf{ZC}	
	2	*	2^{94}	2^{94} CP	2^{88}	ID	
	2	*	$2^{115.14}$	$2^{115.06}$ KP	2^{65}	\mathbf{ZC}	Our Results
	*	3	$2^{84.96}$	$2^{84.96}$ KP	$2^{84.96}$	ZC distinguisher	
	*	4	$2^{96.95}$	$2^{96.95}$ KP	2^{64}	ZC distinguisher	
	s	7-s	2^{107}	2^{107} CP	2^{104}	MitM	
Dual-AES-PRF	*	1	2^{71}	2^{71} CP	2^{64}	ID	
	*	1	$2^{122.49}$	$2^{103.34}$ KP	2^{96}	\mathbf{ZC}	Our Results
	*	2	2^{104}	2^{104} CP	2^{72}	ID	
	*	2	$2^{115.14}$	$2^{115.06}$ KP	2^{65}	\mathbf{ZC}	
	3	*	2^{97}	2^{97} CP	2^{32}	Differential	
	4	*	2^{121}	2^{121} CP	2^{8}	Differential	

CONCLUSION

- \blacktriangleright Comparison between AES-PRF and Dual-AES-PRF
 - ▶ The security of AES-PRF is **higher** than Dual-AES-PRF from the applicability of differential attacks.
 - ▶ Both AES-PRF and Dual-AES-PRF have only one round as the security margin.
- ▶ Choice of the parameter
 - \blacktriangleright The balanced case AES-PRF $_{5,5}$ is certainly a natural choice of the design.
 - ▶ However, our results indicate that (s,t) = (4,6) for AES-PRF is potential to be more secure, since the margin with respect to the attacked rounds becomes larger.

MOTIVATION

VIEW

Thank you for your attention!

Thank the anonymous FSE 2019 reviewers and Samuel Neves for careful reading and many helpful comments.

Thank all the group members at ASK 2017 for the fruitful discussion.