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Abstract. Motivated by the recent trend towards low multiplicative complexity
blockciphers (e.g., Zorro, CHES 2013; LowMC, EUROCRYPT 2015; HADES, EURO-
CRYPT 2020; MALICIOUS, CRYPTO 2020), we study their underlying structure
partial SPNs, i.e., Substitution-Permutation Networks (SPNs) with parts of the
substitution layer replaced by an identity mapping, and put forward the first provable
security analysis for such partial SPNs built upon dedicated linear layers. For different
instances of partial SPNs using MDS linear layers, we establish strong pseudorandom
security as well as practical provable security against impossible differential attacks.
By extending the well-established MDS code-based idea, we also propose the first
principled design of linear layers that ensures optimal differential propagation. Our
results formally confirm the conjecture that partial SPNs achieve the same security
as normal SPNs while consuming less non-linearity, in a well-established framework.
Keywords: blockciphers · substitution-permutation networks · provable security ·
LowMC · low multiplicative complexity

1 Introduction
Blockciphers are one of the most prominently used cryptographic primitives. The clas-
sical approaches to the design of blockciphers include Feistel networks and substitution-
permutation networks (SPNs), with DES and AES as well-known examples. A Feistel
round applies a domain-preserving function (sometimes non-invertible, as in DES) on half
of the data, and then executes XOR and swap operations, see Fig. 1 (a). This can be
generalized along multiple axes, e.g., employing other group operations instead of XOR,
employing contracting or expanding round functions, and employing more than 2 data
chunks to constitute the so-called multi-line Type-II generalized Feistel networks (see Fig.
1 (b)). An SPN round, on the other hand, consists of parallel application of many instances
of small S-box on the “full” data (divided equally into many chunks), composed with a
(typically linear) transformation T , see Fig. 1 (c). In fact, as stated in [KL15, Chapter
6.2], the design of modern blockciphers is dominated by (generalized) Feistel networks
(including the Lai-Massey structure of the cipher IDEA [LM91], which may be viewed as a
sophisticated variant of Feistel [YPL11]), and SP networks.
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Figure 1: Different blockcipher structures. (a) Feistel network; (b) multi-line generalized
Feistel, with 4 chunks; (c) the normal SPN; (d) Misty-L; (e) Misty-R; (f) partial SPN.

Despite the dominance of Feistel and SP networks, there remain a few important
exceptions. At FSE 1997, Matsui introduced a blockcipher MISTY2 [Mat97] following
a novel structure that somewhat resembles Feistel networks, but crucially relies on the
invertibility of the round function (thus distinct from Feistel ciphers). The structure and
its dual were later named Misty-L [GM02], see Fig. 1 (d), and Misty-R, see Fig. 1 (e),
respectively.

This paper focuses on another notable exception. A recent trend initiated by Gérard et
al. [GGNS13] is to base blockciphers on a variant of SP networks, in which parts of the S-
box evaluations are replaced by an identity mapping. See Fig. 1 (f) for an illustration. This
structure was named SP network with partial non-linear layers by Bar-On et al. [BDD+15],
and we abbreviate it as P-SPN. In each round, the ratio between the number of S-box
evaluations and w, the total number of data chunks, is henceforth referred to as its rate,
and denoted r.

The motivation of Gérard et al. is that, to implement the cipher in a side-channel masked
form, non-linear operations incur a higher performance penalty compared to linear ones.
The structure P-SPN was thus proposed to reduce the amount of non-linearity (without
harming security, hopefully) and produce low multiplicative complexity ciphers. For
example, assuming wr S-box evaluations per round. If such a P-SPN with λ′ < λ/r rounds
achieves the same (or comparable) security as a λ-round normal SPN, then the amount
of non-linearity of the former is less than the latter. This is reflected by the comparison
w.r.t. the total number of S-box evaluations, that is, λ′wr < λw (a similar example was
also mentioned in [GGNS13, Sect. 3]). With these in mind, Gérard et al. “dropped”
many S-boxes in the AES to obtain the P-SPN cipher Zorro, which was unfortunately
broken and even its strategy of tweaking AES into P-SPN was shown flawed [BDD+15].
As compensation, the authors of [BDD+15] revitalized P-SPN by developing an algorithm
for searching its characteristics and showing its potential to build blockciphers with reliable
security against differential/linear cryptanalysis. Although Gérard et al.’s original scenario
was intended for masking, the idea of reducing multiplicative complexity finds applications
in other cryptographic settings, such as multi-party computation and zero-knowledge
proofs. For example, the LowMC blockcipher [ARS+15], hash functions Starkad and
Poseidon, and the recent HADES design [GKK+19, GLR+20]. In particular, thanks to
the efficiency and low non-linearity of P-SPN, LowMC has been used in Picnic [ZCD+19]
(a round-2 candidate in NIST’s post-quantum cryptography standardization project) and
the Dusk Network project [git19]. A recent more surprising design was the MALICIOUS
framework of Peyrin and Wang [PW20], which leverages the features of partial SPNs to
enable embedding backdoors into tweakable blockciphers.

As shown in Fig. 1, P-SPNs can be viewed as generalizations of both Misty (with smaller
data chunks and stronger linear layers) and normal SPNs, unifying the two structures
in some sense. This makes the study of P-SPNs theoretically interesting in its own
right. This along with its additional popularity in real applications has motivated several
works: besides the aforementioned searching tool [BDD+15], Dinur et al. formalized the
equivalence relation between P-SPN ciphers [DKP+19], and the LowMC designers proved
security against certain attacks for LowMC or P-SPNs using independent random linear
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layers [ARS+15]. Though, theoretical analysis of P-SPNs with principled linear layers
remain largely blank. This severely hinders its understanding. In particular, it remains an
important open problem whether P-SPNs with less non-linearity can preserve the same
security as the standard SPNs in a provable manner.

1.1 Our Contribution
We provide systematic analyses of partial SPNs, regarding strong pseudorandom per-
mutation (SPRP) security, provable security against Impossible Differential (ID) and
Zero-Correlation linear (ZC) attacks, and diffusion. Our results are as follows.

• In Sect. 3, we prove that a 5-round P-SPN with rate 1/2 is an SPRP, where the cost
of 5w/2 S-box calls is less than that of a normal (linear) SPN (3w calls [DKS+17,
CDK+18]). This P-SPN construction relies on an MDS linear layer that fulfill some
additional requirements.

• In Sect. 4, we show that 4-round P-SPNs with rate at least 3/4 and MDS linear
layers are secure against ID and ZC attacks. This saves one round compared to the
AES-like structure, which needs 5 rounds for the same security [SLG+16].

• For P-SPNs with rate r < 1/2, r−1 ∈ N, we propose the first principled linear layers
constructed from MDS codes. Our proposal consists of r−1−1 different transformations,
and achieve a minimum security criteria, i.e., no r−1-round differential with probability
one. See Sect. 5 for details.

In all, our results (and the comparisons to existing results on AES-like SPNs) have justified
the soundness of P-SPNs: as approaches to constructing efficient blockciphers, P-SPNs
could be comparable to, or even surpass the normal SPNs, in some well-defined sense.
Below we will elaborate in detail.

1.1.1 Small-box cryptography, and SPRP security with rate 1/2

With a model recently put forward by Dodis et al. [DKS+17, CDK+18], i.e., modeling the S-
boxes as small ideal primitives and the linear layers as efficient functions, it turns possible to
study the security of P-SPNs from a theoretical point of view. The S-boxes act as the only
source of cryptographic hardness. This methodology was termed “small-box cryptography”
by Dodis [Dod18], to highlight the deviation from the classical practice-oriented provable
security based on large-domain primitives (e.g., based on the AES). Actually, in the past
decades, various structures, including the standard SPNs [IK01, MV15, DSSL16] and
the multi-line generalized Feistel networks (GFNs) [ZMI90, IK01, MV00, SM10, HR10,
BFMT16], have been studied in this model, enabling comparisons.

In light of this, assuming that each round calls a public random n-bit permutation as
the S-box and a strong linear layer, we prove that a 5-round rate 1/2 P-SPN is a strong
pseudorandom permutation (SPRP), up to 2n/2 queries the classical birthday security
(like the Luby-Rackoff result [LR88]). To ensure this result, the linear layer shall achieve
stronger diffusion than a general MDS transformation. This indeed matches intuitions.

Our SPRP results on P-SPNs not only provide support for its reliability—as reliable as
the more common SPNs and GFNs, but also enable comparisons. For clarity, we list known
wide SPRP constructions in Table 1. Here we focus on the so-called “linear structures” of
Nandi [Nan15], in which block functions/S-boxes constitute the only source of non-linearity.
It is easy to make a fair comparison between linear structures: relative multiplicative
complexity (MC) is reflected by the total number of S-boxes, while relative AND Depth is
reflected by the maximum number of S-boxes on any path from an input data chunk to
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Table 1: Comparison to existing wide SPRP structures. The Rounds column presents
the number of rounds sufficient for birthday-bound security, where λ(w) = dlog2 1.44we.
For Type-II GFN (i.e., GFNs with w/2 block functions per round, see Fig. 1 (b)), note
that 2λ(w) = 2dlog2 1.44we ≥ 6 when w ≥ 4. Parameters in the MC and AND Depth
columns are relative w.r.t. the S-box. The mode XLS [RR07] is not included due to
attacks [Nan14, Nan15].
Structure Rounds MC AND Depth Reference
Optimal Type-II GFN 2λ(w) wλ(w) 2λ(w) [SM10, DFLM19]
Extended Type-II GFN 10 5w 10 [BFMT16, Theorems 7,8]
Linear SPN 3 3w 3 [DKS+17]
CMC - 2w 2w [HR03]
EME & EME∗ - 2w + 1 3 [HR04, Hal04]
Rate 1/2 P-SPN 5 2.5w 5 Theorem 1

an output chunk, see Table 1.1 Note that classical blockcipher structures GFNs and linear
SPN are all linear structures. On the other hand, the structures CMC, EME and EME∗
were designed as wide SPRP encryption modes rather than blockcipher structures—indeed,
CMC is sequential, as indicated by its huge AND Depth. Regarding classical blockcipher
structures, the relative MC 5w/2 of rate 1/2 P-SPNs is less than that of the normal linear
SPN (which is 3w), and this confirms the conjecture of less non-linearity. Also, rate 1/2
P-SPNs outperform the best GFNs definitively.

Implications for small block size. With the “small-box cryptography” methodology,
provable security is limited by the domain of the small ideal S-boxes, to e.g. at most
8-bit security for the AES parameter. Admittedly, this restriction renders the proved
security meaningless for any concrete P-SPN blockciphers. For example, LowMC uses 3-bit
small S-boxes, and thus our n/2-bit bounds indicate security up to 21.5 queries. However,
we stress that new blockcipher structures are typically accomplished by such small-box
provable security justifications, and we refer to Zheng et al.’s proof for their proposal
of multi-line GFNs [ZMI90], Iwata and Kurosawa’s proof for Serpent-like SPNs [IK01],
Suzaki and Minematsu’s proof for their proposal of GFNs with optimal shuffles [SM10],
and Berger et al.’s proof for their proposal of extended GFNs [BFMT16] as examples.
By these, while the terminology was new [Dod18], the methodology has been proposed
decades ago and recognized as an important sanity check—particularly for the soundness
of new structures. With P-SPNs popularized in these years, the lack of such a justification
has thus been an important gap.

Meanwhile, with various structures studied in the same model [IK01, MV15, DSSL16,
IK01, MV00, SM10, HR10, BFMT16], our results enable fair comparisons, which again
justifies the soundness of P-SPNs: as approaches to constructing efficient blockciphers,
P-SPNs could be comparable to, or even surpass the normal SPNs, in some well-defined
sense.

1.1.2 Provable security of P-SPN structures against truncated IDs

Given the theoretical SPRP results we have, a first question is whether they lead to tight
design guidelines (for the selection of the linear layer and the number of rounds). To this
end, we also examine practical provable security of P-SPNs against two important classes
of attacks, namely Impossible Differential (ID) and Zero-Correlation linear (ZC) attacks,
and show the plausibility to trade the complexity of linear layers for less rounds.

1On the other hand, comparison turns difficult for SPRPs using field multiplications (e.g., [NR99]) or
tweakable blockciphers (e.g., [BLN18]).
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In detail, ID attacks were introduced in the 1990s [BBS99], and exhibited differentials
with probability 0 to distinguish the cipher from random. ZC attacks were introduced in
2011 [BR14, BW12], and leveraged linear hulls with correlation zero for distinguishing.
Both have become major cryptanalysis techniques. For a dedicated iterated blockcipher,
there always exist IDs and ZCs for any rounds with some keys. Though, being effective for
only a small set of weak keys, such distinguishers are useless. To remedy this and to retain
generality, we follow [SLR+15, SLG+16] and concentrate on truncated IDs and ZCs on
P-SPN structures EP-SPN. Such models capture IDs and ZCs that are independent of the
secret keys as well as the concrete S-boxes, and we refer to Sect. 2.4 for formal definitions.

As results, we prove that for P-SPN structures EP-SPN with MDS linear layers and rate
at least 3/4, there do not exist 4-round truncated ID distinguishers. In other words, no
4-round impossible differential exists in such P-SPNsunless the details of the S-boxes are
taken into account. As complement, we also show that 3-round IDs always exist as long
as the rate is less than 1, thus 4-round is optimal. By the links between cryptanalytic
techniques, security against ZC attacks is also established. These demonstrate insights to
the longest possible ID and ZC distinguishers on P-SPNs.

In [BDD+15, Sect. 6.2], it was conjectured that trading the amount of non-linearity
for stronger linear layers mitigates “structural attacks”, which in that particular context
refers to ID, zero-correlation linear, and integral attacks. This is confirmed by our results,
since 4-round AES-like structures do admit ID distinguishers. For AES-like structures,
provable security against generic IDs is only achieved with ≥ 5 rounds [SLG+16], which is
one more round than rate 3/4 MDS-based P-SPNs.

On the other hand, we stress that this does not mean P-SPNs are stronger than SPNs
in general. Indeed, AES-like SPNs are using composed linear layers that are much weaker
than huge MDS transformations, and if the latter are adopted, [SLG+16, Theorem 2]
implies that even 3 rounds are already sufficient for generic ID security. Though, it could
indeed be beneficial to use stronger linear layers and less S-boxes.

We also attempted for better provable bounds against differential and linear attacks.
Yet, our conclusions are mostly negative, admitting the difficulty to establish them by
pencil and paper. This is in accordance with [BDD+15], in which an automated searching
tool was developed for provable differential bounds. For the sake of space, we include these
results in Appendix D (we don’t view this as our main results).

1.1.3 Linear layers for small rate P-SPNs

Another important question is whether the P-SPN approach could be pushed towards
low rates and what would be the corresponding design guideline for the linear layer(s).
Typically, the design principle of linear layers is to ensure a maximum number of active S-
boxes in differential/linear characteristics. It has been known that an MDS transformation
M achieve this in normal SPNs: the idea is to connect {x‖M · x}x∈{0,1}wn,x 6=0 with a set
of MDS codewords. Though, this idea can only ensure properties within the differences
in two consecutive rounds. For a P-SPN with rate r, r−1 ∈ N, this appears insufficient:
it has been noticed that for r−1 − 1 rounds, there always exist differential paths with
probability 1 [BDD+15]. By this, the very least requirement for a good linear layer is to
ensure that no r−1-round probability-1 differential path exist. But this requires to address
dependencies between differences in consecutive r−1 rounds, which seems quite intricate.
Moreover, classical blockciphers typically employ the same linear layer in all rounds, and
it is extremely difficult to identify a linear layer that ensures complicated properties as
mentioned. Due to this gap, LowMC employed “independent random linear layers” to
simplify the security analysis, and the designers have left dedicated linear layers with solid
theory foundation as an open problem [ARS+15, Conclusion].

We address this question. Our idea is a natural extension of the above MDS idea: for
rate r, we construct r−1 − 1 linear transformations TM 1, . . . , TMr−1−1, so that {x‖TM 1 ·
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x‖ . . . ‖(
∏1
i=r−1−1 TMi) · x}x∈{0,1}wn,x 6=0 is linked to a long MDS code. The MDS property

ensures at least (r−1 − 1)w + 1 active chunks in x‖ . . . ‖(
∏1
i=r−1−1 TMi) · x, which implies

at least 1 active S-box in r−1 rounds.
Of course, the above proposals need refinements as well as more validations before

being used in real blockciphers. Though, it is important to make this first step. In addition,
this shows instead of using independent linear layers to simplify the situation, we can
indeed use dependent ones and leverage the dependence for the security arguments. Further
improved designs probably require optimized searching algorithms or heavy coding theory
tools.

1.2 Related Work
A concurrent and independent work of Grassi, Rechberger, and Schofnegger (GRS) [GRS20]
exhibited conditions on P-SPN linear layers that are sufficient and necessary for the
existence of iterative subspace trails with probability 1. These in particular include
truncated differential trails, which creates strong resemblance between GRS and our linear
layers. While both results imply the non-existence of “obvious” differential attacks on
infinite rounds, we remark that regarding differential trails with no active S-boxes, our
linear layers ensure stronger security than GRS, since

non-existence of r−1-round probability-1 differential path︸ ︷︷ ︸
Our security goal

=⇒ non-existence of infinite probability-1 differential path
=⇒ non-existence of iterative probability-1 differential path︸ ︷︷ ︸

One of GRS’s goals

Actually we identify sufficient conditions for the best possible differential security within
1/r rounds, which might be the first step towards lower bounds on the number of active
S-boxes. In addition, we also provide a solid approach towards constructing a series of
linear layers with desirable properties.

The advantages of GRS’s work are as follows.

• First, GRS’s proposal uses only a single linear permutation T ∈ Fw×w that provides
full diffusion after a finite number of rounds. This is simpler than our r−1 − 1
transformations. In particular, they showed that the MDS property is not needed
for their goals.2

• Second, GRS also studied preventing iterative truncated differentials with active
S-boxes, which is an important issue not addressed by us.

In summary, the results of GRS and ours are somewhat incompatible and complementary.
We are currently unable to extend our treatment to (the more practical case with) more
than r−1 rounds, while GRS result does not ensure lower bounds on the number of active
S-boxes. Both results could be starting points for future works.

1.3 Organization
We establish notations and models in Sect. 2. Then in Sect. 3, we study the SPRP
security of rate 1/2 P-SPNs; in Sect. 4, we study the security of P-SPNs against generic
IDs and ZCs; in Sect. 5, we present our extended MDS code-based linear layers. We finally
conclude in Sect. 6.

2Our proposal relies on MDS since we aim at stronger security.
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2 Preliminaries
For any positive integer m, we write P(m) for the set of permutations of {0, 1}m. We view
n as a cryptographic security parameter and let F := GF(2n), which is identified with
{0, 1}n. The zero entry of F is denoted by 0 (the sans serif typestyle).

Following the cryptographic convention, a wn-bit string x ∈ {0, 1}wn is also viewed as
a column vector in Fw. Hence, xT is a row vector obtained by transposing x. Indeed, bit
strings and column vectors are just two sides of the same coin. Throughout the remaining,
depending on the context, the same notation, e.g., x, may refer to both a bit string and a
column vector, without additional highlight. In the same vein, the concatenation x‖y is
also “semantically equivalent” to the column vector(

x
y

)
.

In this respect, for x ∈ Fw, we denote the j th entry of x (for j ∈ {1, . . . , w}) by
x[j], and define x[a..b] := (x[a], . . . , x[b]) for any integers 1 ≤ a < b ≤ w. Given an
n-bit permutation S, for any positive integer m and any vector x ∈ Fm, we define
S(x) :=

(
S(x[1]), . . . , S(x[m])

)
; we write 0m for the all-zero vector in Fm, which also

represents the all-zero string of length mn by our convention. For integers 1 ≤ b ≤ a, we
write (a)b := a(a− 1) . . . (a− b+ 1) and (a)0 := 1 by convention.

MDS transformations. For any (column) vector x ∈ Fw, the Hamming weight of x is
defined as the number of non-zero entries of x, i.e.,

wt(x) :=
∣∣{i|x[i] 6= 0, i = 1, . . . , w}

∣∣.
Let T ∈ Fw×w, then the branch number of T (from the viewpoint of differential cryptanal-
ysis) is defined as minx∈Fw,x 6=0{wt(x) + wt(T · x)}. A matrix T ∈ Fw×w reaching w + 1,
the upper bound on such branch numbers, is called Maximum Distance Separable (MDS).
MDS matrices have been widely used in modern blockciphers including the AES, since the
ensured lower bounds on weights typically transform into bounds on the number of active
S-boxes (i.e., S-boxes with non-zero input differences).

2.1 P-SPN: SP Networks with Partial Non-linear Layers
To ease a comparison, we first recall the standard Substitution-Permutation Networks
(SPNs). An SPN defines a keyed permutation via repeated invocation of three trans-
formations:3 addition of a round key, blockwise computation of a public, cryptographic
permutation called an “S-box”, and application of a linear permutation. Formally, a λ-
round SPN taking inputs of length wn where w ∈ N is the width of the network, is defined
by a distribution K over K0 × . . .×Kλ, λ permutations S = {Si : {0, 1}n → {0, 1}n}λi=1,4
and λ − 1 linear permutations {Ti ∈ Fw×w}λ−1

i=1 . This is close to the practice of key-
alternating ciphers such as the AES. Given round keys k0, . . . , kλ ∈ K0 × . . . ×Kλ and
input x ∈ {0, 1}wn, the computation of the SPN is described in Fig. 2 (left). One may
also see Fig. 3 (left) for an illustration.

A partial SP-network P-SPN is very similar to an SPN, except that its S-box layer
contains less than w S-box evaluations, as shown in Fig. 2 (right). We call the proportion
of S-box evaluations its rate. E.g., if each round consists of w/2 S-box evaluations, then the
rate is r = 1/2. If S1, . . . , Sλ are efficiently invertible and each Ti is efficiently invertible,
then both computations in Fig. 2 are reversible given the round keys k0, . . . , kλ. Also see
Fig. 3 (right) for illustration.

3SPNs also yield keyless cryptographic permutations. Though, this paper focuses on keyed SPNs.
4Using different S-boxes in different rounds follows [CDK+18, Sect. 4.2]. Though, earlier

work [DKS+17] assumed the same S-box in every round.
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SPNSk (x)
// S = {S1, . . . , Sλ}
u1 := k0 ⊕ x
for i = 1, . . . , λ− 1 do

vi := Si(ui)
ui+1 := ki ⊕ Ti · vi

end for
vλ := Sλ(uλ)
uλ+1 := kλ ⊕ vλ
Outputs uλ+1.

P-SPNSk (x) // S = {S1, . . . , Sλ}
u1 := k0 ⊕ x
for i = 1, . . . , λ− 1 do

vi := PSSi (ui, r), where
PSSi (xi, r) := xi[1..w(1− r)]

∥∥ Si(xi[w(1− r) + 1..w]
)

ui+1 := ki ⊕ Ti · vi
end for
vλ := PSSλ (uλ, r)
uλ+1 := kλ ⊕ vλ
Outputs uλ+1.

Figure 2: The computation flows in λ-round SPN and P-SPN upon input x.

T1

S1

k0

T2

k1

k2

k3

T1

k0

T2

k1

k2

k3

S1 S1S1S1S1S1S1 S1S1S1S1

S2 S2 S2S2S2S2S2S2

S3 S3 S3S3S3S3S3S3 S3S3S3S3

S2S2S2S2

Figure 3: SP and partial SP networks, with w = 8. (Left) the 3-round linear SPN proved
secure in [DKS+17] (the proof in [DKS+17] assumed identical S-box, i.e., S1 = S2 = S3);
(Right) a 3-round linear P-SPN with rate 1/2, which will be broken in Sect. A.

Dodis et al. presented a more general model for SPNs [CDK+18], which essentially
allows for non-linear permutations instead of the linear T1, ..., Tλ−1. In this paper we
only consider the above specific models using linear permutations, both for simplicity and
for consistency with the very motivation of using P-SPNs (i.e., to reduce the amount of
non-linearity). We refer to [CDK+18] for a complete discussion on the models.

2.2 SPRP Security of P-SPNs, and the H-coefficient Technique
Following [DKS+17, CDK+18], we consider P-SPN constructions that are defined by
linear permutations {Ti ∈ Fw×w}λ−1

i=1 and a distribution K, and that take oracle access
to λ public, random permutations S = {Si : {0, 1}n → {0, 1}n}λi=0; we write this as
P-SPNSk , where k = (k0, . . . , kλ). We then analyze security of the construction against
unbounded-time attackers making a bounded number of queries to the construction and
to S. Formally, we consider the ability of an adversary D to distinguish two worlds: the
“real world”, in which it is given oracle access to S and P-SPNSk (for unknown keys k
sampled according to K), and an “ideal world” in which it has access to S and a random
permutation P : {0, 1}wn → {0, 1}wn. By default, we always allow D to make forward and
inverse queries to all its oracles (though we do not write this explicitly). With these, for a
distinguisher D, we define its strong-PRP advantage against the construction C as

Advsprp
C (D) :=

∣∣∣Pr
[
k← K : DC

S
k ,S = 1

]
− Pr

[
P

$←− P(wn) : DP,S = 1
]∣∣∣,
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where S = (S1, . . . , Sλ) are λ independent, uniform permutations on {0, 1}n. The strong-
PRP (SPRP) security of C, is

Advsprp
C (qC , qS) := max

D

{
Advsprp

C (D)
}
,

where the maximum is taken over all distinguishers that make at most qC queries to their
left oracle and qS queries to their right oracles.

We use Patarin’s H-coefficient technique [Pat09] to prove SPRP security of P-SPNs.
We provide a quick overview of its main ingredients here. Our presentation borrows heavily
from that of [CS14]. Fix a distinguisher D that makes at most q queries to its oracles. As
in the security definition presented above, D’s aim is to distinguish between two worlds: a
“real world” and an “ideal world”. Assume wlog that D is deterministic. The execution of
D defines a transcript that includes the sequence of queries and answers received from its
oracles; D’s output is a deterministic function of its transcript. Thus, if µ, ν denote the
probability distributions on transcripts induced by the real and ideal worlds, respectively,
then D’s distinguishing advantage is upper bounded by the statistical distance

Dist(µ, ν) := 1
2
∑
τ

∣∣µ(τ)− ν(τ)
∣∣, (1)

where the sum is taken over all possible transcripts τ .
Let T denote the set of all transcripts such that ν(τ) > 0 for all τ ∈ T . We look for a

partition of T into two sets T1 and T2 of “good” and “bad” transcripts, respectively, along
with a constant ε1 ∈ [0, 1) such that

τ ∈ T1 =⇒ µ(τ)/ν(τ) ≥ 1− ε1. (2)

It is then possible to show (see [CS14] for details) that

Dist(µ, ν) ≤ ε1 + Pr[ν ∈ T2] (3)

is an upper bound on the distinguisher’s advantage.

2.3 Impossible Differential and Zero-Correlation Linear Cryptanalysis
Let ∆1 ∈ Fw and ∆2 ∈ Fw. The differential probability of ∆1 → ∆2 is defined as

Pr
(

∆1
G−→ ∆2

)
:=
∣∣{x ∈ Fw | G(x)⊕G(x⊕∆1) = ∆2}

∣∣
2wn .

Following [BBS99], if Pr(∆1
G−→ ∆2) = 0, then ∆1 → ∆2 is called an Impossible Differential

(ID) of G, which also enables distinguishing and cryptanalysis.
Let sgn : F→ {0, 1} be defined as

sgn(a) :=
{

0 a = 0,
1 a 6= 0.

Then, for x = (x[1], . . . , x[w]) ∈ Fw, we define χ(x) := (sgn(x[1]), . . . , sgn(x[w])) ∈ {0, 1}w,
which, in some sense, summarizes the “pattern” of the vector x.

Let α, x ∈ {0, 1}wn, and let 〈α, x〉 be the inner product between α and x. Then, given
a function G : Fw → Fw, the correlation cor of the linear approximation for an output
mask α2 and an input mask α1 is defined by

corG(α1, α2) := 1
2wn

∑
x∈Fw

(−1)〈α1,x〉⊕〈α2,G(x)〉.
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If corG(α1, α2)� 2−wn, then α1, α2 constitute a good linear approximation of G and can
be used for linear cryptanalysis [Mat94]. On the other hand, if corG(α1, α2) = 0, then
(α1 → α2) is called a Zero Correlation (ZC) linear hull of G. Such linear approximations
without any bias also enable distinguishing [BR14, BW12].

2.4 Structures and their Differential/Linear Properties
Cryptanalytic practice usually focuses on detecting IDs and ZC linear hulls that are
independent from the concrete S-boxes and keys. Concretely, attacks try to determine
whether there is a difference (mask) of an S-box or not, regardless of the value of this
difference (mask). The model of structures was proposed by Sun et al. [SLR+15, SLG+16]
to characterize the intuition of “being independent of the choices of S-boxes”. Below we
present [SLR+15, Definition 2] adapted to our notations.

Definition 1 (Structures). Let f : Fw → Fw be a cryptographic function defined upon
bijective S-boxes on F.

1. A structure Ef on Fw is defined as a set of functions f ′ which are exactly the same
as f except that the S-boxes can take all possible bijective transformations on F.

2. Let a, b ∈ Fw. If for any f ′ ∈ Ef , a → b is an impossible differential (resp. zero
correlation linear hull) of f ′, then a → b is called an impossible differential (resp.
zero correlation linear hull) of Ef .

In fact, truncated ID and ZC attacks against word oriented blockciphers typically focus
on ID and ZC distinguishers on the corresponding structures. Notable examples following
this strategy include attacks against the AES [BR14, MDRMH10] and Camellia [BGW+14].
The structure-based approach is thus of some practical relevance, and has motivated
researches on provable security w.r.t. IDs/ZCs of structures. To our knowledge, this
structure-based approach remains the only method to investigate provable security against
ID and ZC attacks on general blockcipher constructions (“unconditional” ID/ZC security
proofs are limited to certain blockciphers such as the AES [WJ18]).

3 Rate 1/2: Birthday SPRP Security at 5 Rounds
In this section, we focus on the SPRP security of P-SPNs with rate 1/2. For simplicity, we
assume that the width w is even. We will frequently write M ∈ Fw×w in the block form of
4 submatrices in Fw/2×w/2. For this, we follow the convention using u, b, l, r for upper,
bottom, left, and right resp., i.e.,

M =
(
Mul Mur
Mbl Mbr

)
.

We use brackets, i.e., (M−1)xx, xx ∈ {ul,ur,bl,br}, to distinguish submatrices of M−1

(the inverse of M) from M−1
xx , the inverse of Mxx.

We will first introduce a useful operator on the linear transformation T in Sect. 3.1.
Then, in Sect. 3.2 we prove security for 5 rounds. Nandi’s idea [Nan15] gives rise to a
simple chosen-plaintext attack against 3 rounds. For completeness, we present a description
adapted to our context in Appendix A.

3.1 A Useful Operator on the Linear Layer
As per our convention, we view u, v ∈ Fw as column vectors. During the proof, we will
need to derive the “second halves” u2 := u[w/2 + 1..w] and v2 := v[w/2 + 1..w] from the
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“first halves” u1 := u[1..w/2], v1 := v[1..w/2], and the equality v = T · u. To this end, the
equality v = T · u implies {

Tur · u2 = Tul · u1 ⊕ v1
Tbr · u2 ⊕ v2 = Tbl · u1

,(
u2
v2

)
=
(
Tur 0
Tbr I

)−1(
Tul I
Tbl 0

)(
u1
v1

)
.

By this, we define an operator on T as follows:

T̂ :=
(

T−1
ur · Tul T−1

ur
Tbr · T−1

ur · Tul ⊕ Tbl Tbr · T−1
ur

)
. (4)

It can be seen that, u2, v2 can be written as u1, v1 multiplied by T̂ , i.e.,(
u2
v2

)
=
(

T−1
ur 0

Tbr · T−1
ur I

)(
Tul I
Tbl 0

)(
u1
v1

)
= T̂ ·

(
u1
v1

)
.

This operator will be useful in both Sect. 3.2 and Sect. 4.
Note that

v = T · u ⇐⇒
(
u2
v2

)
= T̂ ·

(
u1
v1

)
,

with wt(u2) + wt(v2) + wt(u1) + wt(v1) = wt(u) + wt(v). This implies the following
interesting property.

Lemma 1. T̂ is MDS if and only if T is MDS.

3.2 SPRP Security at 5 Rounds
We will prove security for 5-round P-SPNs built upon 5 “S-boxes”/random permutations
S = {S1, S2, S3, S4, S5} and a single linear layer T . Formally,

C5Sk(x) := k5 ⊕ PSS5
(
k4 ⊕ T

(
PSS4

(
k3 ⊕ T

(
PSS3

(
k2 ⊕ T

(
PSS2

(
k1 ⊕ T

(
PSS1

(
k0 ⊕ x, 1/2

))
, 1/2

))
, 1/2

))
, 1/2

))
, 1/2

))))
. (5)

Using a single linear layer simplifies both the construction and the notations. Recall from
our convention that Tul, . . . , (T−1)br constitute the eight submatrices of T and T−1. In
fact, (T−1)ul, . . . , (T−1)br can be derived from Tul, . . . , Tbr, but the expressions are too
complicated to use.

We next characterize the properties on T that is sufficient for security.

Definition 2 (Good Linear Layer for 5 Rounds). A matrix T ∈ Fw×w is good, if T is
MDS, and the 6 induced matrices Tbr, T−1

ur ·Tul ·Tur,
(
Tbr ·T−1

ur ·Tul⊕Tbl
)
·Tur, (T−1)br,

T−1
ur · (T−1)ur, and Tbr · T−1

ur · (T−1)ur are such that:

1. They contain no zero entries, and

2. Any column vector of the 6 induced matrices consists of w/2 distinct entries.

We remark that, as T is MDS, all the four matrices Tul, Tur, Tbl and Tbr are all MDS
(and invertible). A natural question is whether such strong T exists at all. For this, we
make an exhaustive search for n = 8, 11 and find some candidates: see Appendix B.

With such a good T , we have the following theorem on 5-round P-SPNs.
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Theorem 1. Assume w ≥ 2, and qS +wqC/2 ≤ 2n/2. Let C5 be a 5-round, linear P-SPN
structure defined in Eq. (5), with distribution K over keys (k0, . . . , k5). If k0 and k5 are
uniformly distributed and the matrix T fulfills Definition 2, then

Advsprp
C5 (qC , qS) ≤ 6wqCqS + 3w2q2

C

2n + q2
C

2wn/2 . (6)

All the remaining of this subsection devotes to prove Theorem 1. The main flow follows
the general paradigm of the H-coefficient technique. In detail, we first establish notations
in subsect. 3.2.1. We then complete the two steps defining and analyzing bad transcripts
and bounding the ratio µ(τ)/ν(τ) for good transcripts in subsect. 3.2.2 and 3.2.3 resp. For
clarity, the proofs of some of the lemmas are deferred to subsect. 3.3.

Remark 1. Rate 1/2 P-SPN may remind the reader of the Feistel network, which also
applies the random round functions to a half of the data in each round. However, the two
schemes significantly deviate in detail, and thus rate 1/2 P-SPN consumes one more round
than Feistel (which needs 4 rounds) to allow for provable security, and the concrete proof
approaches are also different. We refer the reader to Appendix C for a complete discussion.

Remark 2. The Misty network slightly resembles a rate 1/2 P-SPN with w = 2. As a
Misty-R round has basically the same cryptographic strength as the inverse of a Misty-L
round (see [Lee13]), below we focus on Misty-R. The “diffusion layer” of Misty-R, which
maps

(
u1
u2

)
to
(

u2
u1⊕u2

)
, is much weaker than Definition 2. This matches the observation that

Misty-R achieves faster diffusion in the forward direction than that in the backward, and
thus 5 Misty-R rounds are needed for SPRP security. In contrast, for rate 1/2 P-SPN with
a good linear layer and w = 2, actually 4 rounds could be secure, as briefed in Appendix
C. In all, the linear layers we use are significantly stronger than Misty’s and indeed help
achieving better security.

3.2.1 Proof setup

Fix a deterministic distinguisher D. Wlog, we assume D makes exactly qC (non-redundant)
forward/inverse queries to its left oracle that is either C5Sk or P , and exactly qS (non-
redundant) forward/inverse queries to each of the oracle Si on its right side. We call a
query from D to its left oracle a construction query, and a query from D to one of its right
oracles an S-box query.

The interaction between D and its oracles is recorded in the form of 6 lists of pairs
QC ⊆ {0, 1}wn × {0, 1}wn and QS1 , . . . , QS5 ⊆ {0, 1}n × {0, 1}n. Among them, QC =
((x(1), y(1)), . . . , (x(qC), y(qC))) lists the construction queries-responses of D in chronological
order, where the i th pair (x(i), y(i)) indicates the i th such query is either a construction
query x(i) that was answered by y(i) or an inverse query y(i) that was answered by
x(i). QS1 , . . . , QS5 are defined similarly with respect to queries to S1, . . . , S5. Define
QS := (QS1 , . . . , QS5). Note that D’s interaction with its oracles can be unambiguously
reconstructed from these sets since D is deterministic. For convenience, for i ∈ {1, 2, 3, 4, 5}
we define

Domi :=
{
a : (a, b) ∈ QSi for some b ∈ F

}
, Rngi :=

{
b : (a, b) ∈ QSi for a ∈ F

}
.

Following [CS14], we augment the transcript (QC , QS) with a key value k = (k0, . . . , k5).
In the real world, k is the actual key used by the construction. In the ideal world, k is a
dummy key sampled independently from all other values according to the prescribed key
distribution K. Thus, a transcript τ has the final form τ = (QC , QS ,k).
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3.2.2 Bad transcripts

Let T be the set of all possible transcripts that can be generated by D in the ideal world
(note that this includes all transcripts that can be generated with nonzero probability in
the real world). As in Sect. 2.2, let µ, ν be the distributions over transcripts in the real
and ideal worlds, respectively.

We define a set T2 ⊆ T of bad transcripts as follows: a transcript τ = (QC , QS ,k) is
bad if and only if one of the following events occurs:

1. There exist a pair (x, y) ∈ QC and an index i ∈ {w/2+1, . . . , w} such that (x⊕k0)[i] ∈
Dom1 or (y ⊕ k5)[i] ∈ Rng5.

2. There exist a pair (x, y) ∈ QC and distinct i, i′ ∈ {w/2 + 1, . . . , w} such that
(x⊕ k0)[i] = (x⊕ k0)[i′] or (y ⊕ k5)[i] = (y ⊕ k5)[i′].

3. There exist distinct (x, y), (x′, y′) ∈ QC and distinct i, i′ ∈ {w/2 + 1, . . . , w} such
that (x⊕ k0)[i] = (x′ ⊕ k0)[i′] or (y ⊕ k5)[i] = (y′ ⊕ k5)[i′].

4. There exist two indices i, ` ∈ {1, . . . , qC} such that ` > i, and:

• (x(`), y(`)) was due to a forward query, and y(`)[w2 + 1..w] = y(i)[w2 + 1..w]; or,

• (x(`), y(`)) was due to a backward query, and x(`)[w2 + 1..w] = x(i)[w2 + 1..w].

As in Sect. 2.2, T1 := T \T2 denotes the set of good transcripts.
To understand the conditions, consider a good transcript τ = (QC , QS ,k) and let’s see

some properties (informally). First, since the 1st condition is not fulfilled, each construction
query induces w/2 inputs to the 1st round S-box and w/2 inputs to the 5th round S-box,
the outputs of which are not fixed by QS . Second, since neither the 2nd nor the 3rd
condition is fulfilled, the inputs to the 1st round (5th round, resp.) S-box induced by
the construction queries are distinct unless unavoidable. These ensure that the induced
2nd and 4th intermediate values are somewhat random and free from multiple forms of
collisions. Finally, the last condition will be crucial for some structural properties of the
queries that will be crucial in the subsequent analysis (see subsect. 3.3.2, the proof of
Lemma 3).

Let’s then analyze the probabilities of the conditions in turn. Since, in the ideal world,
the values k0, k5 are independent of QC , QS and (individually) uniform in {0, 1}wn, it
is easy to see that the probabilities of the first three events do not exceed wqCqS/2n,(
w/2

2
)
· 2qC

2n ≤ w
2qC/2n+2, and

(
w/2

2
)
·
(
qC
2
)
· 2

2n ≤ w
2qC(qC − 1)/2n+2 respectively.

For the 4th condition, consider the ` th construction query (x(`), y(`)). When it is
forward, in the ideal world it means D issued P (x(`)) to the 2wn-bit random permutation P
and received y(`), which is uniform in 2wn− `+1 possibilities. Thus, when ` ≤ qC ≤ 2wn/2,

Pr
[
∃i ≤ `− 1 : y(`)

[w
2 + 1..w

]
= y(i)

[w
2 + 1..w

]]
=

∑
i≤`−1,z∈Fw/2

Pr
[
y(`) =

(
z‖y(i)

[w
2 + 1..w

])]
≤ (`− 1) · 2wn/2

2wn − `+ 1 ≤ 2(`− 1)
2wn/2 .

Similar result follows when (x(`), y(`)) is backward. A union bound thus yields

Pr
[
ν ∈ T2

]
≤ wqCqS

2n + w2q2
C

2n+2 +
qC∑
`=1

2(`− 1)
2wn/2 ≤ wqCqS

2n + w2q2
C

2n+2 + q2
C

2wn/2 . (7)
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3.2.3 Bounding the ratio µ(τ )/ν(τ )

Let ΩX =
(
P(n)

)5 ×K be the probability space underlying the real world, whose measure
is the product of the uniform measure on (P(n))5 and the measure induced by the
distribution K on keys. (Thus, each element of ΩX is a tuple (S,k) with S = (S1, . . . , S5),
S1, . . . , S5 ∈ P(n) and k = (k0, . . . , k5) ∈ K.) Also let ΩY = P(wn)×

(
P(n)

)5 ×K be the
probability space underlying the ideal world, whose measure is the product of the uniform
measure on P(wn) with the measure on ΩX .

Let τ ′ = (Qτ ′C , Qτ
′

S ,kτ
′) be a transcript. We introduce four types of compatibility as

follows.

• First, an element ω = (S∗,k∗) ∈ ΩX is compatible with τ ′ if k∗ = kτ ′ , if S∗i (a) = b

for all (a, b) ∈ QSi and all i, and if CS∗k∗ (x) = y for all (x, y) ∈ Qτ ′C .

• Second, an element ω = (P ∗,S∗,k∗) ∈ ΩY is compatible with τ ′ if: (a) k∗ = kτ ′ , and
(b) S∗i (a) = b for all (a, b) ∈ Qτ ′Si , and (c) P ∗(x) = y for all (x, y) ∈ Qτ ′C . We write

ω ↓ τ ′

to indicate that an element ω ∈ ΩX ∪ ΩY is compatible with τ ′.

• Third, a tuple of S-boxes S∗ ∈ (P(n))5 is compatible with τ ′ = (Qτ ′C , Qτ
′

S ,k), and
write S∗ ↓ τ ′, if (S∗,k) ∈ ΩX is compatible with τ ′, where k is the key value of the
fixed transcript τ .

• Last, we say that (P ∗,S∗) ∈ P(wn)× (P(n))5 is compatible with τ ′ = (Qτ ′C , Qτ
′

S ,kτ
′),

and write (P ∗,S∗) ↓ τ ′, if (P ∗,S∗,kτ ′) ↓ τ ′.

For the rest of the proof we fix a transcript τ = (QC , QS ,k) ∈ T1. Since τ ∈ T , it is
easy to see (cf. [CS14]) that

µ(τ) = Pr[ω ← ΩX : ω ↓ τ ], ν(τ) = Pr[ω ← ΩY : ω ↓ τ ],

where the notation indicates that ω is sampled from the relevant probability space according
to that space’s probability measure. We bound µ(τ)/ν(τ) by reasoning about the latter
probabilities. In detail, with the third and fourth types of compatibility notions, the
product structure of ΩX ,ΩY implies

Pr[ω ← ΩX : ω ↓ τ ] = Pr[k∗ = k] · PrS∗ [S∗ ↓ τ ],
Pr[ω ← ΩY : ω ↓ τ ] = Pr[k∗ = k] · PrP∗,S∗ [(P ∗,S∗) ↓ τ ],

where S∗ and (P ∗,S∗) are sampled uniformly from (P(n))5 and P(wn)× (P(n))5, respec-
tively. Thus,

µ(τ)
ν(τ) = PrS∗ [S∗ ↓ τ ]

PrP∗,S∗ [(P ∗,S∗) ↓ τ ] .

By these, and by |QC | = qC , |QS1 | = . . . = |QS5 | = qS , it is immediate that

PrP∗,S∗
[
(P ∗,S∗) ↓ τ

]
= 1

(2wn)qC ·
(
(2n)qS

)5 ,

To compute PrS∗ [S∗ ↓ τ ] we start by writing

PrS∗ [S∗ ↓ τ ] = PrS∗ [S∗ ↓ (QC , QS ,k)]
= PrS∗ [S∗ ↓ (∅, QS ,k)] · PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)]

= 1
((2n)qS )5 · PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)].
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To analyze PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)], we proceed in two steps. First, based
on QC and two outer S-boxes S∗1 , S∗5 , we derive the 2nd and 4th rounds intermediate
values: these constitute a special transcript Qmid on the middle 3 rounds. We characterize
conditions on S∗1 , S∗5 that will ensure certain good properties in the derived Qmid, which
will ease the analysis. Therefore, in the second step, we analyze such “good” Qmid to yield
the final bounds. Each of the two steps will take a paragraph as follows.

The outer 2 rounds. Given a tuple of S-boxes S∗, we let Bad(S∗) be a predicate of S∗
that holds if any of the following conditions is met:

• (B-1) There exist (x, y) ∈ QC and i ∈ {w/2 + 1, . . . , w} such that
(
T (PSS

∗
1 (x ⊕

k0,
1
2 ))⊕ k1

)
[i] ∈ Dom2 or

(
T−1((PSS

∗
5 )−1(y ⊕ k5,

1
2 ))⊕ k4

)
[i] ∈ Rng4.

• (B-2) There exist (x, y) ∈ QC and distinct indices i, i′ ∈ {w/2 + 1, . . . , w} such that(
T (PSS

∗
1 (x⊕ k0,

1
2 ))⊕ k1

)
[i] =

(
T (PSS

∗
1 (x⊕ k0,

1
2 ))⊕ k1

)
[i′], or

(
T−1((PSS

∗
5 )−1(y ⊕

k5,
1
2 ))⊕ k4

)
[i] =

(
T−1((PSS

∗
5 )−1(y ⊕ k5,

1
2 ))⊕ k4

)
[i′].

• (B-3) There exist distinct pairs (x, y), (x′, y′) ∈ QC and two indices i, i′ ∈ {w/2 +
1, . . . , w} such that:

1. x
[
w
2 + 1..w

]
6= x′

[
w
2 + 1..w

]
, yet

(
T (PSS

∗
1 (x⊕ k0,

1
2 ))⊕ k1

)
[i] =

(
T (PSS

∗
1 (x′ ⊕

k0,
1
2 ))⊕ k1

)
[i′]; or

2. x
[
w
2 + 1..w

]
= x′

[
w
2 + 1..w

]
, i 6= i′, yet

(
T (PSS

∗
1 (x ⊕ k0,

1
2 )) ⊕ k1

)
[i] =(

T (PSS
∗
1 (x′ ⊕ k0,

1
2 ))⊕ k1

)
[i′]; or

3. y
[
w
2 + 1..w

]
6= y′

[
w
2 + 1..w

]
, yet it holds

(
T−1((PSS

∗
5 )−1(y ⊕ k5,

1
2 ))⊕ k4

)
[i] =(

T−1((PSS
∗
5 )−1(y′ ⊕ k5,

1
2 ))⊕ k4

)
[i′]; or

4. y
[
w
2 + 1..w

]
= y′

[
w
2 + 1..w

]
, i 6= i′, yet

(
T−1((PSS

∗
5 )−1(y ⊕ k5,

1
2 )) ⊕ k4

)
[i] =(

T−1((PSS
∗
5 )−1(y′ ⊕ k5,

1
2 ))⊕ k4

)
[i′].

(B-1) captures the case that a 2nd round S-box input or a 4th round S-box output has been
in QS , (B-2) captures collisions among the 2nd round S-box inputs & 4th round S-box
outputs for a single construction query, while (B-3) captures various collisions between the
2nd round S-box inputs, resp. 4th round S-box outputs, from two distinct queries. Note
that essentially, Bad(S∗) only concerns with the randomness of the outer 2 S-boxes S∗1
and S∗5 . For simplicity, define Good(S∗) := (S∗ ↓ QS) ∧ ¬Bad(S∗). Then it holds

PrS∗
[
S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)

]
≥ PrS∗

[
S∗ ↓ (QC , QS ,k) ∧ Good(S∗) | S∗ ↓ (∅, QS ,k)

]
= PrS∗

[
Good(S∗) | S∗ ↓ (∅, QS ,k)

]
· PrS∗

[
S∗ ↓ (QC , QS ,k) | Good(S∗)

]
, (8)

Hence, all that remains is to lower bound the two terms in the product of (8). We serve
the result below, and defer the proof to subsect. 3.3.1.

Lemma 2. When qS + w ≤ 2n/2, we have

PrS∗
[
Bad(S∗) | S∗ ↓ (∅, QS ,k)

]
≤ 8wqCqS + 2w2q2

C

2n+2 . (9)

Analyzing the 3 middle rounds. Our next step is to lower bound the term PrS∗
[
S∗ ↓

(QC , QS ,k) | Good(S∗)
]
from Eq. (8). Given S∗ for which Good(S∗) holds, for every

(x(i), y(i)) ∈ QC we define u(i)
1 := x(i)⊕k0, v(i)

1 := PSS
∗
1 (u(i)

1 , 1/2) (this means v(i)
1 [1..w/2] =
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u
(i)
1 [1..w/2]), u(i)

2 := T · v(i)
1 ⊕ k1; v(i)

5 := y(i) ⊕ k5, u(i)
5 :=

(
PSS

∗
5
)−1(v(i)

5 , 1/2), v(i)
4 :=

T−1 · (u(i)
5 ⊕ k4). With these, we obtain

Qmid =
((
u

(1)
1 , u

(1)
2 , v

(1)
4 , v

(1)
5
)
, . . . ,

(
u

(qC)
1 , u

(qC)
2 , v

(qC)
4 , v

(qC)
5

))
,

in which the tuples follow exactly the same chronological order as in QC . Define

C3S
∗
(u) = PSS

∗
4
(
T ·
(
PSS

∗
3
(
T ·
(
PSS

∗
2
(
u, 1/2

))
⊕ k2, 1/2

))
⊕ k3, 1/2

)
,

and write S∗ ↓ (Set, QS ,k) for the event that “C3S∗(u2) = v4 for every (u1, u2, v4, v5) in
the set Set”. Then it can be seen

Pr
[
S∗ ↓ (QC , QS ,k) | Good(S∗)

]
= Pr

[
S∗ ↓ (Qmid, QS ,k) | Good(S∗)

]
. (10)

To bound Eq. (10), we will divide Qmid into multiple sets according to collisions on the
“second halves” u1[w/2 + 1..w] and v5[w/2 + 1..w], and consider the probability that S∗ is
compatible with each set in turn. In detail, the sets are arranged according to the following
rules:

• Qm1 :=
{

(u1, u2, v4, v5) ∈ Qmid : u1[w/2 + 1..w] = u
(1)
1 [w/2 + 1..w]

}
;

• For ` = 2, 3, . . ., if ∪`−1
i=1Qmi = Qm1 ∪Qm2 ∪ . . .∪Qm`−1 ⊂ Qmid, then we define Qm` .

Let j be the minimum index such that (u(j)
1 , u

(j)
2 , v

(j)
4 , v

(j)
5 ) remains inQmid\∪`−1

i=1Qmi .
Then:

– If v(j)
5 has collisions, i.e., there exists (u∗1, u∗2, v∗4 , v∗5) ∈ ∪`−1

i=1Qmi such that
v∗5 [w/2 + 1..w] = v

(j)
5 [w/2 + 1..w], then we define Qm` :=

{
(u1, u2, v4, v5) ∈

Qmid\∪`−1
i=1 Qmi : v5[w/2+1..w] = v

(j)
5 [w/2+1..w]

}
. We call such sets Type-II.

– Else, Qm` :=
{

(u1, u2, v4, v5) ∈ Qmid : u1[w/2 + 1..w] = u
(j)
1 [w/2 + 1..w]

}
. We

call such sets as well as Qm1 Type-I.

Assume that Qmid is divided into α sets by the above rules, with |Qm` | = β`. Then∑α
`=1 β` = qC , and

Pr
[
S∗ ↓ (Qmid, QS ,k) | Good(S∗)

]
=

α∏
`=1

Pr
[
S∗ ↓ (Qm` , QS ,k) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]
. (11)

Now we could focus on analyzing the ` th set Qm` . Assume that

Qm` =
((
u

(`,1)
1 , u

(`,1)
2 , v

(`,1)
4 , v

(`,1)
5

)
, . . . ,

(
u

(`,β`)
1 , u

(`,β`)
2 , v

(`,β`)
4 , v

(`,β`)
5

))
.

The superscript (`, i) indicates that it is the i th tuple in this ` th set Qm` . For this index
`, we define six sets ExtDom(`)

i and ExtRng(`)
i , i = 2, 3, 4, as follows:

ExtDom(`)
2 :=

{
u2[j] : (u1, u2, v4, v5) ∈ ∪`−1

i=1Qmi , j ∈ {w/2 + 1, . . . , w}
}

ExtRng(`)
2 :=

{
S∗2 (a) : a ∈ ExtDom(`)

2
}

ExtDom(`)
3 :=

{(
T
(
PSS

∗
2 (u2,

1
2)
)
⊕ k2

)
[j] : (u1, u2, v4, v5) ∈ ∪`−1

i=1Qmi , j = w

2 + 1, .., w
}

ExtRng(`)
3 :=

{
S∗3 (a) : a ∈ ExtDom(`)

3
}
, ExtDom(`)

4 :=
{

(S∗4 )−1(b) : b ∈ ExtRng(`)
4
}

ExtRng(`)
4 :=

{
v4[j] : (u1, u2, v4, v5) ∈ ∪`−1

i=1Qmi , j ∈
{w

2 + 1, . . . , w
}}
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Note that, conditioned on S∗ ↓ (∪`−1
i=1Qmi , QS ,k) ∧ Good(S∗), the values in ExtDom(`)

i

and ExtRng(`)
i , i = 2, 3, 4, are compatible with the set ∪`−1

i=1Qmi . For Qm` , two useful
properties regarding the arrangement of tuples and the derived intermediate values resp.
could be exhibited.

Lemma 3. Consider the ` th set Qm` =
(
(u(`,1)

1 , u
(`,1)
2 , v

(`,1)
4 , v

(`,1)
5 ), . . .

)
. If it is of Type-

I, then the number of tuples (u1, u2, v4, v5) ∈ ∪`−1
i=1Qmi with u1[w2 + 1..w] = u

(`,1)
1 [w2 + 1..w]

is at most 1; if it is of Type-II, then the number of (u1, u2, v4, v5) ∈ ∪`−1
i=1Qmi with

v5[w2 + 1..w] = v
(`,1)
5 [w2 + 1..w] is at most 1.

The proof is deferred to subsect. 3.3.2.

Lemma 4. Consider the ` th set Qm` and any two distinct
(
u

(`,i1)
1 , u

(`,i1)
2 , v

(`,i1)
4 , v

(`,i1)
5

)
and

(
u

(`,i2)
1 , u

(`,i2)
2 , v

(`,i2)
4 , v

(`,i2)
5

)
in Qm` . Then, there exist two indices j1, j2 ∈ {w/2+1..w}

such that,

• when Qm` is of Type-I: u(`,i1)
2 [j1] /∈ Dom2 ∪ ExtDom(`)

2 , u(`,i2)
2 [j2] /∈ Dom2 ∪

ExtDom(`)
2 , and (u(`,i1)

2 [j1], u(`,i1)
2 [j2]) 6= (u(`,i2)

2 [j1], u(`,i2)
2 [j2]);

• when Qm` is of Type-II: v
(`,i1)
4 [j1] /∈ Rng4∪ExtRng

(`)
4 , v(`,i2)

4 [j2] /∈ Rng4∪ExtRng
(`)
4 ,

and (v(`,i1)
4 [j1], v(`,i1)

4 [j2]) 6= (v(`,i2)
4 [j1], v(`,i2)

4 [j2]).

The proof is deferred to subsect. 3.3.3. With the help of these two lemmas, we are
able to bound the probability that the randomness is compatible with the ` th set Qm` .

Lemma 5. For the ` th set Qm` , it holds

Pr
[
S∗ ↓ (Qm` , QS ,k) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

≥
(

1− 12β`w(qS + wqC/2) + 3β2
`w

2

2n+2

)
· 1

2wβ`n . (12)

The proof is deferred to subsect. 3.3.4.
From Eq. (12), Eq. (11), and using

∑α
`=1 β` = qC , we obtain

Pr
[
S∗ ↓ (Qmid, QS ,k) | Good(S∗)

]
≥

α∏
`=1

((
1− 12β`w(qS + wqC/2) + 3β2

`w
2

2n+2

)
· 1

2wβ`n

)

≥
(

1−
α∑
`=1

12β`w(qS + wqC/2) + 3β2
`w

2

2n+2

)
· 1

2wn
∑α

`=1
β`

≥
(

1− 12wqC(qS + wqC/2) + 3w2q2
C

2n+2

)
· 1

2wnqC .

Gathering this and Eqs. (10), (9), (8), and (7), we finally reach

µ(τ)
ν(τ) ≥

(
1− 8wqCqS + 2w2q2

C

2n+2

)(
1− 12wqC(qS + wqC/2) + 3w2q2

C

2n+2

)
· (2wn)qC

2wnqC

≥ 1− 20wqCqS + 11w2q2
C

2n+2 .

Further using Eq. (7) yield the bound in Eq. (6) and complete the proof.
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3.3 Deferred Proofs for Theorem 1
3.3.1 Proof of Lemma 2

This requires to bound PrS∗
[
(B-`) | S∗ ↓ (∅, QS ,k)

]
for ` = 1, 2, 3. Consider the condition

(B-1) first. Fix some (x, y) ∈ QC and an index i ∈ {w/2 + 1, . . . , w}. Since τ is good,
(x ⊕ k0)[w] /∈ Dom1, and (x ⊕ k0)[w] 6= (x ⊕ k0)[i′] for i′ 6= w. So after conditioning on
S∗ ↓ (∅, QS ,k) and the values of S∗1((x⊕ k0)[i′]) for i′ 6= w, the value S∗1((x⊕ k0)[w]) is
uniform in a set of size 2n − qS − w/2 + 1. The MDS property implies that every entry in
the w th column of T is nonzero, and thus

PrS∗
[(
T (PSS

∗
1 (x⊕ k0,

1
2))⊕ k1

)
[i] ∈ Dom2 | S∗ ↓ (∅, QS ,k)

]
≤ qS

2n − qS − w/2
.

Similarly by symmetry,

PrS∗
[(
T−1((PSS

∗
5 )−1(y ⊕ k5,

1
2))⊕ k4

)
[i] ∈ Rng4 | S∗ ↓ (∅, QS ,k)

]
≤ qS

2n − qS − w/2
.

Summing over (x, y) ∈ QC , i ∈ {w/2 + 1, . . . , w}, we reach

PrS∗
[
(B-1) | S∗ ↓ (∅, QS ,k)

]
≤ wqCqS

2n − qS − w/2
. (13)

Next, consider (B-2). Fix (x, y) ∈ QC and i, i′ ∈ {1, . . . , w/2}, and let u1 = x ⊕ k0,
u2 = T (PSS

∗
1 (u1,

1
2 ))⊕ k1. Then the “second half” u2[w/2 + 1..w] = Tbl · u1[1..w/2]⊕Tbr ·

S∗1
(
u1[w/2 + 1..w]

)
⊕ k1[w/2 + 1..w]. Since T is MDS, Tbr is also MDS. This means Tbr is

invertible, and further that the i th and i′ th rows of Tbr are linearly independent and,
in particular, there exists an index j0 ∈ {1, . . . , w/2} such that the (i, j0) th and (i′, j0)
th entries of Tbr are not equal. After conditioning on S∗ ↓ (∅, QS ,k) and the values of
S∗1 (u1[w/2 + j1]) for j1 6= j0, the value of S∗1 (u1[w/2 + j0]) is uniform in 2n − qS −w/2 + 1
values. Therefore,

PrS∗
[
u2

[w
2 + i

]
= u2

[w
2 + i′

]
| S∗ ↓ (∅, QS ,k)

]
≤ 1

2n − qS − w/2
.

Similarly by symmetry, the probability to have
(
T−1((PSS

∗
5 )−1(y ⊕ k5,

1
2 ))
)
[w/2 + i] =(

T−1((PSS
∗
5 )−1(y⊕ k5,

1
2 ))
)
[w/2 + i′] is also at most 1/(2n− qS −w/2). By a union bound

over all pairs (x, y) ∈ QC and all i, i′ ∈ {1, . . . , w/2}, we reach

PrS∗
[
(B-2) | S∗ ↓ (∅, QS ,k)

]
≤
(
w/2

2

)
· 2qC

2n − qS − w/2
≤ w2qC

4(2n − qS − w/2) . (14)

We now consider (B-3). We first fix (x, y), (x′, y′) ∈ QC and i, i′ ∈ {w/2 + 1, . . . , w}
with x[w/2 + 1..w] 6= x′[w/2 + 1..w] for the 1st condition. This means x[j0] 6= x′[j0] for
some j0 ∈ {w/2 + 1, . . . , w}. Since τ is good, (x ⊕ k0)[j0] 6= (x ⊕ k0)[j1] for all j1 6= j0
and (x⊕ k0)[j0] 6= (x′ ⊕ k0)[j1] for all j1. So after conditioning on S∗ ↓ (∅, QS ,k) and the
values of S∗1 ((x⊕ k0)[j1]) for j1 6= j0 and S∗1 ((x′ ⊕ k0)[j1]) for j1 ∈ {w/2 + 1, . . . , w}, the
value of S∗1 ((x⊕ k0)[j0]) is uniform in ≥ 2n − qS −w+ 1 possibilities. Because every entry
in the j0 th column of T is nonzero, we have

PrS∗
[(
T (PSS

∗
1 (x⊕ k0))⊕ k1

)
[i] =

(
T (PSS

∗
1 (x′ ⊕ k0))⊕ k1

)
[i′] | S∗ ↓ (∅, QS ,k)

]
≤ 1

2n − qS − w
.

We next fix (x, y), (x′, y′) ∈ QC and i 6= i′ ∈ {w/2 + 1, . . . , w} with x[w/2 + 1..w] =
x′[w/2 + 1..w] for the 2nd condition. While this case concerns with distinct construction
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queries, the argument is an extension of that of (B-2). In detail, let u1 = x ⊕ k0,
u2 = T (PSS

∗
1 (u1,

1
2 ))⊕k1, u′1 = x′⊕k0, and u′2 = T (PSS

∗
1 (u′1, 1

2 ))⊕k1. By the analysis for
(B-2), we have PrS∗

[
u2[i] = u2[i′] | S∗ ↓ (∅, QS ,k)

]
≤ 1

2n−qS−w/2 . Since x[w/2 + 1..w] =
x′[w/2 + 1..w], it can be seen u2 ⊕ u′2 = T · (x⊕ x′), meaning that

u′2[i′] = u2[i′]⊕
(
Tbl · (x[1..w/2]⊕ x′[1..w/2])

)[
i′ − w

2
]

︸ ︷︷ ︸
δ

.

The offset δ is fixed by τ and is independent from S∗1 . Therefore,

PrS∗
[
u2[i] = u′2[i′] | S∗ ↓ (∅, QS ,k)

]
≤ PrS∗

[
u2[i] = u2[i′]⊕ δ | S∗ ↓ (∅, QS ,k)

]
≤ 1

2n − qS − w/2
.

For each choice of (x, y), (x′, y′), the 1st and 2nd conditions are mutual exclusive
(i.e., only one may be fulfilled). Hence, summing over all pairs (x, y, i), (x′, y′, i′) ∈
QC × {w/2 + 1, . . . , w}, the probability that either of the two is fulfilled is at most(

wqC/2
2

)
· 2

2n − qS − w
≤ w2qC(qC − 1)

8(2n − qS − w) .

Similarly by symmetry, the probability that either the 3rd or the 4th condition is fulfilled
is at most w2qC(qC−1)

8(2n−qS−w) . Thus

PrS∗
[
(B-3) | S∗ ↓ (∅, QS ,k)

]
≤ w2qC(qC − 1)

4(2n − qS − w) . (15)

Summing over Eqs. (13), (14), and (15), we reach Eq. (9):

PrS∗
[
Bad(S∗) | S∗ ↓ (∅, QS ,k)

]
≤ wqCqS

2n − qS − w/2
+ w2q2

C

4(2n − qS − w)

3.3.2 Proof of Lemma 3

Wlog, consider the case of Type-I Qm` , as the other case is just symmetric. Assume other-
wise, and assume that tuple1 =

(
u

(j1)
1 , u

(j1)
2 , v

(j1)
4 , v

(j1)
5
)
and tuple2 =

(
u

(j2)
1 , u

(j2)
2 , v

(j2)
4 , v

(j2)
5
)

in ∪`−1
i=1Qmi are such two tuples with the smallest indices j1, j2. Wlog assume j2 > j1, i.e.,

tuple2 was later. Then tuple2 was necessarily a forward query, as otherwise u(j1)
1 [w2 +1..w] =

u
(j2)
1 [w2 + 1..w] would contradict the goodness of τ (the 4th condition). By this and further

by the 4th condition, v(j2)
5 is “new”, and tuple2 cannot be in any Type-II set Qmi , i ≤ `−1.

This means there exists a Type-I set Qmi , i ≤ ` − 1, such that tuple2 ∈ Qmi . By our
rules, the tuples in the purported Qm` should have been Qmi , and thus Qm` should not
exist, reaching a contradiction.

3.3.3 Proof of Lemma 4

Wlog consider a Type-I Qm` . First, note that by ¬(B-1) (the 1st condition), u(`,i1)
2 [j] /∈

Dom2 and u
(`,i2)
2 [j] /∈ Dom2 for any j ∈ {w/2 + 1..w}. We then distinguish two cases

depending on ∪`−1
i=1Qmi (which contribute to ExtDom(`)

2 ):

Case 1: u(`,i1)
1 [w

2 + 1..w] 6= u1[w
2 + 1..w] for all (u1, u2, v4, v5) ∈ ∪`−1

i=1Qmi . Then
by ¬(B-3), u(`,i1)

2 [j], u(`,i2)
2 [j] /∈ ExtDom(`)

2 for all j ∈ {w2 + 1, . . . , w}. Among these
w/2 indices, there exists j1 such that u(`,i1)

2 [j1] 6= u
(`,i2)
2 [j1]. For any j2 6= j1, we have

u
(`,i1)
2 [j1] 6= u

(`,i2)
2 [j2] by ¬(B-3) (the 2nd condition). Therefore, setting j′ = j1, we

complete the argument for this case.
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Case 2: there exists (u∗
1, u

∗
2, v

∗
4, v

∗
5) ∈ ∪`−1

i=1Qmi with u∗
1[w

2 +1..w] = u
(`,i1)
1 [w

2 +1..w].
Then by construction, we have u(`,i1)

2 [w2 +1..w] = u∗2[w2 +1..w]⊕∆i1 and u(`,i2)
2 [w2 +1..w] =

u∗2[w2 + 1..w]⊕∆i2 , where ∆i1 = Tbl ·
(
u∗1[1..w2 ]⊕ u(`,i1)

1 [1..w2 ]
)
and ∆i2 = Tbl ·

(
u∗1[1..w2 ]⊕

u
(`,i2)
1 [1..w2 ]

)
. Let J1 be the subset of {w2 + 1, . . . , w} such that ∆i1 [j] 6= 0 iff. j ∈ J1, and

J2 ⊆ {w2 + 1, . . . , w} be such that ∆i2 [j] 6= 0 iff. j ∈ J2. We distinguish three subcases
depending on J1 and J2:

• Subcase 2.1: J1\J2 6= ∅. Then, let j1 ∈ J1\J2, and j2 ∈ J2 in arbitrary. This means
j1 6= j2, and u(`,i1)

2 [j1] 6= 0 = u
(`,i2)
2 [j1]. Moreover,

– u
(`,i1)
2 [j1] 6= u∗2[j3] for any j3 /∈ {w2 + 1, . . . , w}\{j1}, by ¬(B-3) (the 2nd

condition); u(`,i1)
2 [j1] 6= u∗2[j1] since j1 /∈ J1. Thus u(`,i1)

2 [j1] /∈ ExtDom(`)
2 .

Similarly for u(`,i2)
2 .

– u
(`,i1)
1 [w2 + 1..w] 6= u∗∗1 [w2 + 1..w] for any (u∗∗1 , u∗∗2 , v∗∗4 , v∗∗5 ) 6= (u∗1, u∗2, v∗4 , v∗5) in
∪`−1
i=1Qmi (by Lemma 3), and thus u(`,i1)

2 [j1] 6= u∗∗2 [j′] for any j′ ∈ {w2 +1, . . . , w}
by ¬(B-3) (the 1st condition). Similarly for u(`,i2)

2 .

• Subcase 2.2: J2\J1 6= ∅. Then, let j2 ∈ J2\J1, and j1 ∈ J1, and the argument is
similar to subcase 2.1 by symmetry.

• Subcase 2.3: J1 = J2. Then there exists j ∈ J1 such that ∆i1 [j] 6= ∆i2 [j], as
otherwise ∆i1 = ∆i2 meaning a contradiction. Let j1 = j2 = j, then it’s easy to see
all the claims hold.

By the above, for Type-I sets, the claims hold in all cases. Thus the claim.

3.3.4 Proof of Lemma 5

We distinguish two cases depending on the type of Qm` .

Case 1: Qm` is Type-I. By our dividing rules, the tuples in this Qm` may have the same
inputs to the 2nd round S-boxes. We define a bad predicate BadII` that concerns with the
2nd round S-box outputs v(`,1)

2 := PSS
∗
2 (u(`,1)

2 , 1/2), . . . , v(`,β`)
2 := PSS

∗
2 (u(`,β`)

2 , 1/2): based
on these values, for i = 1, . . . , β`, we define 2 vectors in accordance with the computations
in C3: u(`,i)

3 := T · v(`,i)
2 ⊕ k2, and

v
(`,i)
3

[w
2 + 1..w

]
‖u(`,i)

4

[w
2 + 1..w

]
:= T̂ ·

(
u

(`,i)
3

[
1..w2

]
‖
(
u

(`,i)
4

[
1..w2

]
⊕ k3

[
1..w2

]))
⊕
(

0w2 ‖k3

[w
2 + 1..w

])
= T̂ ·

(
u

(`,i)
3

[
1..w2

]
‖u(`,i)

4

[
1..w2

])
⊕ T̂

(
0w2 ‖k3

[
1..w2

])
⊕
(

0w2 ‖k3

[w
2 + 1..w

])
︸ ︷︷ ︸

f1(k3)

. (16)

With these notations, BadII`(S∗) is fulfilled, if either (C-1) or (C-2) is fulfilled:

• (C-1) S∗2 leads to unfresh intermediate values: there exists i ∈ {1, . . . , β`} and
j ∈ {w/2 + 1, . . . , w} such that u(`,i)

3 [j] ∈ Dom3 ∪ ExtDom(`)
3 , or v(`,i)

3 [j] ∈ Rng3 ∪
ExtRng(`)

3 , or u(`,i)
4 [j] ∈ Dom4 ∪ ExtDom(`)

4 .

• (C-2) S∗2 leads to colliding intermediate values: there exists distinct (i, j), (i′, j′) ∈
{1, . . . , β`} × {w/2 + 1, . . . , w} such that u(`,i)

3 [j] = u
(`,i′)
3 [j′], or v(`,i)

3 [j] = v
(`,i′)
3 [j′],

or u(`,i)
4 [j] = u

(`,i′)
4 [j′].
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Consider (C-1) first. Fix (i, j) ∈ {1, . . . , β`}×{w/2 + 1, . . . , w}, and consider the condition
u

(`,i)
3 [j] ∈ Dom3 ∪ExtDom(`)

3 first. By Lemma 4, conditioned on ¬Bad(S∗) and the values
in Rng2 ∪ ExtRng(`)

2 , there exists j′ ∈ {w/2 + 1, . . . , w} such that v(`,i)
2 [j′] = S∗2

(
u

(`,i)
2 [j′]

)
is uniform in at least 2n − qS − wqC/2 possibilities. Since

u
(`,i)
3

[w
2 + 1..w

]
= Tbl · u(`,i)

2

[
1..w2

]
⊕ Tbr · v(`,i)

2

[w
2 + 1..w

]
⊕ k2

[w
2 + 1..w

]
, (17)

and since every entry in the (j′ − w/2) th column of Tbr is nonzero, for any j ∈ {w/2 +
1, . . . , w} we have

PrS∗
[
u

(`,i)
3 [j] ∈ (Dom3 ∪ ExtDom(`)

3 ) | S∗ ↓ (∪`−1
i=1Qmi , QS ,k) ∧ Good(S∗)

]
≤ qS + wqC/2

2n − qS − wqC/2
.

We proceed to consider v(`,i)
3 [j] and u(`,i)

4 [j]. Note that

u
(`,i)
3

[
1..w2

]
= Tul · u(`,i)

2

[
1..w2

]
⊕ Tur · v(`,i)

2

[w
2 + 1..w

]
⊕ k2

[
1..w2

]
.

Gathering this and Eqs. (16) and (4), it can be seen v(`,i)
3 [w/2 + 1..w] is written as

v
(`,i)
3

[w
2 + 1..w

]
= T−1

ur · Tul · u(`,i)
3

[
1..w2

]
⊕ T−1

ur · u
(`,i)
4

[
1..w2

]
⊕ f1(k3)

[
1..w2

]
= T−1

ur · Tul · Tur · v(`,i)
2

[w
2 + 1..w

]
⊕ f2

(
u

(`,i)
2

[
1..w2

]
, u

(`,i)
4

[
1..w2

]
, k2, k3

)
, (18)

where f2 is a (complicated) function of u(`,i)
2 [1..w/2], u(`,i)

4 [1..w/2], k2, and k3, and is
independent from v

(`,i)
2 [w/2 + 1..w]. Similarly,

u
(`,i)
4

[w
2 + 1..w

]
=
(
Tbr · T−1

ur · Tul ⊕ Tbl
)
· Tur · v(`,i)

2

[w
2 + 1..w

]
⊕ f3

(
u

(`,i)
2

[
1..w2

]
, u

(`,i)
4

[
1..w2

]
, k2, k3

)
, (19)

where f3 is independent from v
(`,i)
2 . As we assumed that neither T−1

ur ·Tul ·Tur nor (Tbr ·T−1
ur ·

Tul⊕Tbl) ·Tur contains zero entries (see Definition 2), and,—by Lemma 4,—conditioned on
¬Bad(S∗) and the values in Rng2∪ExtRng

(`)
2 , there exists j′ ∈ {w/2 + 1, . . . , w} such that

v
(`,i)
2 [j′] = S∗2

(
u

(`,i)
2 [j′]

)
is uniform in ≥ 2n − qS − wqC/2 possibilities, the probability to

have v(`,i)
3 [j] ∈ Rng3 ∪ExtRng

(`)
3 or u(`,i)

4 [j] ∈ Dom4 ∪ExtDom(`)
4 is at most 2(qS+wqC/2)

2n−qS−wqC/2 .
Summing over the β`w/2 choices of (i, j) ∈ {1, . . . , β`} × {w/2 + 1, . . . , w}, we reach

Pr
[
(C-1) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]
≤ 3β`w(qS + wqC/2)

2(2n − qS − wqC/2) .

Next, consider (C-2). Depending on whether i1 = i2, we will divide the discussion into
two cases.

For the case of i1 = i2 ∈ {1, . . . , β`}, fix distinct j1, j2 ∈ {w/2 + 1, . . . , w}. Consider
the condition u

(`,i1)
3 [j1] = u

(`,i1)
3 [j2] first. By Lemma 4, conditioned on Good(S∗) and

the values in Rng2 ∪ ExtRng(`)
2 , there exists j3 ∈ {w/2 + 1, . . . , w} such that v(`,i)

2 [j3] is
uniform in at least 2n − qS − wqC/2 possibilities. We refer to Eq. (17) for the expression
of u(`,i)

3
[
w
2 + 1..w

]
. By the 2nd condition in Definition 2, the (j1 − w/2, j3 − w/2) th
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and (j2 − w/2, j3 − w/2) th entries of Tbr are not equal. So, the probability to have
u

(`,i1)
3 [j1] = u

(`,i1)
3 [j2] is equal to the probability that v(`,i)

2 [j3] equals some fixed value,
which is at most 1/(2n − qS − wqC/2).

For the conditions v(`,i1)
3 [j1] = v

(`,i1)
3 [j2] and u

(`,i1)
4 [j1] = u

(`,i1)
4 [j2], the arguments

follow similar flows. Concretely, we refer to Eqs. (18) and (19) for the expressions of
v

(`,i)
3
[
w
2 + 1..w

]
and u

(`,i)
4
[
w
2 + 1..w

]
resp. By the 2nd condition in Definition 2, the

(j1 − w/2, j3 − w/2) th and (j2 − w/2, j3 − w/2) th entries of T−1
ur · Tul · Tur differ; the

(j1 − w/2, j3 − w/2) th and (j2 − w/2, j3 − w/2) th entries of (Tbr · T−1
ur · Tul ⊕ Tbl) · Tur

differ. By these, the probability to have v(`,i1)
3 [j1] = v

(`,i1)
3 [j2] or u(`,i1)

4 [j1] = u
(`,i1)
4 [j2] is

at most 2/(2n − qS − wqC/2).
For the case of i1 6= i2, fix j1, j2 ∈ {w/2 + 1, . . . , w}. By Lemma 4, there exists

j3, j4 ∈ {w/2 + 1, . . . , w} such that:

• u
(`,i1)
2 [j3] /∈ Dom2 ∪ ExtDom(`)

2 , u(`,i2)
2 [j4] /∈ Dom2 ∪ ExtDom(`)

2 , and

• either u(`,i1)
2 [j3] 6= u

(`,i2)
2 [j3] or u(`,i1)

2 [j4] 6= u
(`,i2)
2 [j4].

Wlog assume u(`,i1)
2 [j3] 6= u

(`,i2)
2 [j3]. Note that, by ¬(B-3) (the 2nd condition), u(`,i1)

2 [j3] 6=
u

(`,i2)
2 [j5] for any j5 ∈ {w/2 + 1, . . . , w}\{j3}. Therefore, conditioned on the values

in Rng2 ∪ ExtRng(`)
2 , on the w/2 − 1 values

{
S∗2
(
u

(`,i1)
2 [j]

)}
j∈{w/2+1,...,w}\{j3}

, and on
the w/2 values

{
S∗2
(
u

(`,i2)
2 [j]

)}
j∈{w/2+1,...,w}, S

∗
2
(
u

(`,i1)
2 [j3]

)
remains uniform in at least

2n − qS − wqC/2 possibilities. By this,
• since (the (j3 − w/2) th column of) Tbr has no zero entry, the probability to have
u

(`,i1)
3 [j1] = u

(`,i2)
3 [j2] is equal to the probability that S∗2 (u(`,i1)

2 [j3]) equals some fixed
value, which is at most 1/(2n − qS − wqC/2);

• since T−1
ur · Tul · Tur has no zero entry, the probability to have v(`,i1)

3 [j1] = v
(`,i2)
3 [j2]

is at most 1/(2n − qS − wqC/2);

• since (Tbr ·T−1
ur ·Tul⊕Tbl) ·Tur has no zero entry, the probability to have u(`,i1)

4 [j1] =
u

(`,i2)
4 [j2] is at most 1/(2n − qS − wqC/2).

By a union bound over the conditions and over all i1, i2, j1, j2, we reach

PrS∗
[
(C-2) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]
≤
(
wβ`/2

2

)
· 3

2n − qS − wqC/2
.

Using qS + wqC/2 ≤ 2n/2, we finally have

PrS∗
[
BadII`(S∗) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]
≤ 12β`w(qS + wqC/2) + 3β2

`w
2

2n+2 .

Now, conditioned on ¬BadII`(S∗), S∗ ↓ (∪`−1
i=1Qmi , QS ,k), and Good(S∗), the event that

S∗ ↓ (Qm` , QS ,k) is equivalent to S∗3 and S∗4 satisfying wβ` new and distinct equations, i.e.,
S∗3
(
u

(`,i)
3 [j]

)
= v

(`,i)
3 [j], S∗4

(
u

(`,i)
4 [j]

)
= v

(`,i)
4 [j], i = 1, . . . , β`, j ∈ {w/2 + 1, . . . , w}: they

are new due to ¬(C-1), and they are distinct due to ¬(C-2) and ¬(B-3). The probability
that S∗3 and S∗4 satisfy these equations is at least 1/2wβ`n. Therefore,

Pr
[
S∗ ↓ (Qm` , QS ,k) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

≥ Pr
[
S∗ ↓ (Qm` , QS ,k) ∧ ¬BadII`(S∗) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

≥
(
1− Pr[BadII`(S∗)]

)
· Pr
[
S∗ ↓ (Qm` , QS ,k) | ¬BadII`(S∗) ∧ S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

≥
(

1− 12β`w(qS + wqC/2) + 3β2
`w

2

2n+2

)
· 1

2wβ`n .
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Case 2: Qm` is Type-II. The argument is symmetric to the above for Type-I group.
More concretely, we define a bad predicate BadII` that concerns with the 4nd round
S-box inputs as well as the other values involved in the backward computation. For
every (u(`,i)

1 , u
(`,i)
2 , v

(`,i)
4 , v

(`,i)
5 ) ∈ Qm` , i = 1, . . . , β`, define u(`,i)

4 :=
(
PSS

∗
4
)−1(v(`,i)

4 , 1
2 ),

v
(`,i)
3 := T−1 ·

(
u

(`,i)
4 ⊕ k3

)
,(

v
(`,i)
2
[
w
2 + 1..w

]
u

(`,i)
3
[
w
2 + 1..w

] ) = T̂ ·

(
u

(`,i)
2
[
1..w2

]
v

(`,i)
3
[
1..w2

]
⊕ k2

[
1..w2

] )⊕ ( 0w2
k2
[
w
2 + 1..w

] ) .
These indicate

v
(`,i)
3

[
1..w2

]
= (T−1)ur · u4

[w
2 + 1..w

]
⊕ f4

(
u4

[
1..w2

]
, k3

)
,

v
(`,i)
3

[w
2 + 1..w

]
= (T−1)br · u4

[w
2 + 1..w

]
⊕ f5

(
u4

[
1..w2

]
, k3

)
,

v
(`,i)
2

[w
2 + 1..w

]
= T−1

ur · (T−1)ur · u4

[w
2 + 1..w

]
⊕ f6

(
u2

[
1..w2

]
, u4

[
1..w2

]
, k2, k3

)
,

u
(`,i)
3

[w
2 + 1..w

]
= Tbr · T−1

ur · (T−1)ur · u4

[w
2 + 1..w

]
⊕ f7

(
u2

[
1..w2

]
, u4

[
1..w2

]
, k2, k3

)
,

where f4, f5, f6, f7 are functions independent from u4
[
w
2 + 1..w

]
= (S∗4 )−1

(
v4
[
w
2 + 1..w

])
.

Then, BadII`(S∗) is fulfilled, if either (C-1) or (C-2) is fulfilled:

• (C-1) There exists i ∈ {1, . . . , β`} and j ∈ {w/2 + 1, . . . , w} such that v(`,i)
2 [j] ∈

Rng2 ∪ ExtRng(`)
2 , or u(`,i)

3 [j] ∈ Dom3 ∪ ExtDom(`)
3 , or v(`,i)

3 [j] ∈ Rng3 ∪ ExtRng(`)
3 .

• (C-2) There exists distinct pairs (i, j), (i′, j′) ∈ {1, . . . , β`} × {w/2 + 1, . . . , w} such
that v(`,i)

2 [j] = v
(`,i′)
2 [j′], or u(`,i)

3 [j] = u
(`,i′)
3 [j′], or v(`,i)

3 [j] = v
(`,i′)
3 [j′].

The argument then follows similarly, using the goodness (see Definition 2) of the three
matrices (T−1)br, T−1

ur · (T−1)ur, and Tbr ·T−1
ur · (T−1)ur, and yielding wβ` new and distinct

equations on S∗2 and S∗3 . Thus Eq. (12) remains true.

4 Security Against Impossible Differential Attacks
We consider impossible differential and zero-correlation linear security in subsect. 4.1 and
4.2 resp.

4.1 Impossible Differential Security
As a warm-up, we first present our negative result on 3-round P-SPNs. We stress that this
is unconditional, i.e., the IDs exist regardless of the S-boxes and linear layers in use.

Theorem 2. There always exist IDs on 3-round P-SPNs with rate r < 1, even if two
different linear layers T1 and T2 are used in the first two rounds respectively.

Proof. We show ∃∆1,∆4 ∈ F(1−r)w such that Pr(∆1‖0wr
3 rounds−−−−−→ ∆4‖0wr) = 0. Fix

∆1, and assume that T1 · (∆1‖0wr) = ∆2‖∆3 for ∆2 ∈ Fw(1−r) and ∆3 ∈ Fwr, which
means Pr(∆1‖0wr

Round 1−−−−−→ ∆2‖∆3) = 1. Now, for any ∆4, to have Pr(∆2‖∆3
Rounds 2, 3−−−−−−−→

∆4‖0wr) > 0, there shall exist X ∈ Fwr that (at least) fulfills T2 · (∆2‖X) = ∆4‖0wr.
Viewing X as unknowns, the number of unknowns wr is less than the equations w.
Thus there necessarily exits ∆4 for which no X satisfies T2 · (∆2‖X) = ∆4‖0wr, i.e.,
Pr(∆1‖0wr

3 rounds−−−−−→ ∆4‖0wr) = 0.
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The positive results are stated w.r.t. the idealized model P-SPN structures EP-SPN
(see Definition 1), i.e., it relies on the assumption that the IDs are independent from the
S-boxes. Formally, this means Pr(∆1

E
S−−→ ∆2) > 0 as long as χ(∆1) = χ(∆2), where ES is

a “(full) S-layer structure”. Under this assumption, we have the main result of this section,
i.e., the provable security of 4-round, rate 3/4 P-SPN structures EP-SPN using the same
MDS linear layer T in every round.

Theorem 3. When w + 2 ≤ 2n, for the P-SPN structure EP-SPN built upon an MDS
linear layer T and with rate r ≥ 3/4, there does not exist 4-round truncated impossible
differentials.

Proof. We proceed by showing that every pair (∆in,∆out) of differences is possible
in EP-SPN, i.e., writing ∆1 = ∆in[1..w(1 − r)],∆2 = ∆in[w(1 − r) + 1..w], ∆10 =
∆out[1..w(1 − r)],∆12 = ∆out[w(1 − r) + 1..w], there exists a sequence of differences
∆3,∆5,∆6,∆8,∆9,∆11 ∈ Fwr, ∆4,∆7 ∈ Fw(1−r), such that:

• χ(∆2) = χ(∆3) (so that Pr(∆2
E
S−−→ ∆3) > 0); χ(∆5) = χ(∆6); χ(∆8) = χ(∆9);

χ(∆11) = χ(∆12); and

T ·
(

∆1
∆3

)
=
(

∆4
∆5

)
, T ·

(
∆4
∆6

)
=
(

∆7
∆8

)
, T ·

(
∆7
∆9

)
=
(

∆10
∆11

)
.

We distinguish three cases as follows.

Case 1: ∆2 = ∆12 = 0wr. Then ∆4,∆5,∆7,∆9 are fixed by ∆1 and ∆10, and our
goal is to prove the existence of ∆6 and ∆8 that satisfy the above constraints. Since T is
MDS, wt(∆1‖∆2) = wt(∆1) ≤ w(1− r) implies wt(∆4‖∆5) ≥ w + 1− w(1− r) = wr + 1.
Furthermore, wt(∆6) = wt(∆5) ≥ w + 1− wt(∆1)− wt(∆4) ≥ w + 1− 2w(1− r) ≥ w

2 + 1
by r ≥ 3/4. Similarly, wt(∆8) ≥ w + 1− 2w(1− r) ≥ w

2 + 1.
Assume that the set of indices I = {i1, . . . , iα} is such that ∆6[i] 6= 0 if and only if

i ∈ I. Similarly, assume that J = {j1, . . . , jβ} is such that ∆8[j] 6= 0 if and only if j ∈ J .
As argued, α = |I| ≥ w/2 + 1, β = |J | ≥ w/2 + 1. Then the above 2nd equation is written
as

T ·


∆4

∆6[1]
. . .

∆6[wr]

 =


∆7

∆8[1]
. . .

∆8[wr]

 .

It can be seen there exists a matrix T ′ obtained by rearranging the rows and columns of
T , such that

T ′ ·



∆4
0wr−α

∆6[iw
2 +1]

. . .
∆6[iα]
∆6[i1]
. . .

∆6[iw
2

]


=



∆7
0wr−β

∆8[jw
2 +1]

. . .
∆8[jβ ]
∆8[j1]
. . .

∆8[jw
2

]


=⇒


∆6[i1]
. . .

∆6[iw
2

]
∆8[j1]
. . .

∆8[jw
2

]

 = T̂ ′ ·



∆4
0wr−α

∆6[iw
2 +1]

. . .
∆6[iα]

∆7
0wr−β

∆8[jw
2 +1]

. . .
∆8[jβ ]


︸ ︷︷ ︸

denoted z

.
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Now, once we fix ∆6[iw
2 +1], . . . ,∆6[iα],∆8[jw

2 +1], . . . ,∆8[jβ−1] to any non-zero values, the
number of non-zero choices for ∆8[jβ ] that give rise to ∆6[i1] 6= 0, . . . ,∆6[iw

2
] 6= 0,∆8[j1] 6=

0, . . . ,∆8[jw
2

] 6= 0 is at least 2n − w − 1. The argument is as follows. Write

T̂ ′ =

 tT
1,1 t1,2
. . . . . .
tT
w,1 tw,2

 ,

where t1,1, . . . , tw,1 ∈ Fw−1, t1,2, . . . , tw,2 ∈ F. Note that T ′ is MDS, since it is obtained
by rearranging rows and columns of T . By Lemma 1, T̂ ′ is also MDS, meaning that
t1,2 6= 0, . . . , tw,2 6= 0. Therefore, (1) To ensure ∆6[i1] 6= 0, ∆8[jβ ] shall fulfill ∆8[jβ ] 6=
t−1
1,2 ·

(
tT

1,1 · z[1..w − 1]
)
; . . . ; (w) To ensure ∆8[jw

2
] 6= 0, ∆8[jβ ] shall fulfill ∆8[jβ ] 6=

t−1
w,2 ·

(
tT
w,1 · z[1..w− 1]

)
. These plus the condition ∆8[jβ ] 6= 0 exclude at most w+ 1 values

in total, and thus the claim.
By these, when 2n − w − 1 ≥ 1, there always exist ∆6[i1] 6= 0, . . . ,∆6[iα] 6= 0,∆8[j1] 6=

0, . . . ,∆8[jβ ] 6= 0 satisfying T · (∆4‖∆6) = (∆7‖∆8), which means Pr(∆1‖0wr
4 rounds−−−−−→

∆10‖0wr) > 0, i.e., the 4-round differential is possible.

Case 2: ∆2 6= 0wr,∆12 = 0wr. Then ∆7‖∆9 is fixed by ∆10, and wt(∆8) = wt(∆9) ≥
w/2 + 1 as argued. We show that there exists ∆3 ∈ Fwr such that(

∆4
∆5

)
= T ·

(
∆1
∆3

)
satisfies wt(∆5) ≥ w/2 + 1—and then, the existence of the other intermediate differences
follow from the above argument for Case 1. For this, note that since ∆2 6= 0wr, there
exists i ∈ {1, . . . , wr} such that ∆3[i] 6= 0. By this, write

T =

 tT
1,1 tT

1,2 t1,3 tT
1,4

. . . . . . . . . . . .
tT
w,1 tT

w,2 tw,3 tT
w,4

 ,

where t1,1, . . . , tw,1 ∈ Fw(1−r), t1,2, . . . , tw,2 ∈ Fi−1, t1,3, . . . , tw,3 ∈ F, and t1,4, . . . , tw,4 ∈
Fwr−i. Then, given ∆3[1..i− 1] and ∆3[i+ 1..wr], to ensure that ∆5[j] 6= 0 for w/2 + 1
indices j = w/2, . . . , w, ∆3[i] can take any value in the set F\

{
0, t−1

w
2 ,3
· (tT

w
2 ,1
·∆1 ⊕ tT

w
2 ,2
·

∆3[1..i−1]⊕tT
w
2 ,4
·∆3[i+1..wr]), . . . , t−1

w,3 ·(tT
w,1 ·∆1⊕tT

w,2 ·∆3[1..i−1]⊕tT
w,4 ·∆3[i+1..wr])},

the size of which is at least 2n− w
2 −2. By this and our assumption w+2 ≤ 2n ⇒ w

2 +2 < 2n,
such ∆3[i]—and further ∆3—exist, and thus the claim.

Case 3: When ∆2 = 0wr while ∆12 6= 0wr, the argument is similar to Case 2 by
symmetry; when ∆2 6= 0wr and ∆12 6= 0wr, following the same line as Case 2, it can
be shown that there always exists ∆3,∆9 ∈ Fwr such that ∆4‖∆5 = T · (∆1‖∆3) and
∆7‖∆9 = T−1 · (∆10‖∆11) satisfy wt(∆5) ≥ w/2 + 1,wt(∆11) ≥ w/2 + 1, and then the
possibility is established by a similar counting argument as before. These conclude the
proof.

4.2 Zero-Correlation Linear Security
The positive results regarding ZC attacks again rely on structures. Formally, this means
corE

S
(α1, α2) 6= 0 as long as χ(α1) = χ(α2). Under this idealized assumption, Sun et

al. showed that the existence of impossible differential in an SPN is equivalent to the
existence of zero correlation linear hull in the “dual structure” of this SPN [SLG+16]. But
the “dual structure” of P-SPNs has never been formalized. For simplicity, we establish the
ZC security via Theorem 3.
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Theorem 4. When w+2 ≤ 2n, for the P-SPN structure EP-SPN built upon an MDS linear
layer T and with rate r ≥ 3/4, there does not exist 4-round zero correlation linear hull.

Proof. Assume that C4 is the 4-round rate r P-SPN structure EP-SPN using an MDS T as
the linear layer. For any α1, α2 ∈ Fw\{0w}, we show that

corC4(α1, α2) = 0 =⇒ Pr
(
α1

C4′−−→ α3

)
= 0, (20)

where C4′ is the rate r P-SPN structure EP-SPN built upon the MDS linear layer (TT)−1

(since T is MDS, TT is also MDS and invertible). This implies the claim by Theorem 3.
To show Eq. (20), we show Pr

(
α1

C4′−−→ α3
)
> 0 =⇒ corC4(α1, α2) > 0. To this end,

we write α1 = ∆1‖∆2, α2 = ∆10‖∆12, ∆1,∆10 ∈ Fw(1−r), ∆2,∆12 ∈ Fwr, then there
exists a sequence of masks ∆3,∆5,∆6,∆8,∆9,∆11 ∈ Fwr, ∆4,∆7 ∈ Fw(1−r), such that
χ(∆2) = χ(∆3); χ(∆5) = χ(∆6); χ(∆8) = χ(∆9); χ(∆11) = χ(∆12); and

(TT)−1·
(

∆1
∆3

)
=
(

∆4
∆5

)
, (TT)−1·

(
∆4
∆6

)
=
(

∆7
∆8

)
, (TT)−1·

(
∆7
∆9

)
=
(

∆10
∆11

)
.

Note that this implies

(∆T
1 ,∆T

3 ) = (∆T
4 ,∆T

5 ) · T, (∆T
4 ,∆T

6 ) = (∆T
7 ,∆T

8 ) · T, (∆T
7 ,∆T

9 ) = (∆T
10,∆T

11) · T,

which further means corC4(α1, α2) > 0. Thus the claim.

5 Linear Layers for P-SPNs with Rate Below 1/2
We first establish a theorem regarding the differential propagation in such “sparse” P-SPNs.
The construction of the linear layers will be clear during its proof. For conceptual
convenience, in (and only in) this section we let ρ = r−1, and write 1/ρ (instead of r) for
the rate.

Theorem 5. For any integer ρ such that ρw ≤ 2n, for rate 1/ρ P-SPNs, ρ rounds are
necessary and sufficient to ensure at least one active S-box during differential propagation.

Proof. Necessity. This seems a folklore. Formally, assume that the linear layers used
in the i th round is Ti. Then, by construction, if there exists a (ρ− 1)-round differential
characteristic with no active S-box, then there exists ∆1, . . . ,∆ρ−1 ∈ Fw such that:

• (C-1) T1 ·∆1 = ∆2, T2 ·∆2 = ∆3, . . . , Tρ−2 ·∆ρ−2 = ∆ρ−1, and

• (C-2) wt
(
∆1
[ (ρ−1)w

ρ + 1..w
])

= 0, . . . ,wt
(
∆ρ−1

[ (ρ−1)w
ρ + 1..w

])
= 0.

(So that ∆1
Round 1−−−−−→ ∆2

Round 2−−−−−→ ...
Round ρ−2−−−−−−−→ ∆ρ−1

Round ρ−1−−−−−−−→ ∆ρ is a (ρ − 1)-round
characteristic with no active S-box. Note that the final round only contains a partial
S-box layer, and thus the difference ∆ρ−1 is invariant.)

We show that the above equations are equivalent to a linear equation system with
(ρ−1)2wn

ρ equations and (ρ−1)2wn
ρ unknowns, and this system always has non-zero solutions.

For this, consider the i th equation Ti ·∆i = ∆i+1. By condition (C-2), it can be written
in the following block form(

Ti,1 ?
Ti,2 ?

)(
∆i

[
1.. (ρ−1)w

ρ

]
0
w
ρ

)
=
(

∆i+1
[
1.. (ρ−1)w

ρ

]
0
w
ρ

)
,
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T1,1

T1,2

I

0

...
. . .

T2,1

T2,2

I

0

Tρ−2,1

Tρ−2,2

I

0

. . .

0

∆1
[
1.. (ρ−1)w

ρ

]
∆2
[
1.. (ρ−1)w

ρ

]
×

∆ρ−1
[
1.. (ρ−1)w

ρ

]∆ρ−2
[
1.. (ρ−1)w

ρ

]
0

0

∆3
[
1.. (ρ−1)w

ρ

]
0

0 = 0(ρ−2)w

Figure 4: The homogeneous linear equation system derived in the proof of Theorem 5.

where Ti,1 ∈ F
(ρ−1)w

ρ × (ρ−1)w
ρ , Ti,2 ∈ F

w
ρ ×

(ρ−1)w
ρ . The right most w

ρ columns of Ti are
multiplied by 0w/ρ and have no influence, and thus we simply refer to them by ?. The
equations imply the following homogeneous system:(

Ti,1 I
Ti,2 0

)( ∆i

[
1.. (ρ−1)w

ρ

]
∆i+1

[
1.. (ρ−1)w

ρ

] ) = 0
2(ρ−1)w

ρ ,

where the I is the identity matrix in F
(ρ−1)w

ρ × (ρ−1)w
ρ .

For i = 1, . . . , ρ− 2, we obtain ρ− 2 such homogeneous systems on (ρ−1)2w
ρ unknowns

∆1[1.. (ρ−1)w
ρ ], . . . ,∆ρ−2[1.. (ρ−1)w

ρ ],∆ρ−1[1.. (ρ−1)w
ρ ]. Combining them yields a homoge-

neous system shown in Fig. 4. The system has (ρ−1)2w
ρ unknowns, and its coefficient

matrix has only (ρ− 2)w rows. As (ρ− 2) < (ρ−1)2

ρ , this system always has (approximately
2nw
ρ ) non-zero solutions, and every such solution turns out to be a differential characteristic

on ρ− 1 rounds with no active S-box.

Sufficiency. We explicitly construct such a tuple of ρ−1 transformations TM 1, . . . , TMρ−1
via the following steps.

1. Construct a [ρw,w, (ρ− 1)w + 1] MDS code. Assume that

G =
(
GT

1 , G
T
2 , . . . , G

T
ρ

)
∈ Fw×2n

is the generator matrix of this code, where GT
1 , . . . , G

T
ρ ∈ Fw×w.

2. Then the ρ− 1 matrices are defined by the (transpose of the) ρw columns of G as
TMi = G−1

1 ·Gi+1 ·
∏i−1
j=1 TM

−1
j . More clearly,

TM 1 = G−1
1 ·G2,

TM 2 = G−1
1 ·G3 · TM−1

1 ,

TM 3 = G−1
1 ·G4 · TM−1

1 · TM
−1
2 ,

TM 4 = G−1
1 ·G5 · TM−1

1 · TM
−1
2 · TM

−1
3 , . . .

Using the above TM 1, . . . , TMρ−1, we argue that there does not exist ρ-round differential
with 0 active S-box. Assume otherwise, then there exists an input difference ∆1 such
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that wt(∆1[ (ρ−1)w
ρ + 1..w]) = 0, wt(∆2[ (ρ−1)w

ρ + 1..w]) = 0, ..., wt(∆ρ[ (ρ−1)w
ρ + 1..w]) = 0,

where ∆2 = TM 1 ·∆1, ..., ∆ρ = TMρ−1 ·∆ρ−1. By our construction, (∆1, . . . ,∆ρ) is a
code word of a [ρw,w, (ρ − 1)w + 1] code. Therefore,

∑ρ
i=1 wt(∆i) ≥ (ρ − 1)w + 1. By

the pigeonhole principle, there exists i ∈ {1, . . . , ρ} such that wt(∆i) ≥ (ρ−1)w
ρ + 1, and

thus wt(∆i[ (ρ−1)w
ρ + 1..w]) ≥ 1. This contradicts our assumption of no active S-box and

completes the proof.

Note that, while the above transformations TM 1, TM 2, . . . appear quite complicated,
they are all MDS. To see this, consider TMi = G−1

1 ·Gi+1 ·
∏i−1
j=1 TM

−1
j . It can be seen the

set {(x, TMi ·x) : x ∈ Fw} is equal to the set {(G−1
1 ·Gi ·TMi−1 · . . . ·TM 1 ·x,G−1

1 ·Gi+1 ·x) :
x ∈ Fw}, which further equals {(Gi · x,Gi+1 · x) : x ∈ Fw} by the definitions. By the
property of MDS codes, the set {(xT ·GT

i , x
T ·GT

i+1) : x ∈ Fw} constitute all the codewords
of a small MDS code. Therefore, TMi is MDS.

Practical parameters. It has been proved that, when w ≥ 2, a linear [ρw,w, (ρ− 1)w+ 1]
MDS code exists only if ρw ≤ 2n + w − 1 [MS77, Corollary 7]. Though, for general w,
explicit constructions are only given for ρw ≤ 2n + 1 using the theory of Reed-Solomon
codes [MS77, Theorem 9]. We refer to [MS77, Theorem 9] for the detailed construction.
This means the above approach for rate r is effective iff. wr−1 ≤ 2n+1 (recall that ρ = r−1),
meaning an inapplicability for very small n. Indeed, a typical choice in the lightweight
setting is to use 4-bit S-boxes, i.e., n = 4. Unfortunately, even if we target a (smaller)
64-bit blockcipher, i.e., w = 16, the [24 + 1, 16, 2] does not imply even a single MDS linear
transformation. Similarly, nothing meaningful can be achieved for the LowMC parameter
n = 3 [ARS+15].

Though, meaningful results can be derived for larger n. In detail, assuming targeting
128-bit P-SPNs with the AES parameter n = 8 (i.e., w = 16), [64, 16, 49] codes can be
constructed for P-SPNs with rate 1/4 (i.e., 4 S-boxes per round, matching the Zorro
parameters [GGNS13]), while [128, 16, 113] codes can be constructed for P-SPNs with rate
1/8 (i.e., 2 S-boxes per round). See the column with the header (8,128) in Table 2.

Larger values for n are certainly preferred, but such S-boxes seem to be more costly.
To remedy, we advocate using large-but-weak S-boxes, which significantly enlarges the
design space. For example, 11-bit S-boxes with acceptable performance can be found
in [BDMD+20] or constructed via the SHA3 approach [BDPA11], 64-bit ARX S-boxes
have been recently constructed [BBdS+20], and power-based S-boxes on non-binary field
of size around 2255 was used in [GKK+19]. As discussed in [BDMD+20], some of these
large S-boxes are even cheaper for relevant scenarios such as side-channel masking. As
shown in Table 2, with n = 11, if we target a 352-bit P-SPN (i.e., w = 32), then linear
layers for P-SPNs with rates ranging from 1/2 to 1/32 can be constructed. We omit the
calculations for various other meaningful cases and only summarize some (im)possibilities
in Table 2.

6 Conclusion
We provide the first systematic provable security analysis of SP networks with partial non-
linear layers (P-SPNs), regarding SPRP security and provable security against impossible
differential and zero-correlation linear attacks. For P-SPNs with rate r < 1/2, r−1 ∈ N, we
also propose the first dedicated linear layers that consist of r−1−1 different transformations
and ensures at least one active S-boxes in r−1 rounds. Our results have justified P-SPNs
as a sound approach comparable to or even surpass the normal SPNs in some well-defined
sense.

We leave several open problems as follows.
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Table 2: Linear layers for P-SPNs: (in)applicability of our MDS code-based method. The
numbers (which literally equal wr−1) indicate the length of the MDS code required for the
corresponding group of parameters, which is followed by either × meaning that linear layers
cannot be constructed via our method & the explicit constructions of [MS77, Theorem 9],
or X otherwise. “-” means the group of parameters is meaningless due to rw < 1.

(n,blocksize) (4,64) (8,64) (8,128) (8,256) (9,144) (11,88) (11,352)
Rate r = 1/2 32 × 16 X 32 X 64 X 32 X 16 X 48 X
Rate r = 1/4 64 × 32 X 64 X 128 X 64 X 32 X 96 X
Rate r = 1/8 128 × 64 X 128 X 256 X 128 X 64 X 192 X
Rate r = 1/16 256 × - 256 X 512 × 256 X - 384 X
Rate r = 1/32 - - - 1024 × 512 X - 1024 X

(i) Characterize the security of 4-round rate 1/2 P-SPN. We didn’t find any Chosen-
Ciphertext Attack (CCA), and it may be possible to prove CCA security using a
more complicated analysis and a stronger assumption on the linear layer.

(ii) Seek for principled design for good linear layers given in Definition 2. Note that
if T is an extended Cauchy matrix fulfilling certain conditions [RS85], then T is
MDS and the conditions on Tbr are indeed fulfilled. We remark that (extended)
Cauchy matrices were helpful in quite a number of prior nice works [KR18, GKK+19].
Though, it remains to verify if the other (much more complicated) requirements are
all fulfilled & to characterize the conditions (we are not aware of relevant research).

(iii) Investigate whether larger rates imply better (at least non-decreasing) security.
Intuitively, this seems true. Our proof of Theorem 1 could indeed be tweaked to cover
5-round P-SPNs with rate beyond 1/2 (i.e., by revealing the “extra” S-box queries
inside the construction queries to the adversary, and treating them equivalently as
those in QS), but general positive results seem difficult and remain open.

(iv) Investigate whether computational hardness assumptions (such as the hardness of
LPN or MQ problems) help breaking the troublesome n-bit information theoretic
security barrier in P-SPNs.

(v) Seek for provable security of SPNs and P-SPNs against ID/ZC attacks under more
realistic assumptions. As mentioned, attempts have been made w.r.t. AES-like
SPNs [WJ18].

(vi) Seek for more persuasive theory results justifying the advantages of P-SPNs. Pos-
sible approaches include lower bounds on algebraic degrees (as recently explored
in [HLLT20]) and certain forms of security amplifications (as in [Vau03, MPR07,
LTV21]).

(vii) Explore more applications of large-but-weak S-boxes in concrete P-SPN blockciphers.
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A A Chosen-Plaintext Attack on 3 Rounds
Nandi showed that no wn-bit linear structure making less than 2w calls to the n-bit block
function can be secure [Nan15]. We adapt that idea to our context. Concretely, let C3 be
the 3-round P-SPN using any linear transformations T1, T2. I.e.,

C3Sk(x) := k3 ⊕ PSS3(k2 ⊕ T2(PSS2(k1 ⊕ T1(PSS1(k0 ⊕ x, 1/2)), 1/2)), 1/2).

We show a chosen-plaintext attacker D, given access to an oracle O : {0, 1}wn → {0, 1}wn,
that distinguishes whether O is an instance of C3Sk using uniform keys or a wn-bit random
permutation. The attacker D proceeds as follows:

1. Fix δ ∈ F\{0} in arbitrary, let ∆3 = δ‖0w/2−1, and compute two wn/2-bit differences
∆1 := (T1)−1

bl ·∆3 and ∆2 := (T1)ul·∆1. Note that this means T1·(∆1‖0w/2) = ∆2‖∆3.

2. For all δ∗ ∈ F\{0}, compute ∆∗ := T2 · (∆2‖δ∗‖0w/2−1), and add ∆∗[1..w/2] into a
set Set.5

5Here we consider the information theoretic setting, with no limit on the time complexity. In practice,
n is usually small, and this enumeration remains feasible.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
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3. Choose inputs x, x′ such that x⊕ x′ = ∆1‖0w/2, query O(x) and O(x′) to obtain y
and y′ respectively, and compute the output difference ∆4 := y ⊕ y′.

4. If ∆4[1..w/2] ∈ Set then output 1; otherwise, output 0.

It is not hard to see that if O is a wn-bit random permutation then D outputs 1 with
probability O(2n/2wn/2). On the other hand, we claim that when O is an instance
of the 3-round P-SPN then D always outputs 1. For this, consider the propagation
of the input difference ∆1‖0w/2. By step 1, the 2nd round input difference must be
∆2‖∆3. Since ∆3 = δ‖0w/2−1, the output difference of the PSS2 action must be in the set
{δ∗‖0w/2−1}δ∗∈F\{0} of size 2n−1. This means the 3rd round input difference, denoted ∆∗3,
must be in a set of size 2n− 1. Since the 3rd round PSS3 action does not affect ∆∗3[1..w/2],
it can be seen ∆4[1..w/2], the first half of the final output difference, is also in a set of size
2n − 1. Furthermore, this set is the set Set derived in step 2. This completes the analysis.

B Candidate Good Linear Layers for Definition 2
Using the primitive polynomial x8 + x4 + x3 + x2 + 1, two candidates for n = 8 and
w = 8, 16 respectively are as follows.

0xC4 0x57 0xE6 0xA7 0x63 0xEF 0xE1 0xBE
0x49 0xAA 0x0A 0xC5 0x88 0x7B 0xD6 0x08
0x6A 0xB3 0xF8 0xE9 0x26 0x9D 0xBE 0xCC
0xF8 0x04 0xEA 0x36 0x42 0xA4 0x1A 0xDD
0x1B 0x46 0x3B 0xAB 0xD3 0x43 0x78 0x24
0x3C 0xAB 0x03 0xA4 0xE5 0x1F 0x22 0xE9
0x23 0x20 0x84 0xA8 0x61 0xEB 0x61 0xC5
0xB5 0x8C 0x71 0xE3 0x93 0x09 0x12 0x22

 ,



0x4A 0xE5 0x32 0x5C 0xFF 0xF2 0xFB 0x14 0x85 0x69 0x58 0xEA 0x57 0xF6 0x9E 0x0E
0xC9 0x9D 0xA3 0xAD 0x5D 0xA5 0xEE 0xF7 0x6C 0x30 0x5A 0x7E 0x17 0x36 0x21 0x75
0xE5 0x81 0x8D 0xF7 0x66 0x29 0xA0 0x70 0xD4 0xB9 0x5D 0x93 0xE1 0x1A 0x6F 0x2E
0x84 0x55 0xD8 0x51 0x7C 0x8F 0xE4 0x9A 0x5F 0x4B 0x7A 0x5C 0xC4 0xFC 0x9C 0xD1
0x41 0xF1 0x35 0x6F 0x06 0xFB 0x17 0x1C 0x57 0x18 0x69 0xAA 0x33 0x39 0xE2 0xD7
0x61 0xDE 0x26 0x7B 0x41 0xCF 0xBD 0xD5 0xBA 0xFA 0x57 0xD6 0x88 0xE9 0x58 0xF9
0x33 0xD5 0x18 0x8C 0x6D 0x4C 0xCE 0x18 0xEE 0x0F 0x20 0xD7 0xEE 0x1D 0xC9 0xBF
0x4E 0xE0 0x66 0x33 0x8A 0xC9 0xC9 0x27 0xC7 0xC7 0x42 0x27 0xAE 0xBD 0xC3 0x09
0x54 0x33 0xC7 0x09 0x90 0x81 0xEA 0xC8 0xB7 0xD2 0xC5 0x79 0x1A 0x0F 0x60 0xB6
0xB1 0x93 0x3D 0xF3 0xCD 0xA1 0x73 0xB2 0x66 0x07 0x82 0x3F 0x02 0x42 0x81 0x73
0xF8 0x9F 0x68 0xEC 0x86 0xC5 0xEC 0xC8 0x9E 0xDE 0x99 0x25 0x26 0x83 0xAB 0xAF
0xBF 0x0E 0xD4 0x53 0xDF 0x9D 0x95 0x84 0x25 0x2C 0x74 0xFC 0xE9 0x9F 0x98 0x78
0xB5 0x81 0xCA 0x96 0x75 0x83 0x57 0x39 0x02 0xCF 0x4B 0x57 0xFB 0x02 0x2D 0xE0
0x99 0xF7 0x30 0xEC 0x57 0xD3 0x96 0x29 0xD3 0xC4 0x27 0x0E 0x2A 0x88 0x74 0x70

0xDE 0x6A 0xED 0x14 0x59 0x94 0xC4 0x4D 0x8D 0x11 0xBC 0x78 0xA0 0xDC 0x82 0xAE
0xEE 0x9A 0xF9 0xD6 0x66 0xFD 0x18 0x95 0x91 0xBD 0x02 0x68 0x39 0x50 0xF4 0x31


.

Using the primitive polynomial x11 + x2 + 1 a candidate for n = 11 and w = 8 is as follows:
0x416 0x297 0x0D9 0x5EC 0x357 0x64A 0x417 0x112
0x05C 0x603 0x3DD 0x226 0x4DB 0x700 0x65C 0x356
0x743 0x269 0x7D9 0x5D3 0x707 0x24A 0x262 0x1AF
0x214 0x0D7 0x596 0x035 0x685 0x5B9 0x6EC 0x721
0x357 0x53D 0x640 0x6EE 0x6EE 0x117 0x1A1 0x0FA

0x4AB 0x757 0x1AF 0x385 0x790 0x090 0x261 0x1D3
0x44D 0x55A 0x5D8 0x0BD 0x79E 0x69C 0x3CE 0x7A8
0x2AD 0x11B 0x37D 0x7FB 0x0EF 0x1A3 0x6CA 0x24A

 .

We have also found plenty of candidates for n = 11 and w up to 32, which are however omitted
for the sake of space.

C 4 Rounds with Rate 1/2
While it might appear that we can follow the proof of 4-round Feistel network [LR88] to get
a proof for 4-round rate 1/2 P-SPNs, we find this untrue for w ≥ 4. In detail, the proof
idea for 4-round Feistel is as follows. It can be shown that, with high probability, the qC
construction queries ((x(1), y(1)), . . . , (x(qC), y(qC))) induce 2qC distinct pairs of input/outputs
((u(1)

2 , v
(1)
2 ), . . . , (u(qC)

2 , v
(qC)
2 ), (u(1)

3 , v
(1)
3 ), . . . , (u(qC)

3 , v
(qC)
3 )) on the 2nd and 3rd round functions

G2, G3. Then, the probability that an interaction yields the transcript ((x(1), y(1)), . . . , (x(qC), y(qC)))
is Pr[G2(u(i)

2 ) = v
(i)
2 ∧G3(u(i)

3 ) = v
(i)
3 , i = 1, . . . , qC ] = 1/22qCn, which is close to the ideal world.

Following this, one may expect the same in 4-round rate 1/2 P-SPNs, i.e., qC construction
queries ((x(1), y(1)), . . . , (x(qC), y(qC))) induce wqC distinct pairs of input/outputs ((u(1)

2 [w2 +
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1], v(1)
2 [w2 +1]), . . . , (u(qC)

2 [w], v(qC)
2 [w]), (u(1)

3 [w2 +1], v(1)
3 [w2 +1]), . . . , (u(qC)

3 [w], v(qC)
3 [w])) on the 2nd

and 3rd round S-boxes. It is indeed the case for w = 2 (which is, however, less meaningful): briefly,
for any distinct ((x, y), (x′, y′)), if x[2] 6= x′[2] then the randomness of S1 ensures u2[2] 6= u′2[2]
w.h.p., else the MDS property of the linear layer T ∈ F2×2 ensures u2[2] 6= u′2[2], and similarly for
v3[2] 6= v′3[2]. Though, for w ≥ 4, it’s easy to choose x, x′ such that T · (x⊕ x′)[w/2 + 2] = 0, i.e.,
u2[w/2 + 2] = u′2[w/2 + 2], breaking the expectation.

Facing the difficulty w.r.t. 4 rounds, we resort to more rounds for better readability. In fact, 6
rounds are needed to ensure that the qC construction queries induce wqC equations on two “fixed”
middle rounds, i.e., in the 3rd and 4th rounds. Using a slightly more sophisticated idea as in
Sect. 3.2, we tried to achieve wqC equations in the 2nd, 3rd, and 4th rounds depending on the
properties of the constructions queries in question. This enables a more (involved) proof with 5
rounds.

D Differential Security
As mentioned in Introduction, our conclusions on provable security against differential attacks are
mainly negative: some trivial security lower bounds are indeed tight.

First, recall that Theorem 5 shows ρ rounds needed for at least 1 active S-box. One naturally
asks if non-trivial lower bounds on the number of active S-boxes can be proved. Unfortunately,
we find this impossible.

Theorem 6. For any integer ρ, for rate 1/ρ P-SPNs, there always exist ρ-round differential
characteristics with only 1 active S-box, even if ρ− 1 different linear layers T1, . . . , Tρ−1 are used
in the ρ rounds.

Proof sketch. The proof is a simple extension of the existential proof for (ρ−1)-round probability-1
characteristics (Theorem 5). In detail, consider ρ+ 1 differences ∆1, . . . ,∆ρ+1 such that:

• (C-1) T1 ·∆1 = ∆2, T2 ·∆2 = ∆3, . . . , Tρ−1 ·∆ρ−1 = ∆ρ, and

• (C-2) wt
(
∆1
[ (ρ−1)w

ρ
+ 1..w

])
= 0, . . . ,wt

(
∆ρ−1

[ (ρ−1)w
ρ

+ 1..w
])

= 0; ∆ρ

[ (ρ−1)w
ρ

+ 1
]
6= 0,

and ∆ρ

[ (ρ−1)w
ρ

+ 2..w
]
6= 0wr−1.

We have proved that, for i = 1, . . . , ρ−2, we obtain a homogeneous system with (ρ−2)w equations
on (ρ−1)2w

ρ
unknowns ∆1[1.. (ρ−1)w

ρ
], . . . ,∆ρ−2[1.. (ρ−1)w

ρ
],∆ρ−1[1.. (ρ−1)w

ρ
]. The added equation

Tρ−1 ·∆ρ−1 = ∆ρ adds (ρ−1)w
ρ

+ 1 unknowns and 2w
ρ

equations. By this, the final homogeneous
system has (ρ− 1)w equations on (ρ− 1)w + 1 unknowns, which always has non-trivial solutions.
Hence, such characteristic always exists.

Second, consider r ≥ 1
3 . Using MDS linear layers, it is easy to see that the number of active

S-boxes in 2-round differential characteristics is at least w + 1− 2w(1− r), which is tight. For
3-round characteristics, w + 1− 2w(1− r) + wr = (3r − 1)w + 1 is a trivial lower bound for the
number of active S-boxes. Unfortunately, this is also tight.

Theorem 7. For rate r P-SPNs, there always exist 3-round differential characteristics with at
most (3r − 1)w + 1 active S-boxes, even if two linear layers T1, T2 are used.

Proof. We seek for a differential characteristic ∆1‖∆2 → ∆3‖0wr → ∆4‖∆5 with ∆1,∆3,∆4 ∈
F(1−r)w and ∆2,∆5 ∈ Frw requires solving the following equation system:

T1 ·
(

∆1
∆2

)
=
(

∆3
0wr

)
, T2 ·

(
∆3
0wr

)
=
(

∆4
∆5

)
.

This system can be reorganized as 2w homogeneous equations on α variables, where α =
wt(∆1) + wt(∆2) + wt(∆3) + wt(∆4) + wt(∆5). To ensure the existence of non-trivial solutions, it
has to be α ≥ 2w+ 1, which means wt(∆2) + wt(∆4) ≥ 2w+ 1− 3(1− r)w = (3r− 1)w+ 1. Thus
the claim.
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