Mixture Differential Cryptanalysis:

a New Approach to Distinguishers and Attacks on round-reduced AES

Lorenzo Grassi, IAIK, TU Graz (Austria)
March, 2019

Motivation

At Eurocrypt 2017, the first secret-key distinguisher for 5-round AES - based on the multiple-of-8 property - has been presented.

However, it seems rather hard to implement a key-recovery attack different than brute-force like using such a distinguisher: can this new observation lead to attacks on AES which are competitive w.r.t. previously known results?

Table of Contents

1 AES Design and the "Multiple-of-8" Property

2 Mixture Differential Cryptanalysis

3 New Key-Recovery Attacks for AES

4 Concluding Remarks

Part I

AES Design and the "Multiple-of-8" Property

AES
High-level description of AES [DR02]:

- block cipher based on a design principle known as substitution-permutation network;
- block size of 128 bits = 16 bytes, organized in a 4×4 matrix;
- key size of 128/192/256 bits \& 10/12/14 rounds:

Round function f

Source-code of the Figure - by Jérémy Jean - copied from https://www.iacr.org/authors/tikz/

"Multiple-of-8" property for 5-round AES [GRR17b]

Assume 5-round AES without the final MixColumns operation. Consider a set of 2^{32} chosen plaintexts with one active diagonal

$$
\left[\begin{array}{llll}
A & C & C & C \\
C & A & C & C \\
C & C & A & C \\
C & C & C & A
\end{array}\right]
$$

The number of different pairs of ciphertexts which are equal in one (fixed) anti-diagonal

$$
\left[\begin{array}{llll}
0 & ? & ? & ? \\
? & ? & ? & 0 \\
? & ? & 0 & ? \\
? & 0 & ? & ?
\end{array}\right]
$$

is a multiple of 8 with probability 1 independent of the secret key, of the details of S-Box and of MixColumns matrix.

Multiple-of-8 Property- Formal Theorem

Consider $2^{32 \cdot| |}$ plaintexts with $|\mid$ active diagonals (namely, in an affine space $\mathcal{D}_{1} \oplus a$) and the corresponding ciphertexts after 5 rounds, i.e. $\left(p^{i}, c^{i} \equiv R^{5}\left(p^{i}\right)\right)$ for $i=0, \ldots, 2^{32 \cdot \mid / I}-1$ where $p^{i} \in \mathcal{D}_{1} \oplus a$.

Theorem (Eurocrypt 2017)

For a fixed $J \subseteq\{0,1,2,3\}$, let n be the number of different pairs of ciphertexts (c^{i}, c^{j}) for $i \neq j$ such that $c^{i} \oplus c^{j}$ are equal in $4-|J|$ anti-diagonals (namely, $c^{1} \oplus c^{2} \in \mathcal{M}_{J}$):
$n:=\mid\left\{\left(p^{i}, c^{i}\right),\left(p^{j}, c^{j}\right) \mid \forall p^{i}, p^{j} \in \mathcal{D}_{\ominus} \oplus a, p^{i}<p^{j}\right.$ and $\left.c^{i} \oplus c^{j} \in \mathcal{M}_{J}\right\} \mid$.
The number n is a multiple of 8 independent of the secret key, of the details of S-Box and of MixColumns matrix.

What about a Key-Recovery Attack?

What happens if we extend the previous distinguisher into a key-recovery attack? E.g.

$$
\mathcal{D}_{l} \oplus a \underset{\text { prob. } 1}{R^{5}(\cdot)} \text { multiple-of- } 8 \underset{\text { key-guessing }}{\stackrel{R^{-1}(\cdot)}{c}} \text { ciphertexts }
$$

Problem: we need to guess the entire final round-key in order to check the property
"number of pairs of ciphertexts $\left(c^{i}, c^{j}\right)$ s.t.
is a multiple of 8 "

What about a Key-Recovery Attack?

What happens if we extend the previous distinguisher into a key-recovery attack? E.g.

$$
\mathcal{D}_{I} \oplus a \underset{\text { prob. } 1}{R^{5}(\cdot)} \text { multiple-of- } 8 \underset{\text { key-guessing }}{\stackrel{R^{-1}(\cdot)}{\text { ciphertexts }} \text { cipher }}
$$

Problem: we need to guess the entire final round-key in order to check the property
" number of pairs of ciphertexts $\left(c^{i}, c^{j}\right)$ s.t.

$$
\left\{\left(c^{i}, c^{j}\right) \mid i<j \text { and } R^{-1}\left(c^{i}\right) \oplus R^{-1}\left(c^{j}\right)=M C^{-1} \times\left[\begin{array}{llll}
0 & ? & ? & ? \\
? & ? & ? & 0 \\
? & ? & 0 & ? \\
? & 0 & ? & ?
\end{array}\right]\right\}
$$

is a multiple of 8 "

Part II

Mixture Differential Cryptanalysis

From Multiple-of-8 to Mixture Diff. Cryptanalysis

Why does the "multiple-of-8" property hold? Given a pair of plaintexts $\left(p^{1}, p^{2}\right)$ s.t. $R^{5}\left(p^{1}\right) \oplus R^{5}\left(p^{2}\right) \in \mathcal{M}$, then other pairs of texts $\left(q^{1}, q^{2}\right)$ have the same property $\left(R^{5}\left(q^{1}\right) \oplus R^{5}\left(q^{2}\right) \in \mathcal{M}\right)$, where the pairs $\left(p^{1}, p^{2}\right)$ and $\left(q^{1}, q^{2}\right)$ are not independent.

Instead of limiting ourselves to count the number of collisions and check that it is a multiple of 8, the idea is to check the relationships between the variables that generate the pairs of plaintexts $\left(p^{1}, p^{2}\right)$ and $\left(q^{1}, q^{2}\right)$.

Mixture Differential Cryptanalysis: a way to translate the "multiple-of-8" 5-round distinguisher into a simpler and more convenient one (though, on a smaller number of rounds).

From Multiple-of-8 to Mixture Diff. Cryptanalysis

Why does the "multiple-of-8" property hold? Given a pair of plaintexts $\left(p^{1}, p^{2}\right)$ s.t. $R^{5}\left(p^{1}\right) \oplus R^{5}\left(p^{2}\right) \in \mathcal{M}$, then other pairs of texts $\left(q^{1}, q^{2}\right)$ have the same property $\left(R^{5}\left(q^{1}\right) \oplus R^{5}\left(q^{2}\right) \in \mathcal{M}\right)$, where the pairs $\left(p^{1}, p^{2}\right)$ and $\left(q^{1}, q^{2}\right)$ are not independent.

Instead of limiting ourselves to count the number of collisions and check that it is a multiple of 8 , the idea is to check the relationships between the variables that generate the pairs of plaintexts $\left(p^{1}, p^{2}\right)$ and $\left(q^{1}, q^{2}\right)$.

Mixture Differential Cryptanalysis: a way to translate the "multiple-of-8" 5-round distinguisher into a simpler and more convenient one (though, on a smaller number of rounds).

Mixture Diff. Cryptanalysis - 1st Case (1/2)

Consider $p^{1}, p^{2} \in \mathcal{C}_{0} \oplus a$:

$$
p^{1}=a \oplus\left[\begin{array}{cccc}
x^{1} & 0 & 0 & 0 \\
y^{1} & 0 & 0 & 0 \\
z^{1} & 0 & 0 & 0 \\
w^{1} & 0 & 0 & 0
\end{array}\right], \quad p^{2}=a \oplus\left[\begin{array}{cccc}
x^{2} & 0 & 0 & 0 \\
y^{2} & 0 & 0 & 0 \\
z^{2} & 0 & 0 & 0 \\
w^{2} & 0 & 0 & 0
\end{array}\right]
$$

where $x^{1} \neq x^{2}, y^{1} \neq y^{2}, z^{1} \neq z^{2}$ and $w^{1} \neq w^{2}$.
For the following:

$$
p^{1} \equiv\left(x^{1}, y^{1}, z^{1}, w^{1}\right) \quad \text { and } \quad p^{2} \equiv\left(x^{2}, y^{2}, z^{2}, w^{2}\right)
$$

Mixture Diff. Cryptanalysis - 1st Case (2/2)

Given $p^{1}, p^{2} \in \mathcal{C}_{0} \oplus a$ as before:

$$
p^{1} \equiv\left(x^{1}, y^{1}, z^{1}, w^{1}\right) \quad \text { and } \quad p^{2} \equiv\left(x^{2}, y^{2}, z^{2}, w^{2}\right)
$$

it follows that
$R^{4}\left(p^{1}\right) \oplus R^{4}\left(p^{2}\right) \in \mathcal{M}_{J} \quad$ if and only if $\quad R^{4}\left(\hat{p}^{1}\right) \oplus R^{4}\left(\hat{p}^{2}\right) \in \mathcal{M}_{J}$ where

$$
\begin{array}{ll}
\hat{p}^{1} \equiv\left(x^{2}, y^{1}, z^{1}, w^{1}\right), & \hat{p}^{2} \equiv\left(x^{1}, y^{2}, z^{2}, w^{2}\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{2}, z^{1}, w^{1}\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{1}, z^{2}, w^{2}\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{1}, z^{2}, w^{1}\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{2}, z^{1}, w^{2}\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{1}, z^{1}, w^{2}\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{2}, z^{2}, w^{1}\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{1}, z^{2}, w^{2}\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{2}, z^{1}, w^{1}\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{2}, z^{1}, w^{2}\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{1}, z^{2}, w^{1}\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{2}, z^{2}, w^{1}\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{1}, z^{1}, w^{2}\right) .
\end{array}
$$

Mixture Diff. Cryptanalysis - 2nd Case

Given $p^{1}, p^{2} \in \mathcal{C}_{0} \oplus a$ as before:

$$
p^{1} \equiv\left(x^{1}, y^{1}, z^{1}, w\right) \quad \text { and } \quad p^{2} \equiv\left(x^{2}, y^{2}, z^{2}, w\right)
$$

it follows that
$R^{4}\left(p^{1}\right) \oplus R^{4}\left(p^{2}\right) \in \mathcal{M}_{J} \quad$ if and only if $\quad R^{4}\left(\hat{p}^{1}\right) \oplus R^{4}\left(\hat{p}^{2}\right) \in \mathcal{M}_{J}$
where

$$
\begin{array}{ll}
\hat{p}^{1} \equiv\left(x^{1}, y^{1}, z^{2}, \Omega\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{2}, z^{2}, \Omega\right) ; \\
\hat{p}^{1} \equiv\left(x^{2}, y^{1}, z^{1}, \Omega\right), & \hat{p}^{2} \equiv\left(x^{1}, y^{2}, z^{2}, \Omega\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{2}, z^{1}, \Omega\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{1}, z^{2}, \Omega\right) ; \\
\hat{p}^{1} \equiv\left(x^{1}, y^{1}, z^{2}, \Omega\right), & \hat{p}^{2} \equiv\left(x^{2}, y^{2}, z^{1}, \Omega\right) ;
\end{array}
$$

where Ω can take any value in $\mathbb{F}_{2^{8}}$.

Mixture Diff. Cryptanalysis - 3rd Case

Given $p^{1}, p^{2} \in \mathcal{C}_{0} \oplus a$ as before:

$$
p^{1} \equiv\left(x^{1}, y^{1}, z, w\right) \quad \text { and } \quad p^{2} \equiv\left(x^{2}, y^{2}, z, w\right)
$$

it follows that
$R^{4}\left(p^{1}\right) \oplus R^{4}\left(p^{2}\right) \in \mathcal{M}_{J} \quad$ if and only if $\quad R^{4}\left(\hat{p}^{1}\right) \oplus R^{4}\left(\hat{p}^{2}\right) \in \mathcal{M}_{J}$
where

$$
\begin{array}{ll}
\hat{p}^{1} \equiv\left(x^{1}, y^{1}, \mathcal{Z}, \Omega\right), & \\
\hat{p}^{2} \equiv\left(x^{2}, y^{2}, \mathcal{Z}, \Omega\right) ; \\
\hat{p}^{1} \equiv\left(x^{2}, y^{1}, \mathcal{Z}, \Omega\right), & \\
\hat{p}^{2} \equiv\left(x^{1}, y^{2}, \mathcal{Z}, \Omega\right) ;
\end{array}
$$

where \mathcal{Z} and Ω can take any value in $\mathbb{F}_{2^{8}}$.

Reduction to 2 Rounds AES

Since

$$
\operatorname{Prob}\left(R^{2}(x) \oplus R^{2}(y) \in \mathcal{M}_{J} \mid x \oplus y \in \mathcal{D}_{J}\right)=1
$$

we can focus only on the two initial rounds:

$$
\mathcal{C}_{I} \oplus b \xrightarrow{R^{2} \cdot(\cdot)} \mathcal{D}_{J} \oplus a^{\prime} \xrightarrow[\text { prob. } 1]{R^{2} \cdot()} \mathcal{M}_{\jmath} \oplus b^{\prime}
$$

Consider $p^{1}, p^{2} \in \mathcal{C}_{1} \oplus a$. We are going to prove that

$$
R^{2}\left(p^{1}\right) \oplus R^{2}\left(p^{2}\right) \in \mathcal{D}_{J}
$$

if and only if

$$
R^{2}\left(\hat{p}^{1}\right) \oplus R^{2}\left(\hat{p}^{2}\right) \in \mathcal{D}_{J},
$$

where $\hat{p}^{1}, \hat{p}^{2} \in \mathcal{C}_{l} \oplus a$ are defined as before.

Reduction to 2 Rounds AES

Since

$$
\operatorname{Prob}\left(R^{2}(x) \oplus R^{2}(y) \in \mathcal{M}_{J} \mid x \oplus y \in \mathcal{D}_{J}\right)=1
$$

we can focus only on the two initial rounds:

$$
\mathcal{C}_{l} \oplus b \xrightarrow{R^{2} \cdot(\cdot)} \mathcal{D}_{J} \oplus a^{\prime} \xrightarrow{R^{2}(\cdot)} \text { prob. } 1 \text { M } \mathcal{M}_{J} \oplus b^{\prime}
$$

Consider $p^{1}, p^{2} \in \mathcal{C}_{I} \oplus a$. We are going to prove that

$$
R^{2}\left(p^{1}\right) \oplus R^{2}\left(p^{2}\right) \in \mathcal{D}_{J}
$$

if and only if

$$
R^{2}\left(\hat{p}^{1}\right) \oplus R^{2}\left(\hat{p}^{2}\right) \in \mathcal{D}_{J},
$$

where $\hat{p}^{1}, \hat{p}^{2} \in \mathcal{C}_{I} \oplus a$ are defined as before.

Idea of the Proof

Given p^{1}, p^{2} and \hat{p}^{1}, \hat{p}^{2} in $\mathcal{C}_{0} \oplus a$ as before, if

$$
R^{2}\left(p^{1}\right) \oplus R^{2}\left(p^{2}\right)=R^{2}\left(\hat{p}^{1}\right) \oplus R^{2}\left(\hat{p}^{2}\right)
$$

then the previous result

$$
R^{2}\left(p^{1}\right) \oplus R^{2}\left(p^{2}\right) \in \mathcal{D}_{J} \quad \text { iff } \quad R^{2}\left(\hat{p}^{1}\right) \oplus R^{2}\left(\hat{p}^{2}\right) \in \mathcal{D}_{J}
$$

follows immediately!

Super-Box Notation (1/2)

Let super-SB(•) be defined as

$$
\text { super-SB(•) }=\text { S-Box } \circ A R K \circ M C \circ S-B o x(\cdot)
$$

2-round AES can be rewritten as

$$
R^{2}(\cdot)=A R K \circ M C \circ S R \circ \text { super }-S B \circ S R(\cdot)
$$

Super-Box Notation (2/2)

By simple computation,

$$
R^{2}\left(p^{1}\right) \oplus R^{2}\left(p^{2}\right)=R^{2}\left(\hat{p}^{1}\right) \oplus R^{2}\left(\hat{p}^{2}\right)
$$

is equivalent to
super-SB $\left(P^{1}\right) \oplus$ super-SB $\left(P^{2}\right)=\operatorname{super}-S B\left(\hat{P}^{1}\right) \oplus \operatorname{super}-S B\left(\hat{P}^{2}\right)$,
where

$$
P^{i} \equiv S R\left(p^{i}\right), \hat{P}^{i} \equiv S R\left(\hat{p}^{i}\right) \in S R\left(\mathcal{C}_{l}\right) \oplus a^{\prime} \equiv \mathcal{I} \mathcal{D}_{l} \oplus a^{\prime}
$$

for $i=1,2$.

Sketch of the Proof (1/2)

Given $P^{1}=S R\left(p^{1}\right), P^{2}=S R\left(p^{2}\right) \in \mathcal{I} \mathcal{D}_{0} \oplus a^{\prime}$, note that
$P^{1}=a^{\prime} \oplus\left[\begin{array}{cccc}x^{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & y^{1} \\ 0 & 0 & z^{1} & 0 \\ 0 & w^{1} & 0 & 0\end{array}\right], \quad P^{2}=a^{\prime} \oplus\left[\begin{array}{cccc}x^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & y^{2} \\ 0 & 0 & z^{2} & 0 \\ 0 & w^{2} & 0 & 0\end{array}\right]$

Sketch of the Proof

Since

- each column depends on different and independent variables;
- the super-SB works independently on each column;
- the XOR-sum is commutative;
then
super-SB $\left(P^{1}\right) \oplus$ super-SB $\left(P^{2}\right)=\operatorname{super}-S B\left(\hat{P}^{1}\right) \oplus \operatorname{super}-S B\left(\hat{P}^{2}\right)$
for each \hat{P}^{1} and \hat{P}^{2} obtained by mixing/swapping the columns of P^{1} and P^{2}, e.g.

$$
\hat{P}^{1}=a^{\prime} \oplus\left[\begin{array}{cccc}
x^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & y^{1} \\
0 & 0 & z^{1} & 0 \\
0 & w^{1} & 0 & 0
\end{array}\right], \quad \hat{P}^{2}=a^{\prime} \oplus\left[\begin{array}{cccc}
x^{1} & 0 & 0 & 0 \\
0 & 0 & 0 & y^{2} \\
0 & 0 & z^{2} & 0 \\
0 & w^{2} & 0 & 0
\end{array}\right]
$$

Mixture Diff. Distinguisher on 4-round AES

Consider $p^{1} \equiv\left(x^{1}, y^{1}, z^{1}, w^{1}\right), p^{2} \equiv\left(x^{2}, y^{2}, z^{2}, w^{2}\right) \in \mathcal{C}_{0} \oplus$ as.t.

$$
c^{1} \oplus c^{2} \equiv R^{4}\left(p^{1}\right) \oplus R^{4}\left(p^{2}\right) \in \mathcal{M}_{J}
$$

i.e. c^{1} and c^{2} are equal in $4-J$ anti-diagonals.

Given $\hat{p}^{1}, \hat{p}^{2} \in \mathcal{C}_{0} \oplus$ a obtained my mixing/swapping the generating variables of p^{1}, p^{2}, then:

- 4-round AES: the event $R^{4}\left(\hat{p}^{1}\right) \oplus R^{4}\left(\hat{p}^{2}\right) \in \mathcal{M}$ J occurs with prob. 1;
- Random Perm.: the event $\Pi\left(\hat{p}^{1}\right) \oplus \Pi\left(\hat{p}^{2}\right) \in \mathcal{M}$ J occurs with prob. $2^{-32 \cdot(4-|J|) ; ~}$
independently of the secret-key.

Distinguishers on 4-round AES

In bold, our new distinguisher for 4-round AES: they are all independent of the secret key!

Data (CP/CC)	Complexity	Property
$4 \mathrm{CP}+4 \mathrm{ACC}$	4 XOR	Yoyo [RBH17]
$2^{16.25}$	$2^{31.5} \mathrm{M}$	Impossible Diff. [BK00]
$\mathbf{2}^{17}$	$\mathbf{2}^{23.1} \mathbf{\mathbf { M }} \approx \mathbf{2}^{16.75} \mathbf{E}$	Mixture Diff.
2^{32}	$2^{32} \mathrm{XOR}$	Integral [DLR97]
$20 \mathrm{M} \approx 1$-round Encryption		

Part III

New Key-Recovery Attacks for AES

Mixture Diff. Distinguisher + Key-Recovery Attack

Since

$$
a \oplus\left[\begin{array}{llll}
x & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & z & 0 \\
0 & 0 & 0 & w
\end{array}\right] \xrightarrow{R(\cdot)} b \oplus M C \times\left[\begin{array}{llll}
\operatorname{S-Box}\left(x \oplus k_{0,0}\right) & 0 & 0 & 0 \\
\operatorname{S-Box}\left(y \oplus k_{1,1}\right) & 0 & 0 & 0 \\
\operatorname{S-Box}\left(z \oplus k_{2,2}\right) & 0 & 0 & 0 \\
\operatorname{S-Box}\left(w \oplus k_{3,3}\right) & 0 & 0 & 0
\end{array}\right],
$$

the relations among the generating variables of $R\left(p^{1}\right), R\left(p^{2}\right)$ and of $R\left(\hat{p}^{1}\right), R\left(\hat{p}^{2}\right)$ depend on the key.

Idea of the attack:

where the mixture differential property holds only for the secret-key!

Mixture Diff. Distinguisher + Key-Recovery Attack

Since

$$
a \oplus\left[\begin{array}{llll}
x & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & z & 0 \\
0 & 0 & 0 & w
\end{array}\right] \xrightarrow{R(\cdot)} b \oplus M C \times\left[\begin{array}{llll}
\operatorname{S-Box}\left(x \oplus k_{0,0}\right) & 0 & 0 & 0 \\
S-B o x\left(y \oplus k_{1,1}\right) & 0 & 0 & 0 \\
\operatorname{S-Box}\left(z \oplus k_{2,2}\right) & 0 & 0 & 0 \\
\operatorname{S-Box}\left(w \oplus k_{3,3}\right) & 0 & 0 & 0
\end{array}\right],
$$

the relations among the generating variables of $R\left(p^{1}\right), R\left(p^{2}\right)$ and of $R\left(\hat{\rho}^{1}\right), R\left(\hat{\rho}^{2}\right)$ depend on the key.

Idea of the attack:

$$
\mathcal{D}_{0} \oplus a \xrightarrow[\text { key guessing }]{R(\cdot)} \mathcal{C}_{0} \oplus b \xrightarrow[\text { distinguisher }]{R^{4}(\cdot)} \text { Mixture Diff. Property }
$$

where the mixture differential property holds only for the secret-key!

Mixture Diff. Key-Recovery Attack (1/2)

Consider 2^{32} chosen plaintexts with one active diagonal, that is $p^{i} \in \mathcal{D}_{0} \oplus a$ for $i=1, \ldots, 2^{32}$.

Find a pair of plaintexts (p, p^{\prime}) s.t. the corresponding ciphertexts after 5 -round ($c=R^{5}(p), c^{\prime}=R^{5}\left(p^{\prime}\right)$) satisfy the property

$$
c \oplus c^{\prime}=R^{5}(p) \oplus R^{5}\left(p^{\prime}\right) \in \mathcal{M}_{J}
$$

for a certain J, i.e. c and c^{\prime} are equal in $4-|J|$ anti-diagonal(s).

Mixture Diff. Key-Recovery Attack (2/2)

For each guessed value of ($k_{0,0}, k_{1,1}, k_{2,2}, k_{3,3}$):

- partially compute 1-round encryption of $R(p), R\left(p^{\prime}\right)$ w.r.t. the guessed-key;
- let q, q^{\prime} be two texts obtained by swapping the generating variables of $R(p), R\left(p^{\prime}\right)$;
- partially compute 1-round decryption of $\hat{q} \equiv R^{-1}(q), \hat{q}^{\prime} \equiv R^{-1}\left(q^{\prime}\right)$ w.r.t. the guessed-key;
- if

$$
R^{5}(\hat{q}) \oplus R^{5}\left(\hat{q}^{\prime}\right) \notin \mathcal{M}_{J}
$$

then the guessed key is wrong (where $R^{5}(\cdot)$ is computed under the secret-key).

Key-Recovery Attacks on 5-round AES-128

Property	Data $(C P / C C)$	Cost (E)	Memory
MitM [Der13]	8	2^{64}	2^{56}
Imp. Polytopic [Tie16]	15	2^{70}	2^{41}
Partial Sum [Tun12]	2^{8}	2^{38}	small
Integral (EE) [DR02]	2^{11}	$2^{45.7}$	small
Mixture Diff. ${ }^{\text {[BDK+18] }}$	$\mathbf{2}^{22.25}$	$\mathbf{2}^{22.25}$	$\mathbf{2}^{20}$
Imp. Differential [BK01]	$2^{31.5}$	$2^{33}\left(+2^{38}\right)$	2^{38}
Integral (EB) [DR02]	2^{33}	$2^{37.7}$	2^{32}
Mixture Diff.	$\mathbf{2}^{33.6}$	$\mathbf{2}^{33.3}$	$\mathbf{2}^{34}$
\equiv follow-up work			

At Crypto 2018, Bar-On et al. [BDK+18] present the best (mixture-differential) attacks on 7-round AES-192 which use practical amounts of data and memory.

Key-Recovery Attacks on 5-round AES-128

Property	Data ($C P / C C$)	Cost (E)	Memory
MitM [Der13]	8	2^{64}	2^{56}
Imp. Polytopic [Tie16]	15	2^{70}	2^{41}
Partial Sum [Tun12]	2^{8}	2^{38}	small
Integral (EE) [DR02]	2^{11}	$2^{45.7}$	small
Mixture Diff.* [BDK+18]	$2^{22.25}$	$2^{22.25}$	2^{20}
Imp. Differential [BK01]	$2^{31.5}$	$2^{33}\left(+2^{38}\right)$	2^{38}
Integral (EB) [DR02]	2^{33}	$2^{37.7}$	2^{32}
Mixture Diff.	233	$2^{33.3}$	2^{34}

At Crypto 2018, Bar-On et al. [BDK+18] present the best (mixture-differential) attacks on 7-round AES-192 which use practical amounts of data and memory.

Part IV

Concluding Remarks

Future Open Problems

Mixture Differential Cryptanalysis: a way to translate the (complex) "multiple-of-8" 5-round distinguisher into a simpler and more convenient one.

Future Open Problems:

- apply Mixture Differential on Tweakable AES-like ciphers: how many rounds can we break in related-tweak mode?
- is it possible to extend Mixture Differential distinguisher on 5 (or even more) rounds of AES? E.g.:
- what about Mixture Differential in boomerang-/yoyo-like attacks?
- what about an "Impossible Mixture Differential Cryptanalysis"? (see http://eprint.iacr.org/2017/832)

Just Keep an Open Mind!

"Multiple-of-8" property hard to exploit directly for "practical applications"... however in less than 2 years it leads to

- new competitive distinguisher/attacks on round-reduced AES (e.g. Mixture Diff. Cryptanalysis and corresponding attacks proposed at Crypto 2018);
- new direction of research (e.g. next talk: "A General Proof Framework for Recent AES Distinguishers" by Boura et al.) and new unpublished results.

Do not limit ourselves to maximize the number of rounds that can be broken usina known techniaues:
also look for new directions in cryptanalysis that do not reach their full potential yet.

Just Keep an Open Mind!

"Multiple-of-8" property hard to exploit directly for "practical applications"... however in less than 2 years it leads to

- new competitive distinguisher/attacks on round-reduced AES (e.g. Mixture Diff. Cryptanalysis and corresponding attacks proposed at Crypto 2018);
- new direction of research (e.g. next talk: "A General Proof Framework for Recent AES Distinguishers" by Boura et al.) and new unpublished results.

Do not limit ourselves to maximize the number of rounds that
can be broken using known techniques:
also look for new directions in cryptanalysis that do not
reach their full potential yet.

Just Keep an Open Mind!

"Multiple-of-8" property hard to exploit directly for "practical applications"... however in less than 2 years it leads to

- new competitive distinguisher/attacks on round-reduced AES (e.g. Mixture Diff. Cryptanalysis and corresponding attacks proposed at Crypto 2018);
- new direction of research (e.g. next talk: "A General Proof Framework for Recent AES Distinguishers" by Boura et al.) and new unpublished results.

Do not limit ourselves to maximize the number of rounds that can be broken using known techniques:
also look for new directions in cryptanalysis that do not reach their full potential yet.

Thanks for your attention!

Questions?

Comments?

References I

A. Bar-On, O. Dunkelman, N. Keller, E. Ronen and A. Shamir, Improved Key Recovery Attacks on Reduced-Round AES with Practical Data and Memory Complexities CRYPTO 2018

E E. Biham and N. Keller
Cryptanalysis of Reduced Variants of Rijndael
Unpublished 2000, http://csrc.nist.gov/archive/
aes/round2/conf3/papers/35-ebiham.pdf
目 J. Daemen, L. Knudsen and V. Rijmen
The block cipher Square
FSE 1997

References II

围 J. Daemen and V. Rijmen
The Design of Rijndael
AES - The Advanced Encryption Standard
E. P. Derbez

Meet-in-the-middle attacks on AES
PhD Thesis 2013
國 L. Grassi
Mixture Differential Cryptanalysis and Structural Truncated Differential Attacks on round-reduced AES
ePrint 2017/832

References III

E. Grassi, C. Rechberger and S. Rønjom Subspace Trail Cryptanalysis and its Applications to AES IACR Transactions on Symmetric Cryptology 2017

E L. Grassi, C.Rechberger and S. Rønjom
A New Structural-Differential Property of 5-Round AES
EUROCRYPT 2017
圊 S. Rønjom, N.G. Bardeh and T. Helleseth
Yoyo Tricks with AES
ASIACRYPT 2017

References IV

囯 T. Tiessen
Polytopic Cryptanalysis
EUROCRYPT 2016
围 M. Tunstall
Improved "Partial Sums" - based Square Attack on AES SECRYPT 2012

