

Mixture Differential Cryptanalysis:

- a New Approach to Distinguishers and Attacks
- on round-reduced AES

Lorenzo Grassi, IAIK, TU Graz (Austria)

March, 2019

Motivation

At Eurocrypt 2017, the first secret-key distinguisher for 5-round AES - based on the multiple-of-8 property - has been presented.

However, it seems rather hard to implement a key-recovery attack different than brute-force like using such a distinguisher: can this new observation lead to attacks on AES which are competitive w.r.t. previously known results?

Table of Contents

- **1** AES Design and the "Multiple-of-8" Property
- 2 Mixture Differential Cryptanalysis
- 3 New Key-Recovery Attacks for AES
- 4 Concluding Remarks

Part I

AES Design and the "Multiple-of-8" Property

AES

High-level description of AES [DR02]:

- block cipher based on a design principle known as substitution-permutation network;
- block size of 128 bits = 16 bytes, organized in a 4 × 4 matrix;
- key size of 128/192/256 bits & 10/12/14 rounds:

Source-code of the Figure - by Jérémy Jean - copied from https://www.iacr.org/authors/tikz/

"Multiple-of-8" property for 5-round AES [GRR17b]

Assume 5-round AES without the final MixColumns operation. Consider a set of 2³² chosen plaintexts with one active diagonal

The number of *different* pairs of ciphertexts which are equal in one (fixed) anti-diagonal

$$\begin{bmatrix} 0 & ? & ? & ? \\ ? & ? & ? & 0 \\ ? & ? & 0 & ? \\ ? & 0 & ? & ? \end{bmatrix}$$

is a multiple of 8 with probability 1 independent of the secret key, of the details of S-Box and of MixColumns matrix.

Multiple-of-8 Property– Formal Theorem

Consider $2^{32 \cdot |I|}$ plaintexts with |I| active diagonals (namely, in an affine space $\mathcal{D}_I \oplus a$) and the corresponding ciphertexts after 5 rounds, i.e. $(p^i, c^i \equiv R^5(p^i))$ for $i = 0, ..., 2^{32 \cdot |I|} - 1$ where $p^i \in \mathcal{D}_I \oplus a$.

Theorem (Eurocrypt 2017)

For a fixed $J \subseteq \{0, 1, 2, 3\}$, let *n* be the number of different pairs of ciphertexts (c^i, c^j) for $i \neq j$ such that $c^i \oplus c^j$ are equal in 4 - |J| anti-diagonals (namely, $c^1 \oplus c^2 \in \mathcal{M}_J$):

 $n:=|\{(p^i,c^i),(p^j,c^j)\,|\,\forall p^i,p^j\in \mathcal{D}_I\oplus a,\,p^i< p^j \text{ and } c^i\oplus c^j\in \mathcal{M}_J\}|.$

The number n is a multiple of 8 independent of the secret key, of the details of S-Box and of MixColumns matrix.

What about a Key-Recovery Attack?

What happens if we extend the previous distinguisher *into a key-recovery attack*? E.g.

$$\mathcal{D}_{I} \oplus a \xrightarrow{R^{5}(\cdot)} \text{multiple-of-8} \xleftarrow{R^{-1}(\cdot)}_{\text{key-guessing}} \text{ciphertexts}$$

Problem: we need to guess the **entire** final round-key in order to check the property

" number of pairs of ciphertexts (c^i, c^j) s.t.

$$\left\{ (c^{i}, c^{j}) \middle| i < j \text{ and } R^{-1}(c^{j}) \oplus R^{-1}(c^{j}) = MC^{-1} \times \begin{bmatrix} 0 & ? & ? & ? \\ ? & ? & ? & 0 \\ ? & ? & 0 & ? \\ 2 & 0 & 2 & 2 \end{bmatrix} \right\}$$

is a multiple of 8"

What about a Key-Recovery Attack?

What happens if we extend the previous distinguisher *into a key-recovery attack*? E.g.

$$\mathcal{D}_{I} \oplus a \xrightarrow{R^{5}(\cdot)} \text{multiple-of-8} \xleftarrow{R^{-1}(\cdot)}_{\text{key-guessing}} \text{ciphertexts}$$

Problem: we need to guess the entire final round-key in order to check the property

" number of pairs of ciphertexts (c^i, c^j) s.t.

$$\left\{ (c^{i}, c^{j}) \middle| i < j \text{ and } R^{-1}(c^{i}) \oplus R^{-1}(c^{j}) = MC^{-1} \times \begin{bmatrix} 0 & ? & ? & ? \\ ? & ? & 0 & 0 \\ ? & ? & 0 & ? \\ ? & 0 & ? & ? \end{bmatrix} \right\}$$

is a multiple of 8"

Part II

Mixture Differential Cryptanalysis

From Multiple-of-8 to Mixture Diff. Cryptanalysis

Why does the "multiple-of-8" property hold? Given a pair of plaintexts (p^1, p^2) s.t. $R^5(p^1) \oplus R^5(p^2) \in \mathcal{M}$, then other pairs of texts (q^1, q^2) have the same property $(R^5(q^1) \oplus R^5(q^2) \in \mathcal{M})$, where the pairs (p^1, p^2) and (q^1, q^2) are not independent.

Instead of limiting ourselves to count the number of collisions and check that it is a multiple of 8, *the idea is to check the relationships* between the variables that generate the pairs of plaintexts (p^1, p^2) and (q^1, q^2).

Mixture Differential Cryptanalysis: a way to translate the "multiple-of-8" 5-round distinguisher into a simpler and more convenient one (though, on a smaller number of rounds).

From Multiple-of-8 to Mixture Diff. Cryptanalysis

Why does the "multiple-of-8" property hold? Given a pair of plaintexts (p^1, p^2) s.t. $R^5(p^1) \oplus R^5(p^2) \in \mathcal{M}$, then other pairs of texts (q^1, q^2) have the same property $(R^5(q^1) \oplus R^5(q^2) \in \mathcal{M})$, where the pairs (p^1, p^2) and (q^1, q^2) are not independent.

Instead of limiting ourselves to count the number of collisions and check that it is a multiple of 8, *the idea is to check the relationships* between the variables that generate the pairs of *plaintexts* (p^1, p^2) and (q^1, q^2) .

Mixture Differential Cryptanalysis: a way to translate the "multiple-of-8" 5-round distinguisher into a simpler and more convenient one (though, on a smaller number of rounds).

Mixture Diff. Cryptanalysis – 1st Case (1/2)

Consider $p^1, p^2 \in C_0 \oplus a$:

$$p^{1} = a \oplus \begin{bmatrix} x^{1} & 0 & 0 & 0 \\ y^{1} & 0 & 0 & 0 \\ z^{1} & 0 & 0 & 0 \\ w^{1} & 0 & 0 & 0 \end{bmatrix}, \qquad p^{2} = a \oplus \begin{bmatrix} x^{2} & 0 & 0 & 0 \\ y^{2} & 0 & 0 & 0 \\ z^{2} & 0 & 0 & 0 \\ w^{2} & 0 & 0 & 0 \end{bmatrix}$$

where $x^1 \neq x^2$, $y^1 \neq y^2$, $z^1 \neq z^2$ and $w^1 \neq w^2$.

For the following:

 $p^1 \equiv (x^1, y^1, z^1, w^1)$ and $p^2 \equiv (x^2, y^2, z^2, w^2)$.

Mixture Diff. Cryptanalysis – 1st Case (2/2)

Given $p^1, p^2 \in C_0 \oplus a$ as before: $p^1 \equiv (x^1, y^1, z^1, w^1)$ and $p^2 \equiv (x^2, y^2, z^2, w^2)$ it follows that $P^4(p^1) \oplus P^4(p^2) \in A4$ if and only if $P^4(\hat{p}^1) \oplus P^4(\hat{p}^2) \in A4$

 $R^4(p^1) \oplus R^4(p^2) \in \mathcal{M}_J$ if and only if $R^4(\hat{p}^1) \oplus R^4(\hat{p}^2) \in \mathcal{M}_J$ where

$$\hat{p}^{1} \equiv (x^{2}, y^{1}, z^{1}, w^{1}), \qquad \hat{p}^{2} \equiv (x^{1}, y^{2}, z^{2}, w^{2}); \\ \hat{p}^{1} \equiv (x^{1}, y^{2}, z^{1}, w^{1}), \qquad \hat{p}^{2} \equiv (x^{2}, y^{1}, z^{2}, w^{2}); \\ \hat{p}^{1} \equiv (x^{1}, y^{1}, z^{2}, w^{1}), \qquad \hat{p}^{2} \equiv (x^{2}, y^{2}, z^{1}, w^{2}); \\ \hat{p}^{1} \equiv (x^{1}, y^{1}, z^{1}, w^{2}), \qquad \hat{p}^{2} \equiv (x^{2}, y^{2}, z^{2}, w^{1}); \\ \hat{p}^{1} \equiv (x^{1}, y^{1}, z^{2}, w^{2}), \qquad \hat{p}^{2} \equiv (x^{2}, y^{2}, z^{1}, w^{1}); \\ \hat{p}^{1} \equiv (x^{1}, y^{2}, z^{1}, w^{2}), \qquad \hat{p}^{2} \equiv (x^{2}, y^{1}, z^{2}, w^{1}); \\ \hat{p}^{1} \equiv (x^{1}, y^{2}, z^{2}, w^{1}), \qquad \hat{p}^{2} \equiv (x^{2}, y^{1}, z^{1}, w^{2}).$$

Mixture Diff. Cryptanalysis – 2nd Case

Given $p^1, p^2 \in C_0 \oplus a$ as before:

$$p^1 \equiv (x^1, y^1, z^1, w)$$
 and $p^2 \equiv (x^2, y^2, z^2, w)$

it follows that

 $R^4(p^1)\oplus R^4(p^2)\in \mathcal{M}_J$ if and only if $R^4(\hat{p}^1)\oplus R^4(\hat{p}^2)\in \mathcal{M}_J$ where

$$\begin{split} \hat{\rho}^{1} &\equiv (x^{1}, y^{1}, z^{2}, \Omega), & \hat{\rho}^{2} &\equiv (x^{2}, y^{2}, z^{2}, \Omega); \\ \hat{\rho}^{1} &\equiv (x^{2}, y^{1}, z^{1}, \Omega), & \hat{\rho}^{2} &\equiv (x^{1}, y^{2}, z^{2}, \Omega); \\ \hat{\rho}^{1} &\equiv (x^{1}, y^{2}, z^{1}, \Omega), & \hat{\rho}^{2} &\equiv (x^{2}, y^{1}, z^{2}, \Omega); \\ \hat{\rho}^{1} &\equiv (x^{1}, y^{1}, z^{2}, \Omega), & \hat{\rho}^{2} &\equiv (x^{2}, y^{2}, z^{1}, \Omega); \end{split}$$

where Ω can take any value in \mathbb{F}_{2^8} .

Mixture Diff. Cryptanalysis – 3rd Case

Given $p^1, p^2 \in C_0 \oplus a$ as before:

$$p^1 \equiv (x^1, y^1, z, w)$$
 and $p^2 \equiv (x^2, y^2, z, w)$

it follows that

 $R^4(p^1)\oplus R^4(p^2)\in \mathcal{M}_J$ if and only if $R^4(\hat{p}^1)\oplus R^4(\hat{p}^2)\in \mathcal{M}_J$ where

$$\hat{p}^1 \equiv (\mathbf{x}^1, \mathbf{y}^1, \mathbf{Z}, \Omega), \qquad \hat{p}^2 \equiv (\mathbf{x}^2, \mathbf{y}^2, \mathbf{Z}, \Omega); \\ \hat{p}^1 \equiv (\mathbf{x}^2, \mathbf{y}^1, \mathbf{Z}, \Omega), \qquad \hat{p}^2 \equiv (\mathbf{x}^1, \mathbf{y}^2, \mathbf{Z}, \Omega);$$

where \mathcal{Z} and Ω can take any value in \mathbb{F}_{2^8} .

Reduction to 2 Rounds AES

Since

$$Prob(R^2(x) \oplus R^2(y) \in \mathcal{M}_J | x \oplus y \in \mathcal{D}_J) = 1$$

we can focus only on the two initial rounds:

$$\mathcal{C}_{I} \oplus b \xrightarrow{R^{2}(\cdot)} \mathcal{D}_{J} \oplus a' \xrightarrow{R^{2}(\cdot)} \mathcal{M}_{J} \oplus b'$$

Consider $p^1, p^2 \in C_I \oplus a$. We are going to prove that $R^2(p^1) \oplus R^2(p^2) \in D_J$

if and only if

 $R^2(\hat{p}^1)\oplus R^2(\hat{p}^2)\in \mathcal{D}_J,$

where $\hat{p}^1, \hat{p}^2 \in C_I \oplus a$ are defined as before.

Reduction to 2 Rounds AES

Since

$$Prob(R^2(x) \oplus R^2(y) \in \mathcal{M}_J | x \oplus y \in \mathcal{D}_J) = 1$$

we can focus only on the two initial rounds:

$$\mathcal{C}_{I} \oplus b \xrightarrow{R^{2}(\cdot)} \mathcal{D}_{J} \oplus a' \xrightarrow{R^{2}(\cdot)} \mathcal{M}_{J} \oplus b'$$

Consider $p^1, p^2 \in C_I \oplus a$. We are going to prove that $R^2(p^1) \oplus R^2(p^2) \in D_J$

if and only if

$$R^2(\hat{p}^1)\oplus R^2(\hat{p}^2)\in \mathcal{D}_J,$$

where $\hat{p}^1, \hat{p}^2 \in \mathcal{C}_I \oplus a$ are defined as before.

Idea of the Proof

Given p^1, p^2 and \hat{p}^1, \hat{p}^2 in $\mathcal{C}_0 \oplus a$ as before, if

 $R^{2}(p^{1}) \oplus R^{2}(p^{2}) = R^{2}(\hat{p}^{1}) \oplus R^{2}(\hat{p}^{2})$

then the previous result

 $R^2(p^1)\oplus R^2(p^2)\in \mathcal{D}_J$ iff $R^2(\hat{p}^1)\oplus R^2(\hat{p}^2)\in \mathcal{D}_J$

follows immediately!

Super-Box Notation (1/2)

Let super-SB(\cdot) be defined as

 $super-SB(\cdot) = S-Box \circ ARK \circ MC \circ S-Box(\cdot).$

2-round AES can be rewritten as

 $R^{2}(\cdot) = ARK \circ MC \circ SR \circ super-SB \circ SR(\cdot)$

Super-Box Notation (2/2)

By simple computation,

$$R^{2}(p^{1}) \oplus R^{2}(p^{2}) = R^{2}(\hat{p}^{1}) \oplus R^{2}(\hat{p}^{2})$$

is equivalent to

super-SB(P¹) \oplus super-SB(P²) = super-SB(\hat{P}^1) \oplus super-SB(\hat{P}^2), where

$$P^i \equiv SR(p^i), \hat{P}^i \equiv SR(\hat{p}^i) \in SR(\mathcal{C}_I) \oplus a' \equiv \mathcal{ID}_I \oplus a'$$

for $i = 1, 2$.

Sketch of the Proof (1/2)

Given $P^1 = SR(p^1), P^2 = SR(p^2) \in \mathcal{ID}_0 \oplus a'$, note that

$$P^{1} = a' \oplus \begin{bmatrix} x^{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & y^{1} \\ 0 & 0 & z^{1} & 0 \\ 0 & w^{1} & 0 & 0 \end{bmatrix}, \qquad P^{2} = a' \oplus \begin{bmatrix} x^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & y^{2} \\ 0 & 0 & z^{2} & 0 \\ 0 & w^{2} & 0 & 0 \end{bmatrix}$$

Sketch of the Proof

Since

- each column depends on different and independent variables;
- the super-SB works independently on each column;
- the XOR-sum is commutative;

then

super-SB(P^1) \oplus super-SB(P^2) = super-SB(\hat{P}^1) \oplus super-SB(\hat{P}^2) for each \hat{P}^1 and \hat{P}^2 obtained by mixing/swapping the columns of P^1 and P^2 , e.g.

$$\hat{P}^{1} = a' \oplus \begin{bmatrix} x^{2} & 0 & 0 & 0 \\ 0 & 0 & y^{1} \\ 0 & 0 & z^{1} & 0 \\ 0 & w^{1} & 0 & 0 \end{bmatrix}, \qquad \hat{P}^{2} = a' \oplus \begin{bmatrix} x^{1} & 0 & 0 & 0 \\ 0 & 0 & y^{2} \\ 0 & 0 & z^{2} & 0 \\ 0 & w^{2} & 0 & 0 \end{bmatrix}$$

Mixture Diff. Distinguisher on 4-round AES

Consider $p^1 \equiv (x^1, y^1, z^1, w^1), p^2 \equiv (x^2, y^2, z^2, w^2) \in C_0 \oplus a \text{ s.t.}$

$$c^1 \oplus c^2 \equiv R^4(p^1) \oplus R^4(p^2) \in \mathcal{M}_J,$$

i.e. c^1 and c^2 are equal in 4 - J anti-diagonals.

Given $\hat{p}^1, \hat{p}^2 \in C_0 \oplus a$ obtained my mixing/swapping the generating variables of p^1, p^2 , then:

- 4-round AES: the event $R^4(\hat{p}^1) \oplus R^4(\hat{p}^2) \in \mathcal{M}_J$ occurs with prob. 1;
- Random Perm.: the event Π(p̂¹) ⊕ Π(p̂²) ∈ M_J occurs with prob. 2^{-32⋅(4-|J|)};

independently of the secret-key.

Distinguishers on 4-round AES

In bold, our new distinguisher for 4-round AES: they are all independent of the secret key!

Data (CP/CC)	Complexity	Property	
4 CP + 4 ACC	4 XOR	Yoyo [RBH17]	
2 ^{16.25}	2 ^{31.5} M	Impossible Diff. [BK00]	
2 ¹⁷	$2^{23.1}~\textrm{M}\approx2^{16.75}~\textrm{E}$	Mixture Diff.	
2 ³²	2 ³² XOR	Integral [DLR97]	

20 M \approx 1-round Encryption

Part III

New Key-Recovery Attacks for AES

Mixture Diff. Distinguisher + Key-Recovery Attack

Since

$$a \oplus \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & w \end{bmatrix} \xrightarrow{R(\cdot)} b \oplus MC \times \begin{bmatrix} \text{S-Box}(x \oplus k_{0,0}) & 0 & 0 & 0 \\ \text{S-Box}(y \oplus k_{1,1}) & 0 & 0 & 0 \\ \text{S-Box}(z \oplus k_{2,2}) & 0 & 0 & 0 \\ \text{S-Box}(w \oplus k_{3,3}) & 0 & 0 & 0 \end{bmatrix},$$

the relations among the generating variables of $R(p^1)$, $R(p^2)$ and of $R(\hat{p}^1)$, $R(\hat{p}^2)$ depend on the key.

Idea of the attack:

$$\mathcal{D}_0 \oplus a \xrightarrow[key \text{ guessing}]{R(\cdot)} \mathcal{C}_0 \oplus b \xrightarrow[distinguisher]{R^4(\cdot)} Mixture Diff. Property$$

where the mixture differential property holds only for the secret-key!

Mixture Diff. Distinguisher + Key-Recovery Attack

Since

$$a \oplus \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & w \end{bmatrix} \xrightarrow{R(\cdot)} b \oplus MC \times \begin{bmatrix} \text{S-Box}(x \oplus k_{0,0}) & 0 & 0 & 0 \\ \text{S-Box}(y \oplus k_{1,1}) & 0 & 0 & 0 \\ \text{S-Box}(z \oplus k_{2,2}) & 0 & 0 & 0 \\ \text{S-Box}(w \oplus k_{3,3}) & 0 & 0 & 0 \end{bmatrix},$$

the relations among the generating variables of $R(p^1)$, $R(p^2)$ and of $R(\hat{p}^1)$, $R(\hat{p}^2)$ depend on the key.

Idea of the attack:

$$\mathcal{D}_0 \oplus a \xrightarrow{R(\cdot)} \mathcal{C}_0 \oplus b \xrightarrow{R^4(\cdot)} \textit{Mixture Diff. Property}$$

where the mixture differential property holds only for the secret-key!

Mixture Diff. Key-Recovery Attack (1/2)

Consider 2^{32} chosen plaintexts with one active diagonal, that is $p^i \in \mathcal{D}_0 \oplus a$ for $i = 1, ..., 2^{32}$.

Find a pair of plaintexts (p, p') s.t. the corresponding ciphertexts after 5-round $(c = R^5(p), c' = R^5(p'))$ satisfy the property

$$c \oplus c' = R^5(p) \oplus R^5(p') \in \mathcal{M}_J$$

for a certain *J*, i.e. *c* and *c'* are equal in 4 - |J| anti-diagonal(s).

Mixture Diff. Key-Recovery Attack (2/2)

For each guessed value of $(k_{0,0}, k_{1,1}, k_{2,2}, k_{3,3})$:

if

- *partially* compute 1-round encryption of R(p), R(p') w.r.t. the guessed-key;
- let q, q' be two texts obtained by swapping the generating variables of R(p), R(p');
- *partially* compute 1-round decryption of $\hat{q} \equiv R^{-1}(q), \hat{q}' \equiv R^{-1}(q')$ w.r.t. the *guessed-key*;

 $R^5(\hat{q}) \oplus R^5(\hat{q}') \notin \mathcal{M}_J,$

then the guessed key is wrong (where $R^5(\cdot)$ is computed under the **secret-key**).

Key-Recovery Attacks on 5-round AES-128

Property	Data (CP/CC)	Cost (E)	Memory
MitM [Der13]	8	2 ⁶⁴	2 ⁵⁶
Imp. Polytopic [Tie16]	15	2 ⁷⁰	2 ⁴¹
Partial Sum [Tun12]	2 ⁸	2 ³⁸	small
Integral (EE) [DR02]	2 ¹¹	2 ^{45.7}	small
Mixture Diff.* [BDK+18]	2 ^{22.25}	2 ^{22.25}	2 ²⁰
Imp. Differential [BK01]	2 ^{31.5}	2^{33} (+ 2^{38})	2 ³⁸
Integral (EB) [DR02]	2 ³³	2 ^{37.7}	2 ³²
Mixture Diff.	2 ^{33.6}	2 ^{33.3}	2 ³⁴

i ≡ follow-up work

At Crypto 2018, Bar-On et al. [**BDK+18**] present the best (mixture-differential) attacks on 7-round AES-192 which use practical amounts of data and memory.

Key-Recovery Attacks on 5-round AES-128

Property	Data (CP/CC)	Cost (E)	Memory
MitM [Der13]	8	2 ⁶⁴	2 ⁵⁶
Imp. Polytopic [Tie16]	15	2 ⁷⁰	2 ⁴¹
Partial Sum [Tun12]	2 ⁸	2 ³⁸	small
Integral (EE) [DR02]	2 ¹¹	2 ^{45.7}	small
Mixture Diff.* [BDK+18]	2 ^{22.25}	2 ^{22.25}	2 ²⁰
Imp. Differential [BK01]	2 ^{31.5}	2^{33} (+ 2^{38})	2 ³⁸
Integral (EB) [DR02]	2 ³³	2 ^{37.7}	2 ³²
Mixture Diff.	2 ^{33.6}	2 ^{33.3}	2 ³⁴

 \equiv follow-up work

At Crypto 2018, Bar-On et al. [**BDK+18**] present the best (mixture-differential) attacks on 7-round AES-192 which use practical amounts of data and memory.

Part IV

Concluding Remarks

Future Open Problems

Mixture Differential Cryptanalysis: a way to translate the (complex) "multiple-of-8" 5-round distinguisher into a simpler and more convenient one.

Future Open Problems:

- apply Mixture Differential on Tweakable AES-like ciphers: how many rounds can we break in related-tweak mode?
- is it possible to extend Mixture Differential distinguisher on 5 (or even more) rounds of AES? E.g.:
 - what about Mixture Differential in boomerang-/yoyo-like attacks?
 - what about an "Impossible Mixture Differential Cryptanalysis"? (see http://eprint.iacr.org/2017/832)

Just Keep an Open Mind!

"Multiple-of-8" property hard to exploit directly for "practical applications"... however in less than 2 years it leads to

- new competitive distinguisher/attacks on round-reduced AES (e.g. Mixture Diff. Cryptanalysis and corresponding attacks proposed at Crypto 2018);
- new direction of research (e.g. next talk: "A General Proof Framework for Recent AES Distinguishers" by Boura *et al.*) and new unpublished results.

Do not limit ourselves to maximize the number of rounds that can be broken using known techniques:

also look for new directions in cryptanalysis that do not reach their full potential yet.

Just Keep an Open Mind!

"Multiple-of-8" property hard to exploit directly for "practical applications"... **however in less than 2 years it leads to**

- new competitive distinguisher/attacks on round-reduced AES (e.g. Mixture Diff. Cryptanalysis and corresponding attacks proposed at Crypto 2018);
- new direction of research (e.g. next talk: "A General Proof Framework for Recent AES Distinguishers" by Boura *et al.*) and new unpublished results.

Do not limit ourselves to maximize the number of rounds that can be broken using known techniques:

also look for new directions in cryptanalysis that do not reach their full potential yet.

Just Keep an Open Mind!

"Multiple-of-8" property hard to exploit directly for "practical applications"... **however in less than 2 years it leads to**

- new competitive distinguisher/attacks on round-reduced AES (e.g. Mixture Diff. Cryptanalysis and corresponding attacks proposed at Crypto 2018);
- new direction of research (e.g. next talk: "A General Proof Framework for Recent AES Distinguishers" by Boura *et al.*) and new unpublished results.

Do not limit ourselves to maximize the number of rounds that can be broken using known techniques:

also look for new directions in cryptanalysis that do not reach their full potential yet.

Thanks for your attention!

Questions?

Comments?

References I

A. Bar-On, O. Dunkelman, N. Keller, E. Ronen and A. Shamir, Improved Key Recovery Attacks on Reduced-Round AES with Practical Data and Memory Complexities CRYPTO 2018

- E. Biham and N. Keller Cryptanalysis of Reduced Variants of Rijndael Unpublished 2000, http://csrc.nist.gov/archive/ aes/round2/conf3/papers/35-ebiham.pdf
- J. Daemen, L. Knudsen and V. Rijmen *The block cipher Square* FSE 1997

References II

J. Daemen and V. Rijmen *The Design of Rijndael* AES - The Advanced Encryption Standard

P. Derbez Meet-in-the-middle attacks on AES PhD Thesis 2013

L. Grassi

Mixture Differential Cryptanalysis and Structural Truncated Differential Attacks on round-reduced AES ePrint 2017/832

References III

- L. Grassi, C. Rechberger and S. Rønjom Subspace Trail Cryptanalysis and its Applications to AES IACR Transactions on Symmetric Cryptology 2017
- L. Grassi, C.Rechberger and S. Rønjom *A New Structural-Differential Property of 5-Round AES* EUROCRYPT 2017
- S. Rønjom, N.G. Bardeh and T. Helleseth Yoyo Tricks with AES ASIACRYPT 2017

References IV

T. Tiessen Polytopic Cryptanalysis EUROCRYPT 2016

M. Tunstall Improved "Partial Sums" - based Square Attack on AES SECRYPT 2012