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Abstract. The boomerang and rectangle attacks are adaptions of differential crypt-
analysis that regard the target cipher E as a composition of two sub-ciphers, i.e.,
E = E) o Ey, to construct a distinguisher for E with probability p?¢? by concatenat-
ing two short differential trails for Ey and E; with probability p and g respectively.
According to the previous research, the dependency between these two differential
characteristics has a great impact on the probability of boomerang and rectangle
distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such
dependency that regards FE as three parts, i.e., £ = Fy o E,, o o, where E,, contains
the dependency between two differential trails, satisfying some differential propagation
with probability 7. Accordingly, the entire probability is p?¢®*r. Recently, Song et
al. have proposed a general framework to identify the actual boundaries of E,, and
systematically evaluate the probability of E,, with any number of rounds, and applied
their method to accurately evaluate the probabilities of the best SKINNY’s boomerang
distinguishers. In this paper, using a more advanced method to search for boomerang
distinguishers, we show that the best previous boomerang distinguishers for SKINNY
can be significantly improved in terms of probability and number of rounds. More
precisely, we propose related-tweakey boomerang distinguishers for up to 19, 21, 23,
and 25 rounds of SKINNY-64-128, SKINNY-128-256, SKINNY-64-192 and SKINNY-128-384
respectively, which improve the previous boomerang distinguishers of these variants
of SKINNY by 1, 2, 1, and 1 round respectively. Based on the improved boomerang
distinguishers for SKINNY, we provide related-tweakey rectangle attacks on 23 rounds
of SKINNY-64-128, 24 rounds of SKINNY-128-256, 29 rounds of SKINNY-64-192, and 30
rounds of SKINNY-128-384. It is worth noting that our improved related-tweakey rect-
angle attacks on SKINNY-64-192, SKINNY-128-256 and SKINNY-128-384 can be directly
applied for the same number of rounds of ForkSkinny-64-192, ForkSkinny-128-256
and ForkSkinny-128-384 respectively. CRAFT is another SKINNY-like tweakable block
cipher for which we provide the security analysis against rectangle attack for the
first time. As a result, we provide a 14-round boomerang distinguisher for CRAFT in
the single-tweak model based on which we propose a single-tweak rectangle attack
on 18 rounds of this cipher. Moreover, following the previous research regarding
the evaluation of switching in multiple rounds of boomerang distinguishers, we also
introduce new tools called Double Boomerang Connectivity Table (DBCT), LBCT™, and
UBCT" to evaluate the boomerang switch through the multiple rounds more accurately.
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1 Introduction

The security of the Internet of Things (IoT) and other constrained environment such as
RFID systems is an emerging concern which may not be addressed using conventional
solutions. To address this concern many solutions and primitives have been proposed by
the designers so far. In this direction, the lightweight cryptography (LWC) competition
of the National Institute of Standards and Technology (NIST) was started with the aim
of standardization for such constrained environments, and candidates of the first and the
second rounds have been announced in April and September 2019, respectively. While
NIST-LWC aims to standardize lightweight Authenticated Encryption with Associated
Data and Hash functions, during the last decade researchers have done an extensive effort
to provide a strong foundation for lightweight block ciphers and as a result, a dozen
elegant lightweight block ciphers have been designed, to just name some, CRAFT [BLMR19],
SKINNY [BJKT16], PRESENT [BKL'07], MIBS [ISSK09], SIMON [BSS*15], SPECK [BSST15],
MIDORI [BBI*15], PRINTcipher [KLPR10], PRINCE [BCGT12] and GIFT [BPPT17].

SKINNY [BJK™16] is a family of lightweight tweakable block ciphers using a substitution
permutation network (SPN) structure. It has received a great deal of cryptanalytic
attention. It is also used as the underlying block cipher of three submissions to the
lightweight cryptography competition held by NIST, including SKINNY-AEAD [BJK™20],
ForkAE [ALPT19], and Romulus [IKMP20]. On the other hand, many advances have been
recently proposed for both distinguisher phase [BC18, CHP*18,SQH19, WP19], and key
recovery phase [ZDM™20] of boomerang attack which is one of the most efficient attacks
on reduced SKINNY. Therefore, reevaluating the security of SKINNY against the boomerang
attack is necessary. In this paper, using a better way to search for boomerang distinguishers
of SKINNY in which switching, as well as the clustering effects are considered, we improve the
boomerang distinguishers of SKINNY [SQH19,DDV20], under the related-tweakey setting
at first. Next, building upon the improved boomerang distinguishers and using the novel
key recovery attack introduced in [ZDM™'20], we improve the rectangle attacks on reduced
SKINNY in the related-tweakey setting.

CRAFT is among the recent tweakable block ciphers, proposed at FSE 2019 by Beierle
et al. Besides the designers’ extensive security analysis, independent researchers also
analyzed the security of the cipher against various attacks. More precisely, Hadipour
et al. [HSNT19], extended the designers’ security analysis and provided more efficient
distinguishers based on differentials, zero correlations and integral attacks. Moghaddam
and Ahmadian [EMA20] evaluated the security of this cipher against truncated differential
cryptanalysis. Although the designers have not had any security claim against related-key
attacks and even presented a full round deterministic related key distinguisher for the
cipher, ElSheikh et al. [EY19] also presented new distinguishers for CRAFT in this mode
and also extended it to full round key recovery attack. [GSST20] is the latest work on
the security analysis of CRAFT which exploits the special properties of CRAFT to provide
weak-tweakey truncated differential distinguishers of CRAFT in the single-key model, where
they introduced a related-tweak 15-round differential characteristic with probability of
2754 which can be extended to 19-round key-recovery attack. However, to the best of
our knowledge, there is no publicly reported security evaluation of CRAFT against the
boomerang attack. Hence, we are motivated to present the first security analysis of this
cipher against the boomerang attack.

Our contribution

Applying a heuristic approach to search for boomerang distinguishers in which we consider
the ladder switch effect, we significantly improve the best previous boomerang distinguishers
of SKINNY-n-2n and SKINNY-n-3n [LGS17,SQH19,DDV20], for n € {64,128}. For instance,
while the best-published boomerang distinguisher for 18 rounds of SKINNY-128-256 [LGS17,
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SQH19], has probability 2=77-83 we have provided a new boomerang distinguisher covering
the same number of rounds with probability 274077, Besides, our boomerang distinguishers
for SKINNY-128-256, cover up to 21 rounds of this variant of SKINNY, whereas the best
previous boomerang distinguisher for SKINNY-128-256 can reach up to 19 rounds of this
cipher [LGS17,SQH19]!. In other words, we improve the boomerang distinguisher of SKINNY-
128-256 by two rounds in this paper. As another example, while the best boomerang
distinguisher for SKINNY-128-384 so far, reaches up to 24 rounds and has the probability
of 2710786 [[,GS17,SQH19]?, we introduce a new boomerang distinguisher for the same
number of rounds of SKINNY-128-384 with probability 278739 which can be extended to
provide a boomerang distinguisher for 25 rounds of this variant with probability 27116:59,
We also improve the boomerang distinguishers of SKINNY-64-128 and SKINNY-64-192 by one
round. Authors of [DDV20] have also independently improved the boomerang distinguishers
of SKINNY about which we will discuss in detail in Section 8. To the best of our knowledge,
our boomerang distinguishers for SKINNY-n-2n and SKINNY-n-3n when n € {64, 128}, are
the best related-tweakey distinguishers so far for these variants of SKINNY in terms of
probability and the number of rounds. Table 8 summarizes our results for boomerang
distinguishers of SKINNY.

To demonstrate the usefulness of our searching strategy for boomerang distinguishers,
we also apply it to CRAFT, and provide boomerang distinguishers for CRAFT for the first
time. Interestingly, our finding shows that the boomerang attack is very promising on
reduced CRAFT compared to the other statistical attacks in the single-tweak model, such as
differential cryptanalysis, especially if we aim to provide a practical attack. For instance,
taking advantage of the ladder switch effect, we introduce a boomerang distinguisher with
the probability 1 for 6 rounds of CRAFT, which can be extended to 8 rounds with the
probability of 278. As another example, while the probability of the best previously known
distinguisher for 9 rounds of the cipher in the single-tweak model is 274%-20, we present a
practical single-tweak boomerang distinguisher for the same number of rounds with the
probability of 271476 which is much higher and can be easily verified by an ordinary
personal computer. Table 2 summarizes the probability of our boomerang distinguishers
for 6 to 14 rounds of CRAFT in comparison to the best previous single-tweak distinguishers.
Moreover, we have experimentally verified the correctness of our boomerang distinguishers
for up to 12 rounds as it can be seen in Table 2.

Based on the introduced boomerang distinguishers, we also provide related-tweakey
rectangle attacks on SKINNY-n-2n and SKINNY-n-3n, for n € {64,128}, and a single-tweak
rectangle attack on CRAFT. As a result, by attacking on 29, 24 and 30 rounds of SKINNY-64-
192, SKINNY-128-256 and SKINNY-128-384, to the best of our knowledge, we could improve
the best previous attacks on these variants of SKINNY by 2, 1 and 2 rounds respectively
in terms of the number of attacked rounds. For SKINNY-64-128, we provide a 23-round
related-tweakey rectangle attack with memory and time complexity of 2609 and 2'20-7,
while the best previous related-tweakey rectangle attack covers the same number of rounds
with memory and time complexity of 2124 and 2!25-°! respectively. On CRAFT, our attack
reaches 18 rounds in the single-tweak model, which is the first application of rectangle
attack on CRAFT as well as the best attack on this cipher so far in terms of the number of
attacked rounds in the single-tweak model. Table 1 summarizes our key recovery attacks
on SKINNY’s variants as well as CRAFT.

Furthermore, we have introduced some new tools to formulate the dependency between
the upper and lower differential trails of boomerang distinguishers, including DBCT, DBCT"
and DBCT. We also introduce new variants of UBCT, LBCT and BCT including UBCT",
LBCT™, BCT™ and BCT™ which are useful to consider the clustering effect in boomerang

1The best previous boomerang distinguisher for SKINNY-128-256, is an 18-round distinguisher proposed
in [LGS17,SQH19], which can be extended up to 19 rounds with probability 279753,

2The best previous boomerang distinguisher for SKINNY-128-384 is a 22-round distinguisher proposed
in [LGS17,SQH19], which can be extended up to 24 rounds with probability 2~107-86,
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Table 1: Summary of results of the key recovery attacks on the variants of SKINNY and CRAFT.

Scheme #rounds | Data | Memory | Time Attack P Reference
SKINNY-64-128 23/36 260.54 2009 2120.7 Rectangle 0.977 | This paper
SKINNY-64-192 29/40 201.42 280 2178 Rectangle | 0.977 | This paper

SKINNY-128-256 24/48 2125.21 2125.54 220985 | Rectangle | 0.977 | This paper
SKINNY-128-384 | 30/56 | 212529 | 21258 | 936168 | Rectangle | 0.977 | This paper

CRAFT 18/32 260.92 284 2T0LT T Rectangle | 0.977 | This paper
SKINNY-64-128 23/36 26247 2124 212591 T Tmpossible 1 LGS17
SKINNY-64-192 27/40 203-5 280 21655 | Rectangle | 0.916 LGS17
SKINNY-128-256 | 23/48 | 212447 2248 225147 T Tmpossible 1 [LGS17]

SKINNY-128-384 28/56 2122 212232 1 931525 | Rectangle | 0.8315 | [ZDM™20]

cryptanalysis.

All of our codes to search for boomerang distinguishers of SKINNY and CRAFT and
the discovered boomerang characteristics, as well as the required codes for experimental
verification of our practical distinguishers, are publicly available via the following link:

https://github.com/hadipourh/Boomerang

Outline.

The rest of the paper is organized as follows: in Section 2, we present the required
preliminaries for boomerang and rectangle attacks. Section 3 is dedicated to introducing
new tools for boomerang cryptanalysis, and Section 4 describes our method to search
for boomerang distinguishers. In Section 5, after giving a brief description of CRAFT, we
propose boomerang distinguishers for up to 14 rounds of CRAFT, for which we apply our
new tools to model the dependency between the upper and lower differentials over up
to 7 rounds of CRAFT. Next, in Section 6, after giving a brief description of SKINNY, we
introduce new boomerang distinguishers for SKINNY-n-2n and SKINNY-n-2n. Building upon
the improved boomerang distinguishers, we mount key recovery attacks against reduced
CRAFT and SKINNY in Section 7. Lastly, we provide a comparison between the methods
developed in [DDV20] and this paper in Section 8 and conclude the paper in Section 9.

2 Preliminaries

In this section, we briefly review the boomerang attack.
2.1 Boomerang Attack and Sandwich Attack

The boomerang attack, proposed by David Wagner [Wag99], treats a block cipher E as
the composition of two sub-ciphers Ey and F4, for which there exist short differentials
A1 — As and Vo — V3 of probabilities p and ¢ respectively. The two differentials are then
combined in a chosen plaintext and ciphertext attack setting to construct a long boomerang
distinguisher as shown Figure 1(left). Let E(P) and E~!(C) denote the encryption of P
and the decryption of C, respectively. Then the boomerang framework works as follows.

e Repeat the following steps many times.

Py + random(1™) and Py + Py ® A;.
Cy < E(Py) and Cy <+ E(Ps).

C3+ C1®Vszand Cy + Cy & V3.
P3 < E71(C3) and Py + E~1(Cy).
Check if P3 ® Py = Aq.

Sr W=


https://github.com/hadipourh/Boomerang
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a=ao =17, B=p =V a=a =N,

Figure 1: Basic boomerang attack (left) and Sandwich attack (right)

In the last step, if P3@® Py = A; holds, then a right quartet (Py, P2, P3, Py) is found such
that P, ® Po = Ps@ Py = A and C; ® C3 = Cy @ Cy = V3. Let e, 3,3 denote the event :
(r1 Bz = )N (v1 D a3 = B) (xo®zq = '), and eq, e/, eg and egs, represent the events
1Py =, 21 Dre =, 21 ®xz = F and 29 & x4 = [ in Figure 1 (left) respectively.
Hence, Pr(Ps © Py = A1) =32, 55 Pr(P3 @ Py = Aileqap). Pr(ea,s,p ). Note that, if
€q,3,5 holds in Figure 1(left), then o =x3Dxy=a® PP Additionally, assume that

Pa = Pr(A; Lo, «) and gg = Pr(8 4, V3) for a, 8 € Fy. Under the assumption that
three conditions ey, e, and eg in Figure 1(left) are independent, we have:

Pr(Ps®Py=A1)= Y papalsqs > Y, 0o Y 44 = 0°¢,
ol B ool f=p'

where p = Pr(A; — Az) and ¢ = Pr(Vy — V3). Therefore, p?¢® can be a lower bound for
the probability of generating a right quartet.

In practical cases, the two differentials of a boomerang distinguisher are not independent
and the dependency between them can not be neglected as studied in [Murll, BK09]. In
order to handle the dependency, Dunkelman et al. proposed the sandwich attack [DKS10,
DKS14]. As shown in Figure 1(right), the sandwich attack regards E as the composition
of three sub-ciphers Ey, F,, and F7, where the middle part E,, specifically handles the
dependency. Let r be the probability of generating a right quartet for E,, in Figure 1(right),
when its input and output differences are fixed differences As, and V3 respectively, i.e.:

r=Pr (En_ll(Em(l‘l) ® Vg) ) En_ll(Em(.%‘z) ®Vs) = A2|SL‘1 D xo = Ag) .

Furthermore, let eq, €/, e and egr, denote the events z1 Pz = o, x3®xy = &/, y1 BY3 = 5,
and y2 @ ys = B, respectively. Then, for the probability of the whole boomerang
distinguisher in Figure 1(right), we have:

Pr(Ps & Py=A1) = Z Pr(P; & Py = Atlea,a,3,8)-Pr(ear|ea, es,ep:). Preq, es,ep),
a,a 3,8’
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where 4./, 5,57, denote the condition (z1Bx2 = a)A(Y1BYs = B)A(Y2Bys = B )N\ (x3Pxs =
a'). Assuming that e,,es and egs, are three independent events, and p, = Pr(A, Lo, a),
and gg = Pr(8 B, V,), for a, 8 € FY, we have:

Pr(Ps® Py=Aq) = Z Pa-Dar-Prlearlea, es,es).q5.q5 > Zpi.r.q% > p?q°r,
a,a’, 8,5 o.f

where p = Pr(4A, Lo, As) and ¢ = Pr(V3 I, V4), for fixed differences Ag, V3 € FJ in
Figure 1(right). Hence, p?¢®r is a lower bound for the probability of the whole boomerang
distinguisher.

2.2 BCT Framework

The boomerang connectivity table (BCT) was introduced by Cid et al. in [CHP 18] to
evaluate r theoretically when F,, was composed of a single S-box layer. Later, the BCT is
extended and used to calculate r for E,, with multiple layers [SQH19, WP19]. Here, we
recall some important tables of S-boxes and relevant definitions which play a core role
when calculating the probability of boomerang distinguishers.

The differences of an S-box in the boomerang distinguisher are shown in Figure 2.
Alternatively, we use arrows with superscripts to denote the relationship between differences.
The horizontal arrows illustrate the propagation of differences in upper and lower differential
characteristics while the diagonal arrows are used to show which differences in the upper
and lower trails are affected by each other. The difference distribution table (DDT) and the
BCT are two basic tables of the S-box.

xl______y_l _________ xs3
RRVANT RRRNV:
\\\\3\3’2 VI:I \\\\33'4
_________________ :
S S AT
A
S S \
Vi——V,
S ] T
T PR
Y2 Va Y4

Figure 2: Differences of an S-box on four facets

Definition 1 (Difference Distribution Table). Let S be a function from F to Fy. The
difference distribution table (DDT) is a two-dimensional table defined by

DDT(A1,As) = #{x € Fy : S(z) ® S(z ® A1) = As}, where Ay, Ay € F5.

Definition 2 (Boomerang Connectivity Table [CHP18]). Let S be a permutation of F%.
The boomerang connectivity table (BCT) of S is a two-dimensional table defined by

BCT(Al,VQ) = #{JZ S ]Fg : Sil(S(I)@Vz)@571(S(.IEBAl)@Vg) = Al}, where A17v2 S Fg

Let Appr(A1,As) and Yppr(Ai, Ay) denote the sets of valid inputs and outputs of
differential Ay — Ay respectively. Namely,

Xopr (A1, Ax) 2 {z € FY - S(z) @ S(x @ Ay) = Asl,
Voor(A1, As) 2 {S(x) € FL : € FY, S(x) @ S(z & Ar) = Ag).
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Then BCT can be calculated with Xppr or Yopr, as studied in [BC18,SQH19]. That is

BCT(A1,Vs) = Z#(XDDT(Vl, V2) N (Xppr(V1, Va) & Aq))
Vi

= Z#(yDDT(Ah Az) N (Vopr(A1, A2) ® Va)), (1)

Aa

where Ay and Vg are called crossing differences [SQH19]. As can be seen, whether the
intersection of Appr(V1, Va) and Xppr(Vi, V2)B A1 (resp. Vopr(A1, Az) and YVopr(Aq, Ag)®
V2) is empty or not depends on the crossing difference Ay (resp. V3). In particular, if the
crossing difference Ay (resp. V3) for an S-box is random and uniformly distributed, the
probability that the boomerang returns for this S-box is exactly Y ¢, (DDT(V1, Va)/2")?
(resp. YA, (DDT(Ay, Ag)/2™)?), which is identical to the probability calculation of the
classical boomerang distinguisher.

To help calculate the probability of E,, with multiple rounds, two more tables were
introduced in the literature.

Definition 3 (Upper BCT? [WP19]). Let S be a permutation of F%. The upper boomerang
connectivity table (UBCT) of S is a three-dimensional table defined by

UBCT(A1, A2, Vo) 2 #{z € Fy : STH(S(z) @ Va) @ S (S(z @ A)) @ V) = Ay,
S(x) D S(l’ ) Al) = AQ} where Al, AQ,VQ € Fg

To see the counterpart of this table for the Feistel case refer to [BHL™20].

Definition 4 (Lower BCT* [SQH19]). Let S be a permutation of F4. The lower boomerang
connectivity table (LBCT) of S is a three-dimensional table defined by

LBCT(A1,V2, Vi) 2 #{z € Fy : ST (S(z) ® V) @ S™H(S(z @ A1) © Va) = Ay,
@ SHS(x) ® Va) = V1) where Ay, Vy,Vy € Fy.

Based on the previous works, some new tables of S-box will be proposed in the next
sections and used to calculate r for boomerang distinguishers of CRAFT, and SKINNY.

3 New Tools for Boomerang Cryptanalysis

In this section, we introduce for S-boxes some new tables which can be used to model the
dependency between upper and lower differential paths in boomerang distinguishers. When
one constructs boomerang distinguishers for SPN ciphers, there may exist two S-boxes in
a row (in two rounds) that are active in both trails of the boomerang. Figure 3 (middle)
shows the differences of such two S-boxes, where ‘x’ stands for any possible difference, Ay
and V3 are known.

Al DDT AZ A | DDT % A , DDT *
:@Of & : @O} & : 5’0} &
%— DT NV, «—DDT NV, Vo DDT NV,

Figure 3: Differences of DBCT" (left), DBCT (middle) and DBCT™ (right)

3In [WP19), this table is called Boomerang Difference Table BDT.
4In [SQH19), this table is denoted by Dger
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At first glance, we could build a two-dimensional table to record the number of values
making the boomerang return for these two S-boxes. However, in the middle of two rounds,
there is usually an operation of adding key material. The key addition does not affect
the differences before or after, but the key is unknown and prevents us from building a
table in the way that we generate the DDT and the BCT. However, in the case where the
random subkey assumption holds, such a table can be built, as shown in algorithm 1. For
convenience, we call this table double boomerang connectivity table (DBCT).

Algorithm 1: Building DBCT

Input: S-box S
1 Initialize an empty table DBCT with 2™ x 2™ entries;
2 for A1 =0—2"—-1do

3 for V3=0—2"—1do
4 num = 0;
5 for A=0—2"—-1do
6 if DDT(A1,A) > 0 and BCT(A,V3) > 0 then
7 for V=0—2"—-1do
8 Vovr = Yoor(A1, A) N (Vopr (A1, A) © V);
9 if Vi) # 0 then
10 ‘ num += DDT(Aq, A) - LBCT(A, V5, V) - #ﬁlm;
11 end
12 end
13 end
14 end
15 DBCT(A1, V3) = num;
16 end
17 end

Note that, if Yppr forms an affine subspace, then the line 10 of algorithm 1 becomes
num += DDT(A, A) - LBCT(A, V3, V) as Vopr(A1, A) equals Vppr(Ar, A) & V when their
intersection is not empty. Recall that a mapping is planar if the Appr and Yppr of all its
differentials form affine subspaces [DR07]. Particularly, S-boxes which only have nonzero
DDT entries 2 and 4 are planar. Therefore, the S-box of CRAFT is planar, and each entry of
its DBCT is an integer ranging from 0 to 22".

Additionally, we introduce two variants of DBCT, i.e., DBCT"™ and DBCT' as shown in Fig-
ure 3, where the differential of one S-box is fixed. Moreover, DBCT™ (A1, Ay, V3),DBCT (A4,
V2, V3) can be precomputed by adapting algorithm 1, as shown in algorithm 2 and algo-
rithm 3 in the appendix.

We also introduce new tables to consider the clustering effect in the middle part of
boomerang distinguishers. As it is illustrated in Figure 4, the differences in the same
positions at two faces of boomerang distinguisher should not necessarily be the same,
particularly in the middle part. For instance, A9 and A’ 3 in Figure 4 denote the differences
in the same position of cipher during the encryption and decryption respectively, which
can take different values in two faces of boomerang distinguisher. V9§ and V'3 in Figure 4,
can be different in the same way. Accordingly, we define UBCT" and LBCT™ similar to UBCT
and LBCT respectively as follows:

UBCT':(Al,All,VQ,AQ) = #{S(l’) c FTQL|S(£L') c yDDT(Al,AQ) : S(CE) S yDDT(A,hAQ) &) VQ}
LBCT:'(AhVQ, IQ,Vl) = #{.’E € Fg|.’17 € XDDT(Vl,VQ) LT E XDDT(th/Q) EBAI}

BCT™ and BCT™, can also be defined as follows as the two alternatives of BCT, where the
input or the output differences are not the same in two faces of boomerang distinguisher
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CQ v4

Figure 4: Cluster of sandwich distinguishers

respectively:

BCT (A1, A1, Vo) := #{z € F5 : STHS(x) Vo) @ S H(S(z @A) ®Vy) = A"}
BCT (A1, V2, V) i= #{z € F5 : STHS(x) Vo) @SSz @A) & V'2) = A}

4 Our Strategy to Search for Boomerang Distinguishers

We use a heuristic approach to find a boomerang distinguisher which can be divided into
the following steps:

1. The first step is searching for truncated differential characteristics with the minimum
number of active S-boxes taking into account the switching effect in multiple rounds.
For this step, we borrow the idea of MILP-based automated search method for
truncated differential characteristic proposed in [CHP17], which takes into account
the ladder switch effect in two middle rounds of boomerang distinguisher. However,
we change it a little to consider the switch effect in more than two rounds. We also
use a weighted objective function in our model to obtain a boomerang distinguisher
with a higher probability.

Suppose that we are looking for a boomerang distinguisher covering rg + r,,, + 1
rounds as illustrated in Figure 5, where the first 7y and last r; rounds are represented
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in red and blue and denoted by Ey and E; respectively. Moreover, the middle r,,
rounds, where the first rg + 7, and last r; + r,, rounds overlap, is illustrated in green
and denoted by FE,,. Firstly, we generate a word-oriented MILP model consisting
of constraints corresponding to truncated differential characteristics for the first
ro + rm and for the last r1 + r,,;, rounds based on the independent binary variables
respectively.

Let ug,...,u;_1 denote the activeness of S-boxes in last r,, rounds of E,, o Ey and
lo,...,l;_1 denote the activeness of S-boxes in first r,, rounds of F; o F,,, such that
u; and [; correspond to the same S-box’s position for all 0 < i <t — 1. In order to
model the switching effect in r-round middle part E,,, we introduce ¢t new binary
variables s, ..., s;_1 linking u; and [; for all 0 <7 <t — 1 as follows:

u—8 >0, l;—s8;20, —u;—1I;+s >-1
Accordingly, s; = 1 if and only if u; = [; = 1. Let binary variables o, ..., Umn—1

and ly,...,l,—1 denote the activity of S-boxes in the first 7y and last r; rounds
respectively. Assuming that wg,w; and w,, are positive integers, the objective is to

minimize:
m—1 t—1 n—1
E wo.ﬂi + E Wm,-Sj + E wl.lk.
i=0 7=0 k=0

Given that the terms @ = 37" wo.@; and [ = 37—} wy I, are equally more effective
than s = Z;;B Wp,.5; in the probability of the boomerang distinguisher, wg, w; and
Wy, are chosen such that wy = wy > w,,.

'm

T'm 1

Figure 5: Main parameters of our word-oriented MILP tool to search for boomerang distinguishers

2. At the second step, based on the discovered truncated differential characteristics for
FEy and E7, we look for the best actual differential trails satisfying the given active-cell
positions for these parts which form upper and lower differential paths of boomerang
distinguisher respectively. This is done using the separate bit-oriented MILP/SAT
models for Ey and F7. Then, by fixing the input and output differences of actual
differential paths for Ey and E7, and taking into account the clustering effect, we
compute the differential effects for Ey and E7, which are represented by p and ¢
respectively. Note that, there might not exist an actual differential characteristic
instantiating the discovered truncated differential characteristic. If so, we go to the
first step and repeat the process by a new truncated differential characteristic.

3. Although the ladder switch effect is considered to obtain the upper and lower dif-
ferential paths in our method, they are obtained using independent bit-oriented
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MILP/SAT models at step 2. Hence, the upper and lower differential paths in a dis-
covered boomerang distinguisher might be incompatible [Murll]. The compatibility
of the upper and lower differential paths in a discovered boomerang distinguisher is
checked by experimentally evaluating the probability of the r-round middle part at
this step. Assume that As and V3 are the output and input differences of the upper
and lower differential paths respectively. The compatibility of the upper and lower
differential paths is checked by experimentally evaluation of the following probability:

r=Pr (E;Ll(Em(Il) > V3) S5 E;Ll(Em(IEQ) S5 V3) = AQ‘Il D xo = Ag) .
We can go to the next step if r > 0, otherwise, we return to the first step.

4. At this step, to correctly evaluate the size of E,,, where contains the dependency
between the upper and lower differential paths, we use the algorithm proposed by
Song et al. in [SQH19]. More precisely, we extend both Ey and F; with probability 1
at first. Next, to determine the correct upper boundary of E,,, we prepend additional
rounds to E,, as long as the lower crossing differences are not uniformly distributed.
In the same way, to determine the lower boundary of E,,, we append further rounds
to E,, as long as the upper crossing differences are not uniformly distributed. In
other words, additional rounds are added to F,, as long as the probability of the
new F,, is higher than what is estimated by p?q?r. If this is done, the formula p?g¢®r,
will be a good estimate.

5. If the size of E,, is changed at the previous step, taking into account the clustering
effect, we compute the probabilities p and ¢ corresponding to the new FEy and
E; respectively. To do so, by fixing the input/output differences of Fy and Ej,
we compute the differential effects and store the results into p and ¢ respectively.
Besides the experimental value, using the BCT framework we provide a theoretical
bound for 7, i.e. the probability of the middle part E,,, when it is possible from
the computational complexity point of view. Finally, using the formula p?q¢?r, we
compute the probability of the whole boomerang distinguisher.

To find the truncated differential characteristics in step 1, we use the MILP model and
then Gurobi [GO21] as the solver. For SKINNY, given that the key schedule is linear, we
use a semi-word-based MILP model to find a truncated differential characteristic where
the key schedule is encoded bitwise, whereas the data path is encoded word-wise. In
the second step, where we look for the real differential trails instantiating the discovered
truncated trails, we use both the SMT/SAT and the MILP bit-based models. More
precisely, for CRAFT and SKINNY-64-128 and SKINNY-64-192, we use CryptoSMT [Ste]® to
instantiate the truncated pattern with the best differential trails, as well as computing
the differential effect in steps 2, 4, and 5. However, concerning 128-bit block versions
of SKINNY, i.e., SKINNY-128-256 and SKINNY-128-384, we would highly prefer to use the
MILP-based method introduced by [AST*17], since some probability exponents in DDT of
SKINNY’s 8-bit S-box are non-integer, and encoding the objective functions with non-integer
coefficients and addition of non-integer numbers in MILP models are much easier and
straightforward in comparison to the SMT-based or SAT-based methods. Given that
Gurobi allows to find multiple solutions rather than merely one optimal solution®, we use
it as the MILP solver to compute the differential effect for 128-bit block versions of SKINNY
as well.

5CryptoSMT supports two SMT solvers including STP [GD07] and Boolector [NPB15], and one SAT
solver namely CryptoMiniSat [Soo16], where CryptoMiniSat is used to compute the differential effect.
6To find multiple solutions with Gurobi we set the parameter PoolSearchMode to 2.
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Table 2: Summary of our results and the other known single-tweak attacks on CRAFT. ST, stands for
single-tweak, and the boomerang, differential effect, truncated differential, linear hull, impossible
differential, integral, and zero-correlation cryptanalysis are respectively denoted by B, D, T'D,
LH, ID, INT and ZC. The probabilities highlighted in red have been verified experimentally.

Attack | # Rounds | Probability | Reference
10 276261 [BLMR19]
9 2740.20
10 2744.89
ST-D 11 274979 [HSN*19)
12 2—54.48
13 2—59.13
14 2763.80
ST-TD 12 236 [EMA20]
ST-LH 14 2-62.12
ST-1D 13 -
ST-INT 13 - [BLMR19]
ST-ZC 13 -
6 1
7 24
8 278
9 2—14.76
ST-B 10 9—19.83 Section 5
11 2724.90
12 2734.89
13 2—44.89
14 2—55.85

5 Boomerang Distinguishers for Reduced-Round CRAFT

In this section, after giving a brief description of CRAFT, we introduce boomerang dis-
tinguishers for reduced rounds CRAFT covering up to 14 rounds of this cipher. Table 2
summarizes our results on boomerang distinguishers of CRAFT and Table 3 briefly describes
the notations we use through this section.

5.1 A Brief Description of CRAFT

CRAFT is a lightweight tweakable block cipher which has been introduced in FSE 2019
by Beierle et al. [BLMR19]. This block cipher supports 64-bit message, 128-bit key and
64-bit tweak and its round function is composed of involutory building blocks. The

input 64-bit plaintext m = mg||mq|| - - - ||m14]/m1s5 is used to initiate a 4 x 4 internal state
15 = IO||[1H ce H114||115 as follows:

I() Il IQ 13 mo mq mo ms
IS — .[4 .[5 16 I7 _ my ms meg mry
Is Iy Iip In mg Mg Mg M1l
I ©Lis Ly Iis mi2 M3 M4 Mis

where I;,m; € F3. The internal state is then going through 32 rounds R;,i € 0, - , 31,
to generate a 64-bit ciphertext. As is depicted in Figure 6, each round, excluding the
last round, includes five functions, i.e., MixColumn (MC), AddRoundConstants (ARC),
AddTweakey (ATK), PermuteNibbles (PN), and S-box (SB). The last round only includes
MC, ARC and ATK, i.e., R31 = AT K31 o ARC3y o MC, while for any 0 < ¢ < 30, R; =
SBoPN o ATK; o ARC; o MC.
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Table 3: Notations for CRAFT.

Symbol Meaning

S XOR operation

Il Concatenation of bits

% modulo operation

T The 64-bit tweak input

K The 128-bit master key

TK; The main tweaks that are made based on the T' and K (i = 0,1, 2, 3)
i

Yi

W;

The internal state before the Mix-Columns (MC) in round 4
The internal state after the MixColumn (MC) in round ¢
The internal state before the PermuteNibbles (PN) in round i
; The internal state before the S-boxes (SB) in round ¢

SilJ] 4 cell of a state S, in round i, where 0 < j < 15, e.g. X»[5] denotes 5"
cell of internal state before MC in round 2

Silj ~1]  §* to I*" cells of state S;, in round i, where 0 < j <1< 15, e.g. Y57 ~ 9]
denotes 7", 8" and 9" cells of internal state after MC in round 2

TK;[j]  j*" cell of TK;, where 0 < j < 15, e.g. X;[6] denotes 6" cell of internal
state before SC' in round 1

AS Forward difference in a state S
vSs Backward difference in a state S
Y Hexadecimal representation of an arbitrary value Y € F3, where we are

using typewriter style

01213

45|67

8191011

12131415

X; (@z=D)] Y; Z; w; Xit1

0l1{2]3 012 1213 | 14 —~(EB)
45|67 4 |4]5]0 9|8 |11 —(EB)
8191011 81910 5|4 |7 —~(EB)
12(13] 14|15 121314 20310

Figure 6: A round of CRAFT

The MC layer is the multiplication of the internal state by a 4 x 4 involutory binary
matrix. In each round i, after MC, two round dependent constant nibbles a; = (a$, ab, at, af)
and b; = (b%,b%,b)) are XOR-ed with I, and I5 respectively, where af and b are the
least significant bits. A 4-bit LFSR is used to update a and a 3-bit LFSR is used to
update b. They are initialized by values (0001) and (001), respectively and updated to
aiv1 = (a} ®ad,al, ab,al), and b1 = (b8 @ by, b, b}) from i-th round to i + 1-th round.

After AddRoundConstants (ARC), a 64-bit round tweakey is XOR-ed with I.S. The
tweakey schedule of CRAFT is rather simple. Given the secret key K = K||K; and the tweak
T € {0,1}5* where K; € {0,1}%*, four round tweakeys TKg = Ko ® T, TK; = K1 ® T,
TKy = Ko®Q(T) and TK3 = K1 ® Q(T') are generated, where given T' = To||T1|| - - - || T14
1T15, Q(T) = Tio|| Trol| Tus || T5 ]| Taal| Ts | To | T2 | T | T | T7 | T4l T6 | To | T2 ([ T1s. Then at the
round R;, TK;y,4 is XOR-ed with the 1.5, where the rounds start from i = 0.

The next function is PermuteNibbles (PN) which is applying an involutory permutation P
over nibbles of IS, where given 1S = IO”IlH R ||Il4||.[15, P(IS) = I15||I12||113HII4H110||I9
sl T11 || I || I5 || L || L7 || 11 || I2]| I3]| To- The final function is a non-linear layer in which a 4-bit
S-box which has been borrowed from MIDORI [BBIT15] is applied on each nibble. One can
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refer to [BLMR19], to see more details about CRAFT’s specification.

5.2 Boomerang Distinguishers for 6 to 8 Rounds of CRAFT

Applying our searching method for boomerang distinguishers of CRAFT, we discovered that
up to 6 rounds of this cipher can be distinguished from a random permutation using a
boomerang distinguisher with probability one. For instance, let the input and output
differences of 6-round boomerang distinguisher of CRAFT be chosen as follows:

A Xy = 000« 0000 000« 0000, VXg = 0000 0000 05000 0000,

where «, 3 € F5 \ {0}. Figure 7 represents the forward and backward propagation of AXj,
and VX4 over 6 rounds of CRAFT respectively, where yellow and green squares denote the
nonzero and any differences respectively. It can be seen that there is not any interaction
between the active S-boxes of upper and lower differential trails in Figure 7. Therefore,
due to the switching effect, the boomerang returns with probability 1.

o - -G8
L -(58) L I-(58) L -(s8)
a 7 RED 7 g -
&) ~E8)
000x0000000:0000 Rl R2 R3
T e &
L A Gy
N ()|
@
&)
L &) L L
&)
&) SEIN
R4 R5 R6 000000000,3000000
(s8)+ |- @
L G L A G-
(s8) N &= |8
Elg (sB)

Legend DNon—zero difference .Any possible difference DZero difference L =PNoATKoARCoMC L' =MCoARCoATKo PN‘

Figure 7: A 6-round boomerang distinguisher of CRAFT

Next, by extending the discovered 6-round boomerang distinguisher one round backward,
we construct a 7-round boomerang distinguisher, which is illustrated in Figure 17. Table 4
specifies the input and output differences of our 7-round boomerang distinguisher for
CRAFT.

Table 4: Specification of boomerang distinguisher for 7 rounds of CRAFT
’ ’1"0:0,7"m:7,7”1:0,p:1,q:177":274,p2'q2’7':274 ‘
| AX, [ 00A0 00AA 0000 00A0 | VX7 [ 0000 0000 0A00 0000 |

As it can be seen in Figure 17, the upper differential path depends on whether v =+,
and there are still some nonzero upper and lower crossing differences even after 7 rounds
which reveals that there is dependency between the upper and lower differential paths
throughout the 7 rounds in Figure 17. Let r; and ro be the probability of boomerang
distinguisher in cases where v = 7/, and ~ # 4’ respectively. Consequently, the probability
of the provided 7-round boomerang distinguisher is r = ry - Pr(y =4') + ro - Pr(y # /).
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If v = 4/, as illustrated in Figure 17, the upper and lower differential trails have only
one active S-box in common. Let v and  denote the output differences of the common
active S-box in upper and lower differential paths respectively. The red frames in Figure 17
represent the propagation of difference 8 to show where this difference is originated from.
As it is visible, the difference § has not been affected by the upper differential path. On
the other hand, § is almost uniformly distributed. In conclusion, we have

2
DDT(A, ) _ _
ne T (PR - 3 ewper
~e{5,A,D,F} ~e{5,A,D,F}
and ry - Pr(y = 9/) =272.272 = 274, Due to the fact that 0 < 7y - Pr(y #v) <1, we
can conclude that r > 274, According to the experimental evaluation, r = 2727, which

validates the provided lower bound and also confirms that ro, contributes less in the total
probability r in comparison to 7.

Table 5: Specification of the boomerang distinguisher for 8 rounds of CRAFT
’ TOZOa’rm:877ﬂ1:07p:1aq:17T:278,p2'q2'T:278 ‘
| AX, [ 00A0 00AA 0000 00A0 | VX5 [ 0000 0A00 0000 A00O |

By extending the discovered 7-round boomerang distinguisher one round forwards, we
construct an 8-round boomerang distinguisher whose specification is provided by Table 5.
Figure 18 represents the propagation of the input/output differences in our 8-round
boomerang distinguisher. As illustrated, the propagation of the input difference depends
on whether (y =+4') A (§ = ¢’'). In the Figure 18, it is supposed that (y =~") A (6 = d').
It can be seen that nonzero differences exist even after 8 rounds in both forward and
backward propagation of input and output differences respectively, which means the whole
of these 8 rounds contain dependency.

Let 1 and 79 be the probability of the 8-round boomerang distinguisher, when (v =
YYA (6 =16, and (v # ') V (§ # §') respectively. Hence, the entire probability of the 8-
round boomerang distinguisher is = r1 -Pr((y =" )A (0 = 8"))+ro-Pr((y £ v/ ) V(6 # d")).
Since, two relations v = 7/, and § = §’ are statistically independent, we have:

r=ry-Pr(y=7")-Pr(6 =0")+ra-Pr((y #~) V(6 #7)).

On the other hand, the upper and lower differential trails in Figure 18, have only two
active cells in common, and there is not any interaction between other active cells in
upper and lower differential trails, and the lower crossing difference 8 is almost uniformly
distributed. The red frames depict where the difference S is originated from. It can be seen
that it has not been affected by the upper differential trail. The upper crossing difference
«, is also uniformly distributed, and as it’s depicted by blue frames, it is also independent
of the lower differential trail. Therefore, the probability that the boomerang returns when

(v =) A (6 =) is:

e Y 3 (DDTé4A,’y))2. (DDT2(f,A)>2 e

~v€{5,A,D,F} 5¢{5,A,D,F}

Besides, Pr(y = v/) = Pr(d = ¢') = 272. Consequently, r > 278, The experimental
evaluation shows that the boomerang returns with probability » = 27792, which confirms
the provided lower bound and also shows that the total probability r is almost determined
by r1. The experimental evaluation follows the pseudo-code in Subsection 2.1. More
precisely, we firstly choose a key as well as a tweak at random and perform 2'® boomerang
queries and count the number of right quartets. We repeat this test for 1000 randomly
generated keys and tweaks and compute the average number of right quartets.
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5.3 Probability of the Middle Part in Boomerang Distinguishers for 9
to 14 Rounds of CRAFT

During the search for boomerang distinguishers covering 9 to 14 rounds of CRAFT, we
observed that many boomerang distinguishers for these number of rounds have a common
active pattern in the 7-round middle part. In other words, there are many boomerang
distinguishers for 9 to 14 rounds of CRAFT that can be constructed by extending a 7-round
boomerang distinguisher, such that the dependency between the upper and lower differential
trails doesn’t exist outside the 7-round middle part. Therefore, for the sake of simplicity, we
chose a 7-round middle part and then constructed the boomerang distinguishers for 9 to 14
rounds based on it. Figure 9 shows the 7-round boomerang distinguisher with the following
input/output differences, which is expandable to construct 9-/10-/11-/12-/13-/14-round
boomerang distinguishers of CRAFT.

A Xy = 0000 0A00 0000 0000, VX7 = 0000 0A00 0000 0000.

Next, let us calculate the probability of this 7-round boomerang distinguisher. In
Figure 9, the input difference of the upper trail and the output difference of the lower trail
is given; green squares denote any possible difference while yellow squares denote nonzero
differences. Due to the weak diffusion of the linear layer of CRAFT, it can be seen that
the difference after 7 rounds is not random enough as there are still nonzero differences
in state o’ and H (see Figure 9). That is, the crossing differences throughout the whole
distinguisher are not random enough, which means there is a strong dependency between
the upper trail and the lower trail.

We further investigate the dependency of the two trails with the help of notations

2T and 25, As can be seen from Figure 9, the dependency of the two trails can be

modularized into two DBCT" and two DBCT™ which affect each other.
Let DBCTyota1 be the product of the four DBCT, i.e.,

DBCTotal = DBCT™ (A5, By, ¢5) - DBCT' (By, C12,d1 )-
DBCT_‘(EL f{27 gfl)) : DBCT_‘(Féa gév h5)a

where the variables are differences depicted in Figure 9 and particularly the each color
denotes any variable marked by the box of that color. Let

2 DDT 3 DDT
Priotal = Pr(di <—— fi5) - Pr(cs <—— fi2)-

PI‘(Clg ﬂ} Ei) . PI‘(Clg m F‘é)7

then the probability of the 7-round boomerang distinguisher for a fixed pair (A4s, hs) is:

r=25"3"3" 35S TS TS TS DBCTotal - Preotal. 2)

Bg 012 gé f{z Cs dl Ei F5’

If (As,hs) = (A,A), then r = 271039 Based on Equation 2, we evaluate r for all
(As,hs) € {(4,7)]1 <i<15,1 <j <15}, and arrange the results into a 15 x 15 matrix
which is denoted by R = [r]; j, where r; ; is the value of 7, when (As, hs) = (4,5). The
matrix R™" is represented in Appendix C. To evaluate the accuracy of the lower bound
expressed by Equation 2, we also carried out experiments on the 7-round boomerang
distinguisher in Figure 9 and arranged the experimental probabilities in matrix R?" which is
displayed in Appendix C. To experimentally evaluate the probability for each input/output
difference we follow the pseudo-code in Subsection 2.1 such that we choose a random key
and master tweak at first and then perform 228 boomerang queries. We repeat this test
for 100 random keys and master tweaks and compute the average of returned boomerangs.
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Figure 8: Visualization for the BCT of CRAFT’s S-box (left) and the probability matrix R’ (right)

Comparing the theoretical and the empirical probabilities for all (i, j) € F3 x F3, confirms
the high accuracy of the derived formula. Figure 8 visualizes the matrix R™". It is visible
that the maximum value of r; ; is obtained when (4,j) = (A,4). Another interesting
information obtained from Figure 8, is that after A four other difference values including
5,7, D, and F give a much better probability compared to other difference values. This
observation is not by chance and can be explained by referring to the DDT and BCT of
CRAFT’s S-box. According to the DDT of CRAFT’s S-box which is described in Figure 19, the
set S = {5,7,A,D,F} has a special property as follows:

VaxeSIyeS st DDT(z,y) =4
VeeSVYy¢sS st DDT(z,y) < 2.

Hence, given that CRAFT’s S-box is 4-uniform, we expect that the differences from S
result in a higher clustering effect. On the other hand, as it can be seen in Figure 8 (left),
BCT(A,A) = 16. Therefore, it is expected that a boomerang returns with a higher probability
when the nonzero entries of input and output differences are chosen from S, especially
when they are all equal to A. As another interesting observation, comparing the visual
representations for BCT of CRAFT’s S-box Figure 8 (left) and R™" Figure 8 (right) reveals
that there is a high similarity between the positions of maximum entries in BCT of CRAFT’s
S-box and R, which reflects the influence of CRAFT’s S-box on the boomerang behavior
of several rounds. In the next sections, we extend the 7-round boomerang distinguisher
E'" to construct a longer boomerang distinguisher up to 14 rounds of CRAFT.

5.4 Boomerang Distinguishers for 9 to 14 Rounds of CRAFT
9-Round Boomerang Distinguisher

In order to construct a 9-round boomerang distinguisher for CRAFT, we extend the 7-round
distinguisher E'" in Subsection 5.3, by one round in both directions. Accordingly, as
represented in Figure 9, the input and output differences of the 9-round distinguisher are
chosen as follows:

A Xy = 0A00 0000 0A00 0000, VX4 = 0000 0000 OAOO 0000,

to maximize the differential effect for the extended parts which are included in Fy and Fj.
Given that the lower and the upper crossing differences in E’", can be seen as uniform
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after 7 rounds, we consider the extended parts including the one round ahead and the
one round behind, as Ey and E; respectively. Let AX? = 0000 0i00 0000 0000, and
VX} = 0000 0500 0000 0000, denote the input and output differences of the 7-round

1r
middle part E,, respectively, where i, j € F5 \ {0}. Besides, let p; = Pr(A Xy N AXY),

1r

and ¢; = Pr(VX}] LN VXg). If (i,j) = (A,A), then p?qf—Rzaw = 271839 where
R is the matrix defined in Subsection 5.3. Taking into account the clustering effect,
pglﬁ = 21121 Z;il pfq?RZZ = 271543 gives a more accurate lower bound for the probability
of the 9-round boomerang distinguisher. However, according to the experimental evaluation,
pyr = 271450 To empirically evaluate the probability we choose a random key as well as
a random tweak and then perform 22® boomerang queries. After repeating this test for
1000 random keys and tweaks we compute the average of right quartets. The main reason
for this gap between the theoretical bound and the empirical approximation of p%l}w is
assuming that the differences are equal in two sides of boomerang distinguisher, whereas
they can take different values indeed.

More precisely, the differences at positions As, and hs, can take different values in two
faces of boomerang. Accordingly, using the UBCT™ and LBCT~, we provide a more accurate
theoretical bound for the probability of 9-round boomerang distinguisher as follows:

RRESETSE0 35 3 3 3 3 3 3 ) ) ) 3 B D B It

As1 As2 by Bg c¢s ci2 Ci2 di Ef f{, Fi2 gy F. Go hsi hso
®3)

where n = 4, and BCT; and Pr; are defined as follows:

BCT; = DDT(U}, As1) - DDT(Ug, Asz) - UBCT™ (Asy, Asg, by, Bo)
. LBCT(.BQ7 Cs, bg) . UBCT(BQ7 C12, 012) . LBCT(Clg, dl, 012)
-UBCT(EY, fi9; F12) - LBCT(F12, gy, f12) - UBCT(F%, gg, Go)

-LBCT™(Gy, hs1, hs2, g9) - DDT(hs1, vg) - DDT(hs2, vg),

Pr, = Pr(dy E22 f1,) Pr(cs 25 f1,)

. PI‘(Clg 2'i) Ei) . PI‘(Clg d'i) Fé)

(As1, Asz) and (hs1, hse) denote the differences at position As and hs in the two faces of
boomerang distinguisher respectively. Evaluation of p)" (U{,ve), when (Ug,vg) = (A, A),
yields pir = 271476 which is very close to the experimental value of p)” . One can see
that, the experimental values of pgzT and the theoretical value which is obtained using
Equation 3, are also close for other values of (U{, vg) € (F3 \ {0},F% \ {0}) . It confirms
our assumption that there is no dependency out of the 7-round middle part, as Equation 3
has been derived based on the assumption that the upper and lower crossing differences

Hj and as, are both uniformly distributed.

The above observation, motivated us to model the 7-round middle part by a four-
dimensional matrix instead of a two dimensional matrix, using two new S-box tables UBCT",
and LBCT™. Let As;, and Asy, be the differences in two sides of boomerang at position As.
Similarly hs1, and hsg, denote the differences in two sides of boomerang at position hs.
To obtain a more accurate bound for the boomerang distinguishers that are constructed
by extending our 7-round boomerang distinguisher, we define the 4-dimensional matrix
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RZ’; k1> as follows:

CETNEERDS)3)3)3) 3) 35 35 55 5 B B B =S

bo Bo ¢ ci2 Cia di E| fl, F1z g} f|, F, Go

-UBCT" (431, Asa, by, By) - UBCT(By, ¢12, Ci2) - LBCT(Cha, di, €12)
-UBCT(EY, f1q, F12) - LBCT(F12, gy, f12) - UBCT(F5, gy, Go)

- LBCT (G, hs1, hsa, gb) - Pry,

(4)

where n = 4, As1 = i, Aso = j,hs1 = k, and hss = [. Hereafter, we use this matrix to
provide a lower bound for the probability of the extended distinguishers based on E".
Appendix G gives a more efficient formula to evaluate R™[i, j, k, [].

10-Round Boomerang Distinguisher

As illustrated in Figure 9, if the 7-round boomerang distinguisher E7" is extended
two rounds forwards, and one round backward, a 10-round boomerang distinguisher is

constructed with the following input and output differences:
A Xy = 0A00 0000 0A00 0000, VX159 = 0000 0A00 0000 A0O0O.

Let E}" and E?7, depict the extended parts corresponding to one round ahead and two
rounds behind respectively. Furthermore, we consider rounds 2 to 8 as F,,. Let p; =

Elr . . E27‘ 3
Pr(AXo —— AXY), and ¢; = Pr(VX] —— VXjg), where AX{ = 0000 0i00 0000 0000,
and VX = 0000 000 0000 0000, for i,j € F3\ {0}. Then, a lower bound for the
probability of our 10-round boomerang distinguisher is:

15 15 15 15

Do = 22 > Y pipjakaR e, =270

i=1 j=1k=11=1
However, based on the experimental evaluation, p,ljgl” = 271817 Tp the experiments, we
choose a random key as well as a random master tweak at first and perform 22 boomerang
queries. We repeat this test for 100 randomly generated keys and tweaks and compute
the average number of successes. As it can be seen there is a gap between the theoretical
bound and the empirical value of p;°", which is originated from the assumption v] = vg,
for the lower differential trail in Figure 9. As it can be seen in Figure 9, it is supposed
that v} = v, whereas the differences v{ and v§, should not necessarily be the same in the
10-round boomerang distinguisher. Given that the output differences of active S-boxes in
the last round of the 10-round boomerang distinguisher are equal to A, the input differences,
i.e. v] and v}, can take an arbitrary value from {5,A,D,F}. As a result, in theoretical
evaluation of pé?nr, we have considered only 4 possible cases out of 16 possible cases for
v’ = 0000 0v400 0000 v;000. Hence, applying the theoretical formulas provided for the
7-round middle part ET7, i.e. Equation 2 or Equation 4, to compute the probability of
longer boomerang distinguishers, only gives a lower bound for the probability of boomerang
distinguisher covering more than 9 rounds.

One may construct a 10-round boomerang distinguisher by extending the 7-round
boomerang distinguisher E/", two rounds backward and one round forwards. However, as
it can be seen in Figure 9, due to the symmetry between the upper and lower differential
trails, the total probability of this distinguisher, is the same as the probability of the
former one.
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11-Round Boomerang Distinguisher

An 11-round boomerang distinguisher for CRAFT can be constructed by extending the
7-round boomerang distinguisher E'", two rounds forwards and backward. As it can be
seen in Figure 9, the input and output differences of this 11-round boomerang distinguisher,
are as follows:

A Xy = A000 AAOO 0000 A000, VX;; = 0000 0AOO 0000 A0O0O.

Let E2" and Ef", denote the extended parts ahead and behind respectively, and E,,
includes the 7-round at the middle. Assuming that the input/output differences of E,,
are AXS = 0000 0i00 0000 0000, and VX = 0000 000 0000 0000, respectively, and

E2'r' . . E2’V'
pi = Pr(AXy — AX}), and ¢; = Pr(VX] ——= VXy4), for all i, j € F3, a lower bound
for the probability of the 11-round boomerang distinguisher is:

15 15 15 15
Pom =3 3 pipjaraRT 5y = 2724

i=1 j=1k=11=1
We also accomplished experiments to verify the above bound. To do so, we chose a
random key and tweak at first and performed 232 boomerang queries. We iterated this test
for 100 randomly chosen keys and tweaks and observed that 1509.65 boomerangs return on
average. Hence, the empirical probability is pjl7 = 272244 To find the reason of this gap
between the theoretical bound and the experimental approximation, note that in Figure 9,
it is supposed that U; = Uy, whereas U; and Ug can take different values. In addition, it

is supposed that v] = v§, while v] and v§ should not necessarily be the same.

12 to 14-Round Boomerang Distinguisher

One can extend the 7-round boomerang distinguisher E/", 3 rounds backward and 2 rounds
forwards to obtain a 12-round boomerang distinguisher for CRAFT. The input/output
differences of the 12-round boomerang distinguisher are shown in Table 16, and the
input and output differences of the 7-round middle part are assumed to be AXE =
0000 0700 0000 0000, and VX7, = 0000 0500 0000 0000, respectively, where i, j € F4\ {0}.

E3T ) . g2

Assuming that p; = Pr(AXy —— AXY), and ¢; = Pr(VX{, — VX12), a lower bound for

the probability of the 12-round boomerang distinguisher is leil Z;il pquzRZ = 2735:49,

Taking into account that the input and output differences of the middle part should not

necessarily be the same in two sides of boomerang distinguisher, the following formula gives

a more accurate lower bound for the probability of the 12-round boomerang distinguisher:
15 15 15

15
Plﬁf = Z Z Z ZpiququRZ,;,k,l — 9—34.89

i=1j=1k=1I=1

According to the experimental evaluations, the probability that the boomerang returns,
is 273211 which validates the provided lower bound. To empirically approximate the
probability we choose a random key and tweak at first and perform 237 boomerang queries.
We iterate this experiment for 100 random keys and tweaks and count the average number of
right quartets. Table 16 provides a right quartet for the 12-round boomerang distinguisher.
Similarly, we can extend the 7-round boomerang distinguisher E'" to build 13 and 14
rounds boomerang distinguishers with probabilities péf’,f = 2748 and péf;: = 260.33
respectively. Table 14 and Table 15 express the specification of the extended boomerang
distinguishers based on E'" for 13 and 14 rounds of CRAFT respectively.

Although due to the restricted computing power we have not evaluated the experimental
probability of the extended boomerang distinguishers for 13 and 14 rounds of CRAFT, we
expect that the boomerang returns with a probability higher than what is estimated above
as we have not considered the entire clustering effect inside the boomerang distinguisher.
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5.5 A Dedicated Boomerang Distinguisher for 14 Rounds of CRAFT

In the previous section, we showed that there exists a 7-round boomerang distinguisher
for CRAFT that can be extended up to 14 rounds. However, for convenience, we used a
common middle part to construct the boomerang distinguishers covering 9 to 14 rounds
of CRAFT. Thus, it may be possible to find a better distinguisher in terms of probability
if we search for a dedicated boomerang distinguisher for each case. Here, we provide
a dedicated boomerang distinguisher with a higher probability for 14 rounds of CRAFT.
Table 6 describes the specification of a dedicated boomerang distinguisher for 14 rounds of
CRAFT, and Figure 10 illustrates three different parts of this distinguisher, i.e., Fy, E; and
E,,.

As shown in Figure 10, the upper and lower differential paths are strongly interrelated
and there are many common active S-boxes in the middle part. Hence, to avoid the
complicated formulas we switch to the experimental approach to provide a lower bound
for the probability of this boomerang distinguisher. Let consider the 8-round middle part
including rounds 4 to 11 as E,,,. As it can be seen in Figure 10, there exist only one active
cell in both input and output differences of E,,. On the other hand, each of the input
and output differences can take different values in two faces of boomerang. Consequently,
there are in total 15* = 50625 possible combinations for the input/output differences of
E,, in two sides of boomerang distinguisher. However, due to the restricted computing
power, we let the differences in active input and output cells of E,,, to be different in two
sides of boomerang only if they are taken from S = {5,7,A,D,F}, otherwise, we assume
that they are the same in two faces of boomerang. Thus, we consider only 5* + 102 = 725
cases out of 50625 possible combinations for the input/output differences of E,,. Let
AXZ = 0000 00i0 0000 0000, and VX7, = 0000 j000 0000 0000, for all i,; € F4\ {0}.
For each of 725 possible combinations, the input and output differences of E,,, in two sides
of boomerang are fixed, and the probability that the boomerang returns is experimentally
evaluated. Then, for all 4, 7, k,1 € S, the results are arranged into:

S = Pr{E! (Em (2) @ VX)) @ B (B (v ® AXS) © VX)) = AXTY,
and for all 4,5 € F3 \ S U {0}, the results are stored into R; ;, such that:

R = Pr{E,! (B () © VX)) @ B! (B (v 0 AX)) @ VXY, ) = AXS}

Next, we show that the dependency doesn’t exist outside F,,. To this end, we firstly
assume that the lower and upper crossing differences are uniformly distributed outside
E,,. Based on this assumption, the following formula:

Z Z Z ZpiqukquiS,;‘,k,l — 2—25.657

i€S jES keS leS

1r 1r

where p; = Pr(AXs 25 AX3E), and ¢; = Pr(VX{, s VXy,), for all i,5 € F4\ {0},
and AXs = A000 0000 A0O00 0000, and V X715 = 0000 A000 0000 0000, must give the same
value as the experimental probability of the 10-round boomerang distinguisher that is
constructed by appending one round before and after the E,,, in Figure 10. we empirically
assessed the probability of the 10-round boomerang distinguisher composing of rounds 3
to 12 in Figure 10. To this end, we firstly chose a random key and tweak and perform
228 boomerang queries. This test was iterated for 1000 randomly chosen keys and tweaks
and 4.93 boomerang returned on average. Hence the experimental probability is 272570,
which is very close to the above approximation and therefore confirms our assumption.
Consequently, a lower bound for the probability of the 14-round boomerang distinguisher
is:

8r 2 2p8r _ 9—55.85 —66.70 -, 0—55.85
E pinQleRiyj,k,l + E p; (IjRi,j =2 +2 ~2 )
i,J,k,lES i,jEF3\SU{0}
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3r . 3r
where p; = Pr(AX, N AX31), and ¢; = Pr(VXY, B, VXi4), for all i,j € F3 \ {0}. It
is visible that the total probability is almost determined by the first term.

Table 6: Specification of a dedicated boomerang distinguisher for 14 rounds of CRAFT
‘ T = 3,7y = 8,71 = 3, ZPinQkQZR?C',kl =275580, 4 i e F3\ {0} ‘
AXg 0OAA 00AO AOOA 00AO AXE 0000 0070 0000 0000
VX, 0000 7000 0000 0000 VXia 00AO 0000 OAAO AOOO
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Figure 10: A dedicated boomerang distinguisher for 14 rounds of CRAFT with the form 3 + 8 + 3

5.6 Boomerang Distinguishers of CRAFT in the Related-Tweak Model

We have investigated the boomerang behavior of CRAFT in the related-tweak model also.
In contrast to the single tweak model where the boomerang distinguishers have significant
advantages against the basic differential distinguishers, the outcome was not promising in
terms of the number of rounds compared to the current best differential distinguishers in
the related tweak model. It shows that the boomerang attack is less efficient than the basic
differential attack for CRAFT in the related tweak model. It is worth noting, we expected
this behavior and it is not surprising. More precisely, on one hand, the differences that
are introduced by the tweakey schedule accelerate the diffusion of uniformly distributed
differences which reduces the number of rounds that can be covered by the middle part.
On the other hand, the clustering effect in the related-tweak model is weaker in comparison
with the single tweak model for CRAFT. Hence, the outcome is not promising in this model
compared to the previous related tweak differential cryptanalysis [BLMR19].
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Table 7: Notations for SKINNY.
TK1; Tweakey state TK1 in round i. TK2; and TK3; are defined similarly
TK; it" round tweakey. This is equal to the result of XORing the first and
the second rows of TK1; and T K2; for SKINNY-n-2n and TK1;, TK2;
and T K 3; for SKINNY-n-3n

X; Internal state before SC' in round i

Y; Internal state before ART in round ¢

Z; Internal state before SR in round ¢

W; Internal state before MC in round 4

Sil7] gt cell of state S;, where 0 < j < 15, e.g. X;[6] denotes 6! cell of

internal state before SC' in round 1
Silj ~1]  §% to I*" cells of state S;, in round i, where 0 < j <[ < 15, e.g. Y5[6 ~ §]
denotes 6!, 7" and 8 cells of internal state before ART in round 2

TKIj] §* cell of TK, where 0 < j < 15, e.g. X;[6] denotes 6" cell of internal
state before SC in round 1

AS Forward difference in a state S

vSs Backward difference in a state S

Y Hexadecimal representation of arbitrary value Y € Fj3, where we are

using typewriter style.

6 Boomerang Distinguishers for Reduced-Round SKINNY

In this section, we first briefly review the specification of SKINNY and its previous boomerang
distinguishers, and then present improved boomerang distinguishers for different variants
of SKINNY. Table 7 briefly describes the notations we use through this section of the paper.

6.1 A Brief Description of SKINNY

SKINNY is a family of lightweight tweakable block ciphers using SPN strcuture and following
the tweakey framework from [JNP14], in its design. Each family member of SKINNY is
represented by SKINNY-n-t, where n represents the block size (n € {64,128}), and ¢
represents the tweakey size (¢t € {n,2n,3n}). In other words, the six main variants of
SKINNY are SKINNY-64-64, SKINNY-64-128, SKINNY-64-192, SKINNY-128-128, SKINNY-128-
256, and SKINNY-128-384 with 32, 36,40, 40,48, and 56 rounds, respectively.

The internal state of SKINNY is considered as a 4 x 4 matrix, where each entry is a
nibble in the n = 64 case, or a byte in the n = 128 case. In both cases, the internal state
IS = Iy||I1|| - - - || [14]|I15 is arranged row-wise into a 4 x 4 array, where I; € F5 (or F$).

As illustrated in Figure 11, each round of SKINNY performs five basic operations on
the cipher internal state, including SubCells (SC), AddConstants (AC), AddRound Tweakey
(ART), ShiftRows (SR), and MixColumns (MC). The first operation which is performed on
the internal state in each round is SubCells (SC), in which depending on the block size,
a 4-bit Sbox (for 64-bit block size) or a 8-bit Shox (for 128-bit block size) is applied
on each cell of the internal state. The next operation is AddConstant (AC) where some
round-dependent constants are XORed to the first column of the cipher internal state.
Then, in AddRoundTweakey (ART), as represented in Figure 11, the first and second rows
of the tweakey state are XORed with the corresponding rows of the internal state. In
ShiftRows (SR) layer, each cell in row j is rotated to the right by j cells.

In the MixColumns (MC) layer, each column of the internal state is multiplied by 4 x 4
binary matrix. The tweakey state of SKINNY can contain both key and tweak materials
and it is arranged as a collection of z 4 x 4 array of nibbles (for 64-bit block size) or
bytes (for 128-bit block size), where z = t/n. The tweakey state arrays are denoted by
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Figure 11: The round function and tweakey schedule of SKINNY

TK1 when z =1, TK1 and TK2 when z = 2, and TK1,TK2, and TK3 when z = 3.
Let TKi[j] represents the j'th cell of TKi for i € {1,2,3}. The tweakey schedule of
SKINNY is a linear algorithm in which, firstly, a cell-wised permutation Pr is applied
on each tweakey state, i.e. TKi[j] «+ TKi[Pr[j]] for all i € {1,2,3} and 0 < j < 15
where Pr = [9,15,8,13,10,14,12,11,0,1,2,3,4,5,6,7]. Then, every cell of the first and
second rows of T K2 (where TK?2 is used) and TK3 (when T K3 is used) are individually
updated with an LFSR. For complete details of the round function, and tweakey scheduling
algorithm, one can refer to [BJKT16].

Table 8: Summary of our results in comparison to the results in [SQH19] and [DDV20] for
boomerang distinguishers of SKINNY. The probabilities highlighted in red have been verified
experimentally. The Roman numbers represent the corresponding distinguisher in our paper. The
probabilities denoted by §, correspond to the distinguishers that can be obtained by extending the
distinguishers proposed in [SQH19]. The probabilities displayed with a { sign correspond to the
distinguishers from [DDV20] that are exactly the same as our distinguishers and the probabilities
represented with a I sign are associated to the distinguishers from [DDV20] having the same
activeness pattern as our distinguisher.

Probability
Version n_ | #Rounds | Our Distinguishers [ [SQH19] | [DDV20]
17 2—26.54(11) 2—29478 2—27465
64 18 2737.90(11) 2—45.14§ 2738420
19 2751.08(11) 2765.62§ 2754.361
SKINNY-n-2n 18 271077 (10) 2777831 2mAT ST
—58.33 —97.53 —61.83
128 ;g 22—85.31 ((III)) 22—128465% ;—85.77
21 2—114.07 (II) 2—171.77§ _
22 2—3884 0) 9—42.98 9—39.4%
64 23 2—52.84 (I) 2—67.36§ 2—57.93
—40.57 —48.30 —47.34
SKINNY-n-3n ;é 3—56.47 8 22—75.86§ 22—63.80Jr
128 24 2-87:39 (1) 9—107.86¢ 9—86.09
25 27116.59 (I) 27141.66§ _
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In [LGS17], Liu et al., provided related-tweakey rectangle attacks against SKINNY. After
that, in EUROCRYPT 2018, Cid et al. introduced the BCT in [CHPT 18] and applied it to
accurately evaluate the probability of generating the right quartet for two middle rounds
of boomerang distinguishers proposed in [LGS17]. At FSE 2019, Song et al. proposed a
generalized framework to identify the actual boundaries of E,, which contains dependency
of the two differential paths of boomerang distinguisher and systematically evaluate the
probability of E,, with any number of rounds. Using their method, Song et al. [SQH19] 7
proved that the probability of four boomerang distinguishers proposed in [LGS17] are much
higher than previously evaluated. Authors of [DDV20] have also independently improved
the boomerang distinguishers of SKINNY. In this section we introduce new boomerang
distinguishers for SKINNY-64-128, SKINNY-64-192, SKINNY-128-256, and SKINNY-128-284,
which are remarkably better than the best previous boomerang distinguishers of SKINNY
in terms of probability and the number of rounds. Table 8 summarizes our results on
boomerang distinguishers for SKINNY-n-2n and SKINNY-n-3n, where they are compared
with the distinguishers proposed in [SQH19] and [DDV20].

Firstly, we investigated the best previous boomerang distinguishers in [SQH19], to
see for how many rounds they can be extended. To this end, by keeping the middle part
and the tweakey’s difference of the proposed distinguishers unchanged, we extend them
some rounds forwards and backward. Then, by fixing the input and output differences
of E,,, we look for the best differential trails covering the extended Ey and E;. After
that, taking into account the clustering effect, we compute p and ¢. In conclusion, given
that r is known from [SQH19], we compute the total probability using p*¢*r formula.
The summary of our results concerning this search is given in Table 17. As it can be
seen, the best previous boomerang distinguishers of SKINNY-64-128, SKINNY-128-256 and
SKINNY-128-384 proposed in [SQH19] and [LGS17], can be extended up to 18, 19, and 24
rounds respectively, whereas the best previous boomerang distinguisher for 22 rounds of
SKINNY-64-192; can not be extended for a higher number of rounds at all.

Based on the results in [SQH19], where it is proved that the upper and lower differential
paths in boomerang distinguishers of SKINNY can be dependent up to 6 rounds, we searched
for the boomerang distinguisher of SKINNY taking into account the 6-round middle part
as Fy,. Given that the boomerang distinguishers for 8-bit versions of SKINNY, cover more
number of rounds [SGSL18] in comparison to the 4-bit versions, and 8-bit S-boxes are
heavy for MILP /SAT solvers, applying our searching method on 8-bit versions of SKINNY
is more time-consuming. Accordingly, we applied a dedicated method to find boomerang
distinguishers for SKINNY to speed up the search. Due to the structural similarity between 4-
bit and 8-bit versions of SKINNY, our idea is to use the discovered boomerang distinguishers
for 4-bit versions, in discovering boomerang distinguishers for 8-bit versions. Once a
boomerang distinguisher is discovered for 18 rounds of SKINNY-64-128, we use the middle
part of the discovered boomerang distinguisher to find a boomerang distinguisher for 18
rounds of SKINNY-128-256, as well as 22 rounds of SKINNY-128-384. To do so, we divide 18
(and 22) rounds of SKINNY-128-256 (and SKINNY-128-384) into three parts such that E,,
includes the 6-round middle part. Then, we look for the best differential trails for the first
and last parts, i.e., Ey and E; satisfying the active pattern of the input and output in the
discovered FE,,. The discovered boomerang distinguishers for 22 rounds of SKINNY-64-192
can be used to discover boomerang distinguishers for 22 rounds of SKINNY-128-384 in the
same way. As a result, the discovered boomerang distinguishers have a common active
pattern in the middle part.

Throughout applying our searching method for boomerang distinguishers on SKINNY,
we observed that a suitable boomerang distinguisher for 18 rounds of SKINNY-64-128 and
SKINNY-128-256, can be extended up to 19 and 21 rounds of these variants respectively.

7 [SQH19] focused on giving a more accurate probability of existing boomerang distinguishers rather
than searching for boomerang distinguishers covering more rounds.
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Besides, we observed that a suitable boomerang distinguisher for 22 rounds of SKINNY-64-
192 and SKINNY-128-384 can be extended up to 23 and 25 rounds respectively. Among all of
the discovered boomerang distinguishers using our dedicated searching method, we picked
the two best ones called the boomerang distinguisher I, and boomerang distinguisher II,
which are presented in the next sections.

6.2 Boomerang Distinguisher | for SKINNY

In this section, we present the details of boomerang distinguisher I for different variants
of SKINNY. This distinguisher is constructed using our dedicated method to search for
boomerang distinguishers of SKINNY, where we first discover a suitable boomerang distin-
guisher for 18 rounds of SKINNY-64-128 and then use its middle part to discover boomerang
distinguishers for other variants of SKINNY. That is why the active pattern in the middle
part of boomerang distinguisher I is the same for all variants of SKINNY. We first focus on
the boomerang distinguisher I for SKINNY-64-128 and SKINNY-128-256.

Boomerang Distinguisher | for SKINNY-64-128 and SKINNY-128-256

Table 9 describes the specification of the boomerang distinguisher I for 18 rounds of
SKINNY-64-128 and Figure 12 represents the upper and lower differential trails of this
boomerang distinguisher, where the yellow squares stand for active cells and green squares
represent any differences as before. Hex numbers at the top of the state squares are exact
differences specified by the differential trails. The horizontal dashed lines in Figure 12,
separate Ey, F,, and Ey. It can be seen that each one of Ey, F1 and E,, includes 6 rounds,
such that the middle part F,,, is composed of rounds R7 to Ri2, over which the upper
and lower differential trails are extended with probability 1 towards each other.

Table 9: Specification of boomerang distinguisher I for 18 rounds of SKINNY-64-128
’ 70 =06,7 =6, =6,p=2"241 =278 p=271916 2 o2 — 2—39.98

ATK1 00000000C0000000 ATK?2 00000000F0000000
A Xy 0000000000000008 AXg 0000000000040000
VTK1 0000000000004000 VTK?2 0000000000007000
VX 0000000000000000 VXis 0454000404070404

Next, we compute the probability of the middle part F,,, where we assume to include
the dependency between the upper and lower differential trails. As illustrated in Figure 12,
most of the common active S-boxes between the upper and lower differential trails, appear
in rounds Rg to R1g. Hence, we start with computing the probability for intermediate
rounds consisting of rounds Rg to Ryg. It can be seen that ¢ and D}, in lower and upper
differential trails respectively, are almost uniformly distributed. On the other hand, due to
the weak diffusion of the linear layer, the difference d} in lower differential trail, does not
diffuse to more cells. In addition, d}, should not necessarily take an identical value in two
sides of boomerang. Consequently, assuming that dj ; and d 5, denote the different values
of difference df, in two sides of boomerang, and ¢ and D} are uniformly distributed, the
probability of the 3-round middle part including rounds Rg to R1g can be computed as

follows:
Py =271 Z Z Z Z Z Z DBCT(B11, dy,) - DDT?(Biy, Co)

diy Co dj Cisd,d,

- DBCT" (By1, C13, d}) - BCT(Cy, d),)

- DBCT(C3, dj, €13) - BCT(CYy, dy)

-DDT(d} 1, €1).DDT(d} 5, 1) - DDT(d}y, €)5) = 271153,
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Figure 12: Boomerang distinguisher I for 18 rounds of SKINNY-64-128 with the form 6 4+ 6 + 6

where n = 4, By; = 2,C}, =D, and e; = e}; = 5. Experimental value of p3" is 271170,

which is very close to the provided theoretical value. Next, we append round R;;, and
provide a formula to theoretically evaluate the probability for the 4-round intermediate
part including rounds Rg, Rg, R19, and Ry;. To this end, note that the difference e},
has not to be identical in two faces of boomerang. Thus, assuming that €}3 ; and €3 5
represents the differences at position e, in two sides of boomerang, we have:

w=2 ZZZZZZZZZDBCT Buu, dia) - DT (B, Co)

’
Co dj Cl3d d12 13,1 132 D}

: BCT(C’g, NE BCT(C’lO, d}) - DBCT" (By1, C13,d})
: DDT(CI37 DZL) : LBCT:‘(DZLa el13,17 6113,27 dil)
-DDT(d} 1, e1) - DDT(d} 5, €1) - (DDT(dyy, €15,1) + DDT(dyy, €15,5)) = 27157,

where n = 4, By; = 2,C]y =D,e; =5, and fi3 = 2. Based on the experimental evaluations,

dr — 271389 which is very close to the provided theoretical value. It should be noted that,
providing an accurate formula for high number of rounds in which the clustering effect
in the middle part can be considered, is not only complicated, but also evaluating such a
formula in our boomerang distinguishers is a computationally hard problem, especially for
8-bit versions of SKINNY. In conclusion, to avoid the complicated formulas, and with the
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aim of providing a more accurate bound, we switch to the experimental approach.

As illustrated in Figure 12, the lower crossing differences after 6 rounds are not enough
random, as there are still nonzero differences in state a’. On the other hand, four rounds
ahead and four rounds behind the 6-round E,,, are fully passive, and we can be sure that
there does not exist dependency out of the 6-round middle part, as after propagating the
lower and upper differential trails by four more rounds forwards and backward, the crossing
differences can be seen as perfectly uniform. Note that the input and output differences of
E,, in Figure 12 are imposed by the tweakey differences. Given that, the tweakey schedule
is linear, and the master tweakey difference is fixed, the only possible combination for
the input/output differences of E,, in Figure 12, is AXg = 0000000000040000, VX5 =
0000000000000000. Therefore, by fixing the input/output differences of E,,, by AXg, and
V X1z respectively, we can simply evaluate the experimental probability of the 6-round
middle part.

To assess the empirical probability of intermediate F,, with 6 rounds in Figure 12,
we chose a tweakey at random following the pseudo-code in Appendix I, we perform 226
boomerang queries. We repeat this test for 1000 randomly chosen tweakey and count the
average number of right quartets. Accordingly, the probability of E,, is 271%16. For the
full 18-round distinguisher, taking into account the clustering effect, the probability of
the first and last 6 rounds can be simply calculated using the automatic methods based
on MILP/SAT which are p = 27241 and ¢ = 278, respectively. In conclusion, a lower
bound for the probability of full 18-round boomerang distinguisher I for SKINNY-64-128
is p2¢®r = 273998 We experimentally verified the correctness of this bound. To do
so, we accomplished several random experiments such that each experiment includes
24! random boomerang queries in total, and computed the average number of returned
boomerangs. More precisely, to accomplish an experiment consisting of 24! random
boomerang queries, we performed 512 parallel experiments, each of which includes 2'6
bunches of 2'6 random boomerang queries where a random fixed tweakey was used in each
bunch and a random plaintext was used in every single query. As a result, we observed
that about 3.71 boomerangs return on average. Table 22 provides a right quartet for this
distinguisher.

The boomerang distinguisher I for 18 rounds of SKINNY-64-128 can be extended one
round backward, to construct a 19-round boomerang distinguisher, whose specification is
provided in Table 10, which improves the previous results by one round. Also, as it can
be seen in Figure 12, removing the last round of 18-round boomerang distinguisher I for
SKINNY-64-128, results in a 17-round boomerang distinguisher with probability 2727-98,
which is better than the 17-round boomerang distinguisher proposed in [LGS17], in terms
of probability.

Table 10: Specification of boomerang distinguisher I for 19 rounds of SKINNY-64-128

’ 0 ="T,Tm =061 =6,p=2"2 ¢q=278 r=2"1916 2 42 p — 975316
ATK1 C000000000000000 ATK?2 FO00000000000000
AXy 2000001001001000 AXy 0000000000040000
VTK1 0000400000000000 VTK?2 0000700000000000
VXis 0000000000000000 VXig 0454000404070404

As mentioned before, to find a boomerang distinguisher for 18 rounds of SKINNY-128-
256, we divide it into three 6-round parts and then look for the best differential trails
for Fy and Ej, satisfying the input/output activeness pattern of the discovered E,, in
boomerang distinguisher I for SKINNY-64-128. Due to the structural similarity between the
SKINNY-64-128 and SKINNY-128-256, we found an 18-round boomerang distinguisher for
SKINNY-128-256 with the same activeness pattern as 18-round boomerang distinguisher I
for SKINNY-64-128. The large block size of SKINNY-128-256 lets us to extend the discovered
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boomerang distinguisher I for SKINNY-128-256 up to 21 rounds of this cipher, which improves
the previous distinguisher by two rounds. The specification of boomerang distinguisher I
for 18 to 21 rounds of SKINNY-128-256 are described in Table 18.

Boomerang Distinguisher | for SKINNY-64-192 and SKINNY-128-384

Table 11 describes the specification of boomerang distinguisher I for 22 rounds of SKINNY-
64-192, and Figure 13 illustrates the upper and lower differential trails of this distinguisher.
Ey and E; are composed of the first and last 8 rounds, respectively, and the 6-round
middle part has been considered as FE,,. It can be seen that the activeness pattern in
the middle part of this distinguisher is exactly the same as the activeness pattern of the
middle part in boomerang distinguisher I for SKINNY-64-128.

Next, we show that E,, in Figure 13, contains entire dependency between the upper
and lower differential trails. The propagation of lower differences with probability 1 over
the E,, in Figure 13, shows that there are still non-zero differences even after 6 rounds.
Hence, the upper and lower differential trails are dependent in F,,. On the other hand,
6 rounds before and after F,,, are passive and the upper and lower crossing differences
are uniformly distributed after 6 rounds propagation in forward and backward directions,
respectively. Consequently, E,, contains entire dependency between the upper and lower
differential trails in Figure 13. Given that the input/output differences of the middle part
E,, are induced from the tweakey differences and therefore, are fixed, we experimentally
evaluate the probability of the middle part, for the fixed input/output differences shown
in Figure 13. Our experimental evaluation follows the pseudo-code given in Appendix I,
where we chose a tweakey at random and then perform N = 226 boomerang queries. After
iteration of this test for 1000 randomly chosen tweakey we count the average number of
right quartets. Next, taking into account the clustering effect, we compute p and ¢ which
are given in Table 11. Lastly, using the p?¢?r formula we provide a lower bound for the
probability of boomerang distinguisher. We also experimentally verified the correctness of
the constructed distinguisher. To do so, we performed several experiments each of which
consists of 240 boomerang queries where a new random tweakey is used for each bunch of
220 queries, and observed that about 2.26 right quartets are discovered on average. Table 23
provides a right quartet satisfying the boomerang distinguisher I for SKINNY-64-192.

Table 11: Specification of boomerang distinguisher I for 22 rounds of SKINNY-64-192. ATK =
ATKI1||ATK2||ATK3, and VT'K = VT K1||VTK2||VTK3

ro = 8’,’,m — 6,7"1 — 8,p — 272.417 qg= 2777 r = 2720.02’ p2.q2.,’, — 2738.84

ATK 0000000001000000 000000000BOO000OO 0OO0000008000000
A Xy 0000000000000200 ‘ AXg ‘ 00000000000A0000
VTK 0000000000200000 0000000000300000 0000000000DO0000
VXia 0000000000000000 ‘ VX ‘ 5605060000450605

Boomerang distinguisher I for SKINNY-64-192, can be extended one round backward,
which results in a 23-round boomerang distinguisher whose specification is given by
Table 12, whereas the best previous boomerang distinguisher for 22 rounds of SKINNY-64-
192 in [LGS17], can’t be extended for 23 rounds of this version.

Table 12: Specification of boomerang distinguisher I for 23 rounds of SKINNY-64-192
70 =97 =6,7 =8, p=2"94 =277 p=272002"p2 2, _ 9=5284

ATK 0100000000000000 0BOOOOOOOO000000 0800000000000000
A Xy 0400100000010010 ‘ AXg ‘ 00000000000A0000
VTK 0020000000000000 0030000000000000 0ODOOOOOO0000000
VXis 0000000000000000 ‘ VXos ‘ 5605060000450605
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Figure 13: Boomerang distinguisher I for 22 rounds of SKINNY-64-192 with the form 8 4+ 6 + 8

In the same way, we also found a boomerang distinguisher for 22 rounds of SKINNY-
128-384 with the same activeness pattern as boomerang distinguisher I for 22 rounds of
SKINNY-64-192. The large block size of SKINNY-128-384, allows us to extend the discovered
boomerang distinguisher I for 22 rounds of SKINNY-128-384, up to 25 rounds of this cipher,
whereas the best previous boomerang distinguisher of this variant in [LGS17], can be
extended up to 24 rounds. Table 19 describes the specifications of boomerang distinguisher
I for 22 to 25 rounds of SKINNY-128-384. Thanks to the high probability of boomerang
distinguisher I for 22 rounds of SKINNY-128-384, we could experimentally verify it. Our
experimental verification follows the same configuration as the experimental verification of
boomerang distinguisher I for 18 rounds of SKINNY-64-128. Table 24 represents one of the
right quartets that were discovered during our experiments.

6.3 Boomerang Distinguisher Il for SKINNY-64-128 and SKINNY-128-256

Throughout our search for boomerang distinguishers of SKINNY, we discovered a boomerang
distinguisher which was a little better than boomerang distinguisher I for SKINNY-64-128
and SKINNY-128-256, in terms of probability, which is introduced here as boomerang
distinguisher II for these variants of SKINNY. Due to our strategy to search for boomerang
distinguishers of SKINNY, the activeness pattern of the middle part in boomerang distin-
guisher II is also the same for 18 rounds of SKINNY-64-128 and SKINNY-128-256. Therefore,
we represent both of them in Figure 14.

In Figure 14, the hex numbers inside the squares represent the exact differences of upper
and lower differential trails in boomerang distinguisher II for SKINNY-128-256, whereas
the hex number at the top of the state arrays represent the exact difference of upper and
lower differential trails in boomerang distinguisher I for SKINNY-64-128. As illustrated in
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Figure 14: Boomerang distinguisher II for 18 and 19 rounds of SKINNY-64-128, and 18 to 21 rounds
of SKINNY-128-256

Figure 14, four rounds before and after FE,,, are fully passive which shows F,, contains
entire dependency between the upper and lower differential trails. A lower bound can be
computed for the probability of this distinguisher as before. As it is shown in Figure 14,
the 18-round boomerang distinguisher II for SKINNY-64-128 can be extended one round
backward to construct a 19-round boomerang distinguisher for this variant of SKINNY.
Similarly, the boomerang distinguisher II for SKINNY-128-256 can be extended up to 21
rounds of this variant. The full specification of boomerang distinguisher II for SKINNY-64-
128 and SKINNY-128-256 are given in Table 20 and Table 21, respectively. Following the
same configuration as the empirical verification of boomerang distinguisher I for 18 rounds
of SKINNY-64-128, we experimentally verified the correctness of boomerang distinguisher IT
for 18 rounds of SKINNY-128-256. Table 25 represents one of the right quartets discovered
during our experiments. It is worth noting that the boomerang distinguisher II for 18
rounds of SKINNY-128-256 is the first practical boomerang distinguisher for 18 rounds of
SKINNY-128-256 that can be verified practically without consuming too much computing
power.

7 Rectangle Attacks on Reduced-Round SKINNY and CRAFT

In this section, based on the new distinguishers introduced in the previous section for
SKINNY, i.e. distinguisher I/II, and the 14-round boomerang distinguisher of CRAFT
in Figure 10, we present improved related-tweakey rectangle attacks on reduced SKINNY
and CRAFT. Through this section, we follow the generalized framework for key recovery
which has been recently proposed by Zhao et al. [ZDM™20], based on the same notations
as much as possible. Hence, we define Ej as a part of the cipher when backtracking the
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trail from the input difference of the boomerang distinguisher in backward direction under
related-tweakey difference ATK for n, round(s). Similarly, we can define E; as a part
of the cipher when propagating the trail from the output difference of the boomerang
distinguisher in forward direction under related-tweakey difference VI'K for ny round(s).
Each cell has ¢ bits and we use ry, (resp. r7) to denote the number of unknown bits in
the input difference of Ej, ( resp. output difference of Ey). The notation my (resp. my) is
used to denote the number of involved bits of the sub-tweaks in Ej, (resp. Ef). To have
s quartets satisfying the distinguisher, we need y structures of plaintexts where for each
structure we assign all possible values to the unknown cells of the plaintexts (r; bits) and
we also should have y = /s - on/2=m /A/D? -7+ ¢*. The number of messages queried under
each related-tweakey is defined as M =y - 2".

7.1 Related-Tweakey Rectangle Attack on Reduced-Round SKINNY-64-
192

Through the attacks on SKINNY-64-192 and other variants, we use the below properties of
SKINNY [ZDM*20,SMB18]:

e Given that the round-tweak is XORed with internal state after the SC layer and
also AC, SR and MC layers are linear, we can do key recovery at Y, of Ej by defining
AYy = SRt oMCT1(A)) ® ATKy, where A; is the difference at the input of the
boomerang distinguisher (see Figure 15). Hence, it does not necessary to guess this
round’s sub-tweak.

e Similarly we can start the key recovery attack at W_,, +1 of Ejp, by defining the
equivalent tweak ETK by using ETK = MC o SR(TK,,_1).

e Given the ciphertext C', we can decrypt MC and SR layers of the last round of E;.
Hence, we use SR~ o MC~1(C) for the key recovery attack. For the last two rows
that are not affected by the sub-tweak, we can also invert SC layer also.

Besides we recall the below lemma from [ABCT17,L.GS17]:

Lemma 1. For the SKINNY’s S-boz, the equation S(x + A;) + S(x) = A, has one solution
x on average for A;, A, # 0.

Following Figure 15, we prefix three rounds at the beginning and three rounds at
the end of the distinguisher I for SKINNY-64-192, which includes 23 rounds, to conduct a
related-tweakey boomerang attack on 29 rounds of the cipher. Hence, Ej includes rounds
—2, —1, 0 and Ey includes rounds 24, 25, 26. In the attack process, r, = 13-¢, my = 16-¢,
ry=16-cand my; = 20 - ¢, where ¢ = 4. We should satisfy y = /s - 2n/2=0 [\ [p2 g2
which is y = 2 - 232752 /1/2-52.84 = 2742 for s = 4 and M = y - 2" = 25942, The attack
procedure is as follows:

1. In data collection, we construct y structures at W_o of Ej, each structure include 27°
possible values for the unknown cells to achieve M = y-2" different plaintexts. Next,
each plaintext (P) is encrypted under four related tweaks TK!, TK? = ATK ®TK*!,
TK? = VTK @ TK! and TK* = ATK @ TK? to receive (C1,Cs,Cs,Cy). Then,
(P,C1), (P,C3), (P,C3) and (P, C4) are respectively stored in four separate lists as
L+, Lo, Ly and L4, where Lo and L4 are stored in hash tables H; and Hs respectively,
indexed by the r; bits of plaintexts.

2. We guess a value for the m; bits of the sub-tweaks of TK' that are involved in Ej
and do as follows:
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Figure 15: A 29-round key recovery attack against SKINNY-64-192

(a) We create two sets S; and Sy and for each pair (P;,Cy) € Lj, using the
guessed bits of TK! we partially encrypt it up to Yy, XOR it with the expected
intermediate difference at Yy, i.e. AYj, decrypt it partially using TK? = TK' @
ATK to achieve P, and find related (P2, C2) € Hy and store (Py,Ch), (Ps, Cs)
in the set S7. We do a similar approach for P; € L3 and Py € Ly/H> and store
the related pairs (Ps, C3), (Py, Cy) in the set Ss. Hence, the size of each set Sp
and Sy is M =y - 2" = 25942 Tt is clear:

{V((Pr,Ch), (P2, C2)) € 81 :(P1,Ch) € Ly, (P2,Cs) € Lo,
Eyrgi(Pr) ® Eypg2(P2) = AYy}

and

{V((Ps,C3), (Py,Cy)) € So :(Ps,C3) € L3, (Py,Cy) € Ly,
Eyris(Ps) @ Eypga(Py) = AYp}
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(b)

Assuming the known bits at the output difference includes n — ¢ bits, while we
are propagating from V4 as the output difference of the distinguisher toward
the ciphertext, we use those n — 7 bits of C; and n —r bits of Cy to put S; to
hash table Hs. Next, for any ((Ps,C3), (P, C4)) € So we try to find an entry
((P1,C4), (P2, Cy)) € Hs such that (Cy,C3) and (Ca, Cy) collide in n—r; known
bits. We remove any entry in S/ Hjz that does not collide at all. The remaining
quartets will be about M? - 272("="¢)  However, in our case of SKINNY-64-192,
n — 7 =0 and the remaining quartets will be (2°9-42)2 . 22:(0) = 9118.84,

We then initialize a list of 2™/ counters, i.e. 280, each of them corresponds to a
choice for the active my bits of sub-tweaks of the last three rounds.

For each surviving quartet from Step 2b, we do the key recovery step by step
as follows:

i. We partially decrypt the ciphertext pairs (C1,C3) and determine their
related Zog sates. Since the last two rows of Zag are not affected by T Kog, we
can also determine Xo6[8 ~ 15]. Given that AXag[1] = AXo[5] = AXo6[13]
and we know AYas[1] and AYa[5], so on average we achieve one solutions
for each of TK[12] and TK|9]. Besides, AXog[7] = AXa6[11] & AXo6[15]
and we know AYa[7]. Therefore, on average we achieve one solutions for
TKJ10].

ii. Next, we partially decrypt the ciphertext pairs (Ca,Cy), and in a similar
approach we determine the candidates for TK[9],7K[10] and TK[12] and
determine whether they are matched with the retrieved values in the
previous steps. It happens with the probability of 27'2 and about 2712 -
211884 — 9106:84 (yartets are remaining.

iii. Given TKJ12] and TK[9] we can decrypt the second column of Yas and
determine AYa5[1], AYa5[4], AY25[11] and AYa5[14] for any quartet.

iv. Next, we guess TK[14] and partially decrypt the first column of Yas and
determine Ya5[13] for any quartet.

v. For any right pair of (C1,C3) and (Csa, Cy), we should have AXa5[13] =
AXs5[1]. On the other hand, for any (Cy,C3) and (Cy, Cy) we have Ya5[13]
and AY5[1] and we can determine AXo5[1]. Given AXy5[1] and AYas(1],
for both (C1,C3) and (Cs, Cy) of any quartets, we should receive identical
solution for TK[6]. Therefore the remaining quartets will be 24 . 210684
274 — 2106.84.

vi. Given TK[10], we can partially decrypt the last column of Yas and deter-
mine AYa5(3], AY55[6] and Ya5[9] for any quartet.

vii. Next, we guess TK[15] and partially decrypt the third column of Y26 and
determine AYa5[2], AY25[5] and Ya5[8] for any quartet.

viii. For any right pair of (C1,C3) and (C2,Cy), we should have AXs5[5] =
AXo5[9] @ AXo5[13]. Hence, given that we have Ya5[9], Y25[13] and AYas[5]
for any (C1,C3) and (Cq, Cy) we can determine AXs5[9], AXo5[13] and
AXos[5]. Given AXy5[5] and AYs5[5] we should receive identical solution
for TK[0], for both (Cy,C3) and (Ca,Cy) of any quartet. Therefore the
remaining quartets will be 24 . 2106:84 . 9—4 — 9106.84

ix. Next, we guess TK|[8] and partially decrypt the last column of Y26 and
determine Y35[12] the remaining quartets.

x. For any right pair of (C1,C3) and (Cy, Cy), we should have AXo5[4] =
AXo5[8] @ AXss5[12]. Hence, given that we have Ya5[12], Ya5[8] and AYas[4]
for any (C1, C3) and (Cy, Cy) we can determine A X»5[4]. Given A Xo5[4] and
AY35[4] we should receive identical solution for TK|[7], for both (C1,Cj3)
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and (Co,C4) of any quartet. Therefore the remaining quartets will be
24 . 2106.84 . 274 — 2106.84'

Next, we guess TK[13] and partially decrypt the third column of Ys6 to
determine Ys5[15] and Xs5[15] for any quartet.

For any right pair of (Cy,C3) and (Cs, Cy), we should have AXy5[15] =
AXo5[3]. Hence, given that we have X55[15] and AY>5[3] for any (Cy, C3)
and (Cy, Cy) we should receive identical solution for T K[2], for both (C1, C3)
and (Cq,C4) of any quartet. Therefore the remaining quartets will be
94 .9106.84  9—4 _ 9106.84_

Similarly, we guess TK[11] and partially decrypt the last first column of
Y26 to determine AYa5[0], AYa5[7] and Ya5[10] for any quartet.

For any right pair of (C1,C3) and (Cq, Cy), we should have AXy5[15] =
AX5[7]. Hence, given that we have X5[15] and AYa5[7] for any (C4,Cs)
and (Cy, Cy) we should receive identical solution for T K[4], for both (C1, Cs)
and (C,C4) of any quartet. Therefore the remaining quartets will be
24 . 2106.84 . 2—4 — 2106.84.

Then we partially decrypt the second column of Zs5 of (C1, C3) to determine
the value and differences at Zo[1], Zo4[4],Z24[11] and Za4[14]. Given that
we have the difference value at X54[1] we achieve one solution for each of
TK[14]. We also know the expected difference of Xo4[11] and a wrong key
will remain with the probability of 27%. Hence, about 274 . 2106-84 — 9102.84
quartets are remaining.

We also partially decrypt the second column of Zs5 of (Ca, C4) to determine

the value and differences at Zo4[1], Z24[4],Z24[11] and Zo4[14] and determine
whether the differences at Xa4[1] and Xo4[11] are satisfied. Hence, about
278 .2102.84 _ 994.84 (yartets are remaining.

We then partially decrypt the last column of Zs5 of (C1,C3) to determine
the values and differences at Z34[3], Z24[6],Z24[9] and Z34[12]. Given that
we have the difference value at Xo4[3] we achieve one solution for TK[10].
Next, we partially decrypt the last column of Zs5 of (Cy, C4) to determine
the values and differences at Za4[3], Z24[6],224[9] and Z24[12] and determine
whether the differences at Xo4[3] is satisfied. Hence, about 274 . 294-84 —
29084 quartets are remaining.

We guess TK[5] and partially decrypt the first column of Za5 of (Cy, C3)
to determine the value and differences at Z24[0], Z24[7],Z24[10] and Z54[13].
Given that we have the difference values at X24[0] we achieve one solution
for TK[13]. Besides, we have the difference at X54[10] and X24[13] and
the probability of mapping the values of X54[10] and X24[13] for (C1,Cs)
to that differences will happen with the probability of 278. Hence, about
24. 99084 9—8 _ 986.84 yartets are remaining.

Then, we partially decrypt the first column of Zs5 of (Cs, Cy) to deter-
mine the values and differences at Z24[0], Z24[7],Z24[10] and Z34[13] and
determine whether the differences at X24[0], X24[7], X24[10]and X24[13]
are satisfied. Hence, about 2712 . 286:84 — 27484 qyartets are remaining.

We guess TK[3] and TK[1] and partially decrypt the third column of Zss
of (C1,C3) to determine the value and differences at Zoy[2], Z24[5],Z24[8]
and Z24[15]. Given that we have the difference values at X54[5] we achieve
one solution for TK[8] and since we also have the difference at Xo4[15] the
probability of mapping the values of Xo4[15] for (C7, C3) to that differences
will happen with the probability of 27*. Hence, about 28.274-84.9—4 — 278.84
quartets are remaining.
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xxii. Then, we partially decrypt the third column of Zss of (Ca, C4) to determine
the values and differences at Z24[2], Z24[5],Z24[8] and Z24[15] and determine
whether the differences at X24[2], X24[5], X24[8]and X24[15] are satisfied.
The remaining quartets are about 278 - 27884 = 270-84 {5 he used to count
for the 80-bit sub-tweaks involved in E.

xxiii. We select the first 27/ ~" candidates for the m ¢ bits of the sub-tweaks
and do exhaustive search for the remaining 192 — m; — h = 108 bits of the
master key based on each candidate, for h = 20.

xxiv. Go to item 2 if there is not the correct key.

Given that m = 64 the amount of table look-ups are 3 - 2™ - M = 212501 to create the
lists. To do the first filtering at Steps 2(d)i and 2(d)ii, we should do one round decryption
for the survived quartets that are 211884 quartets and costs 2'18-84. 21—9 = 211398 and should
be repeated for any guess of my, leads to 217798, Next, through Steps 2(d)iii to 2(d)xiv we
should do one round encryption which costs 2106-84 . L = 910199 414 should be repeated
for any guess of my, leads to 219599 We should do another round decryption for the
survived quartets after Step 2(d)xiv through the rest of the attack, that are 212-84 quartets,
and costs 2102:84 . % = 29799 and again should be repeated for any guess of m;, leads to
216199 Tt is the dominant complexity of the rest of the attack up to the Step 2(d)xxii.
In item 2(d)xxiii, the complexity is 27 - 2192=ms—h — 2172 for b = 20. Hence, the total
time complexity will be almost 2'78. The data complexity of the attack is 4 - M = 261:42
chosen plaintexts. The memory complexity is 4 - M + M + 2™+ = 5. 25942 1 280 ~ 980,
The signal/noise ratio is Sy = p';.z;?? = 2;2;»;4 = 21116
P, =0.976.

A similar attack can be conducted on other variants of SKINNY as well. Based on the
parameter-set that is depicted in Table 13, a summary of the key recovery attacks has

been presented in Table 1. Following this we achieved the below results:

and the success probability is

1. We prefix two rounds at the beginning and two rounds at the end of the distinguisher I1
for SKINNY-64-128, which includes 19 rounds, to conduct a related-tweakey boomerang
attack on 23 rounds of the cipher. In this process 1, =8-4, m, =8-4,ry =13-4
and my = 12 - 4. We should satisfy y = 2%26-5% for s = 4 and it results M = 25854,
Given that my; = 32 the amount of table look-ups are 29212, to create the lists. To
do the first filtering, based on the ciphertexts, we should inverse the last round’s
MC-layer which costs less than 2°6:0'. We should also do one round decryption for
the survived quartets that are 293:9% quartets and costs 232 . 293:08 . % = 2120.56
In item 2(d)xxiii, the complexity is 2™ - 2128=ms—h — 988 for b = 40. Given
that the complexity of the other steps are negligible, the time complexity will be
approximately 4M + 212056 1 988 ~ 2120.7  The data complexity of the attack is
2060-54 chosen plaintexts. The memory complexity is 5 - 258:54 4 248 ~ 2609 The
signal /noise ratio is 212:92 and the success probability is Ps = 0.977.

2. We extend the 21-round boomerang distinguisher I against SKINNY-128-256 to 24
rounds key recovery attack. It worth noting that distinguisher IT has better probability
but distinguisher I provides lower total complexity in key recovery, based on our
analysis. Through the attack, we prefix a round at the beginning and two rounds
at the end of the distinguisher I for SKINNY-128-256, which includes 21 rounds, to
conduct a related-tweakey boomerang attack on 24 rounds of the cipher. In this
process 1, = 0, my, = 0, ry = 14-8 and my = 13-8. In this attack, we have y = 212321
for s = 4 and M = 2'2321, Given that m; = 0 the amount of table look-ups are
21248 t6 create the lists. To do the first filtering, based on the ciphertexts, we should
inverse the last round’s MC-layer and a cell of SC-layer which costs less than 212063,
We should also do one round decryption for the survived quartets that are 221443
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Table 13: Summary of the used parameters through our key recovery attacks on the variants
of SKINNY and CRAFT, where D, nD, ny and ny respectively denote the used distinguisher, the
number of rounds of the distinguisher, the number of rounds appended and the number of rounds
prepended.

Scheme D nD
SKINNY-64-128 | Table 20 | 19
SKINNY-64-192 | Table 12 | 23
SKINNY-128-256 | Table 18 | 21
SKINNY-128-384 | Table 19 | 25

CRAFT Figure 10 | 14

ng |, | my | vy | my p>r-q? M h
2 32 32 52 48 2—5L.08 25854 40
52 64 64 80 25284 25942 20
0 0 112 104 27116.43 2123.21 88

104 | 120 | 128 | 120 | 2711659 | 212329 [ 104
24 | 24 | 44 | 84 | 275% | 26092 1 79

|| =] w| ]S
w| | rof w

quartets and costs 220984, In item 2(d)xxiii, the complexity is 2'%® for h = 88. Given
that the complexity of the other steps are negligible, the time complexity will be
approximately 4M + 220984 4 9168 ~ 9209.85 The data complexity of the attack is
2125:21 chosen plaintexts. The memory complexity is 5 - 212321 4 2104 — 9125.54 " Tpe
signal /noise ratio is 21157, the success probability is P, = 0.977.

3. We prefix three rounds at the beginning and two rounds at the end of the distin-
guisher I for SKINNY-128-384, which includes 25 rounds, to conduct a related-tweakey
boomerang attack on 30 rounds of the cipher. In this process r, = 13 -8, my = 15- 8,
ry=16-8 and ms = 15 - 8. We should satisfy y = 2'929 for s = 4 and M = 2!23-29,
Given that m; = 120 the amount of table look-ups are 224438 to create the lists.
We should also inverse the last round’s MC-layer and a cell of SC-layer which costs
less than 2'20-43 We should also do one round decryption for the survived quartets
that are 2246-59 quartets and costs 2120 . 224659 . L — 2361.68 Tp jtem 2(d)xxiii, the
complexity is 2289, for h = 104. Given that the complexity of the other steps are
negligible, the time complexity will be approximately 4M + 2361-68 4 2280 ~ 9361.68
The data complexity of the attack is 2'2°2 chosen plaintexts and the memory
complexity is 212°8. The signal /noise ratio is Sy = pzf;?g = 2;1162'859 = 21141
the success probability is P; = 0.977.

and

7.2 Single-Tweakey Rectangle Attack on CRAFT

Similar to the attack on SKINNY variants, described in Subsection 7.1 and based on almost
the same notations whenever it is applicable, in this section we use the best boomerang
distinguisher covering 14 rounds of CRAFT, to provide a key-recovery attack on 18 rounds
of the cipher in the single-tweakey model as it is depicted in Figure 16.

Through the attack, given that the round-tweak is XORed with the internal state
after the MC layer, we can ignore this layer and construct the structures of plaintexts on
Y; of the first round of Ej. Besides, given the ciphertexts, it is possible to decrypt the
last round’s SB and PN layers of E;. Besides, the MC layer is linear and we can filter the
ciphertexts at the X; of the last round. Besides, we can verify the difference of the output
of the distinguisher at W; of the first round of E;. Hence, it is not necessary to guess this
round’s sub-tweak, i.e. the first round of Ej.

Following Figure 16, we prefix a round at the beginning and three rounds at the
end of the dedicated distinguisher for CRAFT, which includes 14 rounds, to conduct a
related-tweakey boomerang attack on 18 rounds of the cipher. In this process r, = 24 bits,
my = 24 bits, ry = 44 bits and m; = 84 bits. However, ms and my have 4 bits overlap
(T'Ko[13] which we highlighted it in purple) and the effective value of m; = 80 bits. In
this attack, we have y = 2. 232724 //2-58.85 = 236:92 for g = 4 and M =y - 2" = 260:92,
The attack procedure is as follows:
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Figure 16: A 18-round key recovery attack against CRAFT

y = 23692 structures at Yy, each structure include

270 possible values for the unknown cells to achieve M = y - 2™ = 26092 different
plaintexts. Next, each plaintext (P) is encrypted under tweaks T'K to receive the
ciphertext C. Then, (P, C) is stored in a list L; and also stored in a hash table Hy,
indexed by the 7, bits of plaintexts.

2. We guess a value for the m; bits of the sub-tweaks that are involved in E} and do
as follows:

(a)

For each pair (P, C7) € L1, using the guessed sub-tweaks, we partially encrypt
it up to X7, XOR it with the intermediate difference at X7, decrypt it partially
using the guessed sub-tweaks to achieve P, and find related (P, Cs) € Hy and
store (Py,C1), (P, C3) in a set Sp that its size will be M = y - 270 = 26092 [t
is clear: V ((Pl,Cl), (P27CQ)) IS (Pl,Cl) € Ll, (PQ,CQ) S L27EbTK(P1) D
Eyrg(P2) = Ay.

Assuming the known cells at the output difference includes n — ry = 20 bits,
while we are propagating from V4 toward the ciphertext, we use those n —ry
bits of C; and n — r¢ bits of C> to put S; to hash table H. Next, for any
((Py1,Ch), (P, Cs)) € S1 we try to find a different entry ((Ps, Cs), (Py, C4)) € Ho
such that (Ci,Cs) and (Cs, Cy) collide in n — ry known bits. We remove any

entry in S7/H, that does not collide at all. The remaining quartets will be
M?2.9-2(n=rf) je. (260.92)2 . 92:(=20) _ 981.85

We then initialize a list of 2¢ counters, i.e. 280, each corresponds to a choice
for the active my bits of sub-tweaks of the last two rounds.

For each surviving quartet from Step 2b, we do the key recovery step by step
as follows:

i. For any right pair (C1,C3), the differences should satisfy AYi6[3] =
AY16[7] = AY16[15], AY16[2} = AY16[].0] and AYlG[O] = AYlG[].Q] and
also respectively AZ16[3] = AZ16[7] = AZ16[15], AZ16[2] = AZ1[10] and
AZ16]0] = AZy[12].
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ii. We guess TK;[11] and TK;[14], partially decrypt Z17[11] and Z;7[14]
to determine whether AZ4[7] = AZ14[3] for both (C1,Cy) and (Ca, Cy).
Hence, about 28 - 28185 . 9278 — 98185 qyartets are remaining.

iii. We guess TK;[4], TK1[12] and TK;[13], partially decrypt Z;7[4] and
Z17[13] to determine whether AZ6[2] = AZ16[10] for both (Cy,Cs) and
(Cy,Cy). Hence, about 212 . 28185 .98 — 98585 quartets are remaining.

iv. Given TK;[4] and TK[12] from the previous step, we guess TK;[0] and
TK[8] and partially decrypt the firs column of Z;7 to determine Zi¢[1],
Z16[6], 216[10] and Z16[15] Next we determine whether A216[3] = AZ16[15]
for both (C1, Cs) and (Ca, Cy). Hence, about 28-285-85.278 = 28585 quartets
are remaining.

v. Given Z4[15], we guess T K[15] to determine whether Z;5[0] = 0z A for
both (Cy, C3) and (Cy, Cy). Hence, about 24 - 2858 . 278 = 28185 qyuartets
are remaining.

vi. Given Z14[10], we guess TK([10] to determine whether AZ;5[4] = 0z A for
both (Cy,Cs) and (Cy, Cy). Hence, about 24 - 28185 . 278 — 27785 quartets
are remaining.

vii. Given TK;[13], we guess TK;[1] and TK;[9] to determine Z;4[5] and
Z16[12] and also guess T'K1[15] to determine Z34[0]. Next, we verify whether
AZ16[0] = AZ16[12] is satisfied for both both (Cy, C2) and (C2, Cy). Hence,
about 212 . 27785 . 2-8 — 981.85 qyartets are remaining.

viii. Given Z16[12], we guess T K([12] to determine whether AZ;5[1] = 0z A for
both (Cy,Cs) and (Cy, Cy). Hence, about 24 - 28185 . 278 = 27785 quartets
are remaining.

ix. Given TK;[14], we guess TK1[2] and TK;[10] to determine Z4[4] and
Z16[13]. We know T'K[13] from m; and we can determine Z;5[2] and verify
whether AZ;5[2] = 0zA for both (C1,C5) and (Cs,Cy). Hence, about
28 . 27785 . 9=8 — 2T7-85 (nartets are remaining.

x. Given Zig[4], Z16[12] and T K([12], we guess T Ky[4] to determine whether
AZ15[10] = 02 A for both (C1,Cs) and (Cy,Cy). Hence, about 24 - 27785 .
278 = 27385 quartets are remaining.

xi. Given Zi6[5], Z16[13] and T K;[13], we guess T Ky[5] to determine whether
AZ15]9] = 0zA for both (C1,C3) and (Ca,Cy4). Hence, about 24 - 27385 .
278 = 26985 quartets are remaining.

xii. Given TK1[13], we guess TK[5] to determine Z4[9] and about 24 - 269-85..
278 = 27385 quartets are remaining at this point.

xiii. Given Zyg[1], Z16[9], Z16[13] and TK[13], we guess T K[1] and TK([9] to
determine whether AZ;5[12] = 0z A for both (C1,Cs) and (Cs, Cy). Hence,
about 28 .273:8.9278 — 2738 quartets are remaining, to be used to count for
the 80-bit sub-tweaks involved in forward part.

xiv. We select the first 2"/~ candidates for the my bits of the sub-tweaks
and do exhaustive search for the remaining 128 — m; — h = 32 bits of the
master key based on each candidate, for h = 72.

xv. Go to item 2 if there is not the correct key.

Given that my = 24, the amount of table look-ups are 3 - 2™ . M = 28651 to create the
lists. To do the first filtering, based on the ciphertexts, we should inverse the last round’s
MC-layer which costs less than 2- M - & = 257-83. We should also do one round decryption
for the survived quartets that are 2813% quartets and costs 224 . 281-85. Tls = 210168 The
complexity of Step item 2(d)xiv is 27 - 2128=mv—h — 956 for b = 72 and the complexity

of Step item 2(d)ii to Step item 2(d)xiii is less than 28 . 285-85 . 2 — 290-68 Hence, the
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time complexity will be approximately 4M 4 210168 4 256 4 990.68 ~ 91017 = The data
complexity of the attack is M = 26992 chosen plaintexts. The memory complexity is
4o M +2m5 =4.206092 4 981 ~ 984 The signal /noise ratio is Sy = 2515 and the success
probability is Ps = 0.976.

8 Discussion

Given that the method developed in this paper to search for boomerang distinguishers
is different from the method presented in [DDV20], the corresponding results are also
different for many cases. So this section aims to provide a comparison between the work
in [DDV20] and this paper.

Table 8 briefly compares the distinguishers proposed in [DDV20] and our distinguishers
for SKINNY-n-2n and SKINNY-n-3n where n € {64,128}. At first glance, it is visible that in
all cases except for 24 rounds of SKINNY-128-384, our distinguishers have higher probabilities
than the distinguishers from [DDV20]. However, we have provided a 25-round boomerang
distinguisher for SKINNY-128-384 whereas the distinguishers for SKINNY-128-384 in [DDV20]
reach up to 24 rounds. Moreover, our distinguishers for SKINNY-128-256 reach up to 21
rounds and cover one round further in comparison to the best boomerang distinguisher for
this variant of SKINNY in [DDV20].

Both methods developed in this paper and [DDV20] have three main phases, including
searching for a truncated differential characteristic at first, next instantiating the discovered
truncated characteristic with the real differential trail, and then computing the probability
of the discovered distinguisher. However, these two methods are different in the way these
steps are performed. The main advantage of the tool developed in [DDV20] is that it
automatically handles the middle part of the boomerang distinguisher in the searching
phase, and produces a formula to compute the probability of the whole distinguisher. On
the contrary, we detect and handle the middle part using a semi-automatic method, and
then compute its probability mostly based on the experimental approach ® rather than a
theoretical one. After that, we use the p?¢?r formula to compute the probability of the
whole distinguisher. Despite all these benefits, the authors of [DDV20] have admitted that,
to achieve a fully automatic method, there is no choice but sacrificing the accuracy.

For instance, in section 4.1 of [DDV20], where the searching strategy for a truncated
boomerang distinguisher is described, it is mentioned that some extra constraints are
needed to ensure that the probability of each S-box can be computed. Accordingly, there
should not be an S-box for which both the upper and lower differences are uniformly random.
Although such a constraint allows the tool to automatically compute the probability of the
whole distinguisher, it causes some truncated characteristics to be excluded in the searching
phase. In contrast, such a property is not a concern in our searching method since we
switch to the experimental approach to compute the probability of the middle part when
the derived formula is too expensive to evaluate. That is why many of our boomerang
characteristics have a different activeness pattern in comparison to the distinguishers
from [DDV20]. Despite these differences in the searching phase, the two methods may
produce the same activeness pattern. For instance, the same activeness pattern occurs in
the boomerang distinguisher II for 19 rounds of SKINNY-64-128 and the one in [DDV20],
and also the same activeness pattern in the boomerang distinguisher I for 18 rounds of
SKINNY-64-128 and its counterpart in [DDV20].

The searching part is not the only phase in which the two methods perform differently.
They also perform quite differently in computing the probability of the discovered distin-
guishers. To better understand the main differences between the two methods we give an
example of a boomerang distinguisher for which we have computed the probability using

8Note that, regarding boomerang distinguishers for 6 to 13 rounds of CRAFT we have used a theoretical
approach to compute the probability of the middle part.
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our method, then using the one from [DDV20], as well as the empirical result. As it is
mentioned before, due to some sort of similarities between the two methods, the authors
of [DDV20] have discovered the same distinguisher as boomerang distinguisher I for 22
rounds of SKINNY-128-384 in this paper. Interestingly, not only the activeness pattern of
boomerang distinguishers for 22 rounds of SKINNY 128-384 in [DDV20] and this paper are
the same, but also the value of input/output differences as well as the tweakey differences
are the same bit by bit! However, they have estimated its probability to be 274734 whereas
we have claimed the boomerang returns with the probability of 274057, So, it would be a
good example to compare the two methods in the computing phase. It should be noted
that we have experimentally validated our claim. To do so, we have accomplished several
random experiments in each of which 24! boomerang queries are performed in total where
1.6 boomerangs return on average. More precisely, to accomplish an experiment consisting
of 24! boomerang queries, we carry out 512 parallel random experiments in each of which
216 bunches of 2'6 random boomerang queries are performed where a different random
fixed tweakey is used for each bunch. Consequently, each experiment is composed of 22°
random tweakeys as well as 24! random boomerang quartets. Given that our claim is
supported by the experimental verification, we can conclude that our estimation is more
accurate than the bound provided in [DDV20]. In other words, the authors of [DDV20)]
have underestimated its probability by a factor of about 27 which is remarkable.

The gap between our claim and the bound given in [DDV20] concerning the probability of
boomerang distinguisher for 22 rounds of SKINNY-128-384, stems from various simplifications
made in [DDV20] to make the probability calculation of boomerang distinguishers fully
automatic and also feasible. As it is mentioned in the previous sections, the generated
formula based on the BCT framework for computing the probability may be too expensive to
evaluate. It is also admitted in [DDV20], that there is no choice but to make approximations
to avoid this natural complexity in their tool. More precisely, to evaluate the generated
formula for computing the probability of boomerang distinguishers using the tool developed
in [DDV20], the authors assume some variables are uniformly distributed. In particular,
to generate a formula that can be evaluated in a reasonable time, the authors of [DDV20]
assume that boomerang differences take the same values in two faces of boomerang for
almost all positions’, whereas we do not consider such an assumption for the middle part
at all as we compute the probability of the middle part using the experimental approach
when the theoretical formula is too complex. On the contrary, we have taken into account
boomerangs following different characteristics in two faces of boomerang distinguisher
which leads to further improvements for both CRAFT and SKINNY. This is the main reason
for the gap between the reported probabilities of boomerang distinguisher I for 22 rounds
of SKINNY-128-384 in [DDV20] and this paper. Besides, it is explicitly admitted in [DDV20]
that the higher the number of rounds is, the higher the number of approximations have to
be made in the derived formula for computing the probability. That is why our boomerang
distinguishers for SKINNY-128-256 and SKINNY-128-384 outperform the ones introduced
in [DDV20] in terms of the number of rounds as well.

We admit that automatically handling the middle rounds of boomerang distinguishers
presented in [DDV20] is very valuable. However, our findings reveal that the simplifications
made in the searching part, as well as the approximations made in the computing phase
that are unavoidable to automatically handling the middle rounds in [DDV20] may lose
the accuracy. In addition, the formulas derived by the tool developed in [DDV20] might
be too complex to evaluate which makes it computationally hard or almost infeasible to
achieve a (better) result for some cases, especially for a large number of rounds.

9The authors of [DDV20] have only considered this property for a very limited number of positions.



182

9 Conclusion

In this paper, we extended the recent advances in boomerang cryptanalysis of block ciphers
by introducing new concepts entitled Double Boomerang Connectivity Table, DBCT (which is
an extension to Boomerang Connectivity Table (BCT)), UBCT™, and LBCT™. We also applied
a more advanced method to search for boomerang distinguishers. Next, we employed this
technique and provided the first security analysis of CRAFT against the boomerang attack
in the single-tweak model for which the designers have not reported the security bound
against this attack. Our analysis showed that reduced rounds of CRAFT have a strong
boomerang effect. For example, we presented a deterministic distinguisher for 6 rounds of
the cipher. For other rounds, up to 14 rounds, we also provided boomerang distinguishers
that outperform other previously known distinguishers in the single-tweak model, for the
same number of rounds. In addition, based on the 14-round boomerang distinguisher for
CRAFT, we provided a single-tweak rectangle attack on 18 rounds of this cipher.

We also applied our heuristic approach to search for boomerang distinguishers of
SKINNY in the related-tweakey model. As a result, we could considerably improve the best
previous boomerang distinguishers of SKINNY-n-2n and SKINNY-n-3n for n € {64, 128}.
Then, building upon the improved boomerang distinguishers, we could improve the best
previous attacks on SKINNY-64-128, SKINNY-64-192, SKINNY-128-256, and SKINNY-128-384,
in the related-tweakey setting. It is worth noting that, our improved related-tweakey
rectangle attacks on SKINNY-64-192, SKINNY-128-256, and SKINNY-128-384, can be directly
applied for the same number of rounds of ForkSkinny-64-192, ForkSkinny-128-256, and
ForkSkinny-128-384.
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A DBCT" and DBCT™ Algorithms

This section, describes algorithm 2 and algorithm 3.

Algorithm 2: Building DBCT"™

Input: S-box S
1 Initialize an empty table DBCT™ with 2" x 2" x 2" entries;
2 for A1 =0—2"—-1do

3 for V3=0—2"—-1do
4 for Ay =0—2"—-1do
5 num = 0;
6 if DDT(A1,Ay) > 0 and BCT(A3,V3) > 0 then
7 for V=0—-2"—-1do
8 Vibr = Yoor (A1, A2) N (Yoot (A1, Ag) & V);
9 if Vi) # 0 then
10 ‘ num += DDT(Ay, Ag) - LBCT(Az, V3, V)
11 end
12 end
13 end
14 DBCT" (A1, Ag, V3) = num;
15 end
16 end
17 end

. #Vr .
#yDDT(Al 1A2) ’

Algorithm 3: Building DBCT™

Input: S-box S
1 Initialize an empty table DBCT™ with 27 x 27 x 27 entries;
2 for Ay =0—2"—-1do

3 for V3=0—2"—-1do

4 for Vo =0—2" —1do

5 num = 0;

6 if DDT(V2, V3) > 0 and BCT(Aq,Va) > 0 then

7 for A=0—2"—-1do

8 Xpr = Xoor(Va, Vi) N (Appr(Va, Vi) & A);
9 if X3 # 0 then

10 ‘ num —+= DDT(VQ, V3) . UBCT(Al, A, Vg)
11 end

12 end
13 end
14 DBCT (A1, Va, V3) = num;
15 end
16 end

17 end

L #X .
#Xoor(V2,V3)?
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B Boomerang Distinguishers for 7 and 8 Rounds of CRAFT
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Figure 17: A 7-round boomerang distinguisher for CRAFT
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Figure 19: DDT of CRAFT’s S-box
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E Relation Between New and The Previous S-box Tables

DBCT™ (A1, Ay, V3) = ZUBCT(AI, Va,As) - LBCT(Ag, Vs, Va).

Va
DBCT (A1, V2, V3) = > UBCT(Ay, Vi, Ay) - LBCT(Ay, Vs, V).
Ao
DBCT(A1,V3) = » DBCT (A;,Ay,Vs) = Y DBCT (A, Va, Vs).
AQ V2

UBCT" (A1, A1, Va, Ay) = UBCT(A1, Va, Ay).
LBCT (A1, Va, Vs, V1) = LBCT(A1, Va, V).

F Reformulating the Probability Calculation of 7-round
Boomerang Distinguisher of CRAFT

In this section we re-evaluate the probability of the 7-round boomerang distinguisher of
CRAFT, using the previous boomerang connectivity tables.

UBCT+ot =UBCT(As, by, Bg) - LBCT(By, c5, bo)
- UBCT(By, ¢12, C12) - LBCT(C42, d1, c12)
- UBCT(EY, fia, Fi2) - LBCT(F12, gy, f12)
- UBCT(F3, gy, Go) - LBCT(Gy, hs, gg)-

Priotal :Pr(d1 ﬂ f{Q) 'PI"(C5 ﬂ f{z)

2 DDT 3 DDT

PI'(012 — E{) . PI'(012 — F5/)

TS EER 20 3) 30 30 3 3) 3) 3) ) ) 3 B Bt I

bg Bo c¢s ci2 Ciz2 di E] f{, Fiz gy F. Go

In order to reduce the complexity of evaluating the above formula, we can divide the
formula to some smaller pieces, and evaluate the smaller parts at first, as follows.

Ml (A57 B97 C5) = Z UBCT(A55 bga BQ) . LBCT(BQa Cs, bg)a
bo

My(By, Cha,dy) =Y UBCT(By, c12, C12) - LBCT(Cha, di, c12),

Ci12

M3(Eia f{Qvgé) = ZUBCT(Eiv f{27F12) ' LBCT(Fl%g/Qa f{2)a

Fia
M4(F5/ag£/)7 h’5) = ZUBCT(Févgé7 GQ) ' LBCT(GQa h5ag/9)a
Go
Mi2(As, cs5,Cha,dy) = ZM1(A5,B9705) - M3(By, C12,dy),
By

M34(EZIL’ f{Qa FEIN h5) = Z M3(EI/L? f{Z?gé) : M4(Fé7gé7 h5)

99



Hosein Hadipour, Nasour Bagheri and Ling Song(®) 191

After evaluating the above tables, the probability is obtained according to the following
formula:

R™[As, hs] = 27573 "N "N NN N " Mg (AL, 5, Cra, di)-Maa(EY, fig, FY, hs) Proo.

Cs CIZ d1 Ei f{2 FS’

G A More Efficient Formula to Compute R™"

A more efficient formula for computing the four-dimensional matrix R7"[i, j, k,[], can be
obtained as follows.

My(Asy1, Asz, By, ¢5) = Y _UBCT" (As1, Az, bo, By) - LBCT(By, c5, by),
by
My (By,Ci2,d1) = ZUBCT(Bm ¢12,Ch2) - LBCT(Ch2, d1, c12),
C12
MB(EL f{Zagé) = ZUBCT(EL f{Q? Fl?) : LBCT(F12791,97 f{2)7
Fio

My(F3, g9, hs1, hsa) = ZUBCT(Fé’Qs/),Gs)) - LBCT™(Go, hs1, hsz, 99),
Go
Mi2(As1, Ase, ¢5, Cra,d1) = ZM1(A517A52739,C5) - My (Byg, Ci2,dy),
By

M34(E13 f{Qa FEl)a h517 h52) = Z M3(Ei7 f{27gé) : M4(Fflng£/)7 h’517 h52)'

99

After constructing the above tables, R7"[i, j, k, ] can be evaluated according to the following
formulas:

R™[i,j, k0] =278%". ZZZZZZ Mio(As1 = i, Asy = j, ¢5,Ch2,d1)

cs Ci2 di E] f{, F!

- M3y (EY, fia, F5, hs1 =k, hsp = 1)

- Prioe,

where Pryot, is calculated as follows.

2 DDT 3 DDT
Priotal = Pr(dy <—— fi5) - Pr(cs ¢—— f1o)-

PI‘(Clg —)2 oot Ei) . Pr(C'12 —)3 Dot Fé)

H Boomerang Distinguishers for 13 and 14 Rounds of
CRAFT

Table 14: The extended boomerang distinguisher based on E!" for 13 rounds of CRAFT
ro=37"m ="711=3 Y pipiarai R}y =2""" i,j k1 €F5\ {0}

B3 - g
pi = PI‘(AXO = AXé),qj = PI‘(VX{O — VXlg)
A Xy OOAA OOOA OAAO OOOA AXE 0000 0700 0000 0000

vXi, 0000 0500 0000 0000 VXis 0OAOO 0000 OAAO OOOA




192

Table 15: The extended boomerang distinguisher based on E!" for 14 rounds of CRAFT

o = 37Tm = 77 T = 47 Zp’bqukquzg k,l = 2760.33; ivjv k7l € ]Fg \ {O}

4ar
El

37 .
pi = Pr(AXy —25 AXY), q; = Pr(VXy -5 VX14)

AXy

OOAA O0OA OAAO 000A

AX]

0000 0z00 0000 0000

VX,

0000 0500 0000 0000

VXi4

AOO0 AAOO OOOA OAAO

Table 16: The input/output differences, plus a right quartet for 12-round boomerang distinguisher

k 1e97469ac59c9ea9fe87e344887e3eeb
t c1bd0a3437864c1f
AXy | 00aa000a0aa0000a | VX5 | 00000a000000a000
P1 7£39ad1a3683588f c1 bb6372ededbedfbe
D2 7£93ad103c235885 Co 67da6cd68£591770
P3 4329c595£6d51b67 c3 bb6378ededbe7f5e
P4 4383c59ffc751b6d C4 67da66d68£59b770

I Boomerang Framework in The Related-Tweakey Setting

Let Erg(P) and EL Ilf(C’) represents the encryption of P and the decryption of C' under a
tweakey T K, respectively. Then the pseudo-code of the related-tweakey boomerang attack

is as follows.

e TK, + random()

o TKy + TK, ® ATK,TK; + TK, ® VTK,TK, + TK, ® ATK & VTK.

e Repeat the following steps IV times.

1. Py + random(1™) and Py + P; & AP.
2. C1 < Erk,(P1) and Cs < Erg, (P2).
3. O3+ C1®VCand Cy + Co 0 VC.
4. Py < Ery (Cs) and Py < Egp (Cy).
5. Check if P3 & P, = AP.
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J Parameters of The Extended Boomerang Distinguishers
Based on Distinguishers in [LGS17] and [SQH19]

Table 17 briefly describes the main parameters of the extended boomerang distinguishers
based on boomerang distinguishers proposed in [LGS17], and [SQH19].

Table 17: Boomerang distinguishers for SKINNY proposed by [LGS17] and [SQH19]. The prob-
abilities denoted by f, correspond to the distinguishers that are obtained by extending the
distinguishers proposed in [LGS17] and [SQH19].

. Ey E Ey
Version | n Rounds m 202
# 7o ‘ p T'm ‘ r 1 ‘ q P
17 6 2—2.41 6 2—12.96 5 2—6 2—29.78
64 18 7| 271009 g | 271290 | 5 1 270 ) 9maB Yy
19 7 2—10.09 6 2—12.96 6 2—16.24 2—65.621.
n-2n 18 7 2725.19 5 2711.45 6 278 2777.83
19 8 2735.04 5 2711.45 6 278 2797.531.
128 20 8 | 273504 | 5 | 9-1145 | 7 | 9=23.56 | 9-128.654
21 9 2—56.60 5 2—11.45 7 2—23456 2—171.771.
29 9 2—9.83 5 2—10.50 8 2—6441 2—42.98
64 23 10 2722.02 5 2710.50 8 276.41 2767.361.
29 9 2711,51 5 279.88 8 277.70 2748.30
n-2n 23 10 | 272530 | 5 | 9-988 | g | 9-770 | 9-Th.s8s
128 24 10 2—25.30 5 2—9.88 9 2—23470 2—107.881.
25 11 2—42.20 5 2—9.88 9 2—23.70 2—141.681.
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K The Specification of Boomerang Distinguishers

Table 18: Boomerang distinguisher I for 18, 19, 20 and 21 rounds of SKINNY-128-256

’ 18: 79 = 6,7y, = 6,71 = 6,p =27308 =278 p =271915 "2 42 p — 274251

ATK1 = 000000000000

0000£000000000000000

ATK?2 = 0000000000000000f c00000000000000

AXy AXg
00000000000000000000000000000080 00000000000000000000001000000000

VTK1 = 000000000000000000000000£c000000

VT K2 = 00000000000000000000000067000000

VXio VXis
00000000000000000000000000000000 00202020000000200020000c00200020

19: 79 = 7,7y, = 6,71 = 6,p = 271168,

q=27° r=21905 2 7, 5-5851

ATK1 = £00000000000

00000000000000000000

ATK2 = £c000000000000000000000000000000

AXy AX,
02000000000020000020000020000000 00000000000000000000001000000000

VT K1 = 00000000fc0000000000000000000000

VT K2 = 00000000670000000000000000000000

VX3 VXig
00000000000000000000000000000000 00202020000000200020000c00200020

20: 1o = 8,7 = 6,71 = 6,p = 22208,

(=205 r=2 15 ;2 2, _ 9853l

ATK1 = 000000000000

000000£0000000000000

ATK?2 = 000000000000000000£e000000000000

A Xy AXg
00000100010100010100010000450000 00000000000000000000001000000000

VTK1 = 00000000000000000000£c0000000000

VT K2 = 00000000000000000000330000000000

VXiy V Xy
00000000000000000000000000000000 00202020000000200020000c00200020
21: ro = 8,7"m — 67 = 77]9 — 2—25.087 q= 2—23.56’ r = 2—19.157 p2.q2-,r — 2—116.43

ATK1 = 000000000000000000£0000000000000

ATK?2 = 000000000000000000£e000000000000

AXy AXs
00000100010100010100010000450000 00000000000000000000001000000000

VT K1 = 00000000000000000000£c0000000000

VT K2 = 00000000000000000000330000000000

VXi4 VX
00000000000000000000000000000000 80910000008080808011008000918000
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Table 19: Boomerang distinguisher I for 22 to 25 rounds of SKINNY-128-384

22: 79 = 8,7y, = 6,71 =8, p=2"°, q =277, r=272057 2 g2 p = 274057

ATK1 = 0000000000000000002a000000000000
ATK?2 = 00000000000000000079000000000000
AT K3 = 00000000000000000033000000000000

A Xy
00000000000000000000000000080000

AXg
00000000000000000000004000000000

VTK1 = 00000000000000000000540000000000
VT K2 = 000000000000000000000£0000000000
VT K3 = 00000000000000000000£80000000000

00000000000000000000000000000000

10100010001000000000071000100010

23: 70 = 9,7 = 6,71 = 8,p=2"109 =277y =272057 2 42 p = 275647

ATK1 = 002a0000000000000000000000000000
ATK?2 = 00790000000000000000000000000000
ATK3 = 00330000000000000000000000000000

A Xy
00110000020000000000000200000200

A Xy
00000000000000000000004000000000

VT K1 = 00005400000000000000000000000000
VT K2 = 00000£00000000000000000000000000
VT K3 = 0000£800000000000000000000000000

VXis
00000000000000000000000000000000

VXas
10100010001000000000071000100010

24: 1o = 10,7y, = 6,7 =8, p =204 =277 =272057 2 (2 p = 278739

ATK1 = 0000000000000000000000000000002a
ATK?2 = 0000000000000000000000000000003¢
ATK3 = 00000000000000000000000000000067

A Xy
80000000008080808000800000000c80

00000000000000000000004000000000

VT K1 = 00000000000000005400000000000000
VT K2 = 00000000000000008700000000000000
VT K3 = 0000000000000000£000000000000000

VXis
00000000000000000000000000000000

VXoy
10100010001000000000071000100010

25: ro = 107Tm — 6,7’1 — 97p — 2—26.417 q= 2—214607 r= 2—20.5’77 p2-q2~T — 2—116.59

ATK1 = 0000000000000000000000000000002a
ATK?2 = 0000000000000000000000000000003c¢
ATK3 = 00000000000000000000000000000067

AXy
80000000008080808000800000000c80

AXig
00000000000000000000004000000000

VT K1 = 00000000000000005400000000000000
VT K2 = 00000000000000008700000000000000
VT K3 = 0000000000000000£000000000000000

VXis
00000000000000000000000000000000

VXas
08104040505000400840400058100040

195
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Table 20: Boomerang distinguisher II for 17, 18 and 19 rounds of SKINNY-64-128

’ 17:79=06,7, =6,r =5, p=2"24 =272 ¢y =2"1772 p2 2 p = 272651

ATK1 000000000C0O00000 ATK?2 000000000F000000
AXy 0000000000000800 AXg 0000000004000000
VTK1 0000000000000040 VTK?2 0000000000000070
VXia 0000000000000000 VX7 0200000002000200
’ 18: 79 =6,7ry, =6,7 =6,p =224 ¢q=2"T08 " 971772 2 42 p — 23790
ATK1 000000000C000000 ATK?2 000000000F000000
AXy 0000000000000800 AXg 0000000004000000
VTK1 0000000000000040 VTK?2 0000000000000070
VXio 0000000000000000 VXis 3101010000710101
’ 19:70="7,7,=6r=6p=2"" ¢q=2"708 ¢ =2717T2"p2 42 p = 25108
ATK1 0C00000000000000 ATK?2 OF00000000000000
A Xy 0200100000010010 AX7 0000000004000000
VTK1 0000004000000000 VTK?2 0000007000000000
VXis 0000000000000000 VXig 3101010000710101
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Table 21: Boomerang distinguisher II for 18, 19, 20 and 21 rounds of SKINNY-128-256
18: 79 = 6,7, = 6,71 = 6,p =273, ¢q=2"729 p =272019 "2 o2 p — 279077
ATK1 = 00000000000000000002000000000000
ATK?2 = 00000000000000000080000000000000
AX() AXG
00000000000000000000000000200000 00000000000000000006000000000000
VT K1 = 0000000000000000000000000000£800
VT K2 = 0000000000000000000000000000c£00
VX2 VXis

00000000000000000000000000000000

40400040004000000000184000400040

19: ro = 7’ T = 67T1 — 67}7 — 2—11.787 q= 2—7.297 r = 2—20.197 pQ.q2.,r. — 2—58.33
ATK1 = 00020000000000000000000000000000
ATK?2 = 00800000000000000000000000000000
AX, AX-
00200000010000000000000100000100 00000000000000000006000000000000
VT K1 = 000000000000£8000000000000000000
VT K2 = 000000000000c£000000000000000000
VXi3 VXi9

00000000000000000000000000000000

40400040004000000000184000400040

20: 79 = 8,7, = 6,71 =6,p= 2727'325 q

— 2 72— 2019 2 25804l

ATK1 = 000000000000
ATK?2 = 000000000000

00000000000000000002
00000000000000000040

AX, AXg
04000000000404040400040000000104 00000000000000000006000000000000
VT K1 = 000000000000000000000000£8000000
VT K2 = 00000000000000000000000067000000
VX VX

00000000000000000000000000000000

40400040004000000000184000400040

21: g =8, 1y, = 6,71 =T7,p

— 0273

2—19.62 r = 2—20.19 p2 q2 r = 2—11407
y y .q-.

ATK1 = 000000000000

00000000000000000002

AT K2 = 00000000000000000000000000000040

AX, AXg
04000000000404040400040000000104 00000000000000000006000000000000

VTK1 = 000000000000000000000000£8000000

VT K2 = 00000000000000000000000067000000

VX VX

00000000000000000000000000000000

40000404040400044004040044000004

Table 22: A right quartet satisfying the boomerang distinguisher I for 18 rounds of SKINNY-64-128

k1 3494d8c130c487bd 6e42d1c2f71e£823
ko 3494d8c1£0c487bd 6e42d1c2071e£823
ks 3494d8c130c4c7bd 6e42d1c2f71e8823
ky 3494d8c1f0c4c7bd 6e42d1c2071e8823
p1 | 98adaabdbcfff8a7 | ¢; | 8323a64a80b77a4f
p2 | 98adaabdbcfff8af | ¢y | ed42621b9cflfalc
p3 | c3e70c62cf12e3eb | c3 | 8777a64e84b07e4b
pg | c3e70c62cf12e3e3 | ¢4 | €916621£98f6fel8
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Table 23: A right quartet satisfying boomerang distinguisher I for 22 rounds of SKINNY-64-192

k1 | a7£3c98000f138c713fbd314efd27203aa8271d92399b77a

ko | a7£3c98001£138c713fbd314e4d27203aa8271d92b99b77a

ks | a7£3c98000d138c713fbd314efe272032a8271d92349b77a

ky | a7£3c98001d138c713fbd314e4e27203aa8271d92b49b77a

D1 £cc345999253b1b4 cq 83a25b965cd6lact
[ f£cc345999253b3b4 C2 06a279380ba4ab42
D3 €9f£1dd00c6387727 c3 dba75d965c931cca
D4 e9f1dd00c6387527 Cq 50a77£380belad47

Table 24: A right quartet satisfying boomerang distinguisher I for 22 rounds of SKINNY-128-384

ky
2¢c2c5fc838b8a48195e627dd67da0590
0ffb5fb4094b88996352a459dacc8706
f9e6ce319e72b23359da10c0b41550c3

ko
2c2cbfc838b8a48195cc27dd67da0590
0ffb5fb4094b8899632bad59dacc8706
f9e6ce319e72b23359€910c0b41550c3

k3
2c2cbfc838b8a48195e673dd67da0590
0ffb5fb4094b88996352ab59dacc8706
f9e6ce319e72b23359dae8c0b41550c3

k4
2¢c2c5fc838b8a48195¢cc73dd67da0590
0ffb5fb4094b8899632bab59dacc8706
f9e6ce319e72b23359e€9e8c0b41550c3

P1 1
8b68483d7e54a1140cb4adb6f5cfacc9 23820cc9011c130afeac8b879c7967aa
b2 C2
8b68483d7eb54a1140cb4ad56f5c7acc9 8325b6082¢c46116050ed125£66cb9f15
ps3 C3
9442ed20a6934b4c50925ffcf0d0526e 33920cd9010c130afeac8c979c6967ba
2 Cyq

9442ed20a6934b4c50925ffc£0d8526e

9335b6182c56116050ed154£66db9£05

Table 25: A right quartet satisfying boomerang distinguisher II for 18 rounds of SKINNY-128-256
k1 | a733ade942312ce0503c3e528aa0c417cb47c7dad8bcefbc3£8131b6375d98de
ko | a733ade942312ce0503e3e528aa0c417cb47c7dad8bcefbc3f0131b6375d98de
ks | a733ade942312ce0503c3e528aa03c17cb47c7dad8bcefbc3£8131b6375d57de
ks | a733ade942312ce0503e3e528aa03c17cb47c7dad8bcefbc3f0131b6375d57de

P1 C1
8d9%a13adfc4d3d8046145385edc26a21 eb871cd1bbd5c3de4503f64d3b6fdb11l
D2 C2
8d9%a13adfc4d3d8046145385ede26a21 eb9d9bdfaaeded28d773172b082e82de
p3 C3
91b30cc8898c0324631b80319a5745de abc71c91bb95c3ded503ee0d3b2fdb51
Y2 Cyq
91b30cc8898c0324631b80319a7745de abdd9b9faaaded28d7730£60086e329¢
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