
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 2, pp. 104–139. DOI:10.46586/tosc.v2021.i2.104-139

Weak Keys in Reduced AEGIS and Tiaoxin
Fukang Liu1,2, Takanori Isobe2,3,4, Willi Meier5, Kosei Sakamoto2

1 East China Normal University, Shanghai, China
liufukangs@163.com

2 University of Hyogo, Hyogo, Japan
3 National Institute of Information and Communications Technology, Tokyo, Japan

4 PRESTO, Japan Science and Technology Agency, Tokyo, Japan
takanori.isobe@ai.u-hyogo.ac.jp, k.sakamoto0728@gmail.com

5 University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland
willimeier48@gmail.com

Abstract. AEGIS-128 and Tiaoxin-346 (Tiaoxin for short) are two AES-based primitives
submitted to the CAESAR competition. Among them, AEGIS-128 has been selected
in the final portfolio for high-performance applications, while Tiaoxin is a third-round
candidate. Although both primitives adopt a stream cipher based design, they are
quite different from the well-known bit-oriented stream ciphers like Trivium and the
Grain family. Their common feature consists in the round update function, where
the state is divided into several 128-bit words and each word has the option to pass
through an AES round or not. During the 6-year CAESAR competition, it is surprising
that for both primitives there is no third-party cryptanalysis of the initialization
phase. Due to the similarities in both primitives, we are motivated to investigate
whether there is a common way to evaluate the security of their initialization phases.
Our technical contribution is to write the expressions of the internal states in terms
of the nonce and the key by treating a 128-bit word as a unit and then carefully
study how to simplify these expressions by adding proper conditions. As a result,
we find that there are several groups of weak keys with 296 keys each in 5-round
AEGIS-128 and 8-round Tiaoxin, which allows us to construct integral distinguishers
with time complexity 232 and data complexity 232. Based on the distinguisher, the
time complexity to recover the weak key is 272 for 5-round AEGIS-128. However, the
weak key recovery attack on 8-round Tiaoxin will require the usage of a weak constant
occurring with probability 2−32. All the attacks reach half of the total number of
initialization rounds. We expect that this work can advance the understanding of the
designs similar to AEGIS and Tiaoxin.
Keywords: AES · AEGIS · Tiaoxin · weak key · distinguisher · key-recovery

1 Introduction
Strong diffusion and confusion are two principles to design secure symmetric-key primitives.
It is undoubtable that for almost all symmetric-key primitives the attackers lose the
capability to write the accurate boolean expressions of the output bits in terms of the
input bits. To address this problem, the cube attack [DS09] was invented to capture
partial information of the boolean expressions of the output bits. Especially, with the
evolvement of the technique called division property [Tod15,TM16], there exist automatical
tools [XZBL16,WHG+19,HLM+20,HSWW20] to search for the desired partial information
of the boolean expressions. An evident advantage to utilize the division property with
the automatical tools is that attackers can find integral distinguishers [KW02] in a
relatively easy way. However, it seems that a naive implementation can only find integral
distinguishers holding for all secret keys.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-03-01 Accepted: 2021-05-01 Published: 2021-06-11

https://doi.org/10.46586/tosc.v2021.i2.104-139
mailto:liufukangs@163.com
mailto:takanori.isobe@ai.u-hyogo.ac.jp
mailto:k.sakamoto0728@gmail.com
mailto:willimeier48@gmail.com
http://creativecommons.org/licenses/by/4.0/


Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 105

When it comes to the weak-key setting, without knowing what the weak key is in
advance, the naive implementation of the division property will obviously fail in finding
the integral distinguishers not holding for all keys. How to identify a set of weak keys
is nontrivial as there may exist different perspectives of what a weak key should be like
and how a weak key influences the attack, which can be seen from the development of
the invariant subspace attack [LAAZ11,LMR15,TLS16,GJN+16,Bey18], a popular attack
on lightweight symmetric-key primitives in the weak-key setting. In general, the time
complexity of a reasonable distinguisher and key-recovery attack in the weak-key setting
should be smaller than the number of weak keys.

This work will focus on the integral attack [KW02] on round-reduced AEGIS-128 and
Tiaoxin in the weak-key setting. AEGIS-128 [WP13] and Tiaoxin [Nik] are two authenticated
encryption (AE) schemes adopting a stream cipher based design. Their common feature
consists in the round update function, where the internal state is divided into several
128-bit words and each word has the option to pass through an AES round or not. For
AEGIS-128, all the state words will independently pass through the AES round function in
one-round update, while only partial state words will independently pass through the AES
round function in one-round update for Tiaoxin. Designing a round update function in this
way will allow parallel calls to AES-NI, which is a set of instructions for the AES round
function designed by Intel. Consequently, the round update functions of both primitives
are rather efficient even with several AES rounds. Notably, Jean and Nikolić generalized
the way to construct such round update functions in FSE 2016 [JN16], which has attracted
the interest of the community.

To improve the unit time to process a 128-bit message block, after the initialization
phase and processing the associated data, only one-round update is used to compute each
ciphertext block. To ensure the security of the encryption phase, the state sizes of both
AEGIS-128 and Tiaoxin are large and the output is computed based on a quadratic boolean
function in terms of several state words, which can prevent attackers from recovering
the whole secret internal state with the output faster than an exhaustive key search.
Moreover, such a way to generate the output also makes reversing the round update
function impossible without guessing many state words.

For such a way to compute the output, i.e. the keystream, it has been pointed out by
Minaud that there exists a linear bias in the keystream [Min14] soon after the publication
of AEGIS. Especially, AEGIS-256 was shown to be insecure against this statistical attack.
Later, this idea was applied to MORUS in ASIACRYPT 2018 [AEL+18] and how to
construct a model to automatically search for the linear bias in the keystream was also
proposed in CRYPTO 2019 [SSS+19]. Such a model was then adapted to re-evaluate the
keystream of AEGIS [ENP19]. Although a better linear bias was found for AEGIS-256, both
AEGIS-128 and AEGIS-128L remain secure in their keystream generation phase [ENP19].

For AEGIS-128 and Tiaoxin, when the associated data is empty, the phase to process the
associated data will be skipped and the attacker can immediately observe the information
of the internal state at the encryption phase. As only one-round update is utilized to
process each message block in the encryption phase, it is obvious that the security of
the initialization phase of both primitives controls the security of the whole AE scheme.
Although the designers made an initial study of the initialization phase, only the resistance
against the differential attack was investigated. For AEGIS-128, the designers claimed that
there are 50 AES rounds in initialization and a difference in the controllable input will
pass through more than 10 AES rounds [WP13]. For Tiaoxin, the designers claimed that 6
rounds are sufficient to resist against the differential attack by counting the number of
active S-boxes [Nik].

The designers only took the conventional differential attack into account but the
feasibility to apply the well-known integral distinguisher on 4-round AES was not discussed.



106 Weak Keys in Reduced AEGIS and Tiaoxin

Surprisingly, there is no third-party cryptanalysis1 of the initialization phase for both
primitives even until now. To fill in the gap, we are motivated to investigate the possibility
to utilize the well-known integral distinguisher on 4-round AES [DR02] to analyze their
initialization phases.

Our contributions. Due to the fact that the state words are independently processed
via the AES round function and the diffusion between the state words is rather weak in
the round update function, we find it more suitable and feasible to write the expressions
of the internal states in terms of the input by treating a 128-bit word rather than a bit
as a unit. The reason to consider the integral distinguisher is also simple as it allows to
study the integral property for each term in the expression independently, which fits very
well with the way to generate the output for both AEGIS-128 and Tiaoxin. However, other
attacks may rely on the interaction between the terms.

To study the integral property for the output, it is essential to study some unusual
integral properties that will never appear in real AES but will appear in AEGIS-128 and
Tiaoxin. Specifically, we will prove that for some unusual combinations of the AES round
function, in the multiset of the outputs for a certain structure of inputs, the same value will
appear an even number of times. Without noticing this property, one may add redundant
conditions to obtain the integral distinguishers on reduced AEGIS-128 and Tiaoxin or even
fail in finding them.

After writing the expressions, analyzing them and adding proper conditions to simplify
them are crucial steps to identify the integral distinguishers. It is common in symmetric-key
cryptanalysis to add conditions to control the propagation in variables, which has lead to
the powerful collision attacks on the MD-SHA hash family [WLF+05,WY05,WYY05], the
conditional differential attack [BB93,KMN10] and the conditional cube attack [HWX+17],
though the conditions are carefully derived from the bit level. In our attack, the conditions
are derived from the byte level and they are hidden in the expressions. It can also be found
that the conditions on the key occur for very different reasons in AEGIS-128 and Tiaoxin.

Benefiting from writing the expressions, we observed the feasibility to mount a key-
recovery attack by introducing a new variable to represent the output of one AES round
for a certain 128-bit word, which is equivalent to appending a round for key recovery.
Especially for Tiaoxin, there seems to be one useless round.

As a result, we identified several sets of weak keys with 296 keys each for 5-round
AEGIS-128 and 8-round Tiaoxin. For each set of weak keys, the time complexity and data
complexity to construct the integral distinguisher are both 232. The weak key recovery for
5-round AEGIS-128 requires 232 data, 225 memory and 272 time. For 8-round Tiaoxin, the
weak key recovery will require the usage of a weak constant occurring with probability
2−32. In addition, the size of each set of weak keys in 8-round Tiaoxin will be reduced to 272

in the key-recovery attack. If a weak constant is used, the key-recovery attack on 8-round
Tiaoxin will require 232 data, 224 memory and 248 time. The results are summarized in
Table 1.

Organization. The paper is organized in the following way. In Section 2, we will introduce
some necessary notations and the specification of the initialization phases of AEGIS-128
and Tiaoxin. Then some new integral properties of the AES round function will be discussed
in Section 3. In Section 4 and Section 5, how to derive the distinguishers and key-recovery
attacks for 5-round AEGIS-128 and 8-round Tiaoxin will be detailed, respectively. Then,
we summarize the attacks on AEGIS-128 and Tiaoxin and discuss the usage of division
property in Section 6. Finally, the paper in concluded in Section 7.

1There are two existing works [ZXL17,VV18] for Tiaoxin, but neither of them is relative to our attack.



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 107

Table 1: The results of the analysis of reduced AEGIS-128 and Tiaoxin in the weak-key
setting, where M/T/D represent the memory/time/data complexity, respectively. In
addition, the column named "Size" represents the size of each set of weak keys. The
column named "#Classes" represents the number of sets of weak keys. The column named
"Constant" represents the requirement on the constant. "-" represents negligible.

Target Attack Type Rounds M T D Size #Classes Constant
AEGIS-128 Distinguisher 5/10 - 232 232 296 4 arbitrary

Tiaoxin Distinguisher 8/16 - 232 232 296 12 arbitrary
AEGIS-128 Key recovery 5/10 225 272 232 296 4 arbitrary

Tiaoxin Key recovery 8/16 224 248 232 272 4 weak

2 Preliminaries
In this section, we explain the notations in this paper and briefly describe the initialization
phase of AEGIS-128 and Tiaoxin, respectively.

2.1 Notation
1. SB, SR, MC and AC represent the SubBytes, ShiftRows, MixColumns and Constant

Addition operations defined in AES, respectively.

2. MC−1(X) represents the application of the inverse of the Mixcolumns operation of
AES to a 128-bit value X.

3. A(X) represents MC ◦ SR ◦ SB(X), where X ∈ F128
2 .

4. R(X) represents AC ◦MC ◦ SR ◦ SB(X), where X ∈ F128
2 .

5. Ar(X) represents r times of the application of the function A to X.

6. Rr(X) represents r times of the application of the function R to X.

7. S(x) represents the output of the S-box of AES when the input is x ∈ F8
2.

8. x · y represents the product of x ∈ F8
2 and y ∈ F8

2 where the operation · works in the
field GF (28) as in MC of AES.

In addition, we also introduce some related notations to describe the AES state. Specifically,
the AES state is organized as a 4× 4 two-dimensional array. If the AES state is denoted
by s, then s[i][j] represents the byte located in the i-th row and j-th column, as shown in
Figure 1. Moreover, to group several bytes of the AES state, we introduce the following
notations:

s[Diag(i)] = {s[0][i], s[1][i+ 1], s[2][i+ 2], s[3][i+ 3]},
s[Col(i)] = {s[0][i], s[1][i], s[2][i], s[3][i]},

s[shiftCol(i)] = {s[0][i], s[1][i− 1], s[2][i− 2], s[3][i− 3]},

where the indices are considered within modulo 4. For simplicity, we use s[Col(i0, i1, i2)]
to represent to state words s[Col(i0)]

⋃
s[Col(i1)]

⋃
s[Col(i2)]. Similarly,

s[shiftCol(i0, i1, i2)] = s[shiftCol(i0)]
⋃
s[shiftCol(i1)]

⋃
s[shiftCol(i2)].



108 Weak Keys in Reduced AEGIS and Tiaoxin

[0][0] [0][1] [0][2] [0][3]

[1][0]

[2][0]

[3][0]

[1][1]

[2][1]

[3][1]

[1][2]

[2][2]

[3][2]

[1][3]

[2][3]

[3][3]

Figure 1: The AES state

2.2 The Initialization Phase of AEGIS-128
AEGIS-128 is an authenticated encryption (AE) scheme composed of four phases: initializa-
tion, processing the associated data, encryption and finalization. This works only focuses
on the initialization phase.

The state of AEGIS-128 consists of five 128-bit words. For simplicity, we denote
the initial state by (X0

0 , X
1
0 , X

2
0 , X

3
0 , X

4
0 ). Similar to block ciphers, there is a round

update function to update the AEGIS-128 state and we denote the state after r rounds by
(X0

r , X
1
r , X

2
r , X

3
r , X

4
r ). The round update function is depicted in Figure 2.

X0

r−1
X1

r−1
X2

r−1
X3

r−1
X4

r−1

X0

r
X1

r
X2

r
X3

r
X4

r

⊕ ⊕ ⊕ ⊕ ⊕

AAAAA

⊕(K ⊕N)/K
ww

Figure 2: The illustration of the round update function of AEGIS-128

The inputs of the initialization phase are composed of a 128-bit nonce N and a 128-bit
key K. There are also two 128-bit constants (C0, C1) defined in AEGIS-128. First, the
state is initialized in the following way:

X0
0 = K ⊕N,X1

0 = C0, X
2
0 = C1, X

3
0 = K ⊕ C0, X

4
0 = K ⊕ C1.

Then, the state will be updated for 10 rounds, i.e. computed until (X0
10, . . . , X

4
10).

When r ≥ 1 is odd, X0
r is updated as follows:

X0
r = X0

r−1 ⊕A(X4
r−1)⊕K.

When r > 0 is even, X0
r is updated as follows:

X0
r = X0

r−1 ⊕A(X4
r−1)⊕K ⊕N.

For the remaining state words, they are updated in the same way in each round:

Xi+1
r = Xi+1

r−1 ⊕A(Xi
r−1),

where 1 ≤ r ≤ 10 and 0 ≤ i ≤ 3.
When the associated data is empty, from the ciphertext, the attacker is able to know

the output

X1
10 ⊕X4

10 ⊕X2
10 ∧X3

10.



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 109

When the initialization phase is reduced to r rounds, we denote the output by θ, as
specified below:

θ = X1
r ⊕X4

r ⊕X2
r ∧X3

r .

2.3 The Initialization Phase of Tiaoxin
The Tiaoxin state is composed of thirteen 128-bit words. For convenience, we denote the
initial state of Tiaoxin by

(U0
0 , U

1
0 , U

2
0 ,W

0
0 ,W

1
0 ,W

2
0 ,W

3
0 , Y

0
0 , Y

1
0 , Y

2
0 , Y

3
0 , Y

4
0 , Y

5
0 ).

Similarly, the inputs of the initialization phase consist of a 128-bit nonce N and a
128-bit key K. There are also two 128-bit constants (Z0, Z1) defined in Tiaoxin. First, the
initial state is filled in the following way:

U0
0 = K,U1

0 = K,U2
0 = N,

W 0
0 = K,W 1

0 = K,W 2
0 = N,W 3

0 = Z0,

Y 0
0 = K,Y 1

0 = K,Y 2
0 = N,Y 3

0 = Z1, Y
4

0 = 0, Y 5
0 = 0.

Then, a same round update function will be iterated for 15 rounds. Denote the state after
r rounds of update by

(U0
r , U

1
r , U

2
r ,W

0
r ,W

1
r ,W

2
r ,W

3
r , Y

0
r , Y

1
r , Y

2
r , Y

3
r , Y

4
r , Y

5
r ).

Then, the round function can be formalized as follows:

U0
r+1 = U0

r ⊕ Z0 ⊕A(U2
r )

U1
r+1 = A(U0

r )
U2
r+1 = U1

r

W 0
r+1 = W 0

r ⊕ Z1 ⊕A(W 3
r )

W 1
r+1 = A(W 0

r )
W i
r+1 = W i−1

r (i ∈ {2, 3})
Y 0
r+1 = Y 0

r ⊕ Z0 ⊕A(Y 5
r )

Y 1
r+1 = A(Y 0

r )
Y ir+1 = Y i−1

r (i ∈ {2, 3, 4, 5})

The corresponding illustration can be referred to Figure 3.

U0
r

U1
r

U2
r

W 0
r

W 1
r

A

W 2
r

W 3
r

Y 0
r

Y 1
r

Y 2
r

Y 3
r

Y 4
r

A

⊕

⊕Z0

U0
r+1 U1

r+1 U2
r+1

A

⊕

⊕

A A

A

⊕

⊕Z1 Z0

W 0
r+1 W 1

r+1 W 2
r+1 W 3

r+1 Y 0
r+1 Y 1

r+1 Y 2
r+1 Y 3

r+1 Y 4
r+1

Y 5
r

Y 5
r+1

Figure 3: The illustration of the round update function of Tiaoxin

When the associated data is empty and the initialization phase is reduced to r rounds,
as the earliest ciphertext is outputted only after one more round update function, if the
first two 128-bit message words are 0, the known output (µ0, µ1) can be specified as follows:

µ0 = U0
r+1 ⊕ U2

r+1 ⊕W 1
r+1 ⊕ Y 3

r+1 ∧W 3
r+1,

µ1 = Y 0
r+1 ⊕W 2

r+1 ⊕ U1
r+1 ⊕ Y 5

r+1 ∧ U2
r+1.

Therefore, it is equivalent to that there are 16 rounds for the initialization phase of Tiaoxin.



110 Weak Keys in Reduced AEGIS and Tiaoxin

3 Integral Properties for the AES Round Function
In the proposal of AES, the designers presented an efficient integral distinguisher for
3-round AES [DR02] and it is still the basis of the best key-recovery attack on 6-round AES
in the single key setting. For completeness, the 3-round integral distinguisher is depicted
in Figure 4, where A denotes that the corresponding byte takes all 28 possible values,
C denotes that the corresponding byte takes a constant value and B denotes that the
corresponding byte is balanced, i.e. its sum is zero. Formally, the following relation holds:∑

s[0][0]∈F8
2

R3(s) = 0.

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B B B B

B B B B

B B B B

B B B B

R R R

Figure 4: The integral distinguisher for 3-round AES

It is well-known that the 3-round distinguisher can be trivially extended to a 4-round
one. Specifically, if s[Diag(0)] traverses all 232 possible values and the remaining bytes of
s are assigned to random constants, the sum of all the outputs after 4-round AES must be
zero, i.e. ∑

s[Diag(0)]∈F32
2

R4(s) = 0. (1)

It is simple to explain why the above equation holds. Specifically, for such an input
set of s, the first column of R(s) must also take all 232 possible values and the remaining
columns are still constants. Therefore, the set of R(s) can be divided into 224 different
subsets according to the value of (R(s)[1][0], R(s)[2][0], R(s)[3][0]). Obviously, for each
subset, if it passes through 3-round AES further, the sum of the outputs must be zero
according to the 3-round integral distinguisher. As the sum of the outputs for each subset
is zero, the sum of all the outputs must be zero.

3.1 New Integral Properties for the AES Round Function
Due to the special structure of AEGIS and Tiaoxin, some complex integral properties will
occur while they will never occur in real AES. We have to emphasize that the proof of
these properties is non-intuitive as we will be faced with a multiset of values which cannot
be accurately captured by A, C or B. Specifically, the multiset has the feature that the
same value will appear an even number of times. Indeed, such a feature has once been
utilized to break the SASAS scheme in whitebox cryptography [BS01].

Property 1. Given 3 arbitrary 128-bit constant values c0, c1 and c2, for an arbitrary
function f : F128

2 → Fl2 where l is an arbitrary positive integer, and for an arbitrary choice
of (i, j) (0 ≤ i, j ≤ 3), the following property must hold:∑

s[i][j]∈F8
2

f(R(s⊕ c0)⊕R(s⊕ c1)⊕ c2) = 0. (2)

Proof. For better understanding, the computation of f(R(s ⊕ c0) ⊕ R(s ⊕ c1) ⊕ c2) is
illustrated in Figure 5. Due to the symmetry of the AES round function, we only need to



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 111

A ⊕

s

A ⊕

rc0

rc0

⊕c2

c0

c1

⊕

⊕

f

A ⊕

s

A ⊕

rc0

rc0

c0

c1

⊕

⊕

A ⊕

A ⊕

rc1

rc1

⊕ fc2

Figure 5: Illustration of the studied functions, where rc0 and rc1 are round constants.
The left one is for Property 1 and the right one is for Property 3.

prove2 ∑
s[0][0]∈F8

2

f(R(s⊕ c0)⊕R(s⊕ c1)⊕ c2) = 0.

The remaining cases can be proved in a similar way.
Let s0 = SB(s⊕ c0) and s1 = SB(s⊕ c1). Then, we have

R(s⊕ c0)⊕R(s⊕ c1) = MC ◦ SR(s0 ⊕ s1).

As s only varies at s[0][0], we denote the value of si by sαi (0 ≤ i ≤ 1) when s[0][0] = α.
When c0[0][0] = c1[0][0], s0 ⊕ s1 is constant and hence R(s⊕ c0)⊕R(s⊕ c1) is constant.
In this case, ∑

s[0][0]∈F8
2

f(R(s⊕ c0)⊕R(s⊕ c1)⊕ c2) = 0.

When c0[0][0] 6= c1[0][0], we have

sα0 ⊕ sα1 = s
α⊕c0[0][0]⊕c1[0][0]
0 ⊕ sα⊕c0[0][0]⊕c1[0][0]

1 .

In other words, when s[0][0] traverses all the 28 possible values, the same value of s0 ⊕ s1
will appear an even number of times. Therefore, the same value of MC ◦ SR(s0 ⊕ s1) must
appear an even number of times and hence∑

s[0][0]∈F8
2

f(R(s⊕ c0)⊕R(s⊕ c1)⊕ c2) = 0.

This completes the proof.

Based on Property 1, there will be a special integral distinguisher for n+ 1 rounds of
the AES round function, i.e. for an arbitrary choice of (i, j) (0 ≤ i, j ≤ 3), we have∑

s[i][j]∈F8
2

Rn(R(s⊕ c0)⊕R(s⊕ c1)⊕ c2) = 0.

However, such an integral distinguisher will never appear in real AES.

Property 2. Given 3 arbitrary 128-bit values c0, c1 and c2, for an arbitrary choice of
(i, j) (0 ≤ i, j ≤ 3), the following property must hold:∑

s[i][j]∈F8
2

R(R(R(s)⊕ c0)⊕R(R(s)⊕ c1)⊕ c2) = 0. (3)

2Indeed, from our proof, it can be found that we indeed only need to prove
∑

s[0][0]∈F8
2

f(R(s) ⊕ R(s ⊕
c1)) = 0.



112 Weak Keys in Reduced AEGIS and Tiaoxin

Proof. The basic idea to prove this property is similar to that used in the proof of Property 1.
Similarly, we only need to focus on the proof of∑

s[0][0]∈F8
2

R(R(R(s)⊕ c0)⊕R(R(s)⊕ c1)⊕ c2) = 0.

Let t = R(s) and then our aim is to study the property of R(t ⊕ c0) ⊕ R(t ⊕ c1). As
s[0][0] = A and the remaining bytes of s are all C, there will be

t[0][0] = A, t[1][0] = A, t[2][0] = A, t[3][0] = A,
t[i][j] = C (0 ≤ i ≤ 3, 1 ≤ j ≤ 3).

Let

u = R(t⊕ c0)⊕R(t⊕ c1).

For the first column of u, it can be deduced that

u[0][0] = 2 · S(t[0][0]⊕ c0[0][0])⊕ 2 · S(t[0][0]⊕ c1[0][0])⊕ ε0,0,
u[1][0] = S(t[0][0]⊕ c0[0][0])⊕ S(t[0][0]⊕ c1[0][0])⊕ ε1,0,
u[2][0] = S(t[0][0]⊕ c0[0][0])⊕ S(t[0][0]⊕ c1[0][0])⊕ ε2,0,
u[3][0] = 3 · S(t[0][0]⊕ c0[0][0])⊕ 3 · S(t[0][0]⊕ c1[0][0])⊕ ε3,0,

where εi,j are constants depending on (c0, c1) and the constant part of t.
If denoting the value of u by uα when t[0][0] = α, there must be

uα[0][0] = uα⊕c0[0][0]⊕c1[0][0][0][0],
uα[1][0] = uα⊕c0[0][0]⊕c1[0][0][1][0],
uα[2][0] = uα⊕c0[0][0]⊕c1[0][0][2][0],
uα[3][0] = uα⊕c0[0][0]⊕c1[0][0][3][0].

In other words, if c0[0][0] = c1[0][0], u[Col(0)] will be constant. If c0[0][0] 6= c1[0][0], the
same value of u[Col(0)] will appear an even number of times.

Similarly, we can write the expressions for bytes of u located in the remaining three
columns. Due to the symmetry of the AES round function, the same conclusion can be
derived. Specifically, if c0[i][0] = c1[i][0], u[Col(4− i)] will be constant. If c0[i][0] 6= c1[i][0],
the same value of u[Col(4− i)] will appear an even number of times, where the indices are
considered within modulo 4. Therefore, it can be derived that either S(u[i][j]⊕ c2[i][j]) is
C or the same value of S(u[i][j]⊕ c2[i][j]) must appear an even number of times. For both
cases, there must be∑

s[0][0]∈F8
2

SB ◦ (R(R(s)⊕ c0)⊕R(R(s)⊕ c1)⊕ c2) = 0.

As both SR and MC are linear operations, we have∑
s[0][0]∈F8

2

R(R(R(s)⊕ c0)⊕R(R(s)⊕ c1)⊕ c2) = 0,

which completes the proof.

The difference between Property 1 and Property 2 should be emphasized. Specifically,
in the proof of Property 1, we view the whole AES state as a unit and we derive that the
same value of the AES state will appear an even number of times. However, in the proof of



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 113

Property 2, we view each byte of the AES state as a unit and derive that the same value
of each byte will appear even times. It is not difficult to derive that we lose the integral
property for ∑

s[0][0]∈F8
2

SB ◦R(R(R(s)⊕ c0)⊕R(R(s)⊕ c1)⊕ c2).

Property 3. Given 3 arbitrary 128-bit values c0, c1 and c2, for an arbitrary function
f : F128

2 → Fl2 where l is an arbitrary positive integer, and for an arbitrary i satisfying
0 ≤ i ≤ 3, the following property must hold:∑

s[Diag(i)]∈F32
2

f(R2(s⊕ c0)⊕R2(s⊕ c1)⊕ c2) = 0. (4)

Proof. The computation of the function f(R2(s ⊕ c0) ⊕ R2(s ⊕ c1) ⊕ c2) is depicted in
Figure 5. Due to the symmetry of the AES round function, we only need to focus on the
proof of ∑

s[Diag(0)]∈F32
2

f(R2(s⊕ c0)⊕R2(s⊕ c1)⊕ c2) = 0.

Let p0 = SB ◦R(s⊕ c0) and p1 = SB ◦R(s⊕ c1). In this way, we have

R2(s⊕ c0)⊕R2(s⊕ c1) = MC ◦ SR(p0 ⊕ p1).

When only s[Diag(0)] varies, we have that only p0[Col(0)] and p1[Col(0)] will vary while
the remaining bytes of them are constant. When s[Diag(0)] takes the value (α0, α1, α2, α3),
denote the value of pi by pα0,α1,α2,α3

i (0 ≤ i ≤ 1).
When c0[Diag(0)] = c1[Diag(0)], it can be deduced that p0⊕ p1 is constant. Therefore,

when only s[Diag(0)] varies, R2(s⊕ c0)⊕R2(s⊕ c1) is constant and we have∑
s[Diag(0)]∈F32

2

f(R2(s⊕ c0)⊕R2(s⊕ c1)⊕ c2) = 0.

Let δ[i][j] = c0[i][j]⊕ c1[i][j], when c0[Diag(0)] 6= c1[Diag(0)], we can derive that

pα0,α1,α2,α3
0 ⊕ pα0,α1,α2,α3

1

= p
α0⊕δ[0][0],α1⊕δ[1][1],α2⊕δ[2][2],α3⊕δ[3][3]
0 ⊕ pα0⊕δ[0][0],α1⊕δ[1][1],α2⊕δ[2][2],α3⊕δ[3][3]

1 .

In other words, when s[Diag(0)] traverses all the 232 possible values, the same value of
p0 ⊕ p1 will appear an even number of times. This is equivalent to say that the same value
of R2(s⊕ c0)⊕R2(s⊕ c1) will appear an even number of times. As a result, we also have∑

s[Diag(0)]∈F32
2

f(R2(s⊕ c0)⊕R2(s⊕ c1)⊕ c2) = 0,

which completes the proof.

According to Property 3, there exists an integral property for n+ 2 rounds of the AES
round function, i.e. for an arbitrary i (0 ≤ i ≤ 3), we have∑

(s[Diag(i)])∈F32
2

Rn(R2(s⊕ c0)⊕R2(s⊕ c1)⊕ c2) = 0.



114 Weak Keys in Reduced AEGIS and Tiaoxin

The conditional integral property. However, for an arbitrary choice of the four 128-bit
values of (c0, c1, c2, c3), there is no deterministic property for the sum∑

s[Diag(i)]∈F32
2

R2(R2(s⊕ c0)⊕R2(s⊕ c1)⊕R2(s⊕ c2)⊕ c3).

To obtain a deterministic property, some additional conditions can be added. Specifically,
from the proof of Property 3, when c0[Diag(i)] = c1[Diag(i)] or c0[Diag(i)] = c2[Diag(i)]
or c1[Diag(i)] = c2[Diag(i)], combined with the integral distinguisher for 4-round AES,
there must be ∑

s[Diag(i)]∈F32
2

R2(R2(s⊕ c0)⊕R2(s⊕ c1)⊕R2(s⊕ c2)⊕ c3) = 0. (5)

Apart from the above properties, it is necessary to prove some additional integral
properties to increase the accuracy of our integral distinguishers.

Property 4. Given an arbitrary 128-bit value c0, for any i satisfying 0 ≤ i ≤ 3, the
following property must hold: ∑

s[Col(i)]∈F32
2

R(s) ∧R(R(s)⊕ c0) = 0. (6)

Proof. Due to the symmetry of the AES round function, as in all the above proofs, we only
need to prove ∑

s[Col(0)]∈F32
2

R(s) ∧R(R(s)⊕ c0) = 0.

Firstly, we focus on the first three columns of R(s) ∧R(R(s)⊕ c0). As s[Col(0)] takes all
the 232 possible values, the set of s can be divided into 224 different subsets according to
(s[0][0], s[2][0], s[3][0]). In this way, for each subset of s, R(s)[Col(0, 1, 2)] will be a fixed
constant. For each such subset of s, each byte of R(R(s)⊕ c0) will take all the 28 possible
values. Therefore, for each such subset, we have∑

s[1][0]∈F8
2

(R(s) ∧R(R(s)⊕ c0))[Col(0, 1, 2)] = 0.

Similarly, it can be simply derived that∑
s[0][0]∈F8

2

(R(s) ∧R(R(s)⊕ c0))[Col(1, 2, 3)] = 0.

Consequently, ∑
s[Col(0)]∈F32

2

R(s) ∧R(R(s)⊕ c0) = 0,

which completes the proof.

Property 5. Given an arbitrary 128-bit value c0, for any i satisfying 0 ≤ i ≤ 3, the
following property must hold: ∑

s[Diag(i)]∈F32
2

R(R2(s)⊕ s⊕ c0) = 0. (7)



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 115

Proof. As in all the above proofs, it is sufficient to prove∑
s[Diag(0)]∈F32

2

R(R2(s)⊕ s⊕ c0) = 0.

Consider the case when only s[0][0] takes all the 28 possible values while the remaining bytes
of s are constants. For such a set of inputs, except (R2(s)⊕ s)[0][0], each byte of R2(s)⊕ s
will independently take all the 28 possible values. In other words, when s[Diag(0)] takes
all the 232 possible values, the same value of (R2(s)⊕ s)[i][j] with (i, j) 6= (0, 0) will appear
an even number of times as there are 224 different values of (s[1][1], s[2][2], s[3][3]) and 224

is an even number.
From a different perspective, consider the set of inputs where only s[1][1] takes all

the 28 possible values. In this case, except (R2(s)⊕ s)[1][1], each byte of R2(s)⊕ s will
independently take all the 28 possible values. Based on similar reasons, the same value of
(R2(s)⊕ s)[i][j] with (i, j) 6= (1, 1) will appear an even number of times when s[Diag(0)]
traverses all the 232 possible values.

Combining both cases, when s[Diag(0)] takes all the 232 possible values, the same
value of each byte of (R2(s)⊕ s) will appear an even number of times. However, it should
be emphasized that the same value of R2(s)⊕s will not necessarily appear an even number
of times. As a result, we have∑

s[Diag(0)]∈F32
2

R(R2(s)⊕ s⊕ c0) = 0,

which completes the proof.

4 Cryptanalysis of 5-Round AEGIS-128
In this section, we will describe how to identify the weak keys in 5-round AEGIS-128 by
tracing the expressions of the internal states in terms of the initial state. As the AEGIS-128
state is composed of five 128-bit words and the round update function treats each word
as a unit, we are motivated to write the expressions of the internal states in terms of the
initial state by treating a 128-bit word rather than 1 bit as a unit. Therefore, it is no more
difficult to write the accurate expressions, while it is almost impossible in bit level.

4.1 Writing the Expressions of 5-Round AEGIS-128
To understand how the weak keys influence the expressions, it is essential to know the
original expressions for an arbitrary key. For simplicity, when writing the expressions,
we omit the constants and only focus on how the nonce evolves as the state is updated.
Consequently, in the following, A(N) may represent A(N ⊕ c) where c is a constant
depending on the key and the constant part of the initial state. In addition, when the
state word does not depend on the nonce N , it is simply written as 0. This way will make
the expressions more explicit and readable.

The initial state of AEGIS-128 is defined as below:

X0
0 = K ⊕N,X1

0 = C0, X
2
0 = C1, X

3
0 = K ⊕ C0, X

4
0 = K ⊕ C1.

Therefore, the expressions of (X0
1 , . . . , X

4
1 ) can be written as follows:

X0
1 = N,X1

1 = A(N), X2
1 = 0, X3

1 = 0, X4
1 = 0.

Similarly, we can write the expressions of (X0
r , . . . , X

4
r ) for 2 ≤ r ≤ 5.



116 Weak Keys in Reduced AEGIS and Tiaoxin

When r = 2, we have

X0
2 = 0, X1

2 = A(N)⊕A(N), X2
2 = A(A(N)), X3

2 = 0, X4
2 = 0.

When r = 3, the expressions are

X0
3 = 0, X1

3 = A(N)⊕A(N), X2
3 = A(A(N))⊕A(A(N)⊕A(N)),

X3
3 = A(A(A(N))), X4

3 = 0.

When r = 4, there will be

X0
4 = N,

X1
4 = A(N)⊕A(N),

X2
4 = A(A(N))⊕A(A(N)⊕A(N))⊕A(A(N)⊕A(N)),

X3
4 = A(A(A(N)))⊕A(A(A(N))⊕A(A(N)⊕A(N))),

X4
4 = A(A(A(A(N)))).

Finally, when r = 5, we have

X0
5 = N ⊕A(A(A(A(A(N))))),

X1
5 = A(N)⊕A(N)⊕A(N),

X2
5 = A(A(N))⊕A(A(N)⊕A(N))⊕A(A(N)⊕A(N))⊕A(A(N)⊕A(N)),

X3
5 = A(A(A(N)))⊕A(A(A(N))⊕A(A(N)⊕A(N)))

⊕ A(A(A(N))⊕A(A(N)⊕A(N))⊕A(A(N)⊕A(N))),
X4

5 = A(A(A(A(N))))⊕A(A(A(A(N)))⊕A(A(A(N))⊕A(A(N)⊕A(N)))).

According to the output of AEGIS-128, if targeting 5 AEGIS-128 initialization rounds,
the attacker can only know

θ = X1
5 ⊕X4

5 ⊕X2
5 ∧X3

5 . (8)

It seems that the simple integral distinguisher for 4-round AES can be directly applied
to 5-round AEGIS-128 as X0

5 does not influence the output. However, the logic AND
operation between X2

5 and X3
5 simply makes it impossible. Therefore, we are motivated

to investigate whether it is possible to simplify the expressions of X2
5 and X3

5 by adding
proper conditions. Indeed, similar ideas are commonly used in symmetric-key cryptanalysis,
which is to add additional conditions to slow down the propagation of variables, although
most of them are deduced by carefully tracing the influence of a certain bit condition.
However, it seems difficult to analyze the constructions based on AES from the bit level.
Thus, we will study how to add conditions from the byte level as it is more compatible
with the AES specification.

4.2 Adding Conditions To Simplify the Expressions
To carefully investigate how the conditions affect the expressions, it is necessary to write
the accurate expressions of the internal states in terms of the nonce, the key and the
constant part of the initial state. In the following, we will expand on how the conditions
are derived and how the expressions are simplified.

Similarly, the initial state is defined as below:

X0
0 = K ⊕N,X1

0 = C0, X
2
0 = C1, X

3
0 = K ⊕ C0, X

4
0 = K ⊕ C1.

Our aim is to write the expressions of (X0
r , . . . , X

4
r ) for 1 ≤ r ≤ 5 by involving all the

information. In the process, we will continuously introduce new variables Ci (i > 1) to



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 117

represent constant values to reduce the length of the expressions. To save space, we will
not repeat the definitions of these new variables.

When r = 1, we have

X0
1 = N ⊕A(K ⊕ C1)

X1
1 = C0 ⊕A(K ⊕N)

X2
1 = C1 ⊕A(C0) = C2

X3
1 = K ⊕ C0 ⊕A(C1) = K ⊕ C3

X4
1 = K ⊕ C1 ⊕A(K ⊕ C0).

When r = 2, we have

X0
2 = K ⊕A(K ⊕ C1)⊕A(K ⊕ C1 ⊕A(K ⊕ C0)) = C4

X1
2 = C0 ⊕A(K ⊕N)⊕A(N ⊕A(K ⊕ C1))

X2
2 = C2 ⊕A(C0 ⊕A(K ⊕N))

X3
2 = K ⊕ C3 ⊕A(C2) = C5

X4
2 = K ⊕ C1 ⊕A(K ⊕ C0)⊕A(K ⊕ C3) = C6.

When r = 3, we have

X0
3 = K ⊕ C4 ⊕A(C6) = C7

X1
3 = C0 ⊕A(K ⊕N)⊕A(N ⊕A(K ⊕ C1))⊕A(C4)

X2
3 = C2 ⊕A(C0 ⊕A(K ⊕N))⊕A(C0 ⊕A(K ⊕N)⊕A(N ⊕A(K ⊕ C1)))

X3
3 = C5 ⊕A(C2 ⊕A(C0 ⊕A(K ⊕N)))

X4
3 = C6 ⊕A(C5) = C8.

From the expressions of X1
3 and X2

3 , it can be found that both of them contain the
expression A(K ⊕ N) ⊕ A(N ⊕ A(K ⊕ C1)). From the proof of Property 3, when the
following condition holds:

A(K ⊕ C1)[Diag(0)] = K[Diag(0)], (9)

the expression A(K⊕N)⊕A(N⊕A(K⊕C1)) will take a constant value if only N [Diag(0)]
varies. Therefore, in the following, we only consider the expressions when N [Diag(0)]
takes all the 232 possible values while the remaining bytes of N take random constant
values. In this case, when Equation 9 holds, A(K ⊕N)⊕A(N ⊕A(K ⊕ C1)) is constant.
Hence, we define that

A(K ⊕N)⊕A(N ⊕A(K ⊕ C1))⊕ C0 = C9.

In this way, the expressions of (X0
3 , X

1
3 , X

2
3 , X

3
3 , X

4
3 ) can be further simplified, as shown

below:

X0
3 = C7

X1
3 = C9 ⊕A(C4) = C10

X2
3 = C2 ⊕A(C0 ⊕A(K ⊕N))⊕A(C9) = A(C0 ⊕A(K ⊕N))⊕ C11

X3
3 = C5 ⊕A(C2 ⊕A(C0 ⊕A(K ⊕N)))

X4
3 = C8.

From the simplified expressions, we further observed that we could introduce an intermedi-
ate variable T to represent C0 ⊕A(K ⊕N), i.e.

T = C0 ⊕A(K ⊕N). (10)



118 Weak Keys in Reduced AEGIS and Tiaoxin

In this way, the expressions can be further simplified, as shown below:

X0
3 = C7

X1
3 = C10

X2
3 = A(T )⊕ C11

X3
3 = C5 ⊕A(C2 ⊕A(T ))

X4
3 = C8.

It can also be found later that introducing an intermediate variable T is crucial to
understand the key-recovery attack on 5-round AEGIS-128.

Consequently, when r = 4, there will be

X0
4 = K ⊕N ⊕ C7 ⊕A(C8) = N ⊕ C12

X1
4 = C10 ⊕A(C7) = C13

X2
4 = A(T )⊕ C11 ⊕A(C10) = A(T )⊕ C14

X3
4 = A(A(T )⊕ C2)⊕ C5 ⊕A(A(T )⊕ C11)

X4
4 = C8 ⊕A(A(A(T )⊕ C2)⊕ C5).

Finally, we consider the case r = 5 and there will be

X0
5 = K ⊕N ⊕ C12 ⊕A(C8 ⊕A(A(A(T )⊕ C2)⊕ C5))

X1
5 = C13 ⊕A(N ⊕ C12)

X2
5 = A(T )⊕ C14 ⊕A(C13)

X3
5 = A(A(T )⊕ C2)⊕ C5 ⊕A(A(T )⊕ C11)⊕A(A(T )⊕ C14)

X4
5 = C8 ⊕A(A(A(T )⊕ C2)⊕ C5)⊕A(A(A(T )⊕ C2)⊕ C5 ⊕A(A(T )⊕ C11))

For the output θ, we have

θ = X1
5 ⊕X4

5 ⊕X2
5 ∧X3

5 . (11)

It should be emphasized that the values of T and N are related according to Equation 10.
As N [Diag(0)] takes all the 232 possible values and the remaining bytes of N are constants,
T [Col(0)] will also traverse all the 232 possible values while the remaining bytes of T are
constants. As a result, the values of T can be further divided into 224 different subsets
according to the value of (T [1][0], T [2][0], T [3][0]), though how to divide them depends on
the secret key.

Different from the expression of X1
5 , the expressions of X2

5 and X3
5 do not contain

the variable N after introducing the variable T . Therefore, there is no need to relate
T and N when studying the integral property of X2

5 ∧ X3
5 . In other words, we simply

treat T as irrelevant to N and T [Col(0)] will take all the 232 possible values. Therefore,
we can focus on the case when only T [0][0] is A while the remaining bytes of T are C.
In this case, X2

5 [Col(1, 2, 3)] are constants, thus resulting that the integral property of
(X2

5 ∧X3
5 )[Col(1, 2, 3)] indeed only depends on the integral property of X3

5 [Col(1, 2, 3)].
Consequently, ∑

T [0][0]∈F8
2

(X2
5 ∧X3

5 )[Col(1, 2, 3)] = 0. (12)

Indeed, based on Property 4, there will be∑
T [Col(0)]∈F32

2

X2
5 ∧X3

5 = 0. (13)



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 119

For X1
5 , it is simple to derive that∑

T [0][0]∈F8
2

X1
5 [Col(1, 2, 3)] = 0.

However, if considering the inverse of the AES round function, we can find that when only
T [0][0] is A, N [i][i] (0 ≤ i ≤ 3) must also be A. Therefore,∑

T [0][0]∈F8
2

X1
5 = 0. (14)

Finally, we are only left with the integral property of X4
5 . Similarly, as its expression

does not contain N , we simply consider the case when only T [0][0] is A while the remaining
bytes of T are C. From the integral property of 3-round AES, we have∑

T [0][0]∈F8
2

C8 ⊕A(A(A(T )⊕ C2)⊕ C5) = 0.

According to Property 2, we have∑
T [0][0]∈F8

2

A(A(A(T )⊕ C2)⊕ C5 ⊕A(A(T )⊕ C11)) = 0.

Hence, there will be ∑
T [0][0]∈F8

2

X4
5 = 0. (15)

Combining Equation 12, Equation 14 and Equation 15, we thus have∑
T [0][0]∈F8

2

θ[Col(1, 2, 3)] = 0, (16)

which will be the basis of our key-recovery attack.
Combining Equation 13, Equation 14 and Equation 15, we directly obtain a distinguisher

for 5-round AEGIS-128 with time complexity and data complexity 232, as shown below:∑
N [Diag(0)]∈F32

2

θ = 0. (17)

4.3 The Key-Recovery Attack on 5-Round AEGIS-128
Based on the above analysis, we can design a weak key recovery attack. First of all, a
weak key should satisfy the following condition:

A(K ⊕ C1)[Diag(0)] = K[Diag(0)].

Notice that after guessing K[Diag(0)], it is feasible to compute A(K ⊕ C1)[0][0] and
check whether it is identical to the guessed value of K[0][0]. In other words, there will
be 232−8 valid values for K[Diag(0)]. Therefore, we can first compute and store all the
possible 224 values of K[Diag(0)] in a table denoted by KT0. The reason why there
are 224 possible values can be simply explained. When (K[0][0],K[1][1],K[2][2]) is fixed
and K[3][3] is traversed, A(K ⊕ C1)[0][0] must traverse 28 different values and there is
only one value which can match the guessed K[0][0]. As there are 224 possible values for
(K[0][0],K[1][1],K[2][2]), there must be 224 different valid values for K[Diag(0)].

After the table KT0 is constructed, the correct value of K[Diag(0)] can be simply
recovered in the following way:



120 Weak Keys in Reduced AEGIS and Tiaoxin

Step 1: Construct a set of size 28 for T by traversing T [0][0] while T [i][j] (i, j) 6= (0, 0) is
set as a random constant.

Step 2: For each candidate of K[Diag(0)] in KT0, construct the set of size 28 for N .
Specifically, compute the 28 different values for N [Diag(0)] based on T = C0 ⊕
A(K⊕N). For N [Diag(i)] (1 ≤ i ≤ 3), they are set as random constants. Encrypt
all possible 28 different values of N with 5-round AEGIS-128 and collect the
corresponding 28 outputs θ. If∑

θ[Col(1, 2, 3)] = 0, (18)

then the current candidate for K[Diag(0)] is the correct value and store it. Oth-
erwise, consider the next candidate for K[Diag(0)] and repeat until all values in
KT0 are traversed.

Complexity evaluation. For a wrong key guess, it is treated as correct with probability
2−96. Hence, we expect that only the correct key will survive. For each candidate for
K[Diag(0)], it is necessary to compute 28 different N . As there are 224 candidates, the
data complexity3 is upper bounded by 232. The time complexity is also upper bounded by
232 encryptions.

Experiments. The experiments4 are performed on the small-scale AES [CMR05]. For
both the distinguishing attack and the key-recovery attack, experiments show that they
succeed with probability 1. For a random key, the attacks always fail.

Efficiently recovering the weak key. Notice that a weak key satisfiesA(K⊕C1)[Diag(0)] =
K[Diag(0)]. After the above procedure, K[Diag(0)] is known. Therefore, there are 96
unknown key bits left. As K[Diag(0)] is known, we can independently guess K[Diag(i)]
(1 ≤ i ≤ 3) and compute A(K ⊕ C1)[Col(i)] and check whether A(K ⊕ C1)[i][i] = K[i][i].
Consequently, we can collect 224 candidates for K[Diag(1)], K[Diag(2)] and K[Diag(3)],
respectively. In total, there are 224×3 = 272 candidates for the 128-bit key. Therefore, the
weak key can be recovered with time complexity 272, which is 296−72 = 224 times faster
than an exhaustive search. Combining with the procedure to recover K[Diag(0)], the time
complexity, data complexity and memory complexity to recover the weak key are 272, 232

and 225, respectively.

Remark. When a key is not a weak key, it is expected that in the procedure to recover
K[Diag(0)] the event θ[Col(1, 2, 3)] = 0 will not happen during the 224 tests. Indeed,
by imposing different conditions A(K ⊕ C1)[Diag(i)] = K[Diag(i)] (1 ≤ i ≤ 3), we can
determine different sets of weak keys and they can be recovered in the similar way. In
conclusion, there are 4 different sets of weak keys with 296 keys each. For each set of weak
keys, the time complexity and data complexity to recover the correct one are 272 and 232,
respectively.

4.4 Failing in Attacking 5-Round AEGIS-128L
It seems that the above method can be applied to 5-round AEGIS-128L, we are thus
motivated to study whether it is actually feasible. However, due to a more clever way to
generate the output from the state, the similar attack on 5-round AEGIS-128L cannot work.
To explain this, we can carefully study the expressions of the internal states.

3It is possible to use fewer data by considering the collision of N . As the current data complexity is
already small, we will not address this problem.

4See https://github.com/LFKOKAMI/AEGIS-Tiaoxin-Weak-Keys.git for the source code.

https://github.com/LFKOKAMI/AEGIS-Tiaoxin-Weak-Keys.git


Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 121

Similarly, the AEGIS-128L state is composed of eight 128-bit words and we denote the
initial state by (S0

0 , . . . , S
7
0). The inputs of the initialization phase of AEGIS-128L are the

same as those in AEGIS-128. According to the specification of AEGIS-128L, the initial state
of AEGIS-128L is defined as follows:

S0
0 = K ⊕N,S1

0 = C1, S
2
0 = C0, S

3
0 = C1,

S4
0 = K ⊕N,S5

0 = K ⊕ C0, S
6
0 = K ⊕ C1, S

7
0 = K ⊕ C0.

The round update function is:

S0
r+1 = A(S7

r )⊕ S0
r ⊕N,

S4
r+1 = A(S3

r )⊕ S4
r ⊕K,

Sjr+1 = A(Sj−1
r )⊕ Sjr (j ∈ {1, 2, 3, 5, 6, 7}),

where (S0
r , . . . , S

7
r ) denotes the state after r rounds of update.

When writing the expressions of (S0
r , . . . , S

7
r ) for 1 ≤ r ≤ 5, similar to our way to

analyze AEGIS-128, we directly introduce new variables Pi (i ≥ 0) to represent the constant
part of the expression.

When r = 1, there will be

S0
1 = A(K ⊕ C0)⊕K ⊕N ⊕N = P0,

S1
1 = A(K ⊕N)⊕ C1,

S2
1 = A(C1)⊕ C0 = P1,

S3
1 = A(C0)⊕ C1 = P2,

S4
1 = A(C1)⊕K ⊕N ⊕K = P3 ⊕N,
S5

1 = A(K ⊕N)⊕K ⊕ C0 = A(K ⊕N)⊕ P3,

S6
1 = A(K ⊕ C0)⊕K ⊕ C1 = P4,

S7
1 = A(K ⊕ C1)⊕K ⊕ C0 = P5.

When r = 2, there will be

S0
2 = A(P5)⊕ P0 ⊕N = N ⊕ P6,

S1
2 = A(P0)⊕A(K ⊕N)⊕ C1 = A(N ⊕K)⊕ P7,

S2
2 = A(A(N ⊕K)⊕ C1)⊕ P1,

S3
2 = A(P1)⊕ P2 = P9,

S4
2 = A(P2)⊕ P3 ⊕N ⊕K = N ⊕ P10,

S5
2 = A(N ⊕ P3)⊕A(N ⊕K)⊕ P3,

S6
2 = A(A(N ⊕K)⊕ P3)⊕ P4,

S7
2 = A(P4)⊕ P5 = P11.

When r = 3, there will be

S0
3 = A(P11)⊕N ⊕ P6 ⊕N = P12,

S1
3 = A(N ⊕ P6)⊕A(N ⊕K)⊕ P7,

S2
3 = A(A(N ⊕K)⊕ P7)⊕A(A(N ⊕K)⊕ C1)⊕ P1,

S3
3 = A(A(A(N ⊕K)⊕ C1)⊕ P1)⊕ P9,

S4
3 = A(P9)⊕N ⊕ P10 ⊕K = N ⊕ P13,

S5
3 = A(N ⊕ P10)⊕A(N ⊕ P3)⊕A(N ⊕K)⊕ P3,

S6
3 = A(A(N ⊕ P3)⊕A(N ⊕K)⊕ P3)⊕A(A(N ⊕K)⊕ P3)⊕ P4,



122 Weak Keys in Reduced AEGIS and Tiaoxin

S7
3 = A(A(A(N ⊕K)⊕ P3)⊕ P4)⊕ P11.

As r increases, the expression becomes more and more complex. Thus, we first consider
the output of 5-round AEGIS-128L, as shown below:

π0
5 = S1

5 ⊕ S6
5 ⊕ S2

5 ∧ S3
5 ,

π1
5 = S2

5 ⊕ S5
5 ⊕ S6

5 ∧ S7
5 .

It can be found from the expression of S3
3 that it is impossible to eliminate A(A(A(N ⊕

K) ⊕ C1) ⊕ P1) and N has passed through 3 AES rounds. Hence, in the expression of
S5

5 , N will pass through 5 AES rounds and it is impossible to reduce the number of AES
rounds that N will pass through by adding proper conditions. Similarly, it is impossible
to eliminate A(A(A(N ⊕K)⊕ P3)⊕ P4) and N also has passed through 3 AES rounds.
Therefore, in the expression of S1

5 , N will pass through 5 AES rounds and it is impossible
to reduce the number of AES rounds that N will pass through by adding proper conditions.
As the conventional integral distinguisher on 3-round AES can not be adapted to 5 rounds,
the successful attack on 5-round AEGIS-128 cannot be applied to 5-round AEGIS-128L.

Only for interest, we find that the quadratic parts S2
5 and S3

5 can be simplified by
adding proper conditions, the expressions of which can be written as follows:

S1
4 = A(P12)⊕A(N ⊕ P6)⊕A(N ⊕K)⊕ P7 = A(N ⊕ P6)⊕A(N ⊕K)⊕ P14,

S2
4 = A(A(N ⊕ P6)⊕A(N ⊕K)⊕ P7)

⊕A(A(N ⊕K)⊕ P7)⊕A(A(N ⊕K)⊕ C1)⊕ P1,

S3
4 = A(A(A(N ⊕K)⊕ P7)⊕A(A(N ⊕K)⊕ C1)⊕ P1)

⊕A(A(A(N ⊕K)⊕ C1)⊕ P1)⊕ P9

S2
5 = A(S1

4)⊕ S2
4 ,

S3
5 = A(S2

4)⊕ S3
4 .

Let H = A(N ⊕K). If P7[0][0] = C1[0][0], when H[0][0] is A and remaining 15 bytes
of H are all C, it can be known that

A(H ⊕ P7)⊕A(H ⊕ C1)

is a constant. Further, if P6[Diag(0)] = K[Diag(0)], when H takes the pattern as above,

A(N ⊕ P6)⊕A(N ⊕K)

is also a constant. Thus, we can specify the conditions that the weak key should satisfy
according to P6 and P7, as shown below:

(A(A(K ⊕ C0)⊕K)⊕ C1)[0][0] = C1[0][0],
(A(A(K ⊕ C1)⊕K ⊕ C0)⊕A(K ⊕ C0)⊕K)[Diag(0)] = K[Diag(0)].

In other words, we have

A(A(K ⊕ C0)⊕K)[0][0] = 0, (19)
A(A(K ⊕ C1)⊕K ⊕ C0)[Diag(0)] = A(K ⊕ C0)[Diag(0)]. (20)

When the above 40 bit conditions hold and H takes the above input pattern, it is easy
to know that S1

4 and S2
4 will always be constants. In this way, the expressions can be

updated as follows:

S1
4 = P15, S

2
4 = P16, S

3
4 = A(A(A(N ⊕K)⊕ C1)⊕ P1)⊕ P17.



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 123

Thus, we have

S2
5 = A(P15)⊕ P16,

S3
5 = A(P16)⊕A(A(H ⊕ C1)⊕ P1)⊕ P17.

Obviously, the quadratic part is greatly simplified, though we still cannot mount an attack
on 5-round AEGIS-128L. However, we believe that revealing how to simplify the quadratic
part is important for future research.

5 Cryptanalysis of 8-Round Tiaoxin
From the analysis of AEGIS-128, it can be found that the conditions on the key are used to
simplify the quadratic part of the output. In our analysis of Tiaoxin, we will show that the
weak keys occur for different reasons. Similarly, our aim is to study the integral property
of the expressions of the internal states. Therefore, it is necessary to write the expressions
of (U0

r , U
1
r , U

2
r ), (W 0

r , . . . ,W
3
r ) and (Y 0

r , . . . , Y
5
r ), respectively, where 1 ≤ r ≤ 8.

When r = 1, we have

U0
1 = A(N)⊕ Z0 ⊕K,U1

1 = A(K), U2
1 = K

W 0
1 = A(Z0)⊕ Z1 ⊕K,W 1

1 = A(K),W 2
1 = K,W 3

1 = N

Y 0
1 = A(0)⊕ Z0 ⊕K,Y 1

1 = A(K), Y 2
1 = K,Y 3

1 = N,Y 4
1 = Z1, Y

5
1 = 0

When r = 2, we have

U0
2 = A(K)⊕ Z0 ⊕A(N)⊕ Z0 ⊕K = A(N)⊕A(K)⊕K,

U1
2 = A(A(N)⊕ Z0 ⊕K), U2

2 = A(K)

W 0
2 = A(N)⊕ Z1 ⊕A(Z0)⊕ Z1 ⊕K = A(N)⊕A(Z0)⊕K,

W 1
2 = A(Z0)⊕ Z1 ⊕K,W 2

2 = A(K),W 3
2 = K

Y 0
2 = A(0)⊕ Z0 ⊕A(0)⊕ Z0 ⊕K = K,

Y 1
2 = A(0)⊕ Z0 ⊕K,Y 2

2 = A(K), Y 3
2 = K,Y 4

2 = N,Y 5
2 = Z1

When r = 3, we have

U0
3 = A2(K)⊕ Z0 ⊕A(N)⊕A(K)⊕K = A(N)⊕ Z2,

U1
3 = A(A(N)⊕A(K)⊕K) = A(A(N)⊕ Z3),

U2
3 = A(A(N)⊕ Z0 ⊕K) = A(A(N)⊕ Z4)

W 0
3 = A(K)⊕ Z1 ⊕A(N)⊕A(Z0)⊕K = A(N)⊕ Z5,

W 1
3 = A(A(N)⊕A(Z0)⊕K) = A(A(N)⊕ Z6),

W 2
3 = A(Z0)⊕ Z1 ⊕K = Z7,W

3
3 = A(K)

Y 0
3 = A(Z1)⊕ Z0 ⊕K = Z8,

Y 1
3 = A(K), Y 2

3 = A(0)⊕ Z0 ⊕K = Z9, Y
3

3 = A(K), Y 4
3 = K,Y 5

3 = N,

where

Z2 = A2(K)⊕ Z0 ⊕A(K)⊕K,Z3 = A(K)⊕K,Z4 = Z0 ⊕K,



124 Weak Keys in Reduced AEGIS and Tiaoxin

Z5 = A(K)⊕ Z1 ⊕A(Z0)⊕K,Z6 = A(Z0)⊕K,Z7 = A(Z0)⊕ Z1 ⊕K,
Z8 = A(Z1)⊕ Z0 ⊕K,Z9 = A(0)⊕ Z0 ⊕K.

When r = 4, we have

U0
4 = A2(A(N)⊕ Z4)⊕ Z0 ⊕A(N)⊕ Z2 = A2(A(N)⊕ Z4)⊕A(N)⊕ Z10,

U1
4 = A(A(N)⊕ Z2),

U2
4 = A(A(N)⊕ Z3)

W 0
4 = A2(K)⊕ Z1 ⊕A(N)⊕ Z5 = A(N)⊕ Z11,

W 1
4 = A(A(N)⊕ Z5),

W 2
4 = A(A(N)⊕ Z6),W 3

4 = Z7

Y 0
4 = A(N)⊕ Z0 ⊕ Z8 = A(N)⊕ Z12,

Y 1
4 = A(Z8), Y 2

4 = A(K), Y 3
4 = Z9, Y

4
4 = A(K), Y 5

4 = K,

where

Z10 = Z0 ⊕ Z2 = A2(K)⊕A(K)⊕K,
Z11 = A2(K)⊕ Z1 ⊕ Z5 = A(Z0)⊕A2(K)⊕A(K)⊕K,
Z12 = Z0 ⊕ Z8 = A(Z1)⊕K.

When r = 5, we have

U0
5 = A2(A(N)⊕ Z3)⊕ Z0 ⊕A2(A(N)⊕ Z4)⊕A(N)⊕ Z10,

= A2(A(N)⊕ Z3)⊕A2(A(N)⊕ Z4)⊕A(N)⊕ Z2

U1
5 = A(A2(A(N)⊕ Z4)⊕A(N)⊕ Z10),

U2
5 = A(A(N)⊕ Z2)

W 0
5 = A(Z7)⊕ Z1 ⊕A(N)⊕ Z11 = A(N)⊕ Z13,

W 1
5 = A(A(N)⊕ Z11),

W 2
5 = A(A(N)⊕ Z5),W 3

5 = A(A(N)⊕ Z6)

Y 0
5 = A(K)⊕ Z0 ⊕A(N)⊕ Z12 = A(N)⊕ Z14,

Y 1
5 = A(A(N)⊕ Z12), Y 2

5 = A(Z8), Y 3
5 = A(K), Y 4

5 = Z9, Y
5

5 = A(K),

where

Z13 = A(Z7)⊕ Z1 ⊕ Z11, Z14 = A(K)⊕ Z0 ⊕⊕Z12 = Z8 ⊕A(K).

When r = 6, we have

U0
6 = A2(A(N)⊕ Z2)⊕ Z0 ⊕A2(A(N)⊕ Z3)⊕A2(A(N)⊕ Z4)⊕A(N)⊕ Z2

= A2(A(N)⊕ Z2)⊕A2(A(N)⊕ Z3)⊕A2(A(N)⊕ Z4)⊕A(N)⊕ Z10

U1
6 = A(A2(A(N)⊕ Z3)⊕A2(A(N)⊕ Z4)⊕A(N)⊕ Z2),

U2
6 = A(A2(A(N)⊕ Z4)⊕A(N)⊕ Z10)

W 0
6 = A2(A(N)⊕ Z6)⊕ Z1 ⊕A(N)⊕ Z13,



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 125

W 1
6 = A(A(N)⊕ Z13),

W 2
6 = A(A(N)⊕ Z11),W 3

6 = A(A(N)⊕ Z5)

Y 0
6 = A2(K)⊕ Z0 ⊕A(N)⊕ Z14,

Y 1
6 = A(A(N)⊕ Z14), Y 2

6 = A(A(N)⊕ Z12), Y 3
6 = A(Z8), Y 4

6 = A(K), Y 5
6 = Z9,

Let

Q = A(N). (21)

Then, the expressions can be updated, as shown below:

U0
6 = A2(Q⊕ Z2)⊕A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z10

U1
6 = A(A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z2),

U2
6 = A(A2(Q⊕ Z4)⊕Q⊕ Z10)

W 0
6 = A2(Q⊕ Z6)⊕ Z1 ⊕Q⊕ Z13,

W 1
6 = A(Q⊕ Z13),

W 2
6 = A(Q⊕ Z11),W 3

6 = A(Q⊕ Z5)

Y 0
6 = A2(K)⊕ Z0 ⊕Q⊕ Z14,

Y 1
6 = A(Q⊕ Z14), Y 2

6 = A(Q⊕ Z12), Y 3
6 = A(Z8), Y 4

6 = A(K), Y 5
6 = Z9,

When r = 7, we have

U0
7 = A2(A2(Q⊕ Z4)⊕Q⊕ Z10)⊕ Z0 ⊕A2(Q⊕ Z2)⊕A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z10

= A2(A2(Q⊕ Z4)⊕Q⊕ Z10)⊕A2(Q⊕ Z2)⊕A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z2

U1
7 = A(A2(Q⊕ Z2)⊕A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z10),

U2
7 = A(A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z2)

W 0
7 = A2(Q⊕ Z5)⊕ Z1 ⊕A2(Q⊕ Z6)⊕ Z1 ⊕Q⊕ Z13,

W 1
7 = A(A2(Q⊕ Z6)⊕ Z1 ⊕Q⊕ Z13),

W 2
7 = A(Q⊕ Z13),W 3

7 = A(Q⊕ Z11)

Y 0
7 = A(Z9)⊕ Z0 ⊕A2(K)⊕ Z0 ⊕Q⊕ Z14

= A(Z9)⊕A2(K)⊕Q⊕ Z14

Y 1
7 = A(A2(K)⊕ Z0 ⊕Q⊕ Z14),
Y 2

7 = A(Q⊕ Z14), Y 3
7 = A(Q⊕ Z12), Y 4

7 = A(Z8), Y 5
7 = A(K),

5.1 Analyzing the Output of 8-Round Tiaoxin
As the current expressions are sufficiently complex, we will not write the expressions for
the case r = 8. Since our aim is to analyze 8-round Tiaoxin, we need to focus on the output,
as shown below:

µ0 = U0
8 ⊕ U2

8 ⊕W 1
8 ⊕ Y 3

8 ∧W 3
8 ,

µ1 = Y 0
8 ⊕W 2

8 ⊕ U1
8 ⊕ Y 5

8 ∧ U2
8 .



126 Weak Keys in Reduced AEGIS and Tiaoxin

In the following analysis, we assume that Q[Diag(0)] traverses all the 232 possible values
and Q[Diag(i)] (i 6= 0) is assigned with a random constant.

As U1
8 = A(U0

7 ) and N has passed through 4 AES rounds in the expression of U0
7 , we

only focus on the integral property of µ0. First, consider the quadratic part, as listed
below:

Y 3
8 = Y 2

7 = A(Q⊕ Z14),
W 3

8 = W 2
7 = A(Q⊕ Z13).

Therefore, for the assumed input pattern of Q, Y 3
8 [Col(1, 2, 3)] and W 3

8 [Col(1, 2, 3)] are
always constants. In other words, it can be derived that∑

Q[Diag(0)]∈F32
2

(Y 3
8 ∧W 3

8 )[Col(1, 2, 3)] = 0.

As the algebraic degree of one AES round is 7, from the perspective of the algebraic degree,
we indeed have ∑

Q[Diag(0)]∈F32
2

(Y 3
8 ∧W 3

8 ) = 0. (22)

Then, it is necessary to analyze W 1
8 = A(W 0

7 ). As

W 0
7 = A2(Q⊕ Z5)⊕ Z1 ⊕A2(Q⊕ Z6)⊕ Z1 ⊕Q⊕ Z13,

according to Property 3, it can be known that the same value of

A2(Q⊕ Z5)⊕ Z1 ⊕A2(Q⊕ Z6)

will appear an even number of times for the assumed input pattern of Q. Hence, it can be
derived that the same value of W 1

8 [Col(1, 2, 3)] will appear an even number of times. In
other words, ∑

Q[Diag(0)]∈F32
2

W 1
8 [Col(1, 2, 3)] = 0. (23)

Next, we are required to analyze U0
8 = A(U2

7 )⊕ U0
7 ⊕ Z0. For better understanding,

the integral property of U0
7 and A(U2

7 ) will be separately discussed. From the expression
of U0

7 , it is easy to know that∑
Q[Diag(0)]∈F32

2

A2(Q⊕ Z2)⊕A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z2 = 0.

For the integral property of A2(A2(Q⊕Z4)⊕Q⊕Z10), we can first make Q′ = A(Q⊕Z4).
Then, the set of Q′ can be divided into 224 different subsets according to the value of
(Q′[1][0], Q′[2][0], Q′[3][0]), though the division depends on the key. In this way, for each
subset of Q′, it can be deduced that A(A(Q′)⊕Q⊕Z10)[i][j] = A for (0 ≤ i ≤ 3, 1 ≤ j ≤ 3).
Therefore, it can be further derived that∑

Q′[0][0]∈F8
2

SR ◦ SB ◦A(A(Q′)⊕Q⊕ Z10)[ShiftCol(1, 2, 3)] = 0,

thus resulting in∑
Q[Diag(0)]∈F32

2

SR ◦ SB ◦A(A2(Q⊕ Z4)⊕Q⊕ Z10)[ShiftCol(1, 2, 3)] = 0.



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 127

Consequently, we have ∑
Q[Diag(0)]∈F32

2

MC−1(U0
7 )[ShiftCol(1, 2, 3)] = 0.

For U2
7 , similar to the analysis of W 1

8 , it can be known that the same value of
U2

7 [Col(1, 2, 3)] will appear an even number of times. As a result, we have∑
Q[Diag(0)]∈F32

2

MC−1(A(U2
7 ))[ShiftCol(1, 2, 3)] = 0.

Therefore, we can deduce that∑
Q[Diag(0)]∈F32

2

MC−1(U0
8 )[ShiftCol(1, 2, 3)] = 0. (24)

Finally, it is essential to analyze the integral property of U2
8 = U1

7 . However, we find
that ∑

Q[Diag(0)]∈F32
2

A(A2(Q⊕ Z2)⊕A2(Q⊕ Z3)⊕A2(Q⊕ Z4)⊕Q⊕ Z10)

is uncertain even though a very similar form will have an integral property which has
been discussed for W 1

8 . According to a similar conditional integral property as specified in
Equation 5, if Z2[Diag(0)] = Z3[Diag(0)] or Z3[Diag(0)] = Z4[Diag(0)] or Z2[Diag(0)] =
Z4[Diag(0)] holds, assuming that it is Z2[Col(0)] = Z3[Col(0)], then A2(Q⊕Z2)⊕A2(Q⊕
Z3) is constant for the assumed input pattern of Q. Consequently, we only need to evaluate
A(A2(Q⊕ Z4)⊕Q) and obviously there will be∑

Q[Diag(0)]∈F32
2

A(A2(Q⊕ Z4)⊕Q)[Col(1, 2, 3)] = 0.

Indeed, based on Property 5, there will be∑
Q[Diag(0)]∈F32

2

A(A2(Q⊕ Z4)⊕Q) = 0.

Formally, the condition Z2[Diag(0)] = Z3[Diag(0)] corresponds to a set of weak keys
satisfying

A2(K)[Diag(0)] = Z0[Diag(0)]. (25)

The condition Z3[Diag(0)] = Z4[Diag(0)] corresponds to a set of weak keys satisfying

A(K)[Diag(0)] = Z0[Diag(0)]. (26)

The condition Z2[Diag(0)] = Z4[Diag(0)] corresponds to a set of weak keys satisfying

A2(K)[Diag(0)] = A(K)[Diag(0)]. (27)

When a weak key is used, there must be∑
Q[Diag(0)]∈F32

2

U2
8 = 0. (28)

However, due to the influence of the integral property of U0
8 as specified in Equation 24,

we will lose the integral property for the output µ0 without applying a linear transform



128 Weak Keys in Reduced AEGIS and Tiaoxin

MC−1 to µ0. As MC−1 is a linear transform, based on Equation 22, Equation 23 and
Equation 28, it can be simply derived that∑

Q[Diag(0)]∈F32
2

MC−1(Y 3
8 ∧W 3

8 ) = 0, (29)

∑
Q[Diag(0)]∈F32

2

MC−1(W 1
8 )[Col(1, 2, 3)] = 0, (30)

∑
Q[Diag(0)]∈F32

2

MC−1(U2
8 ) = 0. (31)

Hence, when a key satisfies any of the three conditions specified in Equation 25,
Equation 26 and Equation 27, combined with Equation 24, an integral property for µ0 can
be derived, as shown below:∑
Q[Diag(0)]∈F32

2

MC−1(µ0)[i][j] =
∑

Q[Diag(0)]∈F32
2

MC−1(U0
8 ⊕ U2

8 ⊕W 1
8 ⊕ Y 3

8 ∧W 3
8 )[i][j] = 0,

where (i, j) ∈ {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3)}.

The distinguisher and weak keys. From the above dedicated manual analysis, there are
9 balanced bytes in MC−1(µ0) when Q takes the assumed input pattern. As Q = A(N),
N can be computed from Q without the knowledge of the key K. Therefore, to make Q
take the assumed input pattern, we simply assign values to Q such that they can form the
assumed input pattern and then compute the corresponding set of N . In the distinguishing
phase, we simply encrypt the set of N and observe the integral property of MC−1(µ0).
Therefore, the time complexity and data complexity to distinguish 8-round Tiaoxin are
both 232 when a weak key is used. For weak keys, there are 3 sets with 296 keys each.
Similarly, if imposing the condition on different diagonals, there will be in total 3× 4 = 12
sets of weak keys with 296 keys each.

Remark. It can be observed that what dominates the integral property of µ0 will be the
dedicated analysis of U0

8 and U2
8 . From the evaluation of U0

8 , we learned that we need
to evaluate MC−1(µ0) rather than µ0. From the evaluation of U2

8 , we learned that we
need to add proper conditions in order to obtain an integral property. In addition, from
our process to write the expressions, we found that we could arbitrarily choose an input
pattern for A(N) rather than N , which is equivalent to obtaining a free round and implies
that one round is useless in Tiaoxin.

5.2 Feasibility of the Key-Recovery Attacks
As our key-recovery attack on 5-round AEGIS-128 succeeds, it is natural to ask whether it
is also feasible to recover the weak key efficiently for 8-round Tiaoxin. One main reason
why we can mount a key-recovery attack on 5-round AEGIS-128 is that an intermediate
variable T = A(N ⊕ K) is introduced and the integral property of the output can be
determined when only one byte of T is A and the remaining bytes are C. As a result, we
need to evaluate whether the same strategy can be applied to 8-round Tiaoxin.

First of all, we need to understand why the 8-round distinguisher requires 232 data.
One main reason arises in the evaluation of U0

8 = A(U2
7 )⊕U0

7 ⊕Z0 as Q will pass through
4 AES rounds both in A(U2

7 ) and U0
7 . However, different expressions in terms of Q

appear in U0
7 and U2

7 , which are A2(Q⊕ Z3) and A2(Q⊕ Z4). Although there are three
choices of the conditions that the weak keys should satisfy, if choosing the condition that



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 129

Z3[Diag(0)] = Z4[Diag(0)], the expressions of U2
7 and U1

7 can be significantly simplified if
only Q[Diag(0)] varies, as shown below:

U1
7 = A(A2(Q⊕ Z2)⊕ Z15 ⊕Q⊕ Z10),

U2
7 = A(Z15 ⊕Q⊕ Z2),

where Z15 = A2(Q⊕ Z3)⊕A2(Q⊕ Z4) is a constant.
In this way, only in the expression of U0

7 , Q will pass through 4 AES rounds. Thus, it
is necessary to introduce a new variable G to represent A(Q⊕ Z4) in order to mount a
key-recovery attack, i.e.

G = A(Q⊕ Z4).

In this way, the expression of U0
7 can be updated as follows:

U0
7 = A2(A(G)⊕Q⊕ Z10)⊕A2(Q⊕ Z2)⊕ Z15 ⊕Q⊕ Z2.

Therefore, based on the relation between Q and G, it can be derived that∑
G[0][0]∈F8

2

MC−1(U0
7 )[shiftCol(1, 2, 3)] = 0.

According to the expression of U2
7 , we have∑

G[0][0]∈F8
2

MC−1(A(U2
7 ))[shiftCol(1, 2, 3)]

=
∑

G[0][0]∈F8
2

MC−1(A(A(Z15 ⊕Q⊕ Z2)))[shiftCol(1, 2, 3)] = 0.

As a result, we have ∑
G[0][0]∈F8

2

MC−1(U0
8 )[shiftCol(1, 2, 3)] = 0.

For the quadratic part Y 3
8 ∧W 3

8 , it remains that∑
G[0][0]∈F8

2

(Y 3
8 ∧W 3

8 )[Col(1, 2, 3)] = 0.

Weak Constants. For U2
8 = U1

7 , if Z2 is treated as independent of Z4, we immediately
lose the integral property for U2

8 . As a result, we try to further reduce the size of weak
keys by adding the condition Z4[i][i] = Z2[i][i] for 1 ≤ i ≤ 3. In this way, the key should
satisfy the following conditions:

A(K)[Diag(0)] = Z0[Diag(0)],
A2(K)[i][i] = A(K)[i][i] (i ∈ {1, 2, 3}).

It should be noted that when Z4[i][i] = Z2[i][i] hold for 1 ≤ i ≤ 3 and only G[0][0] =
A(Q⊕ Z4)[0][0] is A, it can be found that the set of Q[Diag(0)] will be identical to the
set of (Q⊕ Z2)[Diag(0)], thus resulting that A(Q⊕ Z2)[0][0] will be A and the remaining
bytes will be C. What we want to emphasize is that there is no need to add a stronger
condition like Z4[Diag(0)] = Z2[Diag(0)] to make A(Q⊕ Z2)[Col(0)] = G[Col(0)]. One
may also find that there are 4 possible ways to add conditions on Z4 and Z2 in order to
make that only A(Q⊕ Z2)[0][0] is A. However, if Z4[0][0] = Z2[0][0] is involved, there is



130 Weak Keys in Reduced AEGIS and Tiaoxin

immediately a condition on the constant Z0, i.e. A(Z0)[0][0] = Z0[0][0]. Therefore, we only
focus on the way to choose conditions such that there are no additional conditions on the
constant Z0.

Let K ′ = A(K) and we will have

K ′[Diag(0)] = Z0[Diag(0)],
A(K ′)[i][i] = K ′[i][i] (i ∈ {1, 2, 3}),

which implies that the number of weak keys becomes 224×3 = 272.
Once the key satisfies the above conditions, when only G[0][0] is A and the remaining

bytes of G are all C, we can know that only A(Q⊕ Z2)[0][0] is A and the remaining bytes
of A(Q⊕ Z2) are all C. Therefore, according to the expression of U1

7 , we can know that∑
G[0][0]∈F8

2

U2
8 [Col(1, 2, 3)] = 0.

For W 1
8 = A(W 0

7 ), we also lose its integral property. However, if adding the condition
Z5[Diag(0)] = Z6[Diag(0)], when only Q[Diag(0)] varies, A2(Q⊕ Z5)⊕A2(Q⊕ Z6) is a
constant and we denote it by Z16. In other words, when the following condition holds,

A(K)[Diag(0)] = Z1[Diag(0)], (32)

W 0
7 can be written as

W 0
7 = Z1 ⊕ Z16 ⊕ Z1 ⊕Q⊕ Z13.

As a result, ∑
G[0][0]∈F8

2

W 1
8 = 0.

However, combined with the condition on the key, the condition specified in Equation 32
implies that

Z0[Diag(0)] = Z1[Diag(0)]. (33)

In other words, if the constants Z0 and Z1 satisfy Equation 33 and the key satisfies

A(K)[Diag(0)] = Z0[Diag(0)],
A2(K)[i][i] = A(K)[i][i] (i ∈ {1, 2, 3}),

there is an integral distinguisher for µ0 as shown below:∑
G[0][0]∈F8

2

MC−1(µ0)[i][j] = 0, (34)

where (i, j) ∈ {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3)}. As G = A(Q⊕Z4)
and Z4 = Z0 ⊕K, K[Diag(0)] can be simply recovered as in the key-recovery attack on
5-round AEGIS-128.

Recovering K[Diag(0)]. As A(K)[Diag(0)] = Z0[Diag(0)], we can first compute and
store all the 224 possible values for K[Diag(0)] satisfying A(K)[0][0] = Z0[0][0]. De-
note the table storing K[Diag(0)] by KT1. Then, the procedure to recover the correct
A(K)[Diag(0)] is as follows:



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 131

Step 1: Construct a set of size 28 for G by traversing G[0][0] while G[i][j] (i, j) 6= (0, 0) is
set as a random constant.

Step 2: Assign random values to Q[Diag(i)] (i = 1, 2, 3).

Step 3: For each candidate of K[Diag(0)] in KT1, construct 28 different values of N .
Specifically, compute the 28 different values for Q[Diag(0)] based on G = A(Q⊕
K ⊕ Z0). Then, we compute the corresponding 28 different values of N based on
Q = A(N). Encrypt the 28 different values of N and collect the corresponding 28

outputs µ0. If ∑
G[0][0]∈F8

2

MC−1(µ0)[i][j] = 0,

where (i, j) ∈ {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3)}, then the
current candidate for K[Diag(0)] is the correct value and exit. Otherwise, consider
the next candidate for K[Diag(0)] and repeat.

Complexity evaluation. As there are 224 candidates for K[Diag(0)], the data and time
complexity are both upper bounded by 224+8 = 232. To store the candidates of K[Diag(0)],
the memory complexity is 224.

Experiments. The experiments are performed on the small-scale AES [CMR05]. For both
the distinguishing attack and the key-recovery attack using a weak constant, experiments
show that they succeed with probability 1. If any condition on the key does not hold,
both the attacks fail. If a weak constant is not used, the key-recovery attack also fails. In
addition, we observe that the whole W 1

8 rather than only W 1
8 [Col(1, 2, 3)] are balanced

in the distinguishing attack. However, it should be emphasized that this will not happen
when the AES round function is used. A detailed discussion can be found at Appendix A.

Efficiently recovering the full key. AfterK[Diag(0)] is known, A(K)[Col(0)] is known. As
A(K)[Diag(0)] = Z0[Diag(0)], we indeed can know both A(K)[Col(0)] and A(K)[Diag(0)].
To compute A(K)[Diag(i)] (1 ≤ i ≤ 3), we can simply exhaust all the 224 possible values
of A(K)[Diag(i)] and compute A2(K)[Col(i)] and check whether A2(K)[i][i] = A(K)[i][i]
holds. Hence, there will be 216 possible candidates for A(K)[Diag(i)] (1 ≤ i ≤ 3).
Consequently, there are in total 248 possible values of A(K). In other words, the time
complexity to recover the weak key is 248, which is obviously much smaller than the number
of weak keys, i.e. 272.

Feasibility for 8-round Tiaoxin. As the above analysis shows, to mount a key-recovery
attack on 8-round Tiaoxin, the size of the set of the weak keys will be reduced to 272 and
there are 32 bit conditions on the constants (Z0, Z1). Obviously, the constants used in
Tiaoxin does not satisfy Equation 33 and thus the above key-recovery attack cannot be
applied to 8-round Tiaoxin. However, it is an alarm that in the design like Tiaoxin, the
round constants should be carefully chosen.

6 Discussions
The basic idea to attack 5-round AEGIS-128 and 8-round Tiaoxin is simple, which is to
utilize the conventional integral distinguisher for 4-round AES. However, the feasibility of
the simple idea needs to be highlighted, which can obviously advance the understanding of
AEGIS-128 and Tiaoxin.



132 Weak Keys in Reduced AEGIS and Tiaoxin

Feasibility for 5-round AEGIS-128. For 5-round AEGIS-128, the feasibility much relies
on the fact that X0

5 is not involved in the output, where N will pass through 5 AES rounds.
For the distinguishing attack, it is essential to consider the weak key. However, the weak
key is not obvious and hidden in the expressions of the internal states. Therefore, our way
to write and analyze the expressions plays an important role to identify the weak keys. For
the key-recovery attack, the feasibility also contributes to the analysis of the expressions
as we find that it is possible to introduce a variable T to replace A(K ⊕N), which directly
makes the variable N disappear in almost all expressions. In other words, introducing T is
equivalent to appending a round for key recovery. While appending several rounds before
a distinguisher for key recovery is common in the analysis of block ciphers, it is obviously
non-intuitive for AEGIS-128.

Feasibility for 8-round Tiaoxin. It is common in the cryptanalysis of symmetric-key
primitives to add conditions to reduce the algebraic degree. Therefore, the condition on
the keys for 5-round AEGIS-128 is still traceable if more attention is paid. However, the
condition on the key for 8-round Tiaoxin appears for a very different reason, which we
believe hard to detect without writing and analyzing the expressions of the internal states.
Especially, from our process to write the expressions until the 6th round, we find that the
expressions can be represented in terms of A(N) rather than N . By replacing A(N) with
a new variable Q, instead of considering N itself, we can directly study Q as computing
N from Q requires no secret knowledge, which implies that there is 1 useless round in
Tiaoxin. To mount a key-recovery attack, we have to add more conditions as there are
several different terms like A(Q⊕ νi) where νi represents a different 128-bit constant for
different i. However, by carefully studying the expressions, we find it still feasible to mount
a key-recovery attack when a weak constant is used, which occurs with probability 2−32.
In summary, lots of useful information related to attacks is hidden in the expressions and
it is necessary to perform dedicated analysis of them.

6.1 On the Usage of Division Property
The bit-based division property (BDP) [TM16] is a popular tool to search for integral
distinguishers, especially when equipped with the automatic tools [XZBL16]. However,
without the identification of the weak keys with our methods, a naive implementation
without taking the conditions on the key into account will obviously fail in finding the
integral distinguishers for 5-round AEGIS-128 and 8-round Tiaoxin. The reason is that
these distinguishers will not hold when a non-weak key is used. Especially for Tiaoxin,
the input pattern of N is unstructured as we indeed consider a structured pattern of
A(N). Without noticing this fact, it is impossible to find the distinguisher with 232 data
complexity with the naive implementation of BDP.

Only for interest, we also tested whether the conventional bit-based division property
(CBDP) [TM16] can detect the phenomenon when the same value appears an even number
of times in a multiset. When saying CBDP, we mean that the integral property is evaluated
based on whether there exists a feasible desired division trail [XZBL16].

We implemented CBDP to evaluate the integral property for∑
s[Diag(0)]∈F32

2

R(R2(s⊕ c0)⊕R2(s⊕ c1)).

It has been proved in Property 3 that the sum must be zero. However, it is evaluated as
unknown with CBDP. It should be mentioned that the sum∑

s[Diag(0)]∈F32
2

R2(s⊕ c0)⊕R2(s⊕ c1)



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 133

is correctly predicted, which is obviously reasonable as∑
s[Diag(0)]∈F32

2

R2(s⊕ c0) = 0,
∑

s[Diag(0)]∈F32
2

R2(s⊕ c1) = 0.

To explain why CBDP failed, we will construct a special example. Specifically, consider
a mapping ϕ(v0, v1, v2, κ0, κ1, κ2, κ3, κ4, κ5) : F9

2 → F3
2 and denote the three output bits

by (ι0, ι1, ι2), as defined below:

ι0 = (v0 ⊕ κ0)(v1 ⊕ κ2)⊕ (v0 ⊕ κ1)(v1 ⊕ κ3),
ι1 = (v0 ⊕ κ0)(v2 ⊕ κ4)⊕ (v0 ⊕ κ1)(v2 ⊕ κ5),
ι2 = (v1 ⊕ κ2)(v2 ⊕ κ4)⊕ (v1 ⊕ κ3)(v2 ⊕ κ5).

Obviously, for an arbitrary choice of (κ0, κ1, κ2, κ3, κ4, κ5), there must be∑
(v0,v1,v2)∈F3

2

ι0 = 0,
∑

(v0,v1,v2)∈F3
2

ι1 = 0,
∑

(v0,v1,v2)∈F3
2

ι2 = 0.

It is certain that CBDP can predict these integral properties.
Moreover, from the above construction, it can be observed that

ϕ(v0, v1, v2, κ0, κ1, κ2, κ3, κ4, κ5)
= ϕ(v0 ⊕ κ0 ⊕ κ1, v1 ⊕ κ2 ⊕ κ3, v2 ⊕ κ4 ⊕ κ5, κ0, κ1, κ2, κ3, κ4, κ5).

Therefore, when (v0, v1, v2) traverses all the possible 8 values and (κ0, κ1, κ2, κ3, κ4, κ5)
are set as constants, in the obtained multiset of (ι0, ι1, ι2), the same value of (ι0, ι1, ι2)
must appear an even number of times. As a result, for an arbitrary boolean function
g(ι0, ι1, ι2) : F3

2 → F2, there must be∑
(v0,v1,v2)∈F3

2

g(ι0, ι1, ι2) = 0.

Then, the question becomes whether CBDP can capture it. To show that CBDP cannot
capture it, it is sufficient to find a feasible division trail ending with "1". Therefore, we
consider a quadratic boolean function g(ι0, ι1, ι2) = ι2∧ (ι0⊕ ι1). The circuit to calculate g
is depicted in Figure 6. Based on the propagation rules, we can deduce by hand a feasible
division trail ending with "1" as illustrated in Figure 6, thus revealing that CBDP cannot
predict the sum of g. Consequently, it is an evidence that CBDP is unable to capture the
property that the same value appears an even number of times in a multiset. Although the
polynomials are known in this special example and can indeed be simplified, i.e. the circuit
will change after simplification, it is too complex to write the boolean expression of an
output bit for a cryptographic primitive and therefore the evaluation is indeed based on the
(non-simplified) circuit to compute the output. This is why we directly study the circuit
rather than the accurate simplified expression of ι2 ∧ (ι0 ⊕ ι1) in this special example.

A potential method to address this problem is to use the recent new ideas [WHG+19,
HLM+20,HSWW20], which is to count the number of division trails. When it is even,
the sum is treated as zero, which fits very well with our theoretical analysis as we prove
that the same value must appear an even number of times in a multiset. However, due to
the influence of the matrix multiplication of AES, as revealed in [HLLT20], the number
of trails will explode when the number of matrix multiplications increases. Thus, it is
questionable whether the solver can enumerate all the feasible solutions in practical time,
especially when evaluating∑

s[Diag(0)]∈F32
2

Rn(R2(s⊕ c0)⊕R2(s⊕ c1))



134 Weak Keys in Reduced AEGIS and Tiaoxin

v0

v2

v1

⊕

⊕

⊕

⊕

⊕

⊕

κ0

κ2

κ4

κ5

κ3

κ1

∧

∧

∧

∧

∧

∧

⊕ ⊕ ⊕

∧

0 0

0

1

1
0

1

1

0 0

0

0

1

0

1

0 0

0

0

0

1

11

1

0

0

1

Figure 6: The tested example

for large n, which implies the importance to prove Property 3.
Combining all the above discussions, it seems plausible why the distinguishers for

5-round AEGIS-128 and 8-round Tiaoxin with data complexity 232 in the weak-key setting
are not found during the long CAESAR competition. Moreover, the feasibility to append
additional rounds for key recovery is deeply hidden in the expressions of the internal states.

7 Conclusion
By expressing the internal states in terms of the input state words, we observed the
possibility to adapt the well-known integral distinguisher on reduced AES to AEGIS-128
and Tiaoxin in the weak-key setting. With dedicated analysis of these expressions, the set
of weak keys are eventually identified, which are used to simplify the quadratic part of the
output for AEGIS-128 and to turn a probabilistic integral property into a deterministic one
for Tiaoxin, respectively. To make the derived integral distinguisher theoretically correct,
we have proved some integral properties for some unusual combinations of the AES round
function, which will easily occur in the constructions like AEGIS and Tiaoxin but will never
occur in real AES. To efficiently recover the weak key, we introduce a new variable related
to the key to represent the output of the AES round function for a certain 128-bit word
and then study the updated expressions. Such a way is almost equivalent to appending
rounds for key-recovery before a distinguisher and the feasibility much relies on the careful
analysis of the updated expressions. Consequently, distinguishing and key-recovery attacks
on 5-round AEGIS-128 are achieved in the weak key setting. For 8-round Tiaoxin, we could
only construct the distinguisher, while the key-recovery attack requires the usage of a weak
constant occurring with probability 2−32. This is the first third-party cryptanalysis of the
initialization phase for both AEGIS-128 and Tiaoxin and all the attacks reach half of the
total number of rounds. Based on our analysis, it seems that attacks on constructions like
AEGIS-128 and Tiaoxin in the weak-key setting have more potential.

Acknowledgments
We thank the anonymous reviewers of ToSC 2021 Issue 2 for their useful comments.
Especially, we would like to thank a reviewer for sharing another proof of Property 1,
which inspired us to simplify the proof. Fukang Liu is supported by Invitation Programs
for Foreigner-based Researchers of NICT. In addition, he is also partially supported by
the National Natural Science Foundation of China (No. 62072181) and the International
Science and Technology Cooperation Projects (No. 61961146004). Takanori Isobe is



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 135

supported by JST, PRESTO Grant Number JPMJPR2031, Grant-in-Aid for Scientific
Research (B)(KAKENHI 19H02141), and Support Center for Advanced Telecommunica-
tionsTechnology Research (SCAT). Kosei Sakamoto is supported by Grant-in-Aid for JSPS
Fellows (KAKENHI 20J23526) for Japan Society for the Promotion of Science.

References
[AEL+18] Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan Leurent, Brice

Minaud, Yann Rotella, Yu Sasaki, and Benoît Viguier. Cryptanalysis of
MORUS. In Thomas Peyrin and Steven D. Galbraith, editors, Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II, volume 11273 of
Lecture Notes in Computer Science, pages 35–64. Springer, 2018.

[BB93] Ishai Ben-Aroya and Eli Biham. Differential cryptanalysis of lucifer. In
Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO ’93, 13th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer
Science, pages 187–199. Springer, 1993.

[Bey18] Tim Beyne. Block cipher invariants as eigenvectors of correlation matrices.
In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology
- ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes in
Computer Science, pages 3–31. Springer, 2018.

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes
in Computer Science, pages 394–405. Springer, 2001.

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small scale variants
of the AES. In Henri Gilbert and Helena Handschuh, editors, Fast Software
Encryption: 12th International Workshop, FSE 2005, Paris, France, Febru-
ary 21-23, 2005, Revised Selected Papers, volume 3557 of Lecture Notes in
Computer Science, pages 145–162. Springer, 2005.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomi-
als. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings,
volume 5479 of Lecture Notes in Computer Science, pages 278–299. Springer,
2009.

[ENP19] Maria Eichlseder, Marcel Nageler, and Robert Primas. Analyzing the linear
keystream biases in AEGIS. IACR Trans. Symmetric Cryptol., 2019(4):348–
368, 2019.



136 Weak Keys in Reduced AEGIS and Tiaoxin

[GJN+16] Jian Guo, Jérémy Jean, Ivica Nikolic, Kexin Qiao, Yu Sasaki, and Siang Meng
Sim. Invariant subspace attack against midori64 and the resistance criteria
for s-box designs. IACR Trans. Symmetric Cryptol., 2016(1):33–56, 2016.

[HLLT20] Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower
bounds on the degree of block ciphers. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I,
volume 12491 of Lecture Notes in Computer Science, pages 537–566. Springer,
2020.

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against trivium and grain-128aead. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12105 of Lecture Notes in Computer Science, pages 466–495. Springer,
2020.

[HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and
key-independent sums. In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology - ASIACRYPT 2020 - 26th International Conference on the
Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part I, volume 12491 of
Lecture Notes in Computer Science, pages 446–476. Springer, 2020.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional cube attack on reduced-round keccak sponge function. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May
4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer
Science, pages 259–288, 2017.

[JN16] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES
round function. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 334–353. Springer, 2016.

[KMN10] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional differ-
ential cryptanalysis of nlfsr-based cryptosystems. In Masayuki Abe, editor,
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in
Computer Science, pages 130–145. Springer, 2010.

[KW02] Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, Fast Software Encryption, 9th International
Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised Papers,
volume 2365 of Lecture Notes in Computer Science, pages 112–127. Springer,
2002.



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 137

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A cryptanalysis of printcipher: The invariant subspace attack. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 206–221.
Springer, 2011.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic approach
to invariant subspace attacks: Cryptanalysis of robin, iscream and zorro.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 254–283. Springer, 2015.

[Min14] Brice Minaud. Linear biases in AEGIS keystream. In Antoine Joux and
Amr M. Youssef, editors, Selected Areas in Cryptography - SAC 2014 - 21st
International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised
Selected Papers, volume 8781 of Lecture Notes in Computer Science, pages
290–305. Springer, 2014.

[Nik] Ivica Nikolić. Tiaoxin. http://competitions.cr.yp.to/round3/
tiaoxinv21.pdf.

[SSS+19] Danping Shi, Siwei Sun, Yu Sasaki, Chaoyun Li, and Lei Hu. Correlation
of quadratic boolean functions: Cryptanalysis of all versions of full \mathsf
MORUS. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II,
volume 11693 of Lecture Notes in Computer Science, pages 180–209. Springer,
2019.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear invariant attack -
practical attack on full scream, iscream, and midori64. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd
International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
II, volume 10032 of Lecture Notes in Computer Science, pages 3–33, 2016.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and application
to simon family. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 357–377. Springer, 2016.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages
287–314. Springer, 2015.

[VV18] Serge Vaudenay and Damian Vizár. Can caesar beat galois? - robustness of
CAESAR candidates against nonce reusing and high data complexity attacks.
In Bart Preneel and Frederik Vercauteren, editors, Applied Cryptography

http://competitions.cr.yp.to/round3/tiaoxinv21.pdf
http://competitions.cr.yp.to/round3/tiaoxinv21.pdf


138 Weak Keys in Reduced AEGIS and Tiaoxin

and Network Security - 16th International Conference, ACNS 2018, Leuven,
Belgium, July 2-4, 2018, Proceedings, volume 10892 of Lecture Notes in
Computer Science, pages 476–494. Springer, 2018.

[WHG+19] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Milp-aided
method of searching division property using three subsets and applications.
In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology
- ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in Computer
Science, pages 398–427. Springer, 2019.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2005.

[WP13] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors,
Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer,
2005.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in
Computer Science, pages 17–36. Springer, 2005.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 648–678, 2016.

[ZXL17] Wenying Zhang, Zhen Xiao, and Mengzhu Li. Optimised the differential trail
of the authenticated encryption algorithm tiaoxin-346. Int. J. High Perform.
Comput. Netw., 10(6):498–504, 2017.

A Experimental Findings
In our experiments for the distinguisher on 8-round Tiaoxin, we observe that the whole W 1

8
rather than only W 1

8 [Col(1, 2, 3)] are balanced. As the experiments are performed with



Fukang Liu, Takanori Isobe, Willi Meier, Kosei Sakamoto 139

the small-scale AES round function, it is necessary to identify whether this will happen
when the real AES round function is used. Note that

W 1
8 = A(A2(Q⊕ Z5)⊕A2(Q⊕ Z6)⊕Q⊕ Z13),

where Z5, Z6 and Z13 are key-dependent constants.
Hence, we are motivated to investigate whether∑

s[Diag(i)]∈F32
2

A(A2(s)⊕ s⊕ c0 ⊕A2(s⊕ c1)) = 0 (35)

always holds for two arbitrary 128-bit constants (c0, c1).
Although Equation 35 is very similar to Equation 4 and Equation 7, we are unable to

find a similar way to prove it. Although it is trivial to deduce from Property 3 that∑
s[Diag(0)]∈F32

2

R(R2(s)⊕ s⊕ c0 ⊕R2(s⊕ c1))[Col(1, 2, 3)] = 0,

whether Equation 36 holds is unknown.∑
s[Diag(0)]∈F32

2

R(R2(s)⊕ s⊕ c0 ⊕R2(s⊕ c1))[Col(0)] = 0. (36)

Let τ = R2(s) ⊕ R2(s ⊕ c1) ⊕ s ⊕ c0. From the proof of Property 3, it can be found
that the expression of τ [0][0] can be written as follows:

τ [0][0] = 2 · S(2 · S(s[0][0])⊕ 3 · S(s[1][1])⊕ S([2][2])⊕ S(s[3][3]))
⊕ 2 · S(2 · S(s[0][0]⊕ c1[0][0])⊕ 3 · S(s[1][1]⊕ c1[1][1])
⊕ S([2][2]⊕ c1[2][2])⊕ S(s[3][3]⊕ c1[3][3]))
⊕ s[0][0]⊕$,

where $ is a constant depending on c0, c1 and the constant part of s.
For the small-scale AES round function, we performed an exhaustive search. Specifically,

for each value of c1[Diag(0)], which is 216 in total for the small-scale AES, we traversed
all the 216 possible values for s[Diag(0)] and collect the corresponding set of τ [0][0]. It is
found that the same value of τ [0][0] in the set always appears an even number of times.
Then, the expressions for τ [i][i] (1 ≤ i ≤ 3) can also be written. After performing a
similar exhaustive search for each τ [i][i], it is also observed that the same value of it in the
computed set always appears an even number of times, thus explaining why the whole W 1

8
is balanced in our experiments.

However, when we change it to the real AES round function, the exhaustive search is
obviously infeasible. However, to disprove something, it suffices to find a counter-example.
In the experiments, we randomly chose a value for c1[Diag(0)] and $ and evaluated the
sum of the set of S(τ [0][0]) when s[Diag(0)] traverses all the 232 possible values. It is
found the sum is always non-zero, thus disproving Equation 36. Similar experiments were
also performed to independently evaluate the sum of S(τ [i][i]) (1 ≤ i ≤ 3).


	Introduction
	Preliminaries
	Notation
	The Initialization Phase of AEGIS-128
	The Initialization Phase of Tiaoxin

	Integral Properties for the AES Round Function
	New Integral Properties for the AES Round Function

	Cryptanalysis of 5-Round AEGIS-128
	Writing the Expressions of 5-Round AEGIS-128
	Adding Conditions To Simplify the Expressions
	The Key-Recovery Attack on 5-Round AEGIS-128
	Failing in Attacking 5-Round AEGIS-128L

	Cryptanalysis of 8-Round Tiaoxin
	Analyzing the Output of 8-Round Tiaoxin
	Feasibility of the Key-Recovery Attacks

	Discussions
	On the Usage of Division Property

	Conclusion
	Experimental Findings

