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Abstract. In this paper, we study and compare the byte-wise and bitwise linear
approximations of SNOW 2.0 and SNOW 3G, and present a fast correlation attack on
SNOW 3G by using our newly found bitwise linear approximations. On one side, we
reconsider the relation between the large-unit linear approximation and the smaller-
unit/bitwise ones derived from the large-unit one, showing that approximations on
large-unit alphabets have advantages over all the smaller-unit/bitwise ones in linear
attacks. But then on the other side, by comparing the byte-wise and bitwise linear
approximations of SNOW 2.0 and SNOW 3G respectively, we have found many
concrete examples of 8-bit linear approximations whose certain 1-dimensional/bitwise
linear approximations have almost the same SEI (Squared Euclidean Imbalance) as
that of the original 8-bit ones. That is, each of these byte-wise linear approximations is
dominated by a single bitwise approximation, and thus the whole SEI is not essentially
larger than the SEI of the dominating single bitwise approximation. Since correlation
attacks can be more efficiently implemented using bitwise approximations rather than
large-unit approximations, improvements over the large-unit linear approximation
attacks are possible for SNOW 2.0 and SNOW 3G. For SNOW 3G, we make a
careful search of the bitwise masks for the linear approximations of the FSM and
obtain many mask tuples which yield high correlations. By using these bitwise linear
approximations, we mount a fast correlation attack to recover the initial state of the
LFSR with the time/memory/data/pre-computation complexities all upper bounded
by 2174.16, improving slightly the previous best one which used an 8-bit (vectorized)
linear approximation in a correlation attack with all the complexities upper bounded
by 2176.56. Though not a significant improvement, our research results illustrate that
we have an opportunity to achieve improvement over the large-unit attacks by using
bitwise linear approximations in a linear approximation attack, and provide a new
insight on the relation between large-unit and bitwise linear approximations.
Keywords: Stream ciphers · SNOW 3G · Bitwise linear approximation · Byte-wise
linear approximation · Bitwise fast correlation attack

1 Introduction
A stream cipher ensures the privacy of the message transmitted over a communication
channel. In such algorithms, the ciphertext is usually the XOR sum of the plaintext and
the generated keystream, resembling the one-time pad primitive. Among these, the binary
LFSR-based stream cipher is a classical class, while such designs have been the main
target of correlation attacks [Sie84, Sie85]. With the development of modern computer
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science, many word-oriented stream ciphers are proposed, which are based on LFSR over
the extension fields of the binary field F2, and a non-linear combiner, with or without
memory, to generate the keystream from the underlying LFSR sequence. The typical
examples include SOSEMANUK [BBC+08], SNOW 2.0 [EJ02], SNOW 3G [SAG] and
SNOW-V [EJMY19].

SNOW 2.0 and SNOW 3G are both members of the SNOW family stream ciphers.
SNOW 2.0 was proposed by Ekdahl and Johansson in 2002 as an improved version of
SNOW 1.0 [EJ00], and selected as an ISO standard in 2005. It consists of two main
components: a Linear Feedback Shift Register (LFSR) and a Finite State Machine (FSM),
based on operations on 32-bit words, with high efficiency in both software and hardware
environment. SNOW 3G was designed in 2006 by ETSI/SAGE, which differs from
SNOW 2.0 by introducing a third 32-bit register to the FSM and a corresponding 32-bit
nonlinear transformation for updating this register. SNOW 3G serves as the core of 3GPP
Confidentiality and Integrity Algorithms UEA 2 & UIA2 for UMTS and LTE networks. It
is currently in use in 3-4G mobile telephony systems. As a new member in the SNOW
family, SNOW-V has kept most of the design from SNOW 3G in terms of the LFSR and the
FSM, but both components are updated to better align with vectorized implementations.

Linear attacks have been widely used to analyze stream ciphers, and many research
results have shown that SNOW ciphers are vulnerable to the class of linear approximation
attacks, like distinguishing attacks and correlation attacks. The basic technique is to first
approximate the nonlinear operations in the cipher and then derive a linear approximation
relation involving the keystream symbols. If the linear approximation also involves symbols
from the LFSR states, a correlation attack can be mounted by exploring some correlation
between the keystream and the LFSR states. Fast correlation attack was first introduced
by Meier and Staffelbach in 1989 by presenting two algorithms [MS89], and later evolved
constantly and steadily [CT00, CJS00, CS91, CJM02, JJ99, JJ00], with wide applications
to a lot of concrete constructions [LLP08, LV04, ZGM17]. However, the previous bitwise
fast correlation attacks are not considered to work well for word-oriented stream ciphers,
due to the complex form of the reduced LFSR recursion from the extension field to F2.
As a big step, fast correlation attacks over extension fields are proposed in [ZXM15] based
on linear approximations over larger alphabets, i.e., large-unit linear approximations,
providing the best key recovery attack against SNOW 2.0 by using the byte-wise linear
approximations. Later in [YJM19], inspired by the results of [ZXM15], a fast correlation
attack on SNOW 3G is given using the method in [ZXM15] with the byte-wise linear
approximations. In the design document [EJMY19] of SNOW-V, the designers present
the linear approximation attacks by using the byte-wise linear approximations. All these
works seem to show that the correlation attacks can be improved by using large-unit linear
approximations.

Related Work. The resistance of SNOW 2.0 against linear approximation attacks
have been widely studied. In [WBDC03], the bitwise linear approximations over two
rounds of the FSM of SNOW 2.0 were constructed through linear masking method, and a
distinguishing attack was given with the complexity 2225. At FSE 2006, Nyberg and Wallén
[NW06] presented an improved distinguishing attack with the complexity 2174 by using the
bitwise linear mask 0x00018001 for the two-round linear approximation of the FSM. Later
in [LLP08], the same bitwise mask was applied to launch a correlation attack on SNOW
2.0 with the time complexity 2212.38 by using linear approximation relations between
the keystream words and the LFSR states and combining the technique of fast Walsh
transform (FWT). All these attacks in [WBDC03, NW06, LLP08] were launched by using
the bitwise linear approximations. At CRYPTO 2015, Zhang et al. [ZXM15] introduced
the terminology “large-unit” linear approximations, and mounted a fast correlation attack
on SNOW 2.0 by building the two-round byte-wise (8-bit) linear approximations and
adopting the k-tree algorithm [Wag02], giving the significantly reduced complexities all
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below 2164.15. Recently, [GZ20] investigated the bitwise linear approximation of a certain
type of composition function present in SNOW 2.0 and proposed a linear-time algorithm
to compute the correlation for an arbitrary given linear mask. Based on this algorithm,
they carried out a wider range of search for bitwise masks and found some strong linear
approximations which enable them to slightly improve the data complexity of the previous
fast correlation attacks by using multiple bitwise linear approximations.

Several linear attacks on SNOW 3G have been proposed. In [NW06], Nyberg and
Wallén devoted one section to SNOW 3G, where the bitwise linear approximations over
three rounds of the FSM were depicted, but only rough estimates of the upper bounds of
their correlations were given. In [GZ20], a fast correlation attack was given with the time
complexity 2222.33 by constructing bitwise linear approximations whose correlations were
accurately computed. In [YJM19], inspired by the results of [ZXM15] where the large-unit
approach was used to achieve improvements over the previous attacks on SNOW 2.0, Yang
et al. constructed the three-round byte-wise (vectorized) linear approximations for the
FSM of SNOW 3G and performed the searches for finding actual byte-wise masks that
gave high SEI values for the approximations. The byte-wise linear approximations found
in [YJM19] were also applied to launch a fast correlation attack against SNOW 3G by the
method in [ZXM15] with all the complexities upper bounded by 2176.56.

For SNOW-V, the byte-wise linear approximation attacks and the bitwise ones are
studied in [EJMY19] and [GZ21] respectively.

Our Contributions. In this paper, we study and compare the large-unit and bitwise
linear approximations of SNOW 2.0 and SNOW 3G, and present a bitwise fast correlation
attack on SNOW 3G by using our newly found bitwise linear approximations. On one
hand, we first show that approximations on large-unit alphabets have advantages over all
the smaller-unit/bitwise ones in linear approximation attacks, and meanwhile, the results
on SNOW 2.0 in [ZXM15] gave the impression that large-unit approximations lead to
larger SEI and also to better attacks. However, by studying and comparing the byte-wise
and bitwise linear approximations of SNOW 2.0 and SNOW 3G, we have found many
concrete examples of byte-wise linear approximations whose certain 1-dimensional/bitwise
linear approximations have almost the same SEI as that of the original 8-bit ones. That is,
each of these byte-wise approximations is dominated by a single bitwise approximation,
and thus the whole SEI is not essentially larger than the SEI of the dominating single
bitwise one. Since correlation attacks can be more efficiently implemented using bitwise
approximations rather than large-unit approximations, improvements over the large-unit
linear approximation attacks [ZXM15, YJM19] are possible for SNOW 2.0 and SNOW 3G.
For SNOW 3G, we make a careful search of the bitwise masks for the linear approximations
of the FSM and obtain many mask tuples which yield high correlations. By using these
bitwise linear approximations, we mount a fast correlation attack to recover the initial
state of the LFSR with the time/memory/data/pre-computation complexities all upper
bounded by 2174.16, improving slightly the previous best one in [YJM19] which mounted a
fast correlation attacks by using the 8-bit (vectorized) linear approximation with all the
complexities upper bounded by 2176.56.

Organization of the paper. Some basic notations and definitions are presented in
Section 2, together with the description of SNOW 2.0 and SNOW 3G. In Section 3 and
Section 4, we study and compare the byte-wise and bitwise linear approximations of SNOW
2.0 and of SNOW 3G, respectively. In Section 5, we describe the detailed process on how
to search for bitwise linear mask tuples for the linear approximation of SNOW 3G that
yield high correlations. In Section 6, a bitwise fast correlation attack on SNOW 3G is
given by using the bitwise masks. Finally, some conclusions are provided with the future
work pointed out in Section 7.
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2 Preliminaries
2.1 Notations and Definitions
The following notations and definitions are used throughout this paper.

• The modular addition is denoted by “�” and the bitwise exclusive-OR by “⊕”.

• The binary field is denoted by F2 and its m-dimensional extension field by F2m .
Besides, we denote by F∗2m the multiplicative group of nonzero elements of F2m .

• Given two binary vectors a = (a0, a1, ..., am−1) ∈ F2m and b = (b0, b1, ..., bm−1) ∈
F2m , the standard inner product is defined as a · b =

⊕m−1
i=0 aibi, where the product

aibi is taken in F2.

• Given two m-dimensional vectors x = (x0,x1, ...,xm−1) and y = (y0,y1, ...,ym−1)
over F28 with the same defining polynomial, e.g., p(z), the inner product of x and y
over F28 is defined as x∗y =

⊕m−1
i=0 xiyi, where xi,yi ∈ F28 , and the multiplications

xiyi are taken over F28 = F2[z]/〈p(z)〉.

• Let n, m be two positive integers such that m divides n. For x ∈ F2n , it can be
written as x = (x0 ‖ ... ‖ xd−1), where d = n

m , xi ∈ F2m for 0 ≤ i ≤ d− 1, and x0 is
the least significant part.

• For a set S, the number of elements in S is denoted by |S|.

• An n-variable Boolean function f(x) is a mapping from F2n to F2, i.e., f : F2n → F2.

• An (n,m)-function F (x) is a mapping from F2n to F2m , i.e., F : F2n → F2m

such that x 7→ (f0, ..., fm−1), where fis are n-variable Boolean functions, called
the coordinate functions of F . F is also called an m-dimensional vectorial Boolean
function.

• Given an (n,m)-function F : F2n → F2m , and a nonzero vector v = (v0, ..., vm−1) ∈
F2m , the n-variable Boolean function v ·F defined as v ·F (x) = v0f0(x) ⊕ · · · ⊕
vm−1fm−1(x) is called a (non-zero) component of F . In our analysis, the Boolean
function v·F is denoted by Fv for v ∈ F2m and v 6= 0.

Definition 1. Let X be a binary random variable, the correlation between X and zero is
defined as ε(X) = Pr{X = 0} − Pr{X = 1}. Given a Boolean function f : F2n → F2, the
correlation of f to zero is defined as

ε(f) = 2−n(|{x ∈ F2n : f(x) = 0}| − |{x ∈ F2n : f(x) = 1}|)
= Pr{f(X) = 0} − Pr{f(X) = 1},

where X is a uniformly distributed random variable in F2n .

Note that “correlation” is often used to evaluate the efficiency of bitwise linear approxi-
mations in a linear approximation attack, where the data complexity is proportional to
1/ε2(f).

Definition 2. The correlation of an (n,m)-function F : F2n → F2m with a linear output
mask Γ ∈ F2m and a linear input mask Λ ∈ F2n is defined as

εF (Γ; Λ) = Pr{Γ · F (X) = Λ ·X} − Pr{Γ · F (X) 6= Λ ·X},

where X is a uniformly distributed random variable in F2n .
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At CRYPTO 2015, Zhang et al. [ZXM15] introduced the terminology “large-unit”
linear approximations, and achieved improvements over the previous attacks on SNOW
2.0 by providing a fast correlation attack over F28 using the byte-wise (8-bit) linear
approximations. Given an (n,m)-function F : F2n → F2m , the probability distribution
DF of F is

DF (a)= (|{x ∈ F2n : F (x) = a}|)
2n , for all a ∈ F2m

Here comes the definition of Squared Euclidean Imbalance (SEI), which is usually used
to evaluate the efficiency of a large-unit linear approximation in a linear approximation
attack.

Definition 3. The Squared Euclidean Imbalance (SEI) of a distribution DF is defined as

∆(DF ) = 2m
∑

a∈F2m

(
DF (a)− 1

2m

)2
,

which measures the distance between the target distribution and the uniform distribution.
Especially for m = 1, ∆(DF ) is closely related to the correlation of F by ∆(DF ) = ε2(F ).

Note that the “SEI” of a distribution DF over a general alphabet is used to evaluate the
efficiency of large-unit linear approximations in a linear approximation attack, where the
data complexity is proportional to the value of 1/∆(DF ). Besides, there is a fundamental
fact about the SEI of a distribution [BJV04, NH07] shown as follows.

Lemma 1. For an (n,m)-function F with the probability distribution vector DF , we have

∆(DF ) =
∑

v∈F∗2m

ε2(Fv) =
∑

v∈F∗2m

∆(DFv).

For brevity, we adopt the simplified notation ∆(F ) to denote ∆(DF ) hereafter. Then
we have ∆(F ) = ε2(F ) when m = 1, and ∆(F ) =

∑
v∈F∗2m

ε2(Fv) =
∑

v∈F∗2m
∆(Fv).

With the notations we just introduced, we now study the relation between a large-unit
linear approximation and some certain smaller-unit/bitwise linear approximations derived
from the large-unit one.

Let F : F2n → F2m be a large-unit linear approximation relation such that x 7→
(f0, ..., fm−1). Let lowl(x) be the l least significant bits of x. For m > 1 and 1 ≤ m′ < m,
we define another linear approximation relation F (m′) according to F as1

F (m′) : F2n → F2m′

x 7→ lowm′(F (x))

Then we call F (m′) a smaller-unit linear approximation function, which is actually the
low-dimensional projective function derived from F . According to Lemma 1, we get that
the SEI of the distribution DF of F is equal to the sum of the SEIs of the distributions
DFv , where v runs through all non-zero vectors in F2m . When 1 ≤ m′ < m, the SEI of
the distribution DF (m′) is a partial sum consisting of those SEIs of the distributions DFv ,
where v has non-zero terms only in the m′ least significant bits. The following conclusion
then follows immediately.

Property 1. Let F be an m-bit (m > 1) large-unit linear approximation, and F (m′) be
an m′-bit (1 ≤ m′ < m) linear approximation derived from F as above. Then for any
integer m′ : 1 ≤ m′ < m, we have ∆(F (m′)) ≤ ∆(F ).

1Note that for a given m′, the choice of the least significant bits is not crucial but is introduced here to
simplify the presentation.
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Property 1 shows a theoretical relation between different size linear approximations.
Since the data complexity in a linear approximation attack is proportional to the value of
1/∆(F ), Property 1 seems to suggest that the larger the unit, the better complexity result
we can get in a linear approximation attack.

For the large-unit linear approximation relation F : F2n → F2m , we can get that
Fv : F2n → F2 is a bitwise linear approximation for any nonzero vector v ∈ F2m . The
following conclusion follows directly from Lemma 1, which depicts the relation between the
distributions of any bitwise linear approximations and that of the original large-unit one.

Property 2. Let F be an m-bit (m > 1) large-unit linear approximation, and Fv be
the bitwise linear approximation derived from F as above. Then for any nonzero vector
v ∈ F2m , we have ∆(Fv) ≤ ∆(F ).

Property 2 seems to suggest that approximations on large-unit alphabets have advan-
tages over all the bitwise ones in linear approximation attacks. However, as shown in
Section 3.3 and Section 4.3 for the linear approximations of SNOW 2.0 and SNOW 3G, we
have found that there are many concrete examples of byte-wise linear approximations whose
certain 1-dimensional/bitwise linear approximations have almost the same SEI as that of
the original large-unit ones. Since correlation attacks can be more efficiently implemented
using bitwise approximations rather than large-unit approximations, improvements over
large-unit linear approximation attacks [ZXM15, YJM19] are possible for SNOW 2.0 and
SNOW 3G.

2.2 Description of SNOW 2.0
Both SNOW 2.0 and SNOW 3G are word-oriented stream ciphers and contain two main
components: a Linear Feedback Shift Register (LFSR) and a Finite State Machine (FSM).
SNOW 3G differs from SNOW 2.0 by introducing a third 32-bit register to the FSM and a
corresponding 32-bit nonlinear transformation for updating this register. The keystream
generation phase of SNOW 2.0 is depicted in Fig.1. For more details on the design, please
refer to the original design documents [EJ02].

Figure 1: The keystream generation phase of SNOW 2.0

The LFSR part of SNOW 2.0 consists of 16 words of length 32 bits each, with the
feedback polynomial

αx16 + x14 + α−1x5 + 1 ∈ F232 [x],
where α ∈ F232 is a root of the primitive polynomial y4 + β23y3 + β245y2 + β48y + β239 ∈
F28 [y], and β is a root of the polynomial z8 + z7 + z5 + z3 + 1 ∈ F2[z] (field constant 0xA9).

Let (st+15, st+14, ..., st), st+i ∈ F232 , denote the LFSR state at time t. For the FSM
part, it has two 32-bit registers R1 and R2. The LFSR state feeds into the FSM with
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the input (st+15, st+5), and the output of the FSM is Ft = (st+15 �R1t) ⊕R2t. The
keystream zt is generated by zt = Ft⊕ st. The registers R1 and R2 are updated according
to

R1t+1 = st+5 �R2t,
R2t+1 = S(R1t),

where S(·) is a 32-bit to 32-bit mapping composed of four parallel AES S-boxes (denoted
by SR) followed by the AES MixColumn operation (denoted by M1). Here M1 is defined
over F28 with the polynomial z8

1 + z4
1 + z3

1 + z1 + 1 ∈ F2[z1] (field constant 0x1B) for field
multiplication. Precisely, let w = (w0 ‖ w1 ‖ w2 ‖ w3), wi ∈ F28 , be the 32-bit input to
S(·), then S(w) is computed as

S(w) = M1 ∗


SR(w0)
SR(w1)
SR(w2)
SR(w3)

 =


z1 z1 + 1 1 1
1 z1 z1 + 1 1
1 1 z1 z1 + 1

z1 + 1 1 1 z1

 ∗


SR(w0)
SR(w1)
SR(w2)
SR(w3)

 ,

where the operation “∗” is taken over G1 = F2[z1]
/
〈z8

1 + z4
1 + z3

1 + z1 + 1〉.

2.3 Description of SNOW 3G

Figure 2: The keystream generation phase of SNOW 3G

The keystream generation phase of SNOW 3G is depicted in Fig.2. For more details
on the design, please refer to the original design documents [SAG]. SNOW 3G preserves
all features of SNOW 2.0, but adds a third register R3 to the FSM and a transformation
S2. The FSM part has three 32-bit registers R1, R2 and R3. The output of the FSM is
Ft = (st+15 �R1t)⊕R2t. The keystream zt is generated by zt = Ft ⊕ st. The registers
R1, R2 and R3 are updated according to

R1t+1 = (st+5 ⊕R3t)�R2t,
R2t+1 = S1(R1t),
R3t+1 = S2(R2t),

where S1(·) = S(·), and S2(·) is another 32-bit to 32-bit mapping composed of four
parallel 8-bit to 8-bit substitutions (denoted by SQ) followed by the AES MixColumn
operation (denoted by M2). Note that M2 is defined over F28 with the polynomial
z8

2 + z6
2 + z5

2 + z3
2 + 1 ∈ F2[z2] (field constant 0x69) for field multiplication, which is

different from that used in the transformation S1 (= S), i.e., for w = (w0 ‖ w1 ‖ w2 ‖ w3),
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wi ∈ F28 , S2(w) is computed as

S2(w) = M2 ∗


SQ(w0)
SQ(w1)
SQ(w2)
SQ(w3)

 =


z2 z2 + 1 1 1
1 z2 z2 + 1 1
1 1 z2 z2 + 1

z2 + 1 1 1 z2

 ∗


SQ(w0)
SQ(w1)
SQ(w2)
SQ(w3)

 ,

where the operation “∗” is taken over G2 = F2[z2]
/
〈z8

2 + z6
2 + z5

2 + z3
2 + 1〉.

3 Comparing Large-unit and Bitwise Linear Approximations
of SNOW 2.0

In this section, we frist make a recap of the previous bitwise linear approximations of SNOW
2.0 used in [WBDC03, NW06, LLP08, GZ20, FTIM18], then review on the byte-wise linear
approximations in [ZXM15], and finally illustrate the relationship between the bitwise and
byte-wise linear approximations by some concrete examples.

3.1 Recap on the Bitwise Linear Approximations of the FSM
In [WBDC03], the linear masking method was applied to SNOW 2.0, and the bitwise linear
approximations over two rounds of the FSM were constructed, as depicted in Fig.3. In
[WBDC03], it is always assumed that all masks Γi ∈ F32

2 used in the linear approximations
in Fig.3 have the same value. Denote all the masks by Γ, the bitwise linear approximations
of the FSM take the following form:

Γ · zt ⊕ Γ · zt+1 = Γ · st ⊕ Γ · st+1 ⊕ Γ · st+5 ⊕ Γ · st+15 ⊕ Γ · st+16 ⊕ n(t),

where n(t) is the binary noise.

Figure 3: The two-round bitwise linear approximations for the FSM of SNOW 2.0

At FSE 2006, Nyberg and Wallén [NW06] considered the case when the output masks
at time t and t + 1 are different, and used the following bitwise linear approximation
relation (1) four times according to the feedback polynomial of the LFSR to build the linear
distinguisher: two times with the mask tuple (Γ,Λ) at time t+2 and t+16, then once with
the mask tuple (Γα,Λα) at time t, and finally once with the mask tuple (Γα−1,Λα−1) at
time t+ 11.

Γ · zt ⊕Λ · zt+1 = Γ · st ⊕Λ · st+1 ⊕Λ · st+5 ⊕ Γ · st+15 ⊕Λ · st+16 ⊕ n(t). (1)
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Let εFSM(Γ,Λ) denote the correlation of the linear approximation relation (1) under the
bitwise mask tuple (Γ,Λ). The total correlation for the linear distinguisher is calculated
by combining these four approximations as ε2FSM(Γ,Λ) · εFSM(Γα,Λα) · εFSM(Γα−1,Λα−1)
according to the Piling-up Lemma. By using the bitwise masks Γ = Λ=0x00018001
for approximating the FSM, they constructed their best linear distinguisher and pre-
sented a distinguishing attack accordingly. When Γ = Λ=0x00018001, they obtained
εFSM(Γ,Λ) = 2−14.496, εFSM(Γα,Λα) = 2−26.676 and εFSM(Γα−1,Λα−1) = 2−30.221, and
thus the correlation of their best linear distinguisher is 2−85.89. Using this mask tuple,
a distinguishing attack on SNOW 2.0 was given with time complexity 2174, given 2174

keystream words. Later in [LLP08], the same bitwise masks Γ = Λ =0x00018001 for the
linear approximation (1) was applied to launch a correlation attack on SNOW 2.0 with
the time complexity 2212.38, given 2193.77 keystream words.

Table 1: The best bitwise mask tuples (Γ,Λ) for the linear approximation (1) in [GZ20]

No. Ref. Γ = Λ log(|εFSM(Γ,Λ)|)
(1) [FTIM18,

GZ20]
0x01800001 −14.411

(2) [NW06,
GZ20]

0x00018001 −14.496

(3) [GZ20] 0x00010081 −14.635

Recently, [GZ20] investigated the bitwise linear approximation of a certain type of
composition function present in SNOW 2.0 and proposed a linear-time algorithm for
computing the correlation. Based on this algorithm, they found some strong bitwise mask
tuples for the linear approximation (1) yielding high correlations, of which the best three
ones were listed in Table 1. Note that the mask tuple Γ = Λ =0x01800001 numbered (1)
in Table 1 is the same as the one in [FTIM18], which is found by using the MILP-aided
automatic search algorithm, and Γ = Λ = 0x00018001 numbered (2) is the same as the
one found in [NW06]. They also applied these bitwise masks to launch a fast correlation
attack with the total time complexity 2162.86 and data complexity 2159.62, improving the
previous fast correlation attacks in [ZXM15, FTIM18].

3.2 Recap on the Byte-wise Linear Approximations of the FSM
In [ZXM15], the large-unit approach was used to achieve improvements over the previous
attacks on SNOW 2.0, where two-round byte-wise linear approximations for the FSM of
SNOW 2.0 were constructed, as depicted in Fig.4.

Let T = (T0,T1,T2,T3) and N = (N0,N1,N2,N3) be the 4-byte linear masks defined
over the AES MixColumn field F28 , i.e., G1 , F2[z1]

/
〈z8

1 + z4
1 + z3

1 + z1 + 1〉, where T0
and N0 are the least significant bytes. First, T and N are applied to zt and zt+1 respectively
as follows:

T ∗ (zt ⊕ st) = T ∗ (st+15 �R1t)⊕T ∗R2t,
N ∗ (zt+1 ⊕ st+1) = N ∗ (st+16 � st+5 �R2t)⊕N ∗ S(R1t),

where “∗” is operated in G1. Then, the following two byte-wise linear approximations are
used,

T ∗ (st+15 �R1t) = T ∗ st+15 ⊕N ∗ S(R1t)⊕ n(t)
1 ,

N ∗ (st+16 � st+5 �R2t) = N ∗ st+16 ⊕N ∗ st+5 ⊕T ∗R2t ⊕ n(t)
2 ,

where n(t)
1 and n(t)

2 are the 8-bit noises introduced by these approximations. Let Wt =
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Figure 4: The two-round byte-wise linear approximations for the FSM of SNOW 2.0

Sbox(R1t), then R1t = Sbox−1(Wt) and S(R1t) = M1 ∗Wt. Let N′ = N ∗M1, then

n(t)
1 = T ∗ (st+15 � Sbox−1(Wt))⊕T ∗ st+15 ⊕N′ ∗Wt,

n(t)
2 = N ∗ (st+16 � st+5 �R2t)⊕N ∗ st+16 ⊕N ∗ st+5 ⊕T ∗R2t.

Let n(t) = n(t)
1 ⊕n(t)

2 be the folded noise introduced by the above two linear approximations,
the following byte-wise linear approximations for the FSM of SNOW 2.0 are obtained

T ∗ zt ⊕N ∗ zt+1 = T ∗ st ⊕N ∗ st+1 ⊕N ∗ st+5 ⊕T ∗ st+15 ⊕N ∗ st+16 ⊕ n(t). (2)

It should be noted that the operation “∗” in the linear approximation (2) and also the
byte-wise masks T, N are defined in the AES MixColumn field which is denoted by G1,
while the state elements st+i are generated by the LFSR defined by another polynomial
z8 + z7 + z5 + z3 + 1 ∈ F2[z]. Thus it is necessary to unify the two fields for an efficient
decoding. In [ZXM15], a general routine is described to solve this problem, where they try
to find an equivalent representation of the LFSR part theoretically so that it is defined
over the new F232 field. In this paper, as illustrated in Section 4.2 for SNOW 3G case, we
describe in more details on how to unify the fields defined by different polynomials from a
different perspective.

In [ZXM15], two algorithms are provided to compute the distributions2 of n1 and n2
over the AES MixColumn field F28 with the complexities 226.58 and 233.58 respectively
for each given byte-wise mask tuple. In the following parts, we will provide two slightly
improved algorithms to compute these distributions, whose complexities are 220.25 and
227.33 respectively.

2Since the distributions of n(t)
1 , n(t)

2 and n(t) are independent of the time instance t, we simplify them
by writing n1, n2 and n respectively.
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3.2.1 Improving the Computation of the Distribution of n1

For the given 4-byte masks T and N, let N′ = N ∗M1, the noise variable n1 can be
expressed as

n1 = T ∗ (X� Sbox−1(Y))⊕T ∗X⊕N′ ∗Y,

where X and Y are the uniformly distributed random variables in F232 , which can be
written into 4 bytes as X = (X0,X1,X2,X3), Y = (Y0,Y1,Y2,Y3). Following the basic
idea of Algorithm 3 in [ZXM15], we first split the expression of n1 into 4 sub-expressions
nj1 (j = 0, 1, 2, 3) as follows:

n0
1 =0⊕T0 ∗ (X0 �8 S

−1
R (Y0)�8 0)⊕T0 ∗X0 ⊕N′0 ∗Y0,

n1
1 =n0

1 ⊕T1 ∗ (X1 �8 S
−1
R (Y1)�8 cr0)⊕T1 ∗X1 ⊕N′1 ∗Y1,

n2
1 =n1

1 ⊕T2 ∗ (X2 �8 S
−1
R (Y2)�8 cr1)⊕T2 ∗X2 ⊕N′2 ∗Y2,

n3
1 =n2

1 ⊕T3 ∗ (X3 �8 S
−1
R (Y3)�8 cr2)⊕T3 ∗X3 ⊕N′3 ∗Y3 = n1,

where “�8” represents the addition modulo 28, and crj ∈ {0, 1} are local carries introduced
by the addition modulo 232 such that crj =

⌊
(Xj + S−1

R (Yj) + crj−1)/28⌋ for j = 0, 1, 2, 3
(cr−1 = 0 by default) with “b c” being the floor function of integers. The sub-expressions
are connected with each other by the one direction information propagation from the least
significant n0

1 to the most significant n3
1, caused by the local carries introduced by the

addition modulo 232 and the output of nj1.

Based on the above, we describe our algorithm for computing the distribution of n1 as
follows. We first describe a sub-algorithm called ComputeMatrix(crj−1, Tj , N′j), which
computes the values of r = Tj ∗ (Xj �8 S

−1
R (Yj)�8 crj−1)⊕Tj ∗Xj ⊕N′j ∗Yj and the

carries crj =
⌊
(Xj + S−1

R (Yj) + crj−1)/28⌋ for all Xj ∈ F28 and Yj ∈ F28 , and stores all
the output and carry information in a 256× 2 matrix Mat. Then we present Algorithm 1
to compute the distribution of n1 by using the sub-algorithm ComputeMatrix.

ComputeMatrix(crj−1, Tj , N′j)
Parameters: the partial masks Tj , N′j , and the local carry crj−1 ∈ {0, 1}
1: Create a 256× 2 matrix Mat initialized with zeros;
2: for Xj = 0, 1, ..., 255 and Yj = 0, 1, ..., 255 do
3: Compute r = Tj ∗ (Xj �8 S

−1
R (Yj)�8 crj−1)⊕Tj ∗Xj ⊕N′j ∗Yj ;

4: Compute crj =
⌊
(Xj + S−1

R (Yj) + crj−1)/28⌋;
5: Mat[r][crj ] + +;
6: end for
7: Mat←Mat/(28)2;
Output: the 256× 2 matrix Mat.
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Algorithm 1 Compute the distribution of n1 over the AES MixColumn field F28

Parameters: the masks T and N′, where N′ = N ∗M1
1: Prepare three 256× 2 matrices Mat, Mat1 and Mat2;
2: Mat1 ← ComputeMatrix(0, T0, N′0);
3: for j = 1, 2, 3 do
4: Initialize Mat2 with zeros;
5: for crj−1 = 0, 1 do
6: Mat← ComputeMatrix(crj−1, Tj , N′j);
7: for nj−1

1 = 0, 1, ..., 255, nj1 = 0, 1, ..., 255, and crj = 0, 1 do
8: Mat2[nj1][crj ] = Mat2[nj1][crj ] + Mat[nj−1

1 ⊕nj1][crj ]×Mat1[nj−1
1 ][crj−1];

9: end for
10: end for
11: Mat1 ←Mat2;
12: end for
Output: Pr{n1 =a} = Mat2[a][0] + Mat2[a][1], for a = 0, 1, ..., 255.

We emphasize that the basic idea of our method for computing the distribution of n1
is the same as that in [ZXM15], i.e., we use the connection matrix to characterize the one
direction information propagation caused by the modular addition. But we carry out the
process in a slightly different way.
Complexity. The complexity of the sub-algorithm ComputeMatrix is 216. Thus Algorithm
1 has the complexity around 216 + 3× 2× (216 + 216 × 2) = 220.25, slightly improving that
in [ZXM15] whose time complexity is 226.58.

3.2.2 Improving the Computation of the Distribution of n2

For the given 4-byte masks T and N, the noise variable n2 can be expressed as

n2 = N ∗ (X�Y� Z)⊕N ∗X⊕N ∗Y⊕T ∗ Z,

where X, Y and Z are uniformly distributed random variables in F232 . As was done in
Section 3.2.1, we write the 32-bit values in n2 into 4 bytes, and split it into 4 sub-expressions
as follows:

n0
2 =0⊕N0 ∗ (X0 �8 Y0 �8 Z0 �8 0)⊕N0 ∗X0 ⊕N0 ∗Y0 ⊕T0 ∗ Z0,

n1
2 =n0

2 ⊕N1 ∗ (X1 �8 Y1 �8 Z1 �8 cr0)⊕N1 ∗X1 ⊕N1 ∗Y1 ⊕T1 ∗ Z1,

n2
2 =n1

2 ⊕N2 ∗ (X2 �8 Y2 �8 Z2 �8 cr1)⊕N2 ∗X2 ⊕N2 ∗Y2 ⊕T2 ∗ Z2,

n3
2 =n2

2 ⊕N3 ∗ (X3 �8 Y3 �8 Z3 �8 cr2)⊕N3 ∗X3 ⊕N3 ∗Y3 ⊕T3 ∗ Z3 = n2,

where crj ∈ {0, 1, 2} are local carries introduced by the addition modulo 232 such that
crj =

⌊
(Xj + Yj + Zj + crj−1)/28⌋ for j = 0, 1, 2, 3 (cr−1 = 0 by default).

ComputeMatrix(crj−1, Tj , Nj)
Parameters: the partial masks Tj , Nj , and the local carry crj−1 ∈ {0, 1, 2}
1: Create a 256× 3 matrix Mat initialized with zeros;
2: for Xj = 0, 1, ..., 255, Yj = 0, 1, ..., 255 and Zj = 0, 1, ..., 255 do
3: Compute r = Nj ∗ (Xj �8 Yj �8 Zj �8 crj−1)⊕Nj ∗Xj ⊕Nj ∗Yj ⊕Tj ∗ Zj ;
4: Compute crj =

⌊
(Xj + Yj + Zj + crj−1)/28⌋;

5: Mat[r][crj ] + +;
6: end for
7: Mat←Mat/(28)3;
Output: the 256× 3 matrix Mat.
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Algorithm 2 Compute the distribution of n2 over the AES MixColumn field F28

Parameters: the masks T and N
1: Prepare three 256× 3 matrices Mat, Mat1 and Mat2;
2: Mat1 ← ComputeMatrix(0, T0, N0);
3: for j = 1, 2, 3 do
4: Initialize Mat2 with zeros;
5: for crj−1 = 0, 1, 2 do
6: Mat← ComputeMatrix(crj−1, Tj , Nj);
7: for nj−1

2 = 0, 1, ..., 255, nj2 = 0, 1, ..., 255, and crj = 0, 1, 2 do
8: Mat2[nj2][crj ] = Mat2[nj2][crj ] + Mat[nj−1

2 ⊕nj2][crj ]×Mat1[nj−1
2 ][crj−1];

9: end for
10: end for
11: Mat1 ←Mat2;
12: end for
Output: Pr{n2 =a} = Mat2[a][0] + Mat2[a][1] + Mat2[a][2], for a = 0, 1, ..., 255.

Complexity. Algorithm 2 shown above is used to compute the distribution of n2, slightly
different from that in [ZXM15]. Our improved algorithm has the complexity around
224 + 3× 3× (224 + 216 × 3) = 227.33, while it is 233.58 in [ZXM15].

3.2.3 New Results of the Byte-wise Linear Approximations

As illustrated in the above sections, the distributions of the noise variables n1 and n2
can be accurately computed by Algorithm 1 and Algorithm 2. Then the distribution
of the folded noise variable n = n1 ⊕ n2 can be derived by the convolution of the
above two noise distributions. In our experiments, we have carried out a wide range
of search for good byte-wise masks (T,N) for SNOW 2.0. One important observation
from our experiments is that the best byte-wise mask tuple (T,N) given in [ZXM15], i.e.,
T = N = (0x03, 0x00, 0x01, 0x00) is not optimal. In our experiments, we have found two
more independent byte-wise masks which give larger SEIs values, as shown in Table 2.

Table 2: The best byte-wise masks (T,N) for the linear approximation (2)

No. Ref. T = N log(∆(n))
(1) New (0x01, 0x00, 0x02, 0x01) −28.82
(2) New (0x01, 0x02, 0x01, 0x00) −28.99
(3) [ZXM15] (0x03, 0x00, 0x01, 0x00) −29.27

3.3 Examples of Relations Between Large-unit and Bitwise Linear
Approximations

According to Property 1, the SEI of a smaller-unit linear approximation is not larger than
that of the original large-unit one. Besides, Property 2 indicates that approximations on
large-unit alphabets have advantages over all the bitwise ones derived from the large-unit
one. For SNOW 2.0, we let F(T,N) denote the byte-wise linear approximation with the
4-byte mask tuple (T,N), and f(Γ,Λ) denote the bitwise linear approximation with the
32-bit mask tuple (Γ,Λ), such that

F(T,N)(·) = T ∗ (zt ⊕ st ⊕ st+15)⊕N ∗ (zt+1 ⊕ st+1 ⊕ st+5 ⊕ st+16),
f(Γ,Λ)(·) = Γ · (zt ⊕ st ⊕ st+15)⊕Λ · (zt+1 ⊕ st+1 ⊕ st+5 ⊕ st+16).

Note that Fv
(T,N) = v·F(T,N) is a bitwise linear approximation for any nonzero vector

v ∈ F2m , and we always have ∆(Fv
(T,N)) ≤ ∆(F(T,N)). For SNOW 2.0, we have m = 8.
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Let I = (1, 0, 0, 0, 0, 0, 0, 0), then ∆(F I
(T,N)) ≤ ∆(F(T,N)) for any given 4-byte mask tuple

(T,N). Below we compare the bitwise masks in Table 1 and the byte-wise masks in Table
2, and give some concrete examples to show the relationship between the 8-bit linear
approximation F(T,N) and the bitwise linear approximation F I

(T,N).

• For the 4-byte masks T=N=(0x01, 0x00, 0x02, 0x01) numbered (1) in Table 2, and
the 32-bit masks Γ=Λ=0x01800001 numbered (1) in Table 1, we have verified that
F I

(T,N) = f(Γ,Λ). In such a case we have |εFSM(Γ,Λ)| = 2−14.411 from Table 1, and
then ∆(F I

(T,N)) = ε2(F I
(T,N)) = ε2(f(Γ,Λ)) = |εFSM(Γ,Λ)|2 = 2−28.82. Note that we

also have ∆(F(T,N)) = 2−28.82 from Table 2. Thus ∆(F I
(T,N)) = ∆(F(T,N)).

• Similarly, for T = N = (0x01, 0x02, 0x01, 0x00) numbered (2) in Table 2, and
Γ = Λ=0x00018001 numbered (2) in Table 1, we have verified that F I

(T,N) = f(Γ,Λ).
From Table 1, |εFSM(Γ,Λ)| = 2−14.496, then ∆(F I

(T,N)) = |εFSM(Γ,Λ)|2 = 2−28.99.
From Table 2 we also have ∆(F(T,N)) = 2−28.99. Thus ∆(F I

(T,N)) = ∆(F(T,N)).

• Similarly, for T = N = (0x03, 0x00, 0x01, 0x00) numbered (3) in Table 2, and
Γ = Λ=0x00010081 numbered (3) in Table 1, we have verified that F I

(T,N) = f(Γ,Λ).
Note that |εFSM(Γ,Λ)| = 2−14.635, and ∆(F(T,N)) = 2−29.27 = |εFSM(Γ,Λ)|2. Thus
∆(F I

(T,N)) = ∆(F(T,N)).

The results on SNOW 2.0 in [ZXM15] gave the impression that large-unit approxima-
tions lead to larger SEI and also to better attacks. In our experiments, however, we have
found many concrete examples of 8-bit large-unit linear approximations for SNOW 2.0
whose certain 1-dimensional bitwise linear approximations have almost the same SEI as
that of the original large-unit ones. That is, each of these byte-wise linear approximations
is dominated by a single bitwise approximation, and thus the whole SEI is not essentially
larger than the SEI (squared correlation) of the dominating single bitwise approximation.
Since correlation attacks can be more efficiently implemented using bitwise approximations
rather than byte-wise approximations, this provides an opportunity to achieve improvement
over the large-unit linear approximation attack on SNOW 2.0 in [ZXM15]. Actually, a
bitwise fast correlation attack on SNOW 2.0 has been mounted in [GZ20] by using multiple
bitwise masks as listed in Table 1 for linear approximation, with the total time complexity
2162.86 and data complexity 2159.62, slightly improving the large-unit correlation attack of
[ZXM15] whose total time complexity is 2164.15 and data complexity is 2163.59.

4 Comparing Large-unit and Bitwise Linear Approximations
of SNOW 3G

In this section, we frist study the bitwise and the byte-wise linear approximations of the
FSM of SNOW 3G respectively, and then illustrate the relationship between the bitwise
and byte-wise linear approximations by some concrete examples.

4.1 Bitwise Linear Approximations of the FSM
In [NW06], the bitwise linear approximations over three rounds of the FSM were depicted,
as shown in Fig. 5, but only rough estimates of the upper bounds of their correlations were
given. We consider a similar approach to analyze SNOW 3G against linear approximation
attacks. That is, we try to approximate the FSM part through linear masking and then to
cancel out the contributions of the registers R1, R2 and R3 by combining expressions for
several keystream words.
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Figure 5: The three-round bitwise linear approximations for the FSM of SNOW 3G

Generally, to build the bitwise linear approximation of the FSM of SNOW 3G, we
consider to apply the 32-bit linear masks Φ, Γ and Λ to zt−1, zt and zt+1 respectively
through the linear masking as follows:

Φ · (zt−1 ⊕ st−1) = Φ · (st+14 �R1t−1)⊕Φ ·R2t−1

Γ · (zt ⊕ st) = Γ · (st+15 �R1t)⊕ Γ ·R2t
Λ · (zt+1 ⊕ st+1) = Λ · (st+16 �R1t+1)⊕Λ ·R2t+1

Let ut = R1t−1, vt = R2t−1 and wt = R1t. According to the update expressions
for the registers of the FSM, the first register R1 is updated according to R1t+1 =
(st+5 ⊕R3t)�R2t. We then have R1t+1 = (st+5 ⊕ S2(vt))� S1(ut), R2t = S1(ut) and
R2t+1 = S1(wt), and thus

Φ · (zt−1 ⊕ st−1) = Φ · (st+14 � ut)⊕Φ · vt
Γ · (zt ⊕ st) = Γ · (st+15 �wt)⊕ Γ · S1(ut)

Λ · (zt+1 ⊕ st+1) = Λ · (st+16 � (st+5 ⊕ S2(vt))� S1(ut))⊕Λ · S1(wt)

Regarding to the internal states and keystream words, we consider the following four
associated linear approximations by introducing a 32-bit intermediate linear mask Θ, and
write them as follows:
(1) Φ · (st+14 � ut) = Φ · st+14 ⊕Θ · S1(ut)⊕ e(t)

1 ,
(2) Γ · (st+15 �wt) = Γ · st+15 ⊕Λ · S1(wt)⊕ e(t)

2 ,

(3) Λ·(st+16�(st+5⊕S2(vt))�S1(ut)) = Λ·st+16⊕Λ·(st+5⊕S2(vt))⊕(Θ⊕Γ)·S1(ut)⊕e(t)
3 ,

(4) Λ · S2(vt) = Φ · vt ⊕ e(t)
4 ,

where e(t)
j for j = 1, 2, 3, 4 are binary noises introduced by these bitwise linear approxi-

mations. Let e(t) = e
(t)
1 ⊕ e

(t)
2 ⊕ e

(t)
3 ⊕ e

(t)
4 . With the above relations, the bitwise linear

approximations of the FSM of SNOW 3G have the following form,

Φ · zt−1 ⊕ Γ · zt ⊕Λ · zt+1

= Φ · (st−1 ⊕ st+14)⊕ Γ · (st ⊕ st+15)⊕Λ · (st+1 ⊕ st+5 ⊕ st+16)⊕ e(t).
(3)
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Basically, we want to find mask tuples (Φ,Γ,Λ) for (3) which yield highly biased linear
approximations, and then employ them in a bitwise fast correlation attack. Before that,
we present the following illustrations for the above four linear approximation relations.

1. For the linear approximation relation (1), we write ut = (ut,0 ‖ ut,1 ‖ ut,2 ‖ ut,3),
where ut,j ∈ F28 for j = 0, 1, 2, 3. Let xt = (xt,0 ‖ xt,1 ‖ xt,2 ‖ xt,3) be the output of
four parallel AES S-boxes SR, i.e.,

xt = Sbox(ut) = (SR(ut,0) ‖ SR(ut,1) ‖ SR(ut,2) ‖ SR(ut,3)),

then we have ut = Sbox−1(xt), and S1(ut) = M1 · xt, where M1 is expressed as
the 32 × 32 binary matrix and xt is viewed as a 32-bit variable. Given the 32-bit
linear mask Θ, we let Θ′ be the mask such that Θ′ · xt = Θ · (M1 · xt). (We refer
to Appendix A for the computation of Θ′ from the given mask Θ). Based on these
expressions, we have

e
(t)
1 = Φ · (st+14 � Sbox−1(xt))⊕Φ · st+14 ⊕Θ′ · xt.

2. Similarly, for the linear approximation relation (2), we let yt = Sbox(wt), and Λ′ be
the mask such that Λ′ · yt = Λ · (M1 · yt). Then the noise e(t)

2 can be expressed as

e
(t)
2 = Γ · (st+15 � Sbox−1(yt))⊕ Γ · st+15 ⊕Λ′ · yt.

3. For the linear approximation relation (3), let ξt = st+5 ⊕ S2(vt) and ηt = S1(ut),
then

e
(t)
3 = Λ · (st+16 � ξt � ηt)⊕Λ · st+16 ⊕Λ · ξt ⊕ (Θ⊕ Γ) · ηt.

4. For the linear approximation relation (4), note that the transformation S2 of SNOW
3G is composed of four parallel 8-bit to 8-bit substitutions SQ, followed by the AES
MixColumn transform M2. We will use Sbox′(·) to denote the output of four parallel
substitutions SQ. Given the mask Λ, let Λ′′ be the mask such that Λ′′ ·x = Λ·(M2 ·x)
for all 32-bit x, where M2 is expressed as the 32× 32 binary matrix. (See Appendix
B for the computation of Λ′′ from the given mask Λ). Then we have

e
(t)
4 = Λ′′ · Sbox′(vt)⊕Φ · vt.

To sum up, the four linear approximation relations can be rewritten as follows:

e
(t)
1 = Φ · (st+14 � Sbox−1(xt))⊕Φ · st+14 ⊕Θ′ · xt,

e
(t)
2 = Γ · (st+15 � Sbox−1(yt))⊕ Γ · st+15 ⊕Λ′ · yt,

e
(t)
3 = Λ · (st+16 � ξt � ηt)⊕Λ · st+16 ⊕Λ · ξt ⊕ (Θ⊕ Γ) · ηt,

e
(t)
4 = Λ′′ · Sbox′(vt)⊕Φ · vt.

Since the distributions of e(t)
j are independent of the time instance t, we will simplify them

by writing ej , and denote ε(ej) the corresponding correlations to zero, i.e., ε(ej) = Pr{ej =
0} − Pr{ej = 1} for j = 0, 1, 2, 3. Let εFSM(Φ,Γ,Λ) denote the correlation of the linear
approximation relation (3), corresponding to the linear mask tuple (Φ,Γ,Λ). By applying
the theorem about correlations over composed functions in [Nyb01], together with the
Piling-up lemma [Mat93], we get that εFSM(Φ,Γ,Λ) can be computed as a sum of partial
correlations over all 32-bit intermediate linear masks Θ as follows:

εFSM(Φ,Γ,Λ) = ε(e2)ε(e4)
∑
Θ
ε(e1)ε(e3).
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Results. In Section 5, we will present the detailed process on how to search for linear
mask tuples (Φ,Γ,Λ) such that |εFSM(Φ,Γ,Λ)| are as large as possible. The results we
obtained are as follows:

• Let Λ = 0x1014190f, there exist three linear mask tuples (Φ,Γ,Λ) such that
|εFSM| ≥ 2−21, the linear masks Φ and Γ are listed in Table 3;

• Let Λ = 0x1014190f, there exist 16 linear mask tuples (Φ,Γ,Λ) such that 2−22 <
|εFSM| < 2−21, the linear masks Φ and Γ are listed in Table 4.

Table 3: The best bitwise masks (Φ,Γ) for linear approximation (3) when Λ = 0x1014190f

No. Φ Γ log(|
∑

Θ ε(e1)ε(e3)|) log(|ε(e2)|) log(|ε(e4)|) log(|εFSM|)
(1) 0x00000020 0x00000001 −14.06 −3.42 −3.00 −20.48
(2) 0x00000030 0x00000001 −14.06 −3.42 −3.00 −20.48
(3) 0x00000001 0x00000001 −13.38 −3.42 −4.00 −20.80

Table 4: The bitwise masks (Φ,Γ) for bitwise linear approximation (3) such that 2−22 ≤
|εFSM| < 2−21 when Λ = 0x1014190f

Φ Γ log(|
∑

Θ ε(e1)ε(e3)|) log(|ε(e2)|) log(|ε(e4)|) log(|εFSM|)
0x0000006c 0x00000001 −14.88 −3.42 −3.00 −21.30
0x00000006 0x00000001 −13.97 −3.42 −4.00 −21.39
0x00000020 0x00000004 −14.39 −4.00 −3.00 −21.39
0x00000030 0x00000004 −14.39 −4.00 −3.00 −21.39
0x00000073 0x00000001 −15.01 −3.42 −3.00 −21.43
0x000000b0 0x00000001 −14.14 −3.42 −4.00 −21.56
0x000000f0 0x00000001 −14.14 −3.42 −4.00 −21.56
0x00000001 0x00000004 −13.71 −4.00 −4.00 −21.71
0x00000018 0x00000001 −14.33 −3.42 −4.00 −21.75
0x000000a0 0x00000001 −15.41 −3.42 −3.00 −21.83
0x00000017 0x00000001 −14.44 −3.42 −4.00 −21.86
0x0000001f 0x00000001 −14.44 −3.42 −4.00 −21.86
0x0000001d 0x00000001 −15.51 −3.42 −3.00 −21.93
0x0000002d 0x00000001 −15.51 −3.42 −3.00 −21.93
0x0000004f 0x00000001 −15.57 −3.42 −3.00 −21.99
0x0000006f 0x00000001 −15.57 −3.42 −3.00 −21.99

4.2 Byte-wise Linear Approximations of the FSM
Recent work in cryptanalysis of stream ciphers paid more attentions on approximations on
larger alphabets, and showed that approximations on larger alphabets can improve the
attacks. In [ZXM15], the large-unit approach was used to achieve improvements over the
previous attacks on SNOW 2.0. In [YJM19], inspired by the results of [ZXM15], Yang et
al. constructed three-round byte-wise linear approximations for the FSM of SNOW 3G
and performed the searches for finding actual byte-wise masks that gave high SEI values
for the approximations. The byte-wise linear approximations found in [YJM19] were also
applied to launch a fast correlation attack against SNOW 3G.

In this section, we will study directly the byte-wise linear approximations of SNOW
3G, following strictly a similar procedure as that in [ZXM15] for approximating the
FSM part. In this part, all the 32-bit words are divided into 4 bytes and regarded as
4-dimensional vectors over F28 . As defined in Section 2.1, for two 4-dimensional vectors
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x = (x0,x1,x2,x3) and y = (y0,y1,y2,y3) over F28 with the defining polynomial p(z),
we have x ∗ y = x0y0 ⊕ x1y1 ⊕ x2y2 ⊕ x3y3 with the multiplications xiyi taken over
F28 = F2[z]/〈p(z)〉.

To build the byte-wise linear approximation for the FSM of SNOW 3G, we first apply
the 4-byte linear masks Q, T and N to zt−1, zt and zt+1 respectively,

Q ∗ (zt−1 ⊕ st−1) = Q ∗ (st+14 �R1t−1)⊕Q ∗R2t−1

T ∗ (zt ⊕ st) = T ∗ (st+15 �R1t)⊕T ∗R2t
N ∗ (zt+1 ⊕ st+1) = N ∗ (st+16 �R1t+1)⊕N ∗R2t+1

Let ut = R1t−1, vt = R2t−1 and wt = R1t. Applying the FSM update algorithm, we
have

Q ∗ (zt−1 ⊕ st−1) = Q ∗ (st+14 � ut)⊕Q ∗ vt
T ∗ (zt ⊕ st) = T ∗ (st+15 �wt)⊕T ∗ S1(ut)

N ∗ (zt+1 ⊕ st+1) = N ∗ (st+16 � (st+5 ⊕ S2(vt))� S1(ut))⊕N ∗ S1(wt)

Regarding to the internal states and keystream words, we consider the following four linear
approximations by introducing a 4-byte intermediate linear mask Ω, and write them as
follows:
(1) Q ∗ (st+14 � ut) = Q ∗ st+14 ⊕Ω ∗ S1(ut)⊕ e(t)

1 ,
(2) T ∗ (st+15 �wt) = T ∗ st+15 ⊕N ∗ S1(wt)⊕ e(t)

2 ,
(3) N ∗ (st+16 � (st+5 ⊕ S2(vt))� S1(ut))

= N ∗ st+16 ⊕N ∗ (st+5 ⊕ S2(vt))⊕ (Ω⊕T) ∗ S1(ut)⊕ e(t)
3 ,

(4) N ∗ S2(vt) = Q ∗ vt ⊕ e(t)
4 ,

where e(t)
j for j = 1, 2, 3, 4 are 8-bit noises introduced by the above linear approximations.

With these relations, the byte-wise linear approximations of the FSM of SNOW 3G have
the following form,

Q ∗ zt−1 ⊕T ∗ zt ⊕N ∗ zt+1

= Q ∗ (st−1 ⊕ st+14)⊕T ∗ (st ⊕ st+15)⊕N ∗ (st+1 ⊕ st+5 ⊕ st+16)⊕ e(t),
(4)

where e(t) = e(t)
1 ⊕ e(t)

2 ⊕ e(t)
3 ⊕ e(t)

4 is the folded noise introduced by the above four linear
approximations.

We will try to find the byte-wise mask tuples (Q,T,N) for linear approximation (4)
such that the SEIs of the distributions of e(t) are as large as possible, and then they can
be used in the fast correlation attack over F28 . It is important to note that the field F28

involved in e(t) have three different defining polynomials, they are

• z8 + z7 + z5 + z3 + 1 ∈ F2[z] (field constant 0xA9), used for defining the LFSR of
SNOW 3G. We denote the corresponding field by G = F2[z]

/
〈z8 + z7 + z5 + z3 + 1〉.

For two 4-dimensional vectors x = (x0,x1,x2,x3) and y = (y0,y1,y2,y3), where
xi,yi ∈ G, the inner product x ∗ y = x0y0 ⊕ x1y1 ⊕ x2y2 ⊕ x3y3 is operated with
the multiplications xiyi taken over G.

• z8
1 + z4

1 + z3
1 + z1 + 1 ∈ F2[z1] (field constant 0x1B), used for defining the AES

MixColumn operation M1 of the mapping S1(·) in the FSM part. We denote the
corresponding field by G1 = F2[z1]

/
〈z8

1 + z4
1 + z3

1 + z1 + 1〉. For x = (x0,x1,x2,x3)
and y = (y0,y1,y2,y3), where xi,yi ∈ G1, we will use x ∗1 y as a substitute for x ∗y,
where the inner product is operated with the multiplications xiyi taken over G1.
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• z8
2 + z6

2 + z5
2 + z3

2 + 1 ∈ F2[z2] (field constant 0x69), used for defining the AES
MixColumn operation M2 of the mapping S2(·) in the FSM part. We denote the
corresponding field by G2 = F2[z2]

/
〈z8

2 + z6
2 + z5

2 + z3
2 + 1〉. For x = (x0,x1,x2,x3)

and y = (y0,y1,y2,y3), where xi,yi ∈ G2, we will use x ∗2 y as a substitute for x ∗y,
where the inner product is operated with the multiplications xiyi taken over G2.

We need to unify all the involved multiplications in F28 by specifying only one defining
polynomial. Different from the method in [ZXM15] for unifying two fields for SNOW
2.0, here we will unify three fields for SNOW 3G during the course of approximating the
FSM. We will use G = F2[z]

/
〈z8 + z7 + z5 + z3 + 1〉 as the specified field, that means all

the masks are defined over G, and the multiplications over F28 are taken by modulo the
polynomial z8 + z7 + z5 + z3 + 1. Let M denote the AES MixColumn operation defined
over G, then

• For any 4-byte value w = (w0,w1,w2,w3), let W = (W0,W1,W2,W3) be the
output of four parallel AES S-boxes SR(·), i.e., W = Sbox(w) = (SR(w0), SR(w1),
SR(w2), SR(w3)). According to the definition of S1(·), we have S1(w) = M1 ∗1 W,
where M1 is the AES MixColumn operation defined over G1 and the operation “∗1” is
taken over G1. Let W′ , l1(W) be another 4-byte value such that M∗W′ = M1∗1W,
where the involved multiplications in the left and right sides are taken over G and
G1 respectively. Then we derive S1(w) = M ∗ l1(W). We refer to Equation (12) in
Appendix C on how to compute W′ from W.

• For any 4-byte value v = (v0,v1,v2,v3), let V = (V0,V1,V2,V3) be the output of
four parallel 8-bit to 8-bit substitutions SQ(·), i.e., V = Sbox′(v) = (SQ(v0), SQ(v1),
SQ(v2), SQ(v3)). According to the definition of S2(·), we have S2(v) = M2 ∗2 V,
where M2 is the AES MixColumn operation defined over G2 and the operation “∗2” is
taken over G2. Let V′′ , l2(V) be another 4-byte value such that M ∗V′′ = M2 ∗2 V,
where the involved multiplications in the left and right sides are taken over G and
G2 respectively. Then we derive S2(v) = M ∗ l2(V). We refer to Equation (13) in
Appendix D for the computation of V′′ from V.

After unifying all the involved operations to G = F2[z]
/
〈z8 + z7 + z5 + z3 + 1〉, we now

have the following illustrations for the above four linear approximation relations.

1. For the linear approximation relation (1), we let Ut = Sbox(ut) be the output of
four parallel AES S-boxes SR(·), then S1(ut) = M1 ∗1 Ut. Let U′t = l1(Ut) be the
4-byte value such that M ∗U′t = M1 ∗1 Ut computed by Equation (12) in Appendix
C, we then have

e(t)
1 = Q ∗ (st+14 � Sbox−1(Ut))⊕Q ∗ st+14 ⊕Ω′ ∗ l1(Ut),

where Ω′ = Ω ∗M, with the involved multiplications taken over the unified field G.

2. Similarly, for the linear approximation relation (2), we let Wt = Sbox(wt), and thus
S1(wt) = M1 ∗1 Wt. Let W′

t = l1(Wt) be the 4-byte value such that M ∗W′
t =

M1 ∗1 Wt computed by Equation (12) in Appendix C, then

e(t)
2 = T ∗ (st+15 � Sbox−1(Wt))⊕T ∗ st+15 ⊕N′ ∗ l1(Wt),

where N′ = N ∗M, with the involved multiplications taken over G.

3. For the linear approximation relation (3), we set ξt = st+5 ⊕ S2(vt) and ηt = S1(ut),
then

e(t)
3 = N ∗ (st+16 � ξt � ηt)⊕N ∗ st+16 ⊕N ∗ ξt ⊕ (Ω⊕T) ∗ ηt.
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4. For the linear approximation relation (4), we let Vt = Sbox′(vt) be the output of four
parallel 8-bit to 8-bit substitutions SQ(·), then S2(vt) = M2 ∗2 Vt. Let V′′t = l2(Vt)
be the 4-byte value such that M ∗V′′t = M2 ∗2 Vt computed by Equation (13) in
Appendix D. Then we have

e(t)
4 = N′ ∗ l2(Vt)⊕Q ∗ Sbox′−1(Vt),

where N′ = N ∗M, with the involved multiplications taken over G.

To sum up, the four linear approximation relations can be rewritten as follows:

e(t)
1 = Q ∗ (st+14 � Sbox−1(Ut))⊕Q ∗ st+14 ⊕Ω′ ∗ l1(Ut),

e(t)
2 = T ∗ (st+15 � Sbox−1(Wt))⊕T ∗ st+15 ⊕N′ ∗ l1(Wt),

e(t)
3 = N ∗ (st+16 � ξt � ηt)⊕N ∗ st+16 ⊕N ∗ ξt ⊕ (Ω⊕T) ∗ ηt,

e(t)
4 = N′ ∗ l2(Vt)⊕Q ∗ Sbox′−1(Vt).

As described in Section 3.2, two-round byte-wise linear approximations for the FSM of
SNOW 2.0 were constructed and searches were performed for finding byte-wise masks in
[ZXM15]. Based on this, we have provided two improved algorithms in Sections 3.2.1 and
3.2.2, namely Algorithm 1 and Algorithm 2, to compute the distributions of two types
of byte-wise linear approximations, whose complexities are 220.25 and 227.33 respectively.
For SNOW 3G, we have computed the SEI of the distributions3 of ej for j = 1, 2, i.e.,
∆(ej), by modifying Algorithm 1, due to the introduction of the linear transform l1(·)
when unifying the field F28 , and computed ∆(e3) by Algorithm 2. For e4, since Sbox′−1(·)
consists of four parallel applications of S−1

Q , which do not affect the independency among
the bytes of Vt, the distribution of e4 can be derived by using similar method as that in
Algorithm 1 and Algorithm 2. After this, the SEI of the distribution of e, i.e., ∆(e), can
then be obtained by the convolution of the above four distributions.
Results. We will sketch some ideas on how to compute the above noise distributions.
From our experiments, we have found some byte-wise mask tuples (Q,T,N) such that
∆(e) have high values, which are listed in Table 5.

Table 5: The best byte-wise masks (Q,T,N) for the linear approximation (4)

No. Q T N log(∆(e))
(1) (0x0c, 0x00, 0x00, 0x00) (0x01, 0x00, 0x00, 0x00) (0x8b, 0x2f, 0x70, 0x1a) −40.958
(2) (0x16, 0x00, 0x00, 0x00) (0x01, 0x00, 0x00, 0x00) (0x8b, 0x2f, 0x70, 0x1a) −40.958
(3) (0x01, 0x00, 0x00, 0x00) (0x01, 0x00, 0x00, 0x00) (0x8b, 0x2f, 0x70, 0x1a) −41.602

4.3 Examples of Relations Between Large-unit and Bitwise Linear
Approximations

For SNOW 3G, we let G(Q,T,N) denote the byte-wise linear approximation with the
4-byte mask tuple (Q,T,N) such that G(Q,T,N)(·) = Q ∗ (zt−1 ⊕ st−1 ⊕ st+14) ⊕ T ∗
(zt ⊕ st ⊕ st+15)⊕N ∗ (zt+1 ⊕ st+1 ⊕ st+5 ⊕ st+16), and g(Φ,Γ,Λ) denote the bitwise linear
approximation with the 32-bit mask tuple (Φ,Γ,Λ) such that g(Φ,Γ,Λ)(·) = Φ · (zt−1 ⊕
st−1 ⊕ st+14)⊕ Γ · (zt ⊕ st ⊕ st+15)⊕Λ · (zt+1 ⊕ st+1 ⊕ st+5 ⊕ st+16).

For I = (1, 0, 0, 0, 0, 0, 0, 0), we always have ∆(GI
(Q,T,N)) ≤ ∆(G(Q,T,N)). As was

done in Section 3.3, below we will give some concrete examples of byte-wise mask tuple
3Since the distributions of e(t)

j for j = 1, 2, 3, 4 are independent of t, we simplify them by writing ej .
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(Q,T,N) for the linear approximation G(Q,T,N) such that ∆(GI
(Q,T,N)) = ∆(G(Q,T,N)) by

comparing the bitwise and byte-wise masks in Table 3 and Table 5, meaning that each of
these byte-wise linear approximations has a single dominating bitwise linear approximation
such that the SEI of the whole thing is almost equal to the squared correlation of the
dominating single bitwise approximation.

• For the 4-byte masks Q = (0x0c, 0x00, 0x00, 0x00), T = (0x01, 0x00, 0x00, 0x00)
and N = (0x8b, 0x2f, 0x70, 0x1a) numbered (1) in Table 5, and the 32-bit masks
Φ =0x00000020, Γ =0x00000001 and Λ =0x1014190f numbered (1) in Table
3, we have verified that GI

(Q,T,N) = g(Φ,Γ,Λ). In such a case we have obtained
∆(G(Q,T,N)) = 2−40.958 by computing the byte-wise linear approximations, as shown
in Table 5. We also computed the distribution of GI

(Q,T,N) directly from the dis-
tribution of G(Q,T,N), and obtained ∆(GI

(Q,T,N)) = 2−40.958 = ∆(G(Q,T,N)), and
thus |ε(GI

(Q,T,N))| =
√

∆(GI
(Q,T,N)) = 2−20.48. As shown in Table 3, we have ob-

tained |εFSM(Φ,Γ,Λ)| = 2−20.48 by computing the bitwise linear approximations.
These results prove the validity and correctness of our algorithms for computing
the byte-wise linear approximation in Section 4.2 and computing the bitwise linear
approximations in Section 5.1.

• Similarly, we have GI
(Q,T,N) = g(Φ,Γ,Λ) for the byte-wise masks Q = (0x16, 0x00,

0x00, 0x00), T = (0x01, 0x00, 0x00, 0x00) and N = (0x8b, 0x2f, 0x70, 0x1a) num-
bered (2) in Table 5, and the bitwise masks Φ =0x00000030, Γ =0x00000001
and Λ =0x1014190f numbered (2) in Table 3. In such a case we obtained
∆(G(Q,T,N)) = 2−40.958 by computing the byte-wise approximations, as shown in
Table 5, and |ε(g(Φ,Γ,Λ))| = |εFSM(Φ,Γ,Λ)| = 2−20.48 by computing the bitwise ap-
proximations, as shown in Table 3. Thus we can derive ∆(GI

(Q,T,N)) = ∆(G(Q,T,N)).

• We also have GI
(Q,T,N) = g(Φ,Γ,Λ) and ∆(GI

(Q,T,N)) = ∆(G(Q,T,N)) for the byte-wise
masks Q = (0x01, 0x00, 0x00, 0x00), T = (0x01, 0x00, 0x00, 0x00) and N = (0x8b,
0x2f, 0x70, 0x1a) numbered (3) in Table 5, and the bitwise masks Φ =0x00000001,
Γ =0x00000001 and Λ =0x1014190f numbered (3) in Table 3.

• and so on ...

In our experiments, we have found many concrete examples of 8-bit linear approximations
for SNOW 3G whose certain 1-dimensional bitwise linear approximations have almost the
same SEI as that of the original large-unit ones. As explained in Section 3.3, correlation
attacks can be more efficiently implemented using bitwise approximations rather than
large-unit approximations. Thus we have an opportunity to improve the attack against
SNOW 3G in [YJM19] which mounted the fast correlation attacks by using the 8-bit
(vectorized) linear approximations. We will show in Section 6 the detailed process of the
bitwise fast correlation attack on SNOW 3G.

5 Search for Bitwise Masks of SNOW 3G
In this section, we describe how to search for bitwise mask tuples (Φ,Γ,Λ) of the linear
approximation relation (3) for the FSM of SNOW 3G.

5.1 Computing the Bitwise Linear Approximations of the FSM
As described in Section 4.1, the bitwise linear approximations for the FSM of SNOW 3G
have the form of (3) by using four linear approximations with the following approximation
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noise variables,

e
(t)
1 = Φ · (st+14 � Sbox−1(xt))⊕Φ · st+14 ⊕Θ′ · xt,

e
(t)
2 = Γ · (st+15 � Sbox−1(yt))⊕ Γ · st+15 ⊕Λ′ · yt,

e
(t)
3 = Λ · (st+16 � ξt � ηt)⊕Λ · st+16 ⊕Λ · ξt ⊕ (Θ⊕ Γ) · ηt,

e
(t)
4 = Λ′′ · Sbox′(vt)⊕Φ · vt.

For any given bitwise mask tuple (Φ,Γ,Λ), the correlation of the linear approximation
relation (3) is computed as εFSM(Φ,Γ,Λ) = ε(e2)ε(e4)

∑
Θ ε(e1)ε(e3). We try to find

(Φ,Γ,Λ) such that |εFSM(Φ,Γ,Λ)| is as large as possible. Accordingly, we need to
compute the correlations of e1, e2, e3, e4 for given masks. In the following parts, we will
show in detail how to compute these correlations in linear-time by utilizing the existing
algorithms in [GZ20, NW06].

5.1.1 Computation of the Correlations of e1 and e2.

Note that the noises e1 and e2 have the same form but different 32-bit mask tuples, which
is (Φ,Θ′) for e1 and (Γ,Λ′) for e2. As was done in [GZ20] for the linear approximation
of SNOW 2.0, a certain type of function is derived from the expressions of e1 and e2 as
G : F232 × F232 → F232 such that

G(x(1),x(2)) = x(1) � Sbox−1(x(2)),

where x(1),x(2) are both 32-bit (4-byte) random variables, and the notation “�" denotes
the addition modulo 232. We note that ε(e1) is exactly the correlation of the linear
approximation of G with the output mask Φ and the input masks Φ and Θ′, and ε(e2)
equals to the correlation of the linear approximation of G with the output mask Γ and the
input masks Γ and Λ′, thus we have

ε(e1) = εG(Φ; Φ,Θ′), ε(e2) = εG(Γ; Γ,Λ′).

Let A be the 32-bit output mask of G, and A,B be the 32-bit input masks, then the
correlation of the linear approximation of G under the bitwise mask tuple (A; A,B) is
defined as

εG(A; A,B) = Pr{A ·G(x(1),x(2)) = A · x(1) ⊕B · x(2)}
−Pr{A ·G(x(1),x(2)) 6= A · x(1) ⊕B · x(2)}

In [GZ20], a linear-time algorithm is proposed to compute the correlation of the linear
approximation of G for an arbitrary bitwise mask tuple, and then used to mount attacks
on SNOW 2.0 and SNOW 3G. The general idea is to divide the 32-bit values into four
8-bit values according to the specific structure of the underlying function S−1

R (·), and
then pre-compute and store some useful matrices independent of the input/output masks,
and finally compute the correlation under an arbitrary bitwise mask tuple by doing some
matrix multiplications using these pre-computed matrices. To be specific, for any 32-bit
mask tuple (A; A,B) of G, we write A and B in bytes as A = (A0 ‖ A1 ‖ A2 ‖ A3) and
B = (B0 ‖ B1 ‖ B2 ‖ B3) with Aj ,Bj ∈ F28 for j = 0, 1, 2, 3, then εG(A; A,B) can be
efficiently computed by Theorem 2 of [GZ20] as

εG(A; A,B) = l2M(A3,A3,B3)M(A2,A2,B2)M(A1,A1,B1)M(A0,A0,B0)e0, (5)

where M(Aj ,Aj ,Bj) are 2 × 2 matrices pre-computed by Algorithm 3 as shown below,
l2 = (1, 1) is a row vector, and e0 = (1, 0)T is a column vector.
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Algorithm 3 Construction of the matrix M(a,a,b)
Parameters: the partial m-bit mask values a and b (m = 8)
1: Create a matrix M(a,a,b) of size 2× 2;
2: Create two 2× 2 matrices N0 and N1 initialized with zeros;
3: for iθ ∈ {0, 1}, x ∈ F2m and y ∈ F2m do
4: compute u = x + S−1

R (y);
5: compute r = a · ((u+ iθ)mod 2m)⊕ a · x⊕ b · y;
6: compute oθ = b(u+ iθ)/2mc;
7: Nr[oθ][iθ] := Nr[oθ][iθ] + 1;
8: for iθ ∈ {0, 1} and oθ ∈ {0, 1} do
9: M(a,a,b)[oθ][iθ] := (N0[oθ][iθ]−N1[oθ][iθ])/22m;
Output: the corresponding 2× 2 matrix M(a,a,b)

Complexity Analysis. To compute εG(A; A,B) by Equation (5) for any 32-bit masks
A,B, we need to pre-compute 28×28 = 216 matricesM(a,a,b) by trying all the possibilities of
a,b ∈ F28 . From Algorithm 3, for each (a,b), the matrix M(a,a,b) can be constructed with
a time complexity O(22m+1) and a memory complexity O(1). Here we have m = 8. Thus
all the 216 matrices M(a,a,b) are constructed with a time complexity of 216×(216×2) = 233

and a memory complexity of 216 × (2× 2) = 218. Using these pre-computed matrices, the
accurate value of ε(e1) with the given masks (Φ,Θ′) (Resp. ε(e2) with the given masks
(Γ,Λ′)) can be obtained according to Equation (5) by doing 4 matrix multiplications of
small size, which costs a linear-time complexity.

For the value of εG(A; A,B) under any given masks A,B, we have the following
conclusion, which will help in finding good bitwise linear approximations for the FSM of
SNOW 3G. The proof is given in Appendix E.

Corollary 1. For any 32-bit masks A = (A0 ‖ A1 ‖ A2 ‖ A3) and B = (B0 ‖ B1 ‖ B2 ‖
B3), suppose εG(A; A,B) 6= 0. Then we have
• A3 =0x00 if and only if B3 =0x00; In this case, we have

εG(A; A,B) = l2M(A2,A2,B2)M(A1,A1,B1)M(A0,A0,B0)e0.

• A3 = A2 =0x00 if and only if B3 = B2 =0x00; In this case, we have

εG(A; A,B) = l2M(A1,A1,B1)M(A0,A0,B0)e0.

• A3 = A2 = A1 =0x00 if and only if B3 = B2 = B1 =0x00; In this case, we have

εG(A; A,B) = l2M(A0,A0,B0)e0.

• A3 = A2 = A1 = A0 =0x00 if and only if B3 = B2 = B1 = B0 =0x00. In this case,
we have εG(A; A,B) = 1.

5.1.2 Computation of the Correlation of e3.

Note that the correlation of e3 is closely related with the correlation of the addition modulo
232 with three inputs. The k-input addition modulo 2n is defined as F : F2n × ...×F2n →
F2n such that F (x(1), ...,x(k)) = x(1) � · · ·� x(k), where “�" denotes the addition modulo
2n. Let ε+(Γ(0); Γ(1), ...,Γ(k)) denote the correlation of F with respect to the n-bit output
mask Γ(0) and the n-bit input masks Γ(1), ...,Γ(k). In [NW06], the authors have proposed
a linear-time algorithm to accurately compute the correlation of the linear approximation
of F for any given mask tuple, we describe it in the following theorem.
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Theorem 1. [NW06]. Let k > 1 be a fixed integer. For all R ∈ Fk+1
2 , let DR be the

k × k matrices where the (oc, ic)-element is computed as

DR[oc][ic] = 2−k(|{x ∈ Fk2 : r0 · f(x, ic) = r̄ · x, g(x, ic) = oc}|
−|{x ∈ Fk2 : r0 · f(x, ic) 6= r̄ · x, g(x, ic) = oc}|)

where4

R = (r0, r1, ..., rk) ∈ Fk+1
2 , ic, oc ∈ {0, ..., k − 1},

r̄ = (r1, ..., rk) ∈ Fk2 , x = (x1, ..., xk) ∈ Fk2 ,
f(x, ic) = (wH(x) + ic)mod 2, g(x, ic) = b(wH(x) + ic)/2c .

Let lk be the row vector of length k with all elements equal to 1, and let e0 be the
column vector of length k with a single 1 in 0-th row and 0 otherwise. For any given
mask tuple (Γ(0),Γ(1), ...,Γ(k)) of the k-input addition modulo 2n, write Γ(i) in bits as
Γ(i) = (γ(i)

0 ‖ γ
(i)
1 ‖ ... ‖ γ

(i)
n−1), i = 0, 1, ..., k, then we have

ε+(Γ(0); Γ(1), ...,Γ(k)) = lkDRn−1 ...DR1DR0e0,

where Rj = (γ(0)
j , γ

(1)
j , ..., γ

(k)
j ) ∈ Fk+1

2 for j = 0, 1, ..., n− 1.

From the above, we have ε(e3) = ε+(Λ; Λ,Λ,Θ⊕ Γ) with the parameters n = 32 and
k = 3, which can be accurately computed using Theorem 1. Let us write Λ, Θ and Γ in
bits as Λ = (λ0 ‖ λ1 ‖ ... ‖ λ31), Θ = (θ0 ‖ θ1 ‖ ... ‖ θ31) and Γ = (γ0 ‖ γ1 ‖ ... ‖ γ31),
then we have

ε(e3) = l3D(λ31,λ31,λ31,θ31⊕γ31)...D(λ1,λ1,λ1,θ1⊕γ1)D(λ0,λ0,λ0,θ0⊕γ0)e0. (6)

Complexity Analysis. For these computations, we need to pre-compute four 3 × 3
matrices D(α,α;α;β) for α, β ∈ F2, corresponding to a time complexity of 4×(23×3) = 26.58

and a memory complexity of 4× (3× 3) = 25.17. Using these pre-computed matrices, the
accurate value of ε(e3) with the given masks Λ,Θ,Γ can be obtained according to Equation
(6) by doing 32 matrix multiplications of small size, which costs a linear-time complexity.

5.1.3 Computation of the Correlation of e4.

Note that the correlation of e4 is exactly the correlation of the function Sbox′(·) with
respect to a linear output mask Λ′′ and a linear input mask Φ, i.e., ε(e4) = εSbox′(Λ′′; Φ).
Let Λ′′ = (Λ′′0 ‖ Λ′′1 ‖ Λ′′2 ‖ Λ′′3) and Φ = (Φ0 ‖ Φ1 ‖ Φ2 ‖ Φ3), where Λ′′j ,Φj ∈ F28 for
j = 0, 1, 2, 3. Since Sbox′(·) is composed of four parallel applications of SQ, according to
the Piling-up Lemma, we have

ε(e4) = εSQ
(Λ′′3 ; Φ3)εSQ

(Λ′′2 ; Φ2)εSQ
(Λ′′1 ; Φ1)εSQ

(Λ′′0 ; Φ0) (7)

Complexity Analysis. We need to pre-compute a linear approximation table (LAT)
to store all the linear approximations of SQ by trying all the possibilities of a,b values,
i.e., all the values εSQ

(a; b) for all a,b ∈ F28 are stored in the row of LAT indexed by
(a,b). For this, we loop for all x ∈ F28 , and compute a · SQ(x)⊕ b · x, which requires a
time complexity of 28 × 28 × 28 = 224. Using the LAT, the accurate value of ε(e4) with
the given masks Λ′′ and Φ can be obtained according to Equation (7) by table lookups 4
times, which costs a linear-time complexity.

4Note that wH(x): 0 ≤ wH(x) ≤ k, denote the Hamming weight of x, which is the number of non-zero
components of x.



Xinxin Gong(�) and Bin Zhang(�) 95

5.1.4 Computation of εFSM(Φ,Γ,Λ).

For any fixed mask tuple (Φ,Γ,Λ) and any intermediate linear mask Θ, we write Φ =
(Φ0 ‖ Φ1 ‖ Φ2 ‖ Φ3), Γ = (Γ0 ‖ Γ1 ‖ Γ2 ‖ Γ3), Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3), and
Θ = (Θ0 ‖ Θ1 ‖ Θ2 ‖ Θ3). Then εFSM(Φ,Γ,Λ) is computed as follows:

• We compute Λ′ = (Λ′0 ‖ Λ′1 ‖ Λ′2 ‖ Λ′3) from Λ and Θ′ = (Θ′0 ‖ Θ′1 ‖ Θ′2 ‖ Θ′3)
from Θ according to (10) in Appendix A, and then derive the accurate values of
ε(e1) = εG(Φ; Φ,Θ′) and ε(e2) = εG(Γ; Γ,Λ′) by Equation (5). This is a linear-time
procedure.

• We compute the accurate value of ε(e3) = ε+(Λ; Λ,Λ,Θ⊕Γ) by Equation (6), which
costs linear-time complexity.

• We compute Λ′′ = (Λ′′0 ‖ Λ′′1 ‖ Λ′′2 ‖ Λ′′3) from Λ according to (11) in Appendix B,
and then derive the accurate value of ε(e4) = εSbox′(Λ′′; Φ) using Equation (7) by
table lookups 4 times. This is also a linear-time procedure.

With the above method, the accurate value of εFSM(Φ,Γ,Λ) is obtained as

εFSM(Φ,Γ,Λ) = εG(Γ; Γ,Λ′)εSbox′(Λ′′; Φ)
∑

Θ
εG(Φ; Φ,Θ′)ε+(Λ; Λ,Λ,Θ⊕ Γ), (8)

whose complexity is essentially proportional to the number of the terms of the sum over Θ.

5.2 Search for Bitwise Masks
In this part, we hope to find 32-bit mask tuples (Φ,Γ,Λ) for the linear approximation (3)
such that |εFSM(Φ,Γ,Λ)| computed by Equation (8) are as large as possible. Obviously,
executing the search for all possible mask values is impractical. Therefore, we consider to
use a clever search strategy trying to find some potential linear masks.

For ease of description, we define a subset S of all the 32-bit masks such that

S = {Λ = (Λ0 ‖Λ1 ‖Λ2 ‖Λ3) : Λ0 =0xa ∈ F∗28 and Λk=0x00 for k=1, 2, 3}.

There are totally 255 values in S. In our attempt to find good linear approximations, we have
observed according to Corollary 1 and our experiments that the term |ε(e2)| = |εG(Γ; Γ,Λ′)|
is more likely to have high value when both Γ ∈ S and Λ′ ∈ S are satisfied. Besides, taking
into consideration the term ε(e4) = εSQ

(Λ′′3 ; Φ3)εSQ
(Λ′′2 ; Φ2)εSQ

(Λ′′1 ; Φ1)εSQ
(Λ′′0 ; Φ0), we

have confined the search to Λ and Φ such that Λ′′ ∈ S and Φ ∈ S to ensure |ε(e4)| is as
large as possible. Furthermore, we deduce from Corollary 1 that |ε(e1)| = |εG(Φ; Φ,Θ′)|
have nonzero values if and only if Θ′ ∈ S.

Above all, we have confined the search to mask tuples (Φ,Γ,Λ) such that Φ ∈ S,
Γ ∈ S, Λ′ ∈ S and Λ′′ ∈ S, and the terms of the sum over Θ such that Θ′ ∈ S are included
in Equation (8). According to the computations of Λ′ and Λ′′ from Λ in Appendix A and
B, we obtained 31 choices for Λ which are listed in Table 6 of Appendix F.

Based on the above, we compute εFSM(Φ,Γ,Λ) for all the 255× 255× 31 ≈ 221 mask
tuples (Φ,Γ,Λ) in the following way.

Step 1: We tried all the 255× 31 combinations of the selected (Γ,Λ) and compute the
values of ε(e2) = εG(Γ; Γ,Λ′).

Step 2: We tried all the 255× 31 combinations of the selected (Φ,Λ) and compute the
values of ε(e4) = εSQ

(Λ′′0 ; Φ0).

Step 3: For all the 255× 255× 31 ≈ 221 choices of (Φ,Γ,Λ), we compute the values of∑
Θ′∈S εG(Φ; Φ,Θ′)ε+(Λ; Λ,Λ,Θ⊕ Γ) by including 255 terms of the sum over Θ.
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Following the above procedure, we obtained some newly found mask tuples for the bitwise
linear approximation of the FSM of SNOW 3G, some of the results are presented in Table
3 and Table 4 of Section 4.1. We have obtained two best results, which correspond to the
linear mask tuples (Φ,Γ,Λ) where Φ=0x00000020 or 0x00000030, Γ=0x00000001 and
Λ=0x1014190f, and the best bitwise linear approximations have the correlation ±2−20.48

and thus the SEI 2−40.96.

6 Bitwise Fast Correlation Attack on SNOW 3G
In this section, we will first present a fast correlation attack on SNOW 3G by using
the bitwise linear approximations, and then make a brief discussion about the bitwise
approximation attacks compared the large-unit approximation attack in [YJM19].

6.1 Using the Bitwise Masks in a Fast Correlation Attack
The bitwise linear approximations of the FSM of SNOW 3G have the following form:

Φ ·zt−1⊕Γ ·zt⊕Λ ·zt+1 = Φ ·(st−1⊕st+14)⊕Γ ·(st⊕st+15)⊕Λ ·(st+1⊕st+5⊕st+16)⊕e(t).

Given a mask tuple (Φ,Γ,Λ), we let ϕt = Φ ·zt−1⊕Γ ·zt⊕Λ ·zt+1. For a given parameter
N (to be determined later), set D = N/2+2, provided the keystream words z0, z1, ..., zD−1,
we can obtain ϕt for t = 1, 2, ..., N/2. Let (x0, x1, ..., xl−1) be the LFSR initial state of
SNOW 3G in bits (l = 512). With the feedback polynomial we can express the above
linear approximations in the initial state form as

ϕt = (x0, x1, ..., xl−1) · gt ⊕ e(t), t = 1, 2, ..., N/2

where gt is the corresponding l-bit coefficient column vector. For SNOW 3G, we will
use the best two bitwise mask tuples for approximations, both yielding the correlation of
εFSM(Φ,Γ,Λ) = ±2−20.48. In such a case we can obtain N parity checks in total written
as follows

Z = U⊕E = (x0, x1, ..., xl−1) ·G⊕E, (9)
where Z is the N -bit row vector computed from the given keystream words z0, z1, ..., zD−1,
G is the l × N generator matrix, and E is the N -bit noise vector with the correlation
α , ±2−20.48.

We present a high-level description of our attack on SNOW 3G in Algorithm 4.
Generally, the fast correlation attack is modelled as a decoding problem, i.e., the keystream
segment Z can be seen as the transmission result of the LFSR sequence U through a
Binary Symmetry Channel (BSC) with the error probability p, as shown in Fig. 6.

Figure 6: Model for a bitwise fast correlation attack

Our bitwise fast correlation attack on SNOW 3G is divided into the preprocessing
phase and the processing phase. In the preprocessing phase, we first collect N samples of
(9) involving only the keystream words and l = 512 LFSR initial state bits, and then try
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to reduce the number of the involved LFSR initial state bits to l′(< l) bits at the expense
of a folded noise level by employing Wagner’s k-tree algorithm to generate parity check
equations. After this, we enter the processing phase to recover the target l′ bits by using
the fast Walsh transform as was done in [CJM02, LV04], and further the whole LFSR
initial state of SNOW 3G.

Algorithm 4 the bitwise fast correlation attack on SNOW 3G
Parameters: N , m2, l(= 512) and l′(< l). Let D = N/2 + 1
Input:
the keystream words z0, z1, ..., zD−1, and the best two mask tuples (Φ,Γ,Λ)
1: Compute Z and G;
2: Follow the Preprocessing Phase to derive m2 parity check equations involving

only l′ bits of the LFSR initial state, e.g., (x0, x1, ..., xl′−1);
3: Follow the Processing Phase to recover (x0, x1, ..., xl′−1) by using the FWT;
4: Recover the remaining l − l′ LFSR initial state bits using a similar method;
5: Recover the secret key according to the reverse of the initialization;
Output: the correct secret key.

Rewriting the matrix G in column vectors as G = (g1,g2, ...,gN ), where gj is the j-th
column vector, we try to find some linear combinations of columns which vanish on l − l′
bits to reduce the dimension of the secret (i.e., the number of the involved LFSR initial
state bits). For SNOW 3G, the number of folded noise variables is set to 4. Specifically,
we look for a number of 4-tuples from G which add to 0 on their most significant l − l′
bits. This is usually solved using Wagner’s k-tree algorithm [Wag02]. It is stated in [GZ20]
that a small technique can be combined when applying the k-tree algorithm. Below we
illustrate this process using the method in [GZ20].
Preprocessing Phase. Let l1 and l2 be two positive integers such that l1 + l2 = l − l′,
and highn(a) be the value of the vector a on the most significant n bits. Collecting these
N vectors in one single list L, we carry out the following steps:

Step 1. Create a new list L1 from the original list L composed of all the XORs of gj1 and
gj2 with gj1 6= gj2 , gj1 ,gj2 ∈ L such that highl1(gj1 ⊕ gj2) = 0. We say that l1 bits
are eliminated. For j = 1, 2, ..., N , we will regard the column vectors gj as random
vectors, thus L1 has an expected size of m1 , (N2 ) 2−l1 ≈ N22−(l1+1). This step is
fulfilled by a sort-and-merge procedure as follows: First, sort the N vectors into 2l1
equivalence classes according to their values on the most significant l1 bits, thus any
two vectors in the same equivalence class have the same value on these bits. Then,
look at each pair of vectors (gj1 ,gj2) in each equivalence class to create L1.

Step 2. Create a new list L2 from L1 by further eliminating l2 bits using the same sort-
and-merge procedure as that in Step 1. That is, first sort the m1 vectors in L1 into
2l2 equivalence classes according to their values on the next most significant l2 bits,
and then look at each pair of vectors in each equivalence class to create L2. Similarly,
the expected number of elements in L2 is m2 , (m1

2 ) 2−l2 ≈ m2
12−(l2+1).

Following the above steps, we make an estimation that, we obtain about m2 4-tuples5

(gj1 ,gj2 ,gj3 ,gj4) such that highl−l′(gj1 ⊕ gj2 ⊕ gj3 ⊕ gj4) = 0, which correspond to m2
parity checks with the correlation α4 involving only x0, x1, ..., xl′−1. The running time and
memory complexities of the above procedure are essentially proportional to the size of the
lists that have been processed, which can be estimated as O(N +m1).

5As illustrated in [GZ20], there may exist some repeated tuples, whose number is comparatively quite
small to the usual cases with non-repeated elements. Note that these repeated samples will not affect the
processing phase of the LFSR initial state recovery, since the absolute values of the correlation of folded
approximation relations in such cases is instead larger than the normal cases.
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Processing Phase. We now enter the process to recover the first l′ bits of the LFSR
initial state of SNOW 3G. Following a similar method as that in [CJM02, GZ20, LV04], we
use the FWT to speed up the evaluation of the m2 parity check equations, and thus recover
the value of the target l′ bits, which needs a time complexity6 of O(m2 + l′2l′) and a
memory complexity of O(2l′). To guarantee a high success rate, we set m2 = 2l′ ln 2/(α4)2.
Since m1 = N22−(l1+1) and m2 = m2

12−(l2+1), the parameter N is determined to be
N = (m2 · 22l1+l2+3) 1

4 , and thus the required number of keystream words can be computed
by D = N/2 + 2.
Complexity Analysis. For SNOW 3G, we follow the above preprocessing phase and
processing phase with the parameters l = 512, l′ = 166. In this case, we need to prepare
m2 = 2l′ ln 2/(α4)2 = 2171.69 approximation relations involving only x0, x1, ..., x165. By
choosing l1 = l2 = 173, we havem1 = 2172.84 and N = 2173.42. Thus it requires a keystream
of length D = N/2 + 2 = 2172.42, and the time/memory complexity for preparing m2
approximation relations is O(N +m1), i.e., 2174.16. The FWT is utilized to determine the
first l′ = 166 bits of the LFSR initial state, which costs a time complexity 2173.77 and a
memory complexity 2166. Therefore, all the complexities are all upper bounded by 2174.16.
Once the first 166 bits are recovered, the other LFSR state bits and the FSM state can
be recovered by using a similar method and a small-scale exhaustive search with a much
lower complexity. Since the initialization of SNOW 3G is a reversible process, the secret
key can be recovered once knowing the initial state.

6.2 Comparison
Note that the first significant result on SNOW 3G was given in [YJM19] with all the
complexities upper bounded by 2176.56, which used an 8-bit linear approximation in a fast
correlation attack over F28 . Here we improve slightly this result with all the complexities
upper bounded by 2174.16 in a bitwise fast correlation attack using the bitwise linear
approximations. Actually, we have found more choices of tradeoff parameters by applying
the bitwise fast correlation attack than the attack over F28 , which can lead to somehow
better attacks. Though not a significant improvement, our research results illustrate that
we have an opportunity to achieve improvement over the large-unit attacks by using bitwise
linear approximations in a linear approximation attack.

7 Conclusion
In this paper, we study and compare the large-unit and bitwise linear approximations
of SNOW 2.0 and SNOW 3G, and present a bitwise fast correlation attack on SNOW
3G by using our newly found bitwise linear approximations, slightly improving the best
known attack on SNOW 3G in [YJM19] which mounted a fast correlation attack by
using the 8-bit (vectorized) linear approximation. On one hand, Property 1 and Property
2 indicate that approximations on large-unit alphabets have advantages over all the
smaller-unit/bitwise ones in linear approximation attacks, and the results on SNOW 2.0
in [ZXM15] gave the impression that large-unit approximations lead to larger SEI and
also to better attacks. However, as shown in Section 3.3 and Section 4.3 for the linear
approximations of SNOW 2.0 and SNOW 3G, we have found many concrete examples of
byte-wise linear approximations whose certain 1-dimensional/bitwise linear approximations
have almost the same SEI as that of the original 8-bit ones. That is, each of these
byte-wise approximations is dominated by a single bitwise approximation, and thus the
whole SEI is not essentially larger than the SEI of the dominating single bitwise one. Since
correlation attacks can be more efficiently implemented using bitwise approximations rather

6We refer to [GZ20] for more detailed description of this process.
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than large-unit approximations, improvements over the large-unit linear approximation
attacks [ZXM15, YJM19] are possible for SNOW 2.0 and SNOW 3G. For SNOW 3G, we
have given a fast correlation attack utilizing bitwise linear approximations, with all the
complexities upper bounded by 2174.16, which improve slightly the previous best one in
[YJM19]. Though not a significant improvement, our results have illustrated that the
bitwise linear approximations may lead to better attacks than the large-unit ones. The
cryptanalyst should carefully figure out the internal relation between large-unit linear
approximations and the smaller ones, and make his/her best choice of attack parameters
according to the concrete structure of the primitives. Note that for the new SNOW stream
cipher SNOW-V, the large-unit linear approximations and bitwise ones on several close
variants of SNOW-V are studied in [EJMY19] and [GZ21] respectively. It is our future
work to study the relation between the large-unit and bitwise linear approximations for
these variants, and present the large-unit and bitwise linear approximation attacks on the
full SNOW-V.

Acknowledgements
We would like to thank all reviewers for providing valuable comments to the manuscript.
This work is supported by the National Key R&D Research programm (Grant
No. 2017YFB0802504), the program of the National Natural Science Foundation of
China (Grant No. 61572482), National Cryptography Development Fund (Grant No.
MMJJ20170107).

References
[BBC+08] Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert,

Louis Goubin, Aline Gouget, Louis Granboulan, Cédric Lauradoux, Marine
Minier, et al. Sosemanuk, a fast software-oriented stream cipher. In New
stream cipher designs, pages 98–118. Springer, 2008.

[BJV04] Thomas Baigneres, Pascal Junod, and Serge Vaudenay. How far can we go
beyond linear cryptanalysis? In International Conference on the Theory and
Application of Cryptology and Information Security, pages 432–450. Springer,
2004.

[CJM02] Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks:
An algorithmic point of view. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 209–221. Springer, 2002.

[CJS00] Vladimor V Chepyzhov, Thomas Johansson, and Ben Smeets. A simple
algorithm for fast correlation attacks on stream ciphers. In International
Workshop on Fast Software Encryption, pages 181–195. Springer, 2000.

[CS91] Vladimir Chepyzhov and Ben Smeets. On a fast correlation attack on certain
stream ciphers. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 176–185. Springer, 1991.

[CT00] Anne Canteaut and Michaël Trabbia. Improved fast correlation attacks using
parity-check equations of weight 4 and 5. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 573–588. Springer,
2000.



100 Comparing Large-unit and Bitwise Linear Approximations of SNOW 2.0/SNOW 3G

[EJ00] Patrik Ekdahl and Thomas Johansson. SNOW-a new stream cipher. In
Proceedings of First Open NESSIE Workshop, KU-Leuven, pages 167–168.
Citeseer, 2000.

[EJ02] Patrik Ekdahl and Thomas Johansson. A new version of the stream cipher
SNOW. In International Workshop on Selected Areas in Cryptography, pages
47–61. Springer, 2002.

[EJMY19] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A
new SNOW stream cipher called SNOW-V. IACR Transactions on Symmetric
Cryptology, pages 1–42, 2019.

[FTIM18] Yuki Funabiki, Yosuke Todo, Takanori Isobe, and Masakatu Morii. Sev-
eral milp-aided attacks against SNOW 2.0. In International Conference on
Cryptology and Network Security, pages 394–413. Springer, 2018.

[GZ20] Xinxin Gong and Bin Zhang. Fast computation of linear approximation over
certain composition functions and applications to SNOW 2.0 and SNOW 3G.
Designs, Codes and Cryptography, 88(11):2407–2431, 2020.

[GZ21] Xinxin Gong and Bin Zhang. Resistance of SNOW-V against fast correlation
attacks. IACR Transactions on Symmetric Cryptology, pages 378–410, 2021.

[JJ99] Thomas Johansson and Fredrik Jönsson. Improved fast correlation attacks on
stream ciphers via convolutional codes. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 347–362. Springer,
1999.

[JJ00] Thomas Johansson and Fredrik Jönsson. Fast correlation attacks through
reconstruction of linear polynomials. In Annual International Cryptology
Conference, pages 300–315. Springer, 2000.

[LLP08] Jung-Keun Lee, Dong Hoon Lee, and Sangwoo Park. Cryptanalysis of SOSE-
MANUK and SNOW 2.0 using linear masks. In International Conference on
the Theory and Application of Cryptology and Information Security, pages
524–538. Springer, 2008.

[LV04] Yi Lu and Serge Vaudenay. Faster correlation attack on bluetooth keystream
generator E0. In Annual International Cryptology Conference, pages 407–425.
Springer, 2004.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 386–397.
Springer, 1993.

[MS89] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain stream
ciphers. Journal of Cryptology, 1(3):159–176, 1989.

[NH07] Kaisa Nyberg and Miia Hermelin. Multidimensional walsh transform and a
characterization of bent functions. In 2007 IEEE Information Theory Workshop
on Information Theory for Wireless Networks, pages 1–4. IEEE, 2007.

[NW06] Kaisa Nyberg and Johan Wallén. Improved linear distinguishers for SNOW
2.0. In International Workshop on Fast Software Encryption, pages 144–162.
Springer, 2006.

[Nyb01] Kaisa Nyberg. Correlation theorems in cryptanalysis. Discrete Applied Mathe-
matics, 111(1-2):177–188, 2001.



Xinxin Gong(�) and Bin Zhang(�) 101

[SAG] ETSI SAGE. Specification of the 3GPP confidentiality and integrity algorithms
UEA2 & UIA2, document 2: SNOW 3G specification, version 1.1, 2006.

[Sie84] Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions
for cryptographic applications. IEEE Transactions on Information theory,
30(5):776–780, 1984.

[Sie85] Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext
only. IEEE Computer Architecture Letters, 34(01):81–85, 1985.

[Wag02] David Wagner. A generalized birthday problem. In Annual International
Cryptology Conference, pages 288–304. Springer, 2002.

[WBDC03] Dai Watanabe, Alex Biryukov, and Christophe De Canniere. A distinguishing
attack of SNOW 2.0 with linear masking method. In International Workshop
on Selected Areas in Cryptography, pages 222–233. Springer, 2003.

[YJM19] Jing Yang, Thomas Johansson, and Alexander Maximov. Vectorized linear
approximations for attacks on SNOW 3G. IACR Transactions on Symmetric
Cryptology, pages 249–271, 2019.

[ZGM17] Bin Zhang, Xinxin Gong, and Willi Meier. Fast correlation attacks on grain-
like small state stream ciphers. IACR Transactions on Symmetric Cryptology,
pages 58–81, 2017.

[ZXM15] Bin Zhang, Chao Xu, and Willi Meier. Fast correlation attacks over extension
fields, large-unit linear approximation and cryptanalysis of SNOW 2.0. In
Annual Cryptology Conference, pages 643–662. Springer, 2015.

A Computing the mask Λ′ from the given mask Λ such
that Λ′ · x = Λ · (M1 · x)

Let lin : F232 → F232 be a linear transformation with Λ′ = lin(Λ) being the linear mask
computed from Λ by combining the MixColumn matrix M1, i.e., Λ′ · x = Λ · (M1 · x)
for all 32-bit x. Let us briefly describe how to compute Λ′ from Λ. For r = (r0 ‖ r1 ‖
r2 ‖ r3 ‖ r4 ‖ r5 ‖ r6 ‖ r7) ∈ F28 , we define r′ = trans(r) = (r′0 ‖ r′1 ‖ r′2 ‖ r′3 ‖ r′4 ‖
r′5 ‖ r′6 ‖ r′7) such that r′i = ri+1 for i = 0, 1, ..., 6, and r′7 = r0 ⊕ r1 ⊕ r3 ⊕ r4. Write
Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3), Λ′ = (Λ′0 ‖ Λ′1 ‖ Λ′2 ‖ Λ′3), where Λj ∈ F28 , Λ′j ∈ F28 , we have
(Λ′0 ‖ Λ′1 ‖ Λ′2 ‖ Λ′3) = lin(Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3) such that

Λ′0 = trans(Λ0)⊕Λ1 ⊕Λ2 ⊕Λ3 ⊕ trans(Λ3).
Λ′1 = trans(Λ1)⊕Λ2 ⊕Λ3 ⊕Λ0 ⊕ trans(Λ0),
Λ′2 = trans(Λ2)⊕Λ3 ⊕Λ0 ⊕Λ1 ⊕ trans(Λ1),
Λ′3 = trans(Λ3)⊕Λ0 ⊕Λ1 ⊕Λ2 ⊕ trans(Λ2).

(10)

B Computing the mask Λ′′ from the given mask Λ such
that Λ′′ · x = Λ · (M2 · x)

Let lin′ : F232 → F232 be another linear transformation with Λ′′ = lin′(Λ) being the linear
mask computed from Λ by combining the MixColumn matrix M2, i.e., Λ′′ ·x = Λ · (M2 ·x)
for all 32-bit x. We now describe how to compute Λ′′ from Λ. For r = (r0 ‖ r1 ‖ r2 ‖
r3 ‖ r4 ‖ r5 ‖ r6 ‖ r7) ∈ F28 , we define r′′ = trans′(r) = (r′′0 ‖ r′′1 ‖ r′′2 ‖ r′′3 ‖ r′′4 ‖
r′′5 ‖ r′′6 ‖ r′′7 ) such that r′′i = ri+1 for i = 0, 1, ..., 6, and r′′7 = r0 ⊕ r3 ⊕ r5 ⊕ r6. Writing
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Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3), Λ′′ = (Λ′′0 ‖ Λ′′1 ‖ Λ′′2 ‖ Λ′′3), where Λj ∈ F28 , Λ′′j ∈ F28 , we
have (Λ′′0 ‖ Λ′′1 ‖ Λ′′2 ‖ Λ′′3) = lin′(Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3) such that

Λ′′0 = trans′(Λ0)⊕Λ1 ⊕Λ2 ⊕Λ3 ⊕ trans′(Λ3),
Λ′′1 = trans′(Λ1)⊕Λ2 ⊕Λ3 ⊕Λ0 ⊕ trans′(Λ0),
Λ′′2 = trans′(Λ2)⊕Λ3 ⊕Λ0 ⊕Λ1 ⊕ trans′(Λ1),
Λ′′3 = trans′(Λ3)⊕Λ0 ⊕Λ1 ⊕Λ2 ⊕ trans′(Λ2).

(11)

C Computing the 4-byte value W′ = l1(W) such that
M ∗W′ = M1 ∗1 W

For any 4-byte value W = (W0,W1,W2,W3) and W′ = l1(W) = (W′
0,W′

1,W′
2,W′

3),
we can write Wi ∈ F28 and W′

i ∈ F28 in bits as

Wi = (Wi,0 ‖Wi,1 ‖Wi,2 ‖Wi,3 ‖Wi,4 ‖Wi,5 ‖Wi,6 ‖Wi,7),
W′

i = (W ′i,0 ‖W ′i,1 ‖W ′i,2 ‖W ′i,3 ‖W ′i,4 ‖W ′i,5 ‖W ′i,6 ‖W ′i,7),

where Wi,j ,W
′
i,j ∈ F2 for i = 0, 1, 2, 3 and j = 0, 1, ..., 7. We derive

W ′i,0 = Wi,0 ⊕W(i+1)mod 4,7 ⊕W(i+3)mod 4,7
W ′i,1 = Wi,1 ⊕W(i+2)mod 4,7 ⊕W(i+3)mod 4,7
W ′i,2 = Wi,2 ⊕W(i)mod 4,7 ⊕W(i+2)mod 4,7
W ′i,3 = Wi,3 ⊕W(i)mod 4,7 ⊕W(i+2)mod 4,7
W ′i,4 = Wi,4 ⊕W(i+2)mod 4,7 ⊕W(i+3)mod 4,7
W ′i,5 = Wi,5 ⊕W(i+2)mod 4,7 ⊕W(i+3)mod 4,7
W ′i,6 = Wi,6 ⊕W(i)mod 4,7 ⊕W(i+2)mod 4,7
W ′i,7 = Wi,7 ⊕W(i+1)mod 4,7 ⊕W(i+2)mod 4,7

(12)

D Computing the 4-byte value V′′ = l2(V) such that
M ∗ V′′ = M2 ∗2 V

For any 4-byte value V = (V0,V1,V2,V3) and V′′ = l2(V) = (V′′0 ,V′′1 ,V′′2 ,V′′3), we write
Vi ∈ F28 and V′′i ∈ F28 in bits as

Vi = (Vi,0 ‖ Vi,1 ‖ Vi,2 ‖ Vi,3 ‖ Vi,4 ‖ Vi,5 ‖ Vi,6 ‖ Vi,7),
V′′i = (V ′′i,0 ‖ V ′′i,1 ‖ V ′′i,2 ‖ V ′′i,3 ‖ V ′′i,4 ‖ V ′′i,5 ‖ V ′′i,6 ‖ V ′′i,7),

where Vi,j , V ′′i,j ∈ F2 for i = 0, 1, 2, 3 and j = 0, 1, ..., 7. We derive

V ′′i,0 = Vi,0 ⊕ V(i)mod 4,7 ⊕ V(i+2)mod 4,7
V ′′i,1 = Vi,1 ⊕ V(i)mod 4,7 ⊕ V(i+1)mod 4,7 ⊕ V(i+2)mod 4,7 ⊕ V(i+3)mod 4,7
V ′′i,2 = Vi,2
V ′′i,3 = Vi,3 ⊕ V(i)mod 4,7 ⊕ V(i+2)mod 4,7
V ′′i,4 = Vi,4 ⊕ V(i)mod 4,7 ⊕ V(i+1)mod 4,7 ⊕ V(i+2)mod 4,7 ⊕ V(i+3)mod 4,7
V ′′i,5 = Vi,5 ⊕ V(i)mod 4,7 ⊕ V(i+2)mod 4,7
V ′′i,6 = Vi,6 ⊕ V(i+2)mod 4,7 ⊕ V(i+3)mod 4,7
V ′′i,7 = V(i+1)mod 4,7

(13)

E Proof of Corollary 1
Proof. We first present some observations on the pre-computed matrices M(α,α,β) for any
α, β ∈ F28 .
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• The matrices M(α,α,0) for any α ∈ F∗28 are always equal to
( 1

512 − 1
512

− 1
512

1
512

)
;

• The matrices M(0,0,β) for any β ∈ F∗28 always have the form of
(

val val
−val −val

)
,

where val is a rational number.

• The matrix M(0,0,0) is equal to
( 257

512
255
512255

512
257
512

)
.

For any 32-bit masks A = (a0 ‖ a1 ‖ a2 ‖ a3) and B = (b0 ‖ b1 ‖ b2 ‖ b3), we
have εG(A; A,B) = l2M(a3,a3,b3)M(a2,a2,b2)M(a1,a1,b1)M(a0,a0,b0)e0 6= 0. According to
the above observations,

(1) If a3=0x00, we must have b3=0x00. Otherwise l2M(0,0,b3) = (0, 0), and thus
εG(A; A,B) = 0. Similarly, we can prove that, if b3=0x00, we must have
a3=0x00. When a3 = b3=0x00, we have l2M(a3,a3,b3) = (1, 1), thus εG(A; A,B) =
l2M(a2,a2,b2)M(a1,a1,b1)M(a0,a0,b0)e0.

(2) If a3 = a2 =0x00, from the above we have b3=0x00, and l2M(a3,a3,b3) = l2. Besides,
we must have b2=0x00. Otherwise l2M(a3,a3,b3)M(0,0,b2) = l2M(0,0,b2) = (0, 0),
and thus εG(A; A,B) = 0. Similarly, we can prove that, if b3 = b2 =0x00,
we must have a3 = a2 =0x00. When a3 = a2 = b3 = b2 =0x00, we have
l2M(a3,a3,b3)M(a2,0a2,b2) = (1, 1), thus εG(A; A,B) = l2M(a1,a1,b1)M(a0,a0,b0)e0.

(3) If a3 = a2 = a1 =0x00, we have b3 = b2 =0x00, and l2M(a3,a3,b3)M(a2,a2,b2) = l2.
Besides, we must have b1=0x00. Otherwise l2M(a3,a3,b3)M(a2,a2,b2)M(0,0,b1) =
l2M(0,0,b1) = (0, 0), and thus εG(A; A,B) = 0. Similarly, we can prove that, if
b3 = b2 = b1 =0x00, we must have a3 = a2 = a1 =0x00. When a3 = a2 = a1 =
b3 = b2 = b1 =0x00, we have l2M(a3,a3,b3)M(a2,0a2,b2)M(a1,a1,b1) = (1, 1), thus
εG(A; A,B) = l2M(a0,a0,b0)e0.

(4) If a3 = a2 = a1 = a0 =0x00, we have b3 = b2 = b1 =0x00, and
l2M(a3,a3,b3)M(a2,a2,b2)M(a1,a1,b1) = l2. Besides, we must have b0 6=0x00. Other-
wise εG(A; A,B) = 0. Similarly, we can prove that, if b3 = b2 = b1 = b0 =0x00,
we must have a3 = a2 = a1 = a0 =0x00. When A = B =0x00000000, we have
εG(A; A,B) = l2M(0,0,0)M(0,0,0)M(0,0,0)M(0,0,0)e0 = 1.

Above all, we complete the proof.

F All 31 choices for Λ such that Λ′ ∈ S and Λ′′ ∈ S

Table 6: All 31 choices for Λ such that Λ′ ∈ S and Λ′′ ∈ S

0x066ade02, 0x0dd5bd04, 0x0bbf6306, 0x1bab7a09, 0x1dc1a40b, 0x167ec70d, 0x1014190f,
0xa2544e61, 0xa43e9063, 0xaf81f365, 0xa9eb2d67, 0xb9ff3468, 0xbf95ea6a, 0xb42a896c,
0xb240576e, 0xd1aa27b0, 0xd7c0f9b2, 0xdc7f9ab4, 0xda1544b6, 0xca015db9, 0xcc6b83bb,
0xc7d4e0bd, 0xc1be3ebf, 0x73fe69d1, 0x7594b7d3, 0x7e2bd4d5, 0x78410ad7, 0x685513d8,
0x6e3fcdda, 0x6580aedc, 0x63ea70de
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