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Abstract. Multidimensional linear cryptanalysis of block ciphers is improved in this
work by introducing a number of new ideas. Firstly, formulae is given to compute
approximate multidimensional distributions of the encryption algorithm internal bits.
Conventional statistics like LLR (Logarithmic Likelihood Ratio) do not fit to work in
Matsui’s Algorithm 2 for large dimension data, as the observation may depend on
too many cipher key bits. So, secondly, a new statistic which reflects the structure
of the cipher round is constructed instead. Thirdly, computing the statistic values
that will fall into a critical region is presented as an optimisation problem for which
an efficient algorithm is suggested. The algorithm works much faster than brute
forcing all relevant key bits to compute the statistic. An attack for 16-round DES
was implemented. We got an improvement over Matsui’s attack on DES in data and
time complexity keeping success probability the same. With 241.81 plaintext blocks
and success rate 0.83 (computed theoretically) we found 241.46 (which is close to the
theoretically predicted number 241.81) key-candidates to 56-bit DES key. Search tree
to compute the statistic values which fall into the critical region incorporated 245.45

nodes in the experiment and that is at least theoretically inferior in comparison with
the final brute force. To get success probability 0.85, which is a fairer comparison to
Matsui’s results, we would need 241.85 data and to brute force 241.85 key-candidates.
That compares favourably with 243 achieved by Matsui.
Keywords: Separable statistics · Multidimensional linear cryptanalysis · DES

1 Introduction
Linear Cryptanalysis is a statistical approach in the cryptanalysis of symmetric ciphers.
It is a known plaintext attack which does not require any special plaintext/ciphertext
pairs and therefore is a very important tool in practical cryptanalysis. It was introduced
by Matsui in [20, 21] as an attack to DES. Davies and Murphy came up with another
approach in statistical cryptanalysis in [5]. Linear Cryptanalysis exploits the fact that
an xor of certain plaintext, ciphertext and key bits is zero with some a priori computed
probability p different from 1/2. Such combinations were called linear approximations in
[20]. The probability itself somehow depends on the cipher key bits. The method is more
efficient if p is far from 1/2, one says a linear approximation is more biased in this case.

The attack is characterised by the number of necessary plaintext/ciphertext pairs (data
complexity), by the complexity of ranking relevant sub-keys according to the value of a
statistic and the size of the final brute force (time complexity), and by success probability.
Two variations Algorithm 1 and Algorithm 2 were suggested in [20]. Algorithm 1 uses R-
round approximations, while Algorithm 2 uses R−1 or R−2-round approximations to attack
R-round cipher. In Algorithm 2 an observation on linear approximations may depend on
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some key bits from the first and the last rounds of the cipher and the linear approximations
themselves are generally more biased. So one may recover more cipher key bits at a lower
price, in other words, the method requires a lower amount of plaintext/ciphertext pairs
and is more efficient.

For 16-round DES, Matsui shows how to determine candidates for relevant key bits or
key bit linear combinations by Algorithm 2 with n = 243 plaintext/ciphertext 64-bit blocks
and success probability 0.85, then 243 encryptions are performed to find the correct key
[21]. The success probability was found experimentally for 8-round cipher with 104 attack
applications and then extrapolated to 16-round DES. Two 14-round linear approximations
were there used together.

The expression linear approximation though well settled in the current literature on
cryptanalysis does not seem quite precise. Formally, one can say it measures how cipher-
text is being approximated by the plain-text. However this intuition is not very helpful
within the subject. We believe that the linear cryptanalysis and its modifications are
based on the view that a linear approximation, or generally, any string x of the encryption
algorithm internal bits is an ordinary random variable and does approximate nothing.
Rather, a priori computed p, or generally, a probability distribution is an approximation
to the real probability (distribution). The latter is a complicated function in many (or all)
cipher key bits. However the approximate probability (distribution) p commonly depends
on a small set of the cipher key bits (linear combinations of the key bits) and that makes
the method work. For this reason we put that expression in quotation marks in what
follows. A more detailed discussion on the meaning of a "linear approximation" and why
using several approximations to the same x does not improve on the cryptanalysis is in
Appendix 1 below.

Only few improvements with relation to DES have been published since Matsui’s work.
In [19] a chosen plaintext linear attack was suggested and in [7] time complexity of the
attack’s first stage was reduced by using Fast Fourier Transform. It was experimentally
found in [11, 12] that time complexity of Matsui’s attack on DES may be decreased with a
better ranking of the values of relevant sub-key bits, though data complexity and success
probability remain the same. The success probability was determined experimentally with
21 attack applications, which does not seem enough to justify the figure 0.85.

How to improve Algorithm 1 with more than two "linear approximations" the distribu-
tion of which depend on the same key bits was shown in [18]. In [2] a framework for using
many "linear approximations" considered statistically independent was proposed, though
no practical cryptanalysis of 16-round DES was presented, where the sub-keys relevant
to the observations on "linear approximations" were considered disjoint as in [21]. Linear
cryptanalysis was further extended in different ways in [14, 1, 15], see [17]. For instance,
[1, 15] made use multidimensional analysis instead of one-dimensional. A good survey
of publications on using multiple "linear approximations" is in [16]. Recently, a series
of papers on linear cryptanalysis of PRESENT were published, see for instance [6, 4, 3].
Most of the methods are based on the assumption that the "linear approximations" are
statistically independent, which may be true only to some extent. On the other hand, no
general methods for computing joint a priori distributions (approximate joint distributions)
of multiple "linear approximations" in block ciphers were published before. If a priori distri-
bution is unknown, it looks difficult to predict the success probability of relevant statistical
attacks. An attack with low success probability has limited usefulness even if it has a low
complexity. The same limitation holds in multidimensional linear cryptanalysis of [15].
The present work solves the deficiency by giving formulae to compute multidimensional
probability distributions in Feistel ciphers. The method presented in Section 10 of this
work is general and based on clear mathematical foundation. It is a direct generalisation of
how Matsui calculated probabilities of his "linear approximations" in [20]. The approach is
applicable to any round ciphers. These formulas may be further analysed to derive useful
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information on how the key bits involved in the trail affect those distributions. That was
done in Section 11 in case of DES.

Similar ideas were earlier used to compute joint probability distributions of some
particular bits and study how those distributions depend on the cipher key for DES in [5, 9]
and for PRESENT in [8]. Those methods are based on a number of heuristic assumptions
and simplifications. In particular, the calculation in [8] was done for 15-round cipher,
where key bits involved in each round on the trail are the same.

In theory, it is possible, as it is suggested in [15, 6], to derive an approximate multi-
dimensional distribution from the correlations of linear functions defined on its domain.
For instance, that may be a span of a set of strong "linear approximations". The known
distributions of those "linear approximations" are not exact, where the accuracy of the
approximations and the number of the key bits involved depend on chosen trails. So to
get an applicable joint distribution the trails are to be somehow compliant with each
other, otherwise that may result in the final multidimensional distribution depends on too
many key bits. From the point of view of the present work, the approach may require an
approximate description of the cipher under question by using a big trail (appropriate
auxiliary event in terminology of Section 10.4) which incorporates all trails for particular
"linear approximations".

Another direction is to study joint distributions of correlations between "linear approx-
imations" as functions of randomised cipher key, see the latest version of [4] and references
in there. As that seems a difficult line to follow, the analysis is based on various hypotheses
on joint behaviour of the above correlations, which are difficult to justify for a specific
cipher as well. To get a practical key-recovery attack it is more natural to assume that the
cipher key one wants to find is fixed while available plaintexts are randomly generated as
it is in the original linear cryptanalysis and other statistical attacks as in [5]. We rather
need to know how a priori distributions (approximate a priori distributions) depend on
the cipher key in exact terms and that is achieved in the present work for Feistel ciphers.

Two open problems related to Algorithm 2 were posed in [2]. First, how to merge data
(find cipher key) from analysing different "linear approximations" efficiently. Second, how
to compute the success probability as a function in the number of available plaintexts and
the number of trials in the search phase. A solution to these problems was found in [28].
In particular, an attack for 16-round DES with 243 data and same amount of the final
brute force trials, and with success probability 0.89 was there described. The probability
was predicted by theoretical means and the prediction was found correct experimentally
for a similar method in case of 8-round DES with 105 method applications. The attack
uses 10 best 14-round "linear approximations", considered statistically independent. The
distributions of those "linear approximations" and observations on them depend on 53 DES
key bits. By solving a particular optimisation problem (stated in its generality in Section
8 of the present work) one finds a set of size 240 of 53-bit key-candidates at price ≈ 240

computations, that is without brute forcing 253 values of the statistic. The probability
that a correct 53-bit sub-key is in this set is 0.89.

The present work is far and away generalisation of [28]. Instead of "linear approxi-
mations" certain projections (sub-strings of bits or multidimensional linear functions) of
the encryption internal states are used. In contrast with [28] we do not here assume the
projections are statistically independent. We are able to compute their approximate joint a
priori distributions and therefore predict correctly success probability of the attack besides
other things. We implemented our method and got improvement over Matsui’s result on
16-round DES in data and time complexity while success probability remains the same,
see Section 4.
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Figure 1: One Feistel round

2 Feistel Cipher and DES
The methods introduced in this paper are general and applicable to many ciphers. In
Sections 11 and 12 we show how they work for DES as an example. In this section DES
details are given.

Let X0, X1 be plaintexts blocks of bit-length r each and Ki, i = 1, . . . , R round keys of
bit-length s. Then for i = 1, . . . , R the blocks Xi−1, Xi is an input to the i-th round of
the encryption algorithm, where Xi+1, Xi is the output, and Xi+1 = Xi−1 ⊕ Fi(Xi,Ki)
for some function Fi see Fig.1. The output of the R-th round XR+1, XR is the ciphertext.

In case of DES we have r = 32 and s = 48, and the number of encryption rounds is 16.
We keep the notation of [20], in particular, all bit string entries are numbered from right
to left, starting with 0. In case of DES the key bits numbered as in its specification: ki,
where i = 1, . . . , 63 and i 6= 0mod 8. Besides, we ignore the initial permutation. See [29]
for DES specification.

3 The Problem
Let x be a vectorial random variable which incorporates some bits from the encryption
first round output and some input bits to the last round as x = (X,Y ) in Fig.2. Like in
Matsui’s linear cryptanalysis, an approximate distribution of x may be a priori computed
from the encryption algorithm specification. It commonly depends on a relatively low
number of the cipher key bits (linear combinations of the key bits) denoted key in Fig.2,
see Section 11 how this dependence looks for some particular vector x1 in DES. On the
other hand, the observation on x depends on the available plaintext/ciphertext blocks
and some key bits from the first and the last rounds denoted Key in Fig.2. Assume one
guesses relevant key bits K̄ = (key, Key). If the guess was correct, then the observation
follows a priori distribution (correct key assumption). If not, then the observation follows
a distribution which is close to the uniform distribution. We assume it is uniform (wrong
key assumption) by ignoring the case when the guess on Key was correct but the guess on
key was not. In that case the observation usually follows a permuted a priori distribution,
at least that is true in [20] and in our experiments with DES, see Section 11. Those
assumptions were used by many authors before and their correctness is supported by the
experiments with DES in the present work. The setting described here is the setting of the
multidimensional linear cryptanalysis which originates from [1]. However this work does
not suggest any way to compute joint a priori distributions of the encryption algorithm
internal bits and so the method was not implemented.

Theoretically, according to [1, 15], one can use a Logarithmic Likelihood Ratio (LLR)
statistic, which depends on both the distribution and the observation, so it depends on K̄.
That provides the most powerful statistical test to distinguish correct and incorrect values



Stian Fauskanger and Igor Semaev 83

X

Y

Key

key

PL-TEXT

CH-TEXT

Key

Figure 2: Round Cipher Cryptanalysis

of K̄ according to Neyman and Pearson [24]. However the method is not efficient if the
size of K̄ (the number of linearly independent combinations in K̄ ) is large. In this case
one has to rank 2|K̄| values of the key bits involved according to the value of the statistic.

At the same time the distribution of some projections (sub-vectors or generally any
functions) hi(x) and observations on them may depend on a much lower number of the
key bits K̄i = (keyi, Keyi). That holds for DES, see Section 11 below, and may hold for
other modern block cipher based on small S-boxes. A good key schedule, e.g., round keys
are not linear functions of the main key, may reduce the negative effect of small S-boxes in
this sense. However that requires a separate investigation.

For DES the values of K̄i are linear projections of a K̄-value. The sub-keys K̄i which
affect the distributions and the observations for the projections hi may partly coincide or
be linearly dependent. In this paper we consider how by observing the values of several
projections hi(x) reconstruct a set of K̄-candidates which contains the correct value with a
prescribed success probability. We show that this can be accomplished by solving efficiently
an optimisation problem without brute forcing the values of K̄. Also we answer what the
size of the set of K̄-candidates is. To this end we will use a novel statistic which reflects
the structure of the cipher round. The statistic is a linear combination of LLR statistics
for different projections and we do not need that they are statistically independent.

4 Our Contributions
This paper contains the following contributions.

1. An approximate probabilistic description of Feistel ciphers is suggested in Section 10
and a convolution type formula for computing approximate probability distribution of
multidimensional random variables x constructed with internal bits of the encryption
algorithm is there derived.

2. A novel statistic which combines LLR statistics for different projections hi(x) is
used in this cryptanalysis, see Section 7. The statistic is approximately separable,
which allows to analyse the observation on different projections separately. If several
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statistically independent x are available, several such separable statistics may be
used simultaneously. In this cryptanalysis of DES we use two 14-bit vectorial random
variables x1, x2 produced by DES symmetry and considered independent, see Section
11, so two separable statistics are used.

3. The distribution of the statistic under correct and incorrect values of K̄ is determined
in Section 7.2. A critical region and success probability of the attack are defined in
Section 9.1. The latter is the probability that the statistic value computed under
the correct value of K̄ falls into this region. The number of incorrect values of K̄
for which the value of the statistic falls into the region is computed too and used to
predict the time complexity of the attack.

4. We represent a problem of reconstructing K̄-values which fall into the critical region
from K̄i-values as an optimisation problem stated in Section 8. A general algorithm
to solve that problem is described in Section 8.2. It is based on the idea of gluing of
K̄i-values developed in [26, 25].

5. Our approach allows to find the number of necessary plaintext/ciphertext blocks,
given desired success probability and the number of K̄-candidates to brute force.

6. The attack was implemented for 16-round DES, see Section 12 and it provides an
improvement over Matsui’s results. We used two independent separable statistics,
each based on 14 of 10-bit projections with 54 DES key bits involved overall, see the
next section for a summary.

5 Summary of the Attack for DES
We compute approximate a priori distributions of 14-round DES input/output 14-bit
vectors x1, x2 in Section 11. The vector x1 incorporates all variables relevant to Matsui’s
best "linear approximation" after adding some more variables, then x2 is produced from x1
by DES symmetry.

For each xt, t = 1, 2 some 14 of its 10-bit projections hti = hti(xt) are used. A priori
distribution of hti depends on 3 key bits (linear combinations of the key-bits). The
observation on the projection is a function of the plaintext/ciphertext bits and round keys
from the first and the last rounds. It depends on at most 18 key bits. An LLR statistic
LLRti is constructed for each projection hti. It depends on a sub-key of size at most 21,
see Section 12.1. So at most 221 values of the sub-key are ranked by the statistic LLRti.
That gives weights for the values of those sub-keys.

The vector st = (LLRt 1, . . . , LLRt 14) depends on the cipher key bits and may have
two multivariate Normal distributions: one for a correct guess and another one for an
incorrect guess on those key bits. Following Neyman-Pearson approach, we construct
another LLR statistic to distinguish these Normal distributions. The final LLR statistic
St =

∑14
i=1 ωti LLRti linearly depends on the values of LLRti. So it is separable, see

Section 7. That property is important for a tree search algorithm in Section 8.
Two separable statistics coming from x1 and x2 are considered independent, see the

next section for a discussion on this assumption. They are used simultaneously. One
sets two thresholds z1 and z2 (in fact, z1 = z2 = z as s1, s2, and, therefore, S1,S2 are
equally distributed), and defines the critical region: S1 > z1,S2 > z2, in order to provide
a desirable success probability (e.g., 0.83) of the attack. That defines a statistical test.
Overall, there are 54 independent key bits which affect the distributions and observations
for all the projections hti, see Section 12.2. The total weight of a 54 -bit sub-key is a tuple
of two real numbers, each of them is a linear combination of the weights of (≤ 21)-bit
sub-keys for relevant projections hti. The 54-bit key candidates that pass the test are
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computed with the tree search algorithm in Section 8, by creating 245.45 nodes in the
experiment. Creating a node is a very simple operation. An important feature of the
method is that no need to check all 254 sub-key values to decide. The number of the DES
56-bit key candidates is 241.46 (close to the theoretically predicted number 241.81). In order
to mount the attack one needs n = 241.81 plaintext/ciphertext blocks.

To get success probability 0.85, which is a fairer comparison to Matsui’s results, we
would need n = 241.85 and to brute force 241.85 keys.

6 Assumptions
In this section we summarise the assumption underlying the statistic and the attack.

1. A sample of n plaintext blocks uniformly and independently generated, and their
encryptions with the same cipher key are available.

2. Correct key assumption. Under correct relevant key bits the distribution of encryption
internal vectors (e.g., 14-bit vectors x1, x2 in Section 11 in case of DES) involved in
the attack is close to an approximate distribution a priori computed by Theorem
1. Technically, we use X0, X1, .., XR are uniformly distributed and an event C has
happened. Depending on the event, one may compute the exact or approximate
probabilities of various events in the encryption algorithm. The exact probabilities
depend on all key bits and are difficult to handle, while approximate probabilities
may only depend on few key bits.

3. Incorrect key assumption. Under incorrect relevant key bits the distribution of the
above vectors (e.g., 14-bit vectors x1, x2 in Section 11 in case of DES) is close to the
uniform distribution. Those distributions may vary. So relaxing the assumption in
line with [3] may lead to an improvement.

4. We use limit distributions (produced by Central Limit Theorem) of the main statistic
S in Section 7.2 in order to compute the success probability and the attack complexity.

5. In this particular cryptanalysis of DES the vectors x1, x2 in Section 11 incorporate
different internal bits of the encryption and so considered statistically independent.
So two separable statistics considered independent are used. Ideally, we would need
a joint distribution of x1, x2 which is a 28-bit vector. Though feasible it would take
more time. On the other hand, we wanted to demonstrate that our method is flexible
and several independent separable statistics may be used simultaneously.

7 Separable Statistics
Let x be a vectorial random variable and an observation ν = (ν1, . . . , νm) on m projections,
which are sub-vectors and generally any functions in x, is available. Here νi denotes a
vector of observations on the outcomes of the projection hi(x). We do not assume the
projections are statistically independent. In this cryptanalysis νi is a function in available
plaintext/ciphertext blocks and the key bits Keyi. By the statistic we mean a function
which depends on the observation ν. A statistic S(ν) is called separable if it can be
represented as

S(ν) =
m∑

i=1
Si(νi), (1)

where Si(νi) are statistics computed for different hi(x). This property allows analysing
data ν in parts by analysing νi separately. The notion was introduced in [23] to study
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statistical tests to distinguish discrete distributions. In this cryptanalysis the statistic
Si(νi) depends on a priori distribution of hi(x) and therefore on the key bits keyi besides
the observation νi and the key bits Keyi. So Si(νi) depends on K̄i. The statistic S(ν)
depends on available plaintext/ciphertext blocks and the key bits K̄, which incorporate all
K̄i. That defines the statistic’s domain. In fact, Si are weighted LLR statistics for hi(x).
To get the main statistic S(ν) the Neyman-Pearson approach is applied again in Section
7.2. We will write S(K̄) and Si(K̄i) instead of S(ν) and Si(νi) to stress the dependence of
the statistics on the sub-key K̄ and K̄i respectively. So (1) may be written as

S(K̄) =
m∑

i=1
Si(K̄i).

One decides a value of K̄ is correct if S(K̄) > z for some threshold z. That defines the
critical region. If the distribution of S(K̄) is known, then the value z is determined by a
prescribed success probability. One can also determine the average number of wrong values
of K̄ which pass the test as well. That defines the complexity of the final key search.

The values of K̄i which agree on common key bits or, more generally, common linear
subspaces of the key bits are to be combined to get a value of K̄ which falls into the critical
region. That is an instance of the optimisation problem described in Section 8. An efficient
algorithm to solve it is introduced in Section 8.2. The algorithm implements walking
over a search tree by creating new nodes if certain linear inequalities, implications of
S(K̄) > z, are satisfied and takes advantage of the fact that the statistic is separable. The
computation cost is much lower than 2|K̄|. One may use several statistically independent
x, so several statistics of that kind may be used simultaneously.

Another statistic is derived in Appendix 3. That is based on a more direct application
of the Neyman-Pearson approach. However it is separable only for statistically independent
projections. That is not true for the bunches of the projection (28) and (29) in this
cryptanalysis of DES as all the projections inside each bunch are statistically dependent.
Therefore, the second statistic does not fit well within this cryptanalysis and won’t be
used.

7.1 Notation
Let x be a random variable with N outcomes denoted 1, 2, . . . , N . Assume x may have two
probability distributions: P = (p1, . . . , pN ) and Q = (q1, . . . , qN ) for non-zero pi, qi. Let

V (n) = (V1, V2, . . . , VN )

denote outcome frequencies for x after n trials, so that
∑N

j=1 Vj = n. In other words, Vj is
the number of times the outcome j was hit.

Let hi, i = 1, . . . ,m be functions defined on {1, 2, . . . , N} with values in {1, 2, . . . , Ni}.
We call them projections and let

νi = νi(n) = (νi1, . . . , νiNi
), i = 1, . . . ,m,

denote outcome frequencies for hi(x) after n trials, so
∑Ni

j=1 νij = n. We therefore
have νib =

∑
hi(a)=b Va. Thus ν = ν(n) = (ν1, . . . , νm) is a vector of observations on

(h1(x), . . . , hm(x)).

7.2 Main Statistic
Let x follow the distribution P . Then Pi = (pi1, . . . , piNi) denotes the distribution of hi(x),
where

pib = Pr(hi(x) = b) =
∑

hi(a)=b

pa,
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and the sum is over a such that hi(a) = b. Similarly, if x is distributed according to Q,
then Qi = (qi1, . . . , qiNi

) is the distribution of hi(x). For each i and b we have pib, qib 6= 0.
We consider the LLR (Logarithmic Likelihood Ratio) statistic for hi

LLRi(νi) =
Ni∑

b=1
νib ln

(
qib

pib

)
=

N∑
a=1

Va ln
(
qihi(a)

pihi(a)

)
. (2)

According to Neyman-Pearson lemma [24], LLRi provides with the most powerful test to
distinguish the distributions Pi and Qi by observing independent samples.

By a standard argument, see for instance [1], for independently generated samples
we get LLRi(νi) =

∑n
t=1Rit, where Rit are independent identically distributed random

variables. Rit takes the value ln
(

qib

pib

)
with probability pib for i = 1, . . . , Ni, or with

probabilitiy qib for i = 1, . . . , Ni. In this cryptanalysis the independence is provided by
the independence of the plaintext blocks, see Section 6.

Let µiP , σiP denote the expectation and the variance of Rit under condition that νi

follows the distribution Pi. By [1], if the distributions Pi and Qi are close enough, then
µiP ≈ −µiQ and σiP ≈ σiQ. In this section we will prove a more general statement.

Let s(ν) = (LLR1(ν1), . . . , LLRm(νm)). Then, by the argument above, s(ν) =∑n
t=1Rt, where Rt = (R1t, . . . , Rmt) are independent identically distributed vectorial

random variables. The expectation of Rt under condition that ν follows the distribution P
is µP = (µ1P , . . . , µmP ). Let CP denote the covariance matrix of Rt. Let the distributions
P and Q be close enough, then µQ ≈ −µP and CP ≈ CQ by the following Lemma.

Lemma 1. Let qa = pa +εa, where |εa/pa| ≤ δ for a = 1, . . . , N . Then µP = −µQ +O(δ3)
and CP = CQ +O(δ3) for small enough δ.

Proof. By definition, µiQ =
∑Ni

b=1 qib ln
(

qib

pib

)
and µiP =

∑Ni

b=1 pib ln
(

qib

pib

)
. We remark

qib = pib + εib, where εib =
∑

hi(a)=b εa. By expanding the logarithm,

ln
(
qib

pib

)
= ln

(
1 + εib

pib

)
= εib

pib
− 1

2
ε2

ib

p2
ib

+O(δ3) (3)

as
|εib| = |

∑
hi(a)=b

εa| = |
∑

hi(a)=b

pa(εa/pa)| ≤ δ
∑

hi(a)=b

pa = δpib.

Then

µiQ + µiP =
Ni∑

b=1
(qib + pib) ln

(
qib

pib

)

=
Ni∑

b=1
(2pib + εib)

(
εib

pib
− 1

2
ε2

ib

p2
ib

+O(δ3)
)

= O(δ3).

That implies µP = −µQ +O(δ3). Similarly,

µiP =
Ni∑

b=1
pib ln

(
qib

pib

)
=

Ni∑
b=1

pib

(
εib

pib
− 1

2

(
εib

pib

)2
+O(δ3)

)

= −1
2

Ni∑
b=1

pib

(
εib

pib

)2
+O(δ3) = O(δ2).
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and so µiQ = O(δ2). Let x have the distribution P . By cijP we denote an entry of CP ,
the covariance between Rit and Rjt. One can see Rit takes the values ln

(
qihi(a)
pihi(a)

)
with

probability pa. By definition,

cijP =
N∑

a=1
pa ln

(
qihi(a)

pihi(a)

)
ln
(
qjhj(a)

pjhj(a)

)
− µiPµjP . (4)

So

cijQ − cijP =
N∑

a=1
εa ln

(
qihi(a)

pihi(a)

)
ln
(
qjhj(a)

pjhj(a)

)
+O(δ5)

as µiQµjQ = µiPµjP +O(δ5) by the above argument. By (3), ln
(

qib

pib

)
= O(δ) and by the

condition |εa| ≤ δpa. Therefore, cijQ − cijP = O(δ3). That proves the lemma.

By Central Limit Theorem, for large enough n the vector s(ν) is distributed as a
multivariate normal random variable N(nµP , nCP ) or N(nµQ, nCQ). To distinguish
between P and Q by observing the value of ν one may distinguish between the normal
distributions above. Assume the matrices CP and CQ are invertible. That always happens
in our experiments with DES, though the determinants are fairly small. Then the normal
distributions have densities. A normalised logarithmic likelihood ratio statistic is

S(ν) = 1
4n

(
− [s(ν)− nµQ]C−1

Q [s(ν)− nµQ]T + [s(ν)− nµP ]C−1
P [s(ν)− nµP ]T

)
.

Generally, it is a quadratic function in s(ν). As C = CQ ≈ CP the statistic is approximately
linear. Really, let µ = µQ. We take into account that µP ≈ −µ and by expanding brackets
in the expression for S(ν) we get

S(ν) ≈ s(ν)C−1µT =
m∑

i=1
Si(νi), (5)

where Si(νi) = ωiLLRi(νi) for some coefficients ωi, entries of C−1µT . Therefore the
approximation (5) to the statistic S(ν) is separable. That property will be used in the
search algorithm in Section 8.2 and in the cryptanalysis of DES, see Section 12. Denote
u = nµC−1µT , then u > 0. The expectation of s(ν) is nµ (under Q) and its covariance
matrix is nC. So the expectation of S(ν) is ≈ ±u and its variance is ≈ u. So if x follows Q,
then S(ν) is distributed approximately as N(u, u). If x follows P , then S(ν) is distributed
approximately as N(−u, u).

An heuristic argument to justify the distributions of the statistic S(ν) is given in this
section. Though the distributions work well in our experiments with DES, it is an open
problem to get a rigorous proof.

8 Optimization Problem
In this Section we give an algorithm to solve a particular optimization problem. This
algorithm is used to construct a set of K̄-values such that S(K̄) > z in Section 9.

Let Ai, i = 1, . . . ,m be matrices of size ri × n over binary finite field and of rank ri

which are relatively low in comparison with n. Note that, in this section, n represents the
number of variables not the number of plaintext blocks. Let X = (x1, . . . , xn) be a vector
of unknowns of length n. We consider a system of inclusions (a system of MRHS equations
according to [25])

AiX ∈ {ai1, . . . , aiti}, (6)
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where {ai1, . . . , aiti
} are given vectors of length ri over the same field. Let Si be a

weight function on the right hand side vectors in (6). If a is a vector of length ri and
a /∈ {ai1, . . . , aiti

}, then we set Si(a) = −∞. The function Si may be vectorial defined over
real numbers including −∞, and it should be of the same dimension for every i. Let A be
a matrix composed of a basis of the space generated by the rows in all Ai. To simplify the
notation we assume that rank(A) = n. The problem is to find all values of X such that
the following vectorial inequality holds

m∑
i=1

Si(AiX) > z (7)

for some vectorial threshold z. One can consider that problem over any field, in other
words, the entries of X may take values from any field. The only limitation is the number
of vectors on the right hand sides of (6) are finite. The problem may be solved by brute
force in case of a finite field by trying all values of X. We now suggest a method that
works faster. General case rank(A) ≤ n is reducible to the case where rank(A) = n by
rewriting (6) in new variables Y = AX.

8.1 Example of the Problem
Let a system of 3 MRHS equations in variables X = (x1, x2, x3) with weights be given,
where the Si, i = 1, 2, 3, are all of dimension 1.

x1 + x3 x2 S1
0 0 0.1
0 1 0.2
1 0 0.3
1 1 0.1

,
x1 + x2 S2

0 0.5
1 0.1

,

x1 x2 + x3 S3
0 0 0.4
0 1 0.5
1 0 0.7
1 1 0.1

.

One is to find all x1, x2, x3 such that

S1(x1 + x3, x2) + S2(x1 + x2) + S3(x1, x2 + x3) > 1.3. (8)

The solution is x1, x2, x3 = 1, 1, 1.

8.2 Algorithm
The algorithm is described in terms of linear functions not vectors. Thus AiX are vectorial
linear functions and AX is a basis of the linear space generated by the entries in all
AiX. Assume a sequence of the subspaces generated by sets of linearly independent basis
functions Tj such that

〈0〉 = 〈T0〉 ⊆ 〈T1〉 ⊆ 〈T2〉 ⊆ . . . ⊆ 〈Tr〉 = 〈AX〉. (9)

One can assume that Tj−1 is a subset of Tj and Tr = AX. The choice of (9) affects the
time complexity of the algorithm below. In particular, it is important to keep the growth
of the dimension stable, for instance, dim〈Tj〉 − dim〈Tj−1〉 = 1.

1. (precomputation) For each j, i one defines the subspace 〈Tji〉 = 〈Tj〉 ∩ 〈AiX〉 by its
basis Tji. One can assume that Tri = AiX. For each value Tji = ai the maximum of
Si achieved upon that fixation of Tji is stored. We denote that maximum by dji(ai).
If Tji = 0, then the maximum is denoted dji. Formally,

dji(ai) = max
Tji=ai

Si(AiX).

For each j and i one keeps 2|Tji| ≤ 2ri real numbers dji(ai).
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2. We set T0 = 0. Then we start the search with j = 1 and implement the following
recursive step. Let for some j ≥ 1 the value of Tj−1 = b be already determined.
We will determine a value for Tj . Take any value Tj = a that extends the value
of Tj−1 = b. For each i, as 〈Tji〉 ⊆ 〈Tj〉, compute the value Tji = ai and look up
dji(ai). Check

m∑
i=1

dj,i(ai) > z. (10)

Let (10) hold. If j = r, then to find the solution X one solves the system of linear
equations a = AX as in this case ai = AiX and Si(AiX) = dri(ai), and (7) holds.
Another value for Tr is then examined or one backtracks, that is j ← j − 1 and one
repeats the step.
If j < r then j ← j + 1 and one repeats the step. If (10) does not hold, then another
value for Tj is examined or one backtracks.

The algorithm is an adaptation of a gluing type algorithm from [27]. It is justified by the
following lemma.
Lemma 2. Let 1 ≤ j ≤ r and the value Tj = a be an extension of the value Tj−1 = b.
Then

m∑
i=1

dj−1,i(bi) ≥
m∑

i=1
dj,i(ai).

Proof. By the definition of ai and dj,i(ai), we have

dj,i(ai) = max
Tj=a

Si(AiX),

dj−1,i(bi) = max
Tj−1=b

Si(AiX).

As the value Tj = a is an extension of the value Tj−1 = b and, in other words, Tj = a
implies Tj−1 = b, then dj−1,i(bi) ≥ dji(ai) for any i. That implies the statement.

By Lemma 2, the inequality
∑m

i=1 Si(AiX) > z implies the inequalities (10) for any
1 ≤ j ≤ r as dri(ai) = Si(AiX), where ai = AiX, a = Tr = AX. Therefore we won’t reject
a value of X by the decision rule (10) for any j = 1, . . . , r if it satisfies (7).

8.3 Example of the Problem Solution
Let T1 = {x1}, T2 = {x1, x2}, T3 = {x1, x2, x3}. We define

T11 = {0}, T12 = {0}, T13 = {x1},
T21 = {x2}, T22 = {x1 + x2}, T23 = {x1},
T31 = {x1 + x3, x2}, T32 = {x1 + x2}, T33 = {x1, x2 + x3}.

After the precomputation

d1i

d11 0.3
d12 0.5
d13(0) 0.5
d13(1) 0.7

,

d2i

d21(0) 0.3
d21(1) 0.2
d22(0) 0.5
d22(1) 0.1
d23(0) 0.5
d23(1) 0.7

,

d3i

d31(00) 0.1
d31(01) 0.2
d31(10) 0.3
d31(11) 0.1
d32(0) 0.5
d32(1) 0.1
d33(00) 0.4
d33(01) 0.5
d33(10) 0.7
d33(11) 0.1

.
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Figure 3: The Search Tree

The search tree is presented in Fig. 3. We demonstrate how it is constructed. To construct
the first node one sets x1 = 0 and checks if

d11 + d12 + d13(0) > 1.3 .

This is false, one backtracks, sets x1 = 1 and checks

d11 + d12 + d13(1) > 1.3 .

This is true, one extends x1, x2 = 10 and checks

d21(0) + d22(1) + d23(1) > 1.3 .

This is false, one backtracks, puts x1, x2 = 11 and checks

d21(1) + d22(0) + d23(1) > 1.3 .

This is true, so one puts x1, x2, x3 = 110 and checks

d31(11) + d32(0) + d33(11) > 1.3 .

This is false, so one backtracks, puts x1, x2, x3 = 111 and checks

d31(01) + d32(0) + d33(10) > 1.3 .

That is true, so x1, x2, x3 = 111 is the only solution to the problem. The complexity is
determined by the number of constructed nodes. The tree in Fig. 3 incorporates 6 nodes
besides the root and one is to check 6 inequalities. The brute force requires to check 8
inequalities (8).

9 Application in Cryptanalysis
Let a number of statistically independent vectors xt be given along with their projec-
tions hti(xt), i = 1, . . . ,mt. For instance, x1, x2 are 14-bit vectors (24) and (27) in the
cryptanalysis of DES below. They depend on different internal bits of the encryption and
therefore may be considered independently distributed. We use some of their 10-bit linear
projections.

Let n plaintext/ciphertext pairs be available. The observation on hti(xt) is a string
of frequencies νti of length Nti. In this cryptanalysis of DES Nti = 210. Let’s denote
K̄ti = (keyti, Keyti), where keyti are key bits which affect a priori distribution of hti(xt),
and Keyti are those key bits from the first and the last round keys which affect the
observation on hti(xt). Therefore K̄ti are linear functions (at least in case of DES) in
unknown cipher key bits. Let K̄ be a list of linearly independent functions in all K̄ti. For
DES cryptanalysis with x1, x2 we have rank(K̄) = 54.
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For each possible value K̄ti one computes the value Sti(K̄ti) = ωtiLLRti(νti, K̄ti) by
(2). One then combines the values of K̄ti into a value of K̄ such that

St(K̄) =
mt∑
i=1

Sti(K̄ti) > zt (11)

for all t and some thresholds zt to be defined later from a prescribed success probability.
One can easily represent all (11) together as a vectorial inequality (7). Therefore the
algorithm from Section 8.2 is applicable.

We call a value of K̄ which passes the test (11) a K̄-candidate. After the test each
K̄-candidate is extended to a key-candidate (56-bit key in case of DES). All such key-
candidates are to be brute forced. The algorithm’s success is that (11) is true for the
correct value of K̄. We now analyse the success probability of the method and the number
of K̄-candidates.

9.1 Success probability and the number of K̄-candidates
Assume the value of K̄ is correct. Then the value of K̄ti is correct too. The observation
on every hti(xt) has a distribution derived from a priori distribution of xt. The statistic
St(K̄) on the left hand side of (11) has the normal distribution N(ut, ut) for every t if xt

follows a priori distribution. Here ut = nµtC
−1
t µT

t , where nµt and nCt are the expectation
vector and covariance matrix of the vectorial random variables st(νt) constructed with
LLR statistics for hti(xt), i = 1, . . . ,mt, see Section 7.2. For each t the success is not to
miss the correct value of K̄t. The probability of success is computed by

1− βt = Pr(N(ut, ut) > zt) = 1√
2utπ

∫ −zt

−∞
e−

(y−ut)2
2ut dy, (12)

where N(ut, ut) denotes a random variable as well. As xt are independent, the success
probability of the whole method is then

∏
t(1− βt).

If the value of K̄ is incorrect we assume that all K̄ti are not correct. The number
of K̄-values for which the latter is not true is negligible. So one can assume that the
observation on every hti(xt) is uniformly distributed and the statistic St(K̄) has normal
distribution N(−ut, ut). The fraction of incorrect K̄ which pass the test for one t is

1− αt = Pr(N(−ut, ut) > zt) = 1√
2utπ

∫ −zt

−∞
e−

(y+ut)2
2ut dy. (13)

The fraction of incorrect K̄ which pass the test for all t is
∏

t(1−αt) as xt are independent.
The number of K̄-candidates is on the average

2|K̄|
∏

t

(1− αt). (14)

So the number of the cipher key values to brute force, that is the number of key-candidates,
is 256∏

t(1 − αt) in case of DES. Assume one wants to brute force 2s key candidates
with maximum success probability. One searches for zt such that

∏
t(1− αt) = 2s−56 to

maximise the success probability
∏

t(1− βt).

10 Multivariate Probability Distribution in Feistel Ciphers
Based on the analysis of the encryption algorithm we get a priori probability distributions
of internal bits in Feistel Ciphers, see Section 2 for the definitions.
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10.1 Notation
Let Y be a bit string of some length, then we denote Y {i, j, . . . , k} = Y [i]⊕Y [j] . . .⊕Y [k]
and Y [i, j, . . . , k] = [Y [i], Y [j], . . . , Y [k] ] . Let Yi, Yj , . . . , Yk be bit strings of the same
length then Y{i,j,...,k}[r] = Yi[r]⊕ Yj [r]⊕ . . .⊕ Yk[r].

10.2 Multivariate Distributions
Assume the plaintext X0, X1 is taken uniformly at random from the set of all 2r-bit strings
and the cipher key we want to recover is fixed. The ciphertext XR+1, XR and any internal
bits in the encryption algorithm are then random variables. Given strings of indices (masks)
Ω0, Ω1, ΩR,ΩR+1, our goal is to compute a priori distribution of

Z = X0[Ω0], X1[Ω1], XR[ΩR], XR+1[ΩR+1], (15)

which is to be used in this cryptanalysis below. Then Z is a vectorial random variable of
|Ω0|+ |Ω1|+ |ΩR|+ |ΩR+1| bit length. The sought distribution depends on the cipher key
and its exact calculation is a very difficult task. Instead, we will construct an approximation
to that distribution which depends on a lower number of the key bits as it was done for
one-bit "linear approximations" in [20].

10.3 Exact Probabilistic Description of a Feistel Cipher
LetX0, X1, . . . , XR+1 be now random independently generated r-bit blocks andK1, . . . ,KR

fixed round keys of bit-length s. Let’s consider the event C:

Xi−1 ⊕Xi+1 = Fi(Xi,Ki), i = 1, . . . , R. (16)

By induction, Pr(C) = 2−rR. The exact probability of an event E which happens in the
encryption algorithm is

Pr(E|C) = Pr(E , C)
Pr(C) = 2rRPr(E , C).

The event C depends on the whole cipher key, so it is difficult to calculate Pr(E|C) by this
formula. Instead, a relaxed version of (16) will be used.

10.4 Approximate Probabilistic Description of a Feistel Cipher
We define a larger event CΓ, which means C implies CΓ, see for instance (17) below and
then put Pr(E|C) ≈ Pr(E|CΓ) = Pr(E,CΓ)

Pr(CΓ) . That is an approximate description of the
cipher. It depends on the event CΓ. Obviously, by taking another event we will have
another approximate description of the cipher. As our goal is to compute an approximate
distribution of (15), a relevant event CΓ is to be taken. This approach was already implicitly
used by Matsui in [20] to compute probability of his "linear approximations", see Section
10.5. The accuracy of so defined approximate descriptions is unclear. It is even unclear
how to measure that accuracy. There are two important parameters which play a role: the
quality of the distribution and the number of the key bits which affect the distribution (and
the number of the key bits which affect the observation in case of Matsui’s Algorithm 2).
The quality of the distribution may be measured by its Euclidean distance to an uniform
distribution. That measure is called quadratic imbalance in [1]. Intuitively, a better
approximate distribution should depend on a lager set of the key bits, see for instance
Section 11.1, where another marginally better approximate distribution of x1 defined by
(24) is constructed. However, using such distributions may reduce the efficiency of an
attack as they may depend on a significantly larger set of the key bits. At the same time
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by an informal argument in Appendix 1 any two very good approximate distributions are
essentially the same, in particular they essentially depend on the same key bits. That is
in accordance with this paper experiments: by computing approximate distributions for
the same vector with different trails, one gets an uniform distribution or the distributions
which are very close to each other. That may probably mean that using more than one
approximate distribution won’t provide with any advantage, though that requires further
investigation. Anyway, the approach gives good results in practice in the original linear
cryptanalysis [20] and in the present work.

For Z defined by (15) and a bit string A of the same length, we will derive a formula
to compute the exact value of Pr(Z = A|CΓ) for CΓ defined by

Xi−1[Γi]⊕Xi+1[Γi] = Fi(Xi,Ki)[Γi], i = 1, . . . , R. (17)

We see Pr(CΓ) = 2−
∑R

i=1
|Γi|. One says Γ = (Γ1, . . . ,ΓR) are output masks for multivariate

round approximations (called round sub-vectors here) in R consecutive rounds respectively.
Let’s denote by ∆i input masks. The sequence of Γi,∆i defines a trail, see Section 10.6
for definitions. Trails are classically used to compute probability distributions of one-bit
"linear approximations" for DES in [20]. The approximate distribution of (15) does not
depend on the input masks ∆i in the internal rounds, that is for i = 2, . . . , R− 1, if the
trail satisfies some natural conditions, see Section 10.6. Such trails will be called regular.
We remark that the probability Pr(Z = A|CΓ) only depends on the key bits involved in
the right hand sides of (17).

10.5 Approximate Distributions in Matsui’s Work
A similar approach was implicitly used by Matsui [20] when computing the distribution of
one-bit "linear approximations" to DES encryption algorithm. He used the event C′Γ:

Xi−1{Γi} ⊕Xi+1{Γi} = Fi(Xi,Ki){Γi}, i = 1, . . . , R,

where Γi were output masks for round "linear approximations". For instance, for 3-round
DES in Figure 4 of Matsui’s work one wants to compute the distribution of

f = X0{7, 18, 24, 29} ⊕X4{7, 18, 24, 29} ⊕X1{15} ⊕X3{15} ⊕K1{22} ⊕K3{22}. (18)

Let R = 3 and Γ = ({7, 18, 24, 29}, ∅, {7, 18, 24, 29}). Under assumption that X0, . . . , X4
are uniformly and independently distributed, the probability of C′Γ is 1/4. We find
Pr(f = 0|C) ≈ Pr(f = 0|C′Γ) ≈ 0.70 as stated in [20], see Appendix 2 for details.

10.6 Regular Trails
Let Γi,∆i,Θi ⊆ {0, 1, . . . , r− 1} and Λi ⊆ {0, 1, . . . , s− 1}. The sequence of |Γi|+ |∆i|-bit
strings

Xi[∆i], Fi[Γi], i = 1, . . . , R (19)

is called a trail. The members of the trail are called round sub-vectors, they are vectorial
functions in Xi. Index subsets ∆i,Γi are called input and output masks for the round
sub-vectors ("linear approximation" for the round function in the terminology of [20]), see
Fig. 4. The distribution of round sub-vectors are easy to derive from the definition of the
round function. Our goal is to compute the joint distribution of some input and output
bits (15) for R-round Feistel cipher by using a certain trail.

Let Ki[Λi] and Xi[Θi] denote the round key bits and input bits relevant to the function
Fi[Γi]. For instance, in case of DES the key bits Ki[23, . . . , 18] and input bits Xi[16, . . . , 11]
are relevant to Fi[24, 18, 7, 29]. We call the trail (19) regular if

Θi ∩ (Γi−1 ∪ Γi+1) ⊆ ∆i ⊆ Θi, i = 1, . . . , R, (20)
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Figure 4: Masks in one Feistel round

where Γ0 = ΓR+1 = ∅. We recall that the endpoints of the trail are fixed as we are to
compute the distribution of (15). It is easy to check the following statement.

Lemma 3. Let n > 3, then for any strings of indices Ω0,Ω1,ΩR,ΩR+1 in (15) there exists
a regular trail (19), such that

Ω0 = Γ1,Ω1 = Γ2 ∪∆1,ΩR = ΓR−1 ∪∆R,ΩR+1 = ΓR.

Proof. We put
i Γi ∆i

1 Ω0 Θ1 ∩ Ω1
2 Ω1 Θ2

3 ≤ i ≤ R− 2 any Θi

R− 1 ΩR ΘR−1
R ΩR+1 ΘR ∩ ΩR

That proves the lemma.

For R = 3 a regular trail exists if and only if Ω3 \Θ3 ⊆ Ω1 and Ω1 \Θ1 ⊆ Ω3. Generally,
there is a large variety of certain auxiliary events CΓ, or equivalently, regular trails for
computing approximations to the actual distribution of (15). Those trails produce generally
different distributions, and, in particular, the distributions may depend on different key
bits.

10.7 Convolution Formula for the Distribution
Assume a regular trail (19), where Γ = (Γ1, . . . ,ΓR) are output masks. We now produce a
convolution type formula to calculate an approximate distribution of the vector

Z = X0[Γ1], X1[Γ2 ∪∆1], XR[ΓR−1 ∪∆R], XR+1[ΓR] (21)

for that trail. That is we give a formula to calculate Pr(Z = A|CΓ), where CΓ is defined
by (17). Lemma 4 below states that the distribution does not depend on ∆i, where
i = 2, . . . , R− 1. To simplify notation, we put Γ0 = ∅,ΓR+1 = ∅ and denote

qi(b, a, k) = Pr(Xi[∆i] = b, Fi[Γi] = a |Ki[Λi] = k)

the probability distribution of round sub-vectors. In DES, if only non-adjacent S-boxes are
involved in the trail (19), then by the definition of Fi we have qi(b, a, k) = qi(b⊕k[∆i], a, 0).
We denote the latter by qi(b⊕k[∆i], a). The values of Z = X0[Γ1], X1[Γ2∪∆1], XR[ΓR−1∪
∆R], XR+1[ΓR] are respectively denoted by A = A0, A1, AR, AR+1.
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Theorem 1. Let X0, . . . , XR be distributed independently and uniformly at random, and
(19) be a regular trail. Then

Pr(Z = A|CΓ) = 2
∑R−1

i=2
|Γi|

2
∑R

i=1
|(Γi−1∪Γi+1)\∆i|

∑
A2,...,AR−1

R∏
i=1

qi(Ai[∆i], (Ai−1 ⊕Ai+1)[Γi], ki), (22)

where the sum is over Ai = Ai[Γi−1∪Γi+1∪∆i] (the bits of Ai are indexed by the members
of Γi−1 ∪ Γi+1 ∪∆i) and Ki[Λi] = ki.

Proof. By conditional and total probability formulas,

Pr(Z = A|CΓ) = Pr(CΓ)−1Pr(Z = A, CΓ)
= Pr(CΓ)−1

∑
A2,...,AR−1

Pr (A1) (23)

= Pr(CΓ)−1
∑

A2,...,AR−1

Pr (A2) ,

where the sum is over Aj = Aj [Γj−1 ∪ Γj+1 ∪∆j ], j = 2, . . . , R− 2, and as the events

A1 =

 Z = A0, A1, AR, AR+1,
Xi[Γi−1 ∪ Γi+1 ∪∆i] = Ai, i = 2, . . . , R− 1,

CΓ


and

A2 =


Xi[∆i], Fi[Γi] = Ai[∆i], (Ai−1 ⊕Ai+1)[Γi],

X0[Γ1] = A0,
Xi[(Γi−1 ∪ Γi+1) \∆i] = Ai[(Γi−1 ∪ Γi+1) \∆i],

XR+1[ΓR] = AR+1,
i = 1, . . . , R


are equivalent. We took into account that the event CΓ is defined by Xi−1[Γi]⊕Xi+1[Γi] =
Fi(Xi,Ki)[Γi], i = 1, . . . , R. By E1 we denote the event

Xi[∆i], Fi[Γi] = Ai[∆i], (Ai−1 ⊕Ai+1)[Γi], i = 1, . . . , R,

and by E2 the event

X0[Γ1] = A0,

Xi[(Γi−1 ∪ Γi+1) \∆i] = Ai[(Γi−1 ∪ Γi+1) \∆i], i = 1, . . . , R,
XR+1[ΓR] = AR+1.

By the definition of a regular trail, no variables in Xi[(Γi−1 ∪ Γi+1) \∆i] are relevant to
Xi[∆i], Fi[Γi]. Really, only Xi[Θi ∪∆i] are relevant to Xi[∆i], Fi[Γi]. The sets Θi ∪∆i

and (Γi−1 ∪ Γi+1) \∆i have empty intersection as Θi ∩ (Γi−1 ∪ Γi+1) ⊆ ∆i. So the events
E1, E2 are independent as they depend on different bits of Xi, i = 1, . . . , R. We can now
split the latter probability into a product. Then

Pr(Z = A| CΓ) = Pr(CΓ)−1
∑

A2,...,AR−1

Pr (E1) Pr (E2) .

As

Pr (E1) =
R∏

i=1
qi(Ai[∆i], (Ai−1 ⊕Ai+1)[Γi], ki),

Pr (E2) = 2−(|Γ1|+|ΓR|+
∑R

i=1
|Γi−1∪Γi+1\∆i|),
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and Pr (CΓ) = 2−
∑R

i=1
|Γi| we get

Pr(Z = A| CΓ) = 2
∑R−1

i=2
|Γi|

2
∑R

i=1
|(Γi−1∪Γi+1)\∆i|

∑
A2,...,AR−1

R∏
i=1

qi(Ai[∆i], (Ai−1 ⊕Ai+1)[Γi], ki).

That finishes the proof.

10.8 Distribution Properties
The conditions of Theorem 1 are satisfied if, for instance, ∆i = Θi ∩ (Γi−1 ∪Γi+1). That is
an extension of the conditions upon which the distribution of one-bit "linear approximation"
was computed by Matsui. To calculate the distribution of

X0{Γ1} ⊕X1{Γ2 ∪∆1} ⊕XR{ΓR−1 ∪∆R} ⊕XR+1{ΓR}

by summing round approximations Xi{∆i} ⊕ Fi{Γi} the masks Γi,∆i are to satisfy
Γi−1 ⊕ Γi+1 = ∆i, see [20]. We now study properties of regular trails and relevant
distributions.

Lemma 4. Let (19) be a regular trail, then the distribution (22) does not depend on ∆i.

Proof. We have
Θi ∩ (Γi−1 ∪ Γi+1) ⊆ ∆i ⊆ Θi, i = 2, . . . , R− 1.

Let ∆′i = Θi ∩ (Γi−1 ∪ Γi+1). Then ∆′i ⊆ ∆i and (Γi−1 ∪ Γi+1) \∆i = (Γi−1 ∪ Γi+1) \∆′i.
The statement follows from∑

Ai[∆i\∆′i]

qi(Ai[∆i], (Ai−1 ⊕Ai+1)[Γi], ki) = qi(Ai[∆′i], (Ai−1 ⊕Ai+1)[Γi], ki)

as all other terms in (22) do not depend on Ai[∆i \∆′i].

Lemma 4 implies that to reduce calculation cost one can take ∆i = Θi∩(Γi−1∪Γi+1), i =
2, . . . , n− 1 for a regular trail (19). That produces the same distribution by (22). Also we
call a regular trail (19) reduced if

Γi−1 \∆i = Γi+1 \∆i.

for all i = 2 . . . R− 1. It is not difficult to see that if the trail is not reduced, then one can
construct another trail which gives the same distribution for (21) or the distribution itself
degenerates into a distribution of a sub-vector of (21). This follows from the fact that the
bits Ai = Ai[Γi−1 ∪ Γi+1 ∪∆i] only affect

qi−1(Ai−1[∆i−1], (Ai−2 ⊕Ai)[Γi−1], ki−1),
qi(Ai[∆i], (Ai−1 ⊕Ai+1)[Γi], ki),
qi+1(Ai+1[∆i+1], (Ai ⊕Ai+2)[Γi+1], ki+1),

in (22). Therefore if Γi−1 \∆i 6= Γi+1 \∆i the trail (19) may be reduced and (22) gives
the same distribution with another trail or the distribution of a sub-vector of Z.

We say Hi holds if ∆i,Γi = ∅, ∅ or the round vector Xi[∆i], Fi[Γi] is uniformly
distributed. Similarly to the proof of Lemma 4, one proves

Lemma 5. Let (19) be a regular trail and Hi, Hi+1 or Hi, Hi+2 hold simultaneously for
some i. Then (22) provides a uniform distribution.
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Figure 5: Theoretical and empirical distributions in DES

10.9 Recurrent Formula
The computation with Theorem 1 might be tedious for n = 14 or 15. So one can use a
convolution type formula based on splitting the encryption into two parts. Let 1 < i < R
and the approximate distributions of

Z1 = X0[Γ1], X1[Γ2 ∪∆1], Xi[Γi−1 ∪∆i], Xi+1[Γi],
Z2 = Xi[Γi+1], Xi+1[Γi+2 ∪∆i+1], XR[ΓR−1 ∪∆R], XR+1[ΓR]

be already computed based on events CΓ′ , CΓ′′ , where Γ′ = (Γ1, . . . ,Γi) and Γ′′ =
(Γi+1, . . . ,ΓR). Then the approximate distribution of Z is computed by
Corollary 1.

Pr(Z = A0, A1, AR, AR+1 |CΓ)
= 2|Γi|

∑
Ai,Ai+1

Pr (Z1 = A0, A1, Ar[Γi−1 ∪∆i], Ai+1[Γi] | CΓ′)

× Pr (Z2 = Ai[Γi+1], Ai+1[Γi+2 ∪∆i+1], An, An+1| CΓ′′) .

Corollary 1 is proved by splitting the product in (22) and summing the first part over
A2, . . . , Ai−1 and the second part over Ai+2, . . . , AR−1 and using the theorem again.

Fig. 5 shows theoretical and empirical a priori distributions for the 10-bit block
X2[24, 18, 7, 29], X7[16, 14], X8[24, 18, 7, 29] of 6-round DES internal bits. Approximate
theoretical distribution was computed with Corollary 1 by using an appropriate trail. This
distribution depends on 3 key bits. The empirical distribution was produced by encrypting
239 randomly and independently generated 64-bit plaintext blocks for one randomly chosen
cipher key. We realise the distributions are oscillating around 2−10 ≈ 0.000976 and are
very close, almost indistinguishable. We got a number of such figures besides this one, all
of them look similar.

11 Multinomial Distributions for 14-round DES
One of the two best "linear approximations" for 14-round DES found by Matsui in [20]
is X2{24, 18, 7} ⊕X15{15} ⊕X16{24, 18, 7, 29}. We included all those bits in (24), and
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Table 1: Trail for computing the distribution of (24)

round i Γi ∆i

2, 6, 10, 14 ∅ ∅
3, 5, 7, 9, 11, 13 {24, 18, 7, 29} {15}

4, 8, 12 {15} {29}
15 {24, 18, 7, 29} {16, . . . , 11}

added some more bits as intuitively probability distribution on larger vectors reveals more
information on the cipher key. However this increases the number of key bits key1 involved
in the distribution and key bits Key1 from the first and the last round keys involved in the
observation. One is to keep the number of the key bits involved relatively low. Adding
some new bits does not increase the number of the key bits involved while adding some
others really does. For instance, adding X2[29] keeps the number of the key bits the same,
adding X15[16, 14, 13, 12, 11] enlarges key1 by K15[23, 21, 20, 19, 18] and Key1 by 30 bits
from K16. We got 14-bit string

x1 = (X2[24, 18, 7, 29], X15[16, 15, 14, 13, 12, 11], X16[24, 18, 7, 29]). (24)

Approximate a priori distribution of x1 was computed by using Theorem 1 and Corollary
1 with the trail shown in Table 1. The computation took only a few seconds on a common
computer. The distribution depends on the value of 7-bit string:

k, k15 = K{3,5,7,9,11,13}[22]⊕K{4,8,12}[44],K15[23, 22, 21, 20, 19, 18] (25)

denoted key1. The distribution is a permutation of the distribution, where key1 is a
zero-string by the following Lemma.

Lemma 6. Pr(x1 = A2, A15, A16 |k, k15) = Pr(x1 = A2 ⊕ k,A15 ⊕ k15, A16|0, 0 ), where
A2, A15, A16 are 4, 6, 4-bit strings respectively.

Proof. We will prove the lemma by applying Theorem 1. To this end we denote

p1(a, b) = Pr(X[4], S5[3, 2, 1, 0] = a, b),
p2(a, c) = Pr(X[2], S1[2] = a, c),
p3(d, b) = Pr(X[5, 4, 3, 2, 1, 0], S5[3, 2, 1, 0] = a, b),

where a, b, c, d are 1, 4, 2, 6-bit strings respectively, and X[5, 4, 3, 2, 1, 0] denote all input
bits to a respective S-box. Remark that input/output bits are numbered from right to left
as in [20]. By Theorem 1 with the trail shown in Table 1,

Pr(x1 = A2, A15, A16|key1 ) ≈ 4
∑ ∏

i=3,5,7,9,11,13
p1(Ai ⊕Ki[22], Ai−1 ⊕Ai+1)

×
∏

i=4,8,12
p2(A′i ⊕Ki[44], Ai−1 ⊕Ai+1)

× p3(A15 ⊕ k15, A14 ⊕A16),

where the sum is over 1-bit A3, A5, A7, A9, A11, A13 and 4-bit A4, A6, A8, A10, A12, A14,
and A′4, A′8, A′12 denote right-most bits of A4, A8, A12 respectively. By the definition of the
distributions p1(a, b),p2(a, c), see Appendix 4, we get

p1(a⊕ 1, b) = 1
24 − p1(a, b),

p2(a⊕ 1, c⊕ 1) = p2(a, c).
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We transform the expression for Pr(x1 = A2, A15, A16 ) by introducing new variables
and applying those properties. We get the probability depends on k, k15 such that
Pr(x1 = A2, A15, A16|k, k15 ) is

≈ 4
∑ ∏

i=5,7,9,11,13
p1(Ai, Ai−1 ⊕Ai+1)×

∏
i=8,12

p2(A′i, Ai−1 ⊕Ai+1)

× p1(A3, A2 ⊕A4) p2(A′4 ⊕ k,A3 ⊕A5) p3(A15 ⊕ k15, A14 ⊕A16)
= 4

∑ ∏
i=5,7,9,11,13

p1(Ai, Ai−1 ⊕Ai+1)×
∏

i=8,12
p2(A′i, Ai−1 ⊕Ai+1)

× p1(A3, A2 ⊕A4 ⊕ k) p2(A′4, A3 ⊕A5) p3(A15 ⊕ k15, A14 ⊕A16).
= Pr(x1 = A2 ⊕ k,A15 ⊕ k15, A16|0, 0 ). (26)

That implies the lemma.

In the known-plaintext attack we do not observe the bits of (24). They are internal to
the encryption algorithm and depend on the first and the last round keys. (24) can be
computed by

X2[24, 18, 7, 29] = X0[24, 18, 7, 29]⊕ S5(X1[16 . . . 11]⊕K1[23 . . . 18]),
X15[16] = X17[16]⊕ S3(X16[24 . . . 19]⊕K16[35 . . . 30]),

. . . ,

X15[11] = X17[11]⊕ S8(X16[4 . . . 31]⊕K16[5 . . . 0]),

while X16[24, 18, 7, 29] is a part of the ciphertext. Thus the observation depends on some
plaintext/ciphertext bits, 36 bits of the last round key K16 and 6 bits of the first round
key K1. As some key bits repeat, the observation effectively depends on a 39-bit sub-key
denoted Key1. In theory, one can apply a multidimensional linear analysis developed in
[15]. Likelihood Ratio statistic will then depend on key1, Key1: overall 44 key bits and
one linear combination of the key bits. That makes 245 variants for key1, Key1 to rank by
the value of the statistic and won’t give any advantage over Matsui’s analysis of DES even
if one uses Fast Fourier Transform to compute the statistic.

By DES symmetry one gets the distribution of

x2 = (X15[24, 18, 7, 29], X2[16, 15, 14, 13, 12, 11], X1[24, 18, 7, 29]), (27)

which depends on K{4,6,8,10,12,14}[22]⊕K{5,9,13}[44],K2[23, 22, 21, 20, 19, 18] denoted by
key2. The observation on (27) depends on a 37-bit sub-key from K1 and K16 denoted
Key2. Again, (27) can be computed by

X15[24, 18, 7, 29] = X17[24, 18, 7, 29]⊕ S5(X16[16 . . . 11]⊕K16[23 . . . 18]),
X2[16] = X0[16]⊕ S3(X1[24 . . . 19]⊕K1[35 . . . 30]),

. . . ,

X2[11] = X0[11]⊕ S8(X1[4 . . . 31]⊕K1[5 . . . 0])

while X1[24, 18, 7, 29] is a part of the plaintext. As above we can not afford using x2
directly in multidimensional linear analysis. Instead of x1, x2, two bunches of their 10-bit
projections will be defined in this section. We get overall 28 14-round input/output
sub-vectors, whose multinomial distributions will be used to attack 16-round DES later in
this paper. As x1 and x2 depend on disjoint sets of the encryption algorithm internal bits,
they are here considered independently distributed. The observation on two bunches of
10-bit sub-vectors (28) and (29) below are considered independent too.

A natural question to ask is how to find the best possible strings of bits (as x1 and x2
for 14-round DES, for instance), which provide with the most efficient key-recovery attack.
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Table 2: Another trail for computing the distribution of (24)

round i Γi ∆i

2 ∅ ∅
3, 5, 7, 9, 11, 13 {24, 18, 7, 29} {16, 15, 14}
4, 6, 8, 10, 12, 14 {16, 15, 14} {29, 24}

15 {24, 18, 7, 29} {16, . . . , 11}

In the original linear cryptanalysis that is the best "linear approximations" for the full or
truncated cipher. That seems a very difficult problem as we do not have a ready measure for
this superiority. The problem is not completely solved even in Matsui’s linear cryptanalysis
as his algorithm in [22] does ignore dependencies between "linear approximations" for
different S-boxes in one DES round. So there is a theoretical possibility to find even better
"linear approximations". In multidimensional linear cryptanalysis the situation is more
complicated as the number of the parameters increases, one of most important is the
number of the key bits (or key bit linear combinations ) involved besides the quality of the
distribution itself. Related problem is given a string x of the encryption internal bits, find
a superior trail to compute an approximate distribution for x. That problem looks easier,
an informal argument in Appendix 1 shows that all good trails provide with essentially
the same approximation, which essentially depends on the same key bits.

11.1 Another Trail
Another approximate distribution of x1 was computed by using another trail shown in Table
2. It has a negligibly larger quadratic imbalance with uniform distribution. Quadratic
imbalance is the Euclidean distance between two distributions, see [1]. Therefore the new
distribution is more powerful (though marginally) when it comes to decide on incorrect
cipher key bits. However we remark that in the trail presented in Table 2 the masks ∆i,Γi

are generally larger sets than relevant masks in Table 1. So this approximation depends
on a significantly larger number of the key bits and therefore trade off seems negative for
the efficiency of the attack. For those reasons the distribution is not used in the present
analysis. We don’t know how to find the best trail but the one in Table 1 works well in
practice. By Appendix 1 argument there is essentially only one good approximation to the
distribution of x1.

11.2 First Bunch of 14-round Input/Output Sub-Vectors
Instead of x1 we use the projections

X2[24, 18, 7, 29], X15[i, j], X16[24, 18, 7, 29], (28)

for different i, j ∈ {16, 15, 14, 13, 12, 11} except i = 16, j = 11, where the distribution
of (28) is uniform. When it is not uniform the distribution generally depends on 3 key
bits K{3,5,7,9,11,13}[22]⊕K{4,8,12}[44],K15[i′, j′], where K15[i′, j′] denotes a key-mask for
X15[i, j] in the 15-th round. However if i, j incorporates 16 or 11 then the distribution
depends on 2 key bits and all of them are permutations of the same distribution. For
instance, the distribution of X2[24, 18, 7, 29], X15[16, 15], X16[24, 18, 7, 29] depends on

K{3,5,7,9,11,13,15}[22]⊕K{4,8,12}[44],K15[23].

This follows from the properties of the distribution p4(d, b) = Pr(X[5, 4], S5[3, 2, 1, 0] =
d, b), namely, p4(d+ 1, b) = 1

32 − p4(d, b), see Appendix 4. All 14 such 10-bit vectors are
used. The observation on (28) depends on 12 bits of K16 and 6 bits of K1, that is at
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most 18 key bits. Therefore one is to examine the values of at most 20 key bits and one
linear combination of the key bits. That makes up to 221 variants of the observation and
distribution on (28) and that number is affordable. In practice, because of repeated key
bits from the key schedule, there are between 217 and 221 variants depending on i and j.

11.3 Second Bunch of 14-round Input/Output Sub-Vectors
By DES symmetry, 10-bit projections

X15[24, 18, 7, 29], X2[i, j], X1[24, 18, 7, 29], (29)

of x2 may be used for the reason above. The distribution of (29) depends on
K{4,6,8,10,12,14}[22]⊕K{5,9,13}[44],K2[i′, j′], where K2[i′, j′] denotes a key-mask for X2[i, j]
in the 2-nd round. There are between 215 and 221 variants of the observation and
distribution on (29) depending on i′ and j′.

12 Implementation Details for 16-round DES
Two independent separable statistics constructed from the above projections of x1 and x2
are used. The statistics are identically distributed as one-variate normal random variable
N(u, u) for u = nµC−1µT , where µ and C are computed from a priori distribution of x1
(same for x2).

We fix required success probability 0.85. Then we find the threshold z such that the
number of plaintext/ciphertext pairs n equals to the number of 56-bit keys for the final
brute force. To this end we are to solve the system

(1− β1)2 = 0.85,
256(1− α1)2 = n,

where β1 and α1 are defined by (12) and (13). In particular t = 2,

α1 = α2 = 0.99257519589049966079368,
β1 = β2 = 0.078041603343014413075699,
n = 3972370584411 ≈ 241.85,

a = 3.7140896621182213402888,
z = 0.98061363072909915519076.

Due to bad planning when generating random plaintext blocks to use in our experimental
implementation on full DES, we generated 16 independent sets of 239 random messages
and their corresponding ciphertexts (with a fixed key). Our experimental implementation
of the attack was therefore run with n = 7× 239 ≈ 241.81. In this case we get

(1− β1)2 = 0.83,
256(1− α1)2 = n,

α1 = α2 = 0.99269207541645714573241,
β1 = β2 = 0.088194138395904420113568,
n = 3848290697216 ≈ 241.81,

a = 3.5980773675668169704622,
z = 1.0335996763286862643819.

We have published supplemental material in [10]. From there one can download: the
probability distributions of x1 and x2; the actual value of the statistics from our exper-
iment S1(K̄) and S2(K̄); the weights ωi for i = 1, ..., 14; the vector of the means µ for
LLRi(νi), i = 1, ..., 14; the covariance matrix C, and its inverse C−1.
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Figure 6: LLR-values for h1

12.1 One of 28 Projections
Let h1 denote the projection X2[24, 18, 7, 29], X15[16, 15], X16[24, 18, 7, 29]. of x1. The
observation and distribution of h1 depend on K̄1 which incorporates 20 unknowns

x63, x61, x60, x53, x46, x42, x39, x36, x31,

x30, x27, x26, x25, x22, x21, x12, x10, x7, x5,

x57 + x51 + x50 + x19 + x18 + x15 + x14,

where xi denote key bits of 56-bit DES key. For each value K̄1 = k1 the value of
S1(k1) = ω1LLR1(k1) is kept, 220 values overall. LLR1(k1) for all values k1 are shown in
Fig. 6. The values k1 are there sorted by LLR1(k1) in ascending order.

With n = 241.81 plaintext/ciphertext pairs the expectation of LLR1 for correct k1 is
3.23905, for incorrect −3.23905. Experimental value for the correct key is 1.57123, it is
presented by the vertical line in Fig. 6. There are 23370 values higher than that. We
remark that using only h1 in the cryptanalysis is not efficient enough. One is to brute
force 236 × 23371 > 250.5 key-candidates before finding the correct 56-bit DES key. That
won’t give any advantage over Matsui’s results. Similar is true for other 27 projections.

12.2 Search Tree Complexity
54 DES key bits K̄ which affect our statistics are

x2, x19, x60, x34, x10, x17, x59, x36, x42, x27, x25,

x52, x11, x33, x51, x9, x23, x28, x5, x55, x46, x22,

x62, x15, x37, x47, x7, x54, x39, x31, x29, x20, x61, (30)
x63, x30, x38, x26, x50, x1, x57, x18, x14, x35, x44,

x3, x21, x41, x13, x4, x45, x53, x6, x12, x43.

They are taken in an order defined by how many K̄i those key bits are relevant to. We say
a key-bit x relevant to K̄i if the rank of K̄i (as a set of linear functions) drops upon the
fixation of x by a constant. For instance, x2 relevant to 14 (maximal number) of K̄i, etc.

To construct the search tree one first chooses a sequence T1, T2, . . . , T54, where Tj+1 is
produced from Tj by adding one unknown key bit, which is relevant to the most of K̄i and
which is not in 〈Tj+1〉. The choice is not unique. We use the order defined by (30). That
is T1 = {x2},T2 = {x2, x19},T3 = {x2, x19, x60}, ... The choice of Tj affects significantly
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Figure 7: Search tree complexity

the complexity (the number of nodes) of the tree. Search algorithm from Section 8.2 is
then run.

The number of examined values of Tj (tree nodes at level j), j = 38, . . . , 54, in log2
scale are presented in Fig. 7. Overall number of nodes is 245.45 << 254. So the complexity
of finding K̄-candidates is much lower than brute forcing all values of K̄. The final
number of K̄-candidates is 239.46, so the number of 56-bit DES keys to brute force is 241.46

again close to what was predicted by our theory. Constructing one node requires few bit
xor’s and few additions with low precision real numbers, see Section 9. So search tree
complexity (constructing 245.45 nodes) is lower in bit operations than final brute force
of 241.46 DES keys. In fact, our implementation works slower than that as the source
code is not as optimized as DES libraries are and we need to access external memory
where precomputation results, that is the numbers dji(a), are kept. At the same time
DES encryption is very straightforward. One needs to keep around 231 low precision real
numbers (less than 9GB of memory).

12.3 Possible Improvements
There are several direction in improving the method practically and theoretically.

1. Obviously, one may get better result by using larger strings x = (X,Y ) of the
encryption internal bits, see Fig.2.

2. There are several practical ways to reduce the number of nodes in the search tree,
e.g. by taking a larger threshold z in (10) for low levels (low j) of the tree. However
those methods do not guarantee theoretical success probability as Lemma 2 does not
apply any more. By choosing a different zj for each level, each slightly less than the
statistic for correct key, we managed to reduce the number of visited nodes to < 234.
Clearly the success probability in this case is smaller, but it is an indication that
these methods may work in practice.

3. The number of nodes in the search tree may probably be further reduced by choosing
another sequence of Tj . It is still unclear how to do that in general.

4. Another statistics for the projections h1, . . . , hm may be used. For instance, let the
key bits keyi affect a priori distribution of hi, and Keyi affect the observation on hi.
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Then we define
LLR∗i (Keyi) = max

key
i

LLRi(K̄i).

We here neglect that Keyi and keyi may have some key bits in common. Using
LLR∗i instead of LLRi looks better in practice and in line with Matsui’s analysis.
However the distribution of (LLR∗1, . . . , LLR∗m) is unknown and therefore the success
probability of the method is difficult to predict. One can probably try to compute it
experimentally for a truncated cipher and then extrapolate to the full-round one, as
similar was done by Matsui in [21, 22]. Also one can choose any subset of K̄i instead
of keyi in the definition of LLR∗i above.

13 Conclusion
Detailed contributions of the present work are presented in Section 4. Three main points
are summarised below as well. Firstly, the use of separable statistics. Secondly, efficient
algorithm for computing the statistic values by solving an optimisation problem based on
gluing together partial information on the cipher key, so there no need to compute the
statistic for all values of the key bits involved. Thirdly, formulae for joint approximate
distributions of internal bits in Feistel ciphers. Only in the end they are combined to a
concrete attack on DES improving on Matsui’s results. The combination of the first two
may be of independent interest in reducing time complexity of key recovery attacks in
other ciphers.
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14 Appendix 1. Meaning of "Linear Approximation"
We believe that the term "linear approximation" though well settled in the current literature
is not very precise. By definition, "linear approximation" is a linear Boolean function in
plaintext/ciphertext bits. As the plaintext is random and the cipher key is constant, the
function takes 0-value with some probability q = q(K). The latter depends on all cipher
key bits K and is hardly possible to utilise. In particular, it looks that there is no way
to represent given "linear approximation" in a form suitable for an efficient key recovery
attack. Instead, in Matsui’s linear cryptanalysis one finds, by using an appropriate trail, an
approximate probability p = p(k) which depends on only one linear combination of the key
bits k. One then mounts an attack (Algorithm 1) which recovers this linear combination
by statistical analysis.

One can consider any vectorial function x in plaintext/ciphertext bits which has some
distribution q(K) . Assume its approximate distribution p(k) which depends on a few key
bits k. The approximation has a common mathematical meaning: q(K)− p(k) = δ(K),
where δ is a function with real values for any value of K. One can say that the approximate
distribution p(k) is "good" if |δ(K)| is small in comparison with p(k) for any value of K.
Therefore to express what a "linear approximation" does approximate in precise terms
one sees that it is rather the probability (distribution) q is being approximated by the
probability (distribution) p than anything else.

Assume another "good" approximation to the distribution: q(K)− p1(k1) = δ1(K) for
another subset of the key bits k1 and a small function δ1(K). By eliminating q,

p(k) = p1(k1) + ε(K) (31)

for a small ε(K) = δ1(K)−δ(K). Let’s fix common variables (common linear combinations)
in k1 and k (denoted k1∩k) by constants. After the fixation p(k), p1(k1) become essentially
equal constants as ε(K) is small for any K. So p(k), p1(k1) depend essentially on the
same variables k1 ∩ k and equal up to a small additive term. We conclude that any "good"
trail produces roughly the same approximate distribution p(k) for x . So using several
approximate distributions (several trails) for the same x can not significantly improve on
linear cryptanalysis.

Similar is true for multidimensional distributions of encryption internal bits in the
present work. Fig. 5 in Section 10.9 demonstrates a real distribution versus an approximate
one, they are very close in the above sense. Also two different approximations (by using
two different trails) to the distribution of the same x1 were computed in Section 11. They
differ marginally as it is predicted by the argument above. That is why we use only one
trail for x1 in this cryptanalysis.
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15 Appendix 2. On Matsui’s Probability Calculation
In this section we show that the distribution of one-bit "linear approximations" used in
[20] may be computed only based on X0, X1, . . . , XR+1 are independently and uniformly
generated and under condition of the auxiliary event C′Γ:

Xi−1{Γi} ⊕Xi+1{Γi} = Fi(Xi,Ki){Γi}, i = 1, . . . , R (32)

for some Γi. We will do that in case of 3-round DES represented in Figure 4 of Matsui’s
work [20]. The general case is similar. We want to compute the distribution of (18). Let
n = 3 and Γ = (∆, ∅,∆), where ∆ = {7, 18, 24, 29}. Then C′Γ is F1{∆}⊕X0{∆}⊕X2{∆} =
0, F3{∆} ⊕X2{∆} ⊕X4{∆} = 0. We have

Pr(f = 0|C) ≈ Pr(f = 0|C′Γ) = Pr(f = 0, C′Γ)
Pr(C′Γ) = 4 Pr(f = 0, C′Γ)

= 4
∑

a,b,c,d

Pr


F1{∆} ⊕X1{15} ⊕K1{22} = a,
F3{∆} ⊕X3{15} ⊕K3{22} = b,

X1{15} = c,
X3{15} = d,

f = 0,
C ′Γ

 ,

where the sum is over binary a, b, c, d. We now take into account that f = [F1{∆} ⊕
X1{15}⊕K1{22}]⊕ [F3{∆}⊕X3{15}⊕K3{22}]⊕ [F1{∆}⊕X0{∆}⊕X2{∆}]⊕ [F3{∆}⊕
X2{∆} ⊕ X4{∆}]. Let F̄1, F̄3 be produced from F1, F3 by the substitution X1{15} =
c,X3{15} = d. Then

Pr(f = 0|C) ≈ 4
∑
a,c,d

Pr


F1{∆} ⊕X1{15} ⊕K1{22} = a,
F3{∆} ⊕X3{15} ⊕K3{22} = a,

X1{15} = c,
X3{15} = d,

F̄1{∆} ⊕X0{∆} ⊕X2{∆} = 0,
F̄3{∆} ⊕X2{∆} ⊕X4{∆} = 0.



= 4
∑
a,c,d

Pr


F1{∆} ⊕X1{15} ⊕K1{22} = a,
F3{∆} ⊕X3{15} ⊕K3{22} = a,

X1{15} = c,
X3{15} = d.


× Pr

(
F̄1{∆} ⊕X0{∆} ⊕X2{∆} = 0,
F̄3{∆} ⊕X2{∆} ⊕X4{∆} = 0.

)
The probability was split into a product by independence. The last term in the product is
1/4. Therefore,

Pr(f = 0|C) ≈
∑
a,c,d

Pr


F1{∆} ⊕X1{15} ⊕K1{22} = a,
F3{∆} ⊕X3{15} ⊕K3{22} = a,

X1{15} = c,
X3{15} = d.


=

∑
a

Pr
(
F1{∆} ⊕X1{15} ⊕K1{22} = a,
F3{∆} ⊕X3{15} ⊕K3{22} = a.

)
=

∑
a

Pr(F1{∆} ⊕X1{15} ⊕K1{22} = a) Pr(F3{∆} ⊕X3{15} ⊕K3{22} = a)

=
(

12
64

)2
+
(

1− 12
64

)2
≈ 0.70.
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16 Appendix 3. Another Statistic
We will use the notation introduced in Section 7.1. Let’s denote ν(n) = (ν1, . . . , νm), a
vector of length M =

∑m
i=1Ni, a concatenation of νi(n). We can write

ν(n) =
n∑

i=1
Ri,

where Ri are independent identically distributed (as ν(1)) random variables. Assume that
x has the distribution P . Then by µP and CP we denote here the expectation and the
covariance matrix for ν(1). Remark that the symbols µP and CP are used in Section 7.2
in a different context. We have

µP = (µP,1, . . . , µP,m),

where µP,i =
(∑

hi(a)=1 pa, . . . ,
∑

hi(a)=Ni
pa

)
is the expectation of νi(1). We can split

the matrix CP into blocks Cij . Such block represents a covariance matrix for νi(1) and
νj(1). By the definition of covariance,

Cij [b, c] =
∑

hi(a) = b
hj(a) = c

pa −
∑

hi(a)=b

pa

∑
hj(a)=c

pa

= Pr(hi(x) = b, hj(x) = c)−Pr(hi(x) = b)Pr(hj(x) = c).

If hi(x), hj(x) for i 6= j are independent random variables, then CP is diagonal, because
Cij are zero-matrices. Diagonal blocks Cii are covariance matrices for νi(1).

By Central Limit Theorem the distribution of ν tends to a multivariate normal distribu-
tion N(nµP , nCP ) with expectations nµP and covariance matrix nCP . Similarly, if x has
the distribution Q, then ν tends to N(nµQ, nCQ). To decide which distribution P or Q is
correct by observing the value of ν, one can apply the Neyman-Pearson approach. However
as the matrices CP , CQ are singular, the normal distributions do not have densities.

A standard solution is to consider a truncation of ν(n) = (ν1, . . . , νm). For instance,
let ν′(n) = (ν′1, . . . , ν′m), where ν′i is produced from νi by dropping one entry of the latter.
Recall that νi is a vector of observations on the values of hi(x). Then by µ′P and C ′P
we denote here the expectation and the covariance matrix for ν′(1) when x follows the
distribution P . If hi(x), hj(x) for i 6= j are independent random variables, then C ′P is
diagonal and invertible. Similarly, when x follows the distribution Q and hi(x), hj(x) for
i 6= j are independent, then C ′Q is diagonal and invertible.

Therefore, one constructs an LLR statistic to distinguish two multivariate normal
distributions:

S ′(ν) = 1
n

(− [ν′ − nµ′P ]C ′−1
P [ν′ − nµ′P ]T +

[
ν′ − nµ′Q

]
C ′−1

Q

[
ν′ − nµ′Q

]T ).

In that case

S ′(ν) =
m∑

i=1
S′i(ν′i)

is a separable statistic. However as the projections (28) are dependent(the same is true for
(29)), the statistic S ′ is not applicable within this cryptanalysis.
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17 Appendix 4. Some multivariate distributions on DES
S-boxes

Let

p1(a, b) = Pr(X[4], S5[3, 2, 1, 0] = a, b),
p2(a, c) = Pr(X[2], S1[2] = a, c),
p4(d, b) = Pr(X[5, 4], S5[3, 2, 1, 0] = d, b),

where a, b, c, d are 1-bit, 4-bit, 1-bit and 2-bit binary strings, respectively. The distribution
p2(a, c) = Pr(X[2], S1[2] = a, c) is  15

64
17
64

17
64

15
64

 ,

where the rows are numbered by a = 0, 1 and the columns by c = 0, 1. The distribution
p1(a, b) = Pr(X[4], S5[3, 2, 1, 0] = a, b) is 0 1

16
1
16 0 3

64 0 1
64

1
16

1
32 0 1

32
1
16

3
64

3
64

1
32 0

1
16 0 0 1

16
1
64

1
16

3
64 0 1

32
1
16

1
32 0 1

64
1
64

1
32

1
16

 ,

where the rows are numbered by a = 0, 1 and the columns by b = 0, . . . , 15. The distribution
p4(d, b) = Pr(X[5, 4], S5[3, 2, 1, 0] = d, b) is

0 1
32

1
32 0 1

32 0 1
64

1
32 0 0 1

64
1
32

1
32

1
64

1
64 0

1
32 0 0 1

32 0 1
32

1
64 0 1

32
1
32

1
64 0 0 1

64
1
64

1
32

0 1
32

1
32 0 1

64 0 0 1
32

1
32 0 1

64
1
32

1
64

1
32

1
64 0

1
32 0 0 1

32
1
64

1
32

1
32 0 0 1

32
1
64 0 1

64 0 1
64

1
32


,

where the rows are numbered by a = 0, . . . , 3 and the columns by b = 0, . . . , 15.
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